1
|
Jiang R, Feng Q, Nong D, Kang YJ, Sept D, Hancock WO. Motor Clustering Enhances Kinesin-driven Vesicle Transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619892. [PMID: 39484389 PMCID: PMC11526910 DOI: 10.1101/2024.10.23.619892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Intracellular vesicles are typically transported by a small number of kinesin and dynein motors. However, the slow microtubule binding rate of kinesin-1 observed in in vitro biophysical studies suggests that long-range transport may require a high number of motors. To address the discrepancy in motor requirements between in vivo and in vitro studies, we reconstituted motility of 120-nm-diameter liposomes driven by multiple GFP-labeled kinesin-1 motors. Consistent with predictions based on previous binding rate measurements, we found that long-distance transport requires a high number of kinesin-1 motors. We hypothesized that this discrepancy from in vivo observations may arise from differences in motor organization and tested whether motor clustering can enhance transport efficiency using a DNA scaffold. Clustering just three motors improved liposome travel distances across a wide range of motor numbers. Our findings demonstrate that, independent of motor number, the arrangement of motors on a vesicle regulates transport distance, suggesting that differences in motor organization may explain the disparity between in vivo and in vitro motor requirements for long-range transport.
Collapse
Affiliation(s)
- Rui Jiang
- Intercollege Program in Integrative and Biomedical Physiology, Pennsylvania State University, University Park, PA 16802
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802
| | - Qingzhou Feng
- Molecular Cellular and Integrative Biomedical Sciences Program, Pennsylvania State University, University Park PA 16802
| | - Daguan Nong
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802
| | - You Jung Kang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - William O. Hancock
- Intercollege Program in Integrative and Biomedical Physiology, Pennsylvania State University, University Park, PA 16802
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802
- Molecular Cellular and Integrative Biomedical Sciences Program, Pennsylvania State University, University Park PA 16802
| |
Collapse
|
2
|
Bensel BM, Previs SB, Bookwalter C, Trybus KM, Walcott S, Warshaw DM. Kinesin-1-transported liposomes prefer to go straight in 3D microtubule intersections by a mechanism shared by other molecular motors. Proc Natl Acad Sci U S A 2024; 121:e2407330121. [PMID: 38980901 PMCID: PMC11260143 DOI: 10.1073/pnas.2407330121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024] Open
Abstract
Kinesin-1 ensembles maneuver vesicular cargoes through the three-dimensional (3D) intracellular microtubule (MT) network. To define how such cargoes navigate MT intersections, we first determined how many kinesins from an ensemble on a lipid-based cargo simultaneously engage a MT, and then determined the directional outcomes (straight, turn, terminate) for liposome cargoes at perpendicular MT intersections. Run lengths of 350-nm diameter liposomes decorated with up to 20, constitutively active, truncated kinesin-1 KIF5B (K543) were longer than single motor transported cargo, suggesting multiple motor engagement. However, detachment forces of lipid-coated beads with ~20 kinesins, measured using an optical trap, showed no more than three simultaneously engaged motors, with a single engaged kinesin predominating, indicating anticooperative MT binding. At two-dimensional (2D) and 3D in vitro MT intersections, liposomes frequently paused (~2 s), suggesting kinesins simultaneously bind both MTs and engage in a tug-of-war. Liposomes showed no directional outcome bias in 2D (1.1 straight:turn ratio) but preferentially went straight (1.8 straight:turn ratio) in 3D intersections. To explain these data, we developed a mathematical model of liposome transport incorporating the known mechanochemistry of kinesins, which diffuse on the liposome surface, and have stiff tails in both compression and extension that impact how motors engage the intersecting MTs. Our model predicts the ~3 engaged motor limit observed in the optical trap and the bias toward going straight in 3D intersections. The striking similarity of these results to our previous study of liposome transport by myosin Va suggests a "universal" mechanism by which cargoes navigate 3D intersections.
Collapse
Affiliation(s)
- Brandon M. Bensel
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| | - Samantha Beck Previs
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| | - Carol Bookwalter
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| | - Kathleen M. Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| | - Sam Walcott
- Department of Mathematical Sciences, and Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA01609
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| |
Collapse
|
3
|
Kumar P, Chaudhury D, Sanghavi P, Meghna A, Mallik R. Phosphatidic acid-dependent recruitment of microtubule motors to spherical supported lipid bilayers for in vitro motility assays. Cell Rep 2024; 43:114252. [PMID: 38771696 PMCID: PMC11220796 DOI: 10.1016/j.celrep.2024.114252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/01/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
Motor proteins transport diverse membrane-bound vesicles along microtubules inside cells. How specific lipids, particularly rare lipids, on the membrane recruit and activate motors is poorly understood. To address this, we prepare spherical supported lipid bilayers (SSLBs) consisting of a latex bead enclosed within a membrane of desired lipid composition. SSLBs containing phosphatidic acid recruit dynein when incubated with Dictyostelium fractions but kinesin-1 when incubated with rat brain fractions. These SSLBs allow controlled biophysical investigation of membrane-bound motors along with their regulators at the single-cargo level in vitro. Optical trapping of single SSLBs reveals that motor-specific inhibitors can "lock" a motor to a microtubule, explaining the paradoxical arrest of overall cargo transport by such inhibitors. Increasing their size causes SSLBs to reverse direction more frequently, relevant to how large cargoes may navigate inside cells. These studies are relevant to understand how unidirectional or bidirectional motion of vesicles might be generated.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Dwiteeya Chaudhury
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Paulomi Sanghavi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Apurwa Meghna
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Roop Mallik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
4
|
Sen A, Chowdhury D, Kunwar A. Coordination, cooperation, competition, crowding and congestion of molecular motors: Theoretical models and computer simulations. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:563-650. [PMID: 38960486 DOI: 10.1016/bs.apcsb.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Cytoskeletal motor proteins are biological nanomachines that convert chemical energy into mechanical work to carry out various functions such as cell division, cell motility, cargo transport, muscle contraction, beating of cilia and flagella, and ciliogenesis. Most of these processes are driven by the collective operation of several motors in the crowded viscous intracellular environment. Imaging and manipulation of the motors with powerful experimental probes have been complemented by mathematical analysis and computer simulations of the corresponding theoretical models. In this article, we illustrate some of the key theoretical approaches used to understand how coordination, cooperation and competition of multiple motors in the crowded intra-cellular environment drive the processes that are essential for biological function of a cell. In spite of the focus on theory, experimentalists will also find this article as an useful summary of the progress made so far in understanding multiple motor systems.
Collapse
Affiliation(s)
- Aritra Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Debashish Chowdhury
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
5
|
Bensel BM, Previs S, Bookwalter C, Trybus KM, Walcott S, Warshaw DM. "Spatial Relationships Matter: Kinesin-1 Molecular Motors Transport Liposome Cargo Through 3D Microtubule Intersections In Vitro". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569616. [PMID: 38076816 PMCID: PMC10705568 DOI: 10.1101/2023.12.01.569616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Kinesin-1 ensembles maneuver vesicular cargoes through intersections in the 3-dimensional (3D) intracellular microtubule (MT) network. To characterize directional outcomes (straight, turn, terminate) at MT intersections, we challenge 350 nm fluid-like liposomes transported by ~10 constitutively active, truncated kinesin-1 KIF5B (K543) with perpendicular 2-dimensional (2D) and 3D intersections in vitro. Liposomes frequently pause at 2D and 3D intersections (~2s), suggesting that motor teams can simultaneously engage each MT and undergo a tug-of-war. Once resolved, the directional outcomes at 2D MT intersections have a straight to turn ratio of 1.1; whereas at 3D MT intersections, liposomes more frequently go straight (straight to turn ratio of 1.8), highlighting that spatial relationships at intersections bias directional outcomes. Using 3D super-resolution microscopy (STORM), we define the gap between intersecting MTs and the liposome azimuthal approach angle heading into the intersection. We develop an in silico model in which kinesin-1 motors diffuse on the liposome surface, simultaneously engage the intersecting MTs, generate forces and detach from MTs governed by the motors' mechanochemical cycle, and undergo a tug-of-war with the winning team determining the directional outcome in 3D. The model predicts that 1-3 motors typically engage the MT, consistent with optical trapping measurements. Modeled liposomes also predominantly go straight through 3D intersections over a range of intersection gaps and liposome approach angles, even when obstructed by the crossing MT. Our observations and modeling offer mechanistic insights into how cells might tune the MT cytoskeleton, cargo, and motors to modulate cargo transport.
Collapse
Affiliation(s)
- Brandon M Bensel
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Samantha Previs
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Carol Bookwalter
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Sam Walcott
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| |
Collapse
|
6
|
D'Souza AI, Grover R, Monzon GA, Santen L, Diez S. Vesicles driven by dynein and kinesin exhibit directional reversals without regulators. Nat Commun 2023; 14:7532. [PMID: 37985763 PMCID: PMC10662051 DOI: 10.1038/s41467-023-42605-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
Intracellular vesicular transport along cytoskeletal filaments ensures targeted cargo delivery. Such transport is rarely unidirectional but rather bidirectional, with frequent directional reversals owing to the simultaneous presence of opposite-polarity motors. So far, it has been unclear whether such complex motility pattern results from the sole mechanical interplay between opposite-polarity motors or requires regulators. Here, we demonstrate that a minimal system, comprising purified Dynein-Dynactin-BICD2 (DDB) and kinesin-3 (KIF16B) attached to large unilamellar vesicles, faithfully reproduces in vivo cargo motility, including runs, pauses, and reversals. Remarkably, opposing motors do not affect vesicle velocity during runs. Our computational model reveals that the engagement of a small number of motors is pivotal for transitioning between runs and pauses. Taken together, our results suggest that motors bound to vesicular cargo transiently engage in a tug-of-war during pauses. Subsequently, stochastic motor attachment and detachment events can lead to directional reversals without the need for regulators.
Collapse
Affiliation(s)
- Ashwin I D'Souza
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Dresden, Germany
| | - Rahul Grover
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Dresden, Germany
| | - Gina A Monzon
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Dresden, Germany
- Center for Biophysics, Department of Physics, Saarland University, Saarbrücken, Germany
| | - Ludger Santen
- Center for Biophysics, Department of Physics, Saarland University, Saarbrücken, Germany.
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Dresden, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
7
|
Yadav S, Sen A, Kunwar A. Cargo transport properties are enhanced by cylindrical microtubule geometry and elliptical contact zone on cargo surface. J Theor Biol 2023; 565:111466. [PMID: 36924988 DOI: 10.1016/j.jtbi.2023.111466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Molecular motors are responsible for carrying cellular transport of various membranous vesicles or organelles along cytoskeletal tracks. Transport of cellular cargos require high forces that are generated by motors working in groups. Hence, the properties of cargo transport can be modulated by varying various parameters such as cargo size and shape, microtubule geometry, motor number and their arrangement on cargo surface. Only those motors which are present in the contact zone on cargo surface have potential to bind to microtubule. Although earlier studies revealed the importance of cargo size, total motors attached to microtubule and their arrangement on cargo transport, yet how the contact zone influences binding of motors to microtubule largely remains unexplored. Here, it has been shown that contact zone is elliptical in shape for a spherical cargo and increases with cargo size for Kinesin-1 motors. To further understand the combined effect of elliptical contact zone and microtubule geometry on cargo transport, 3D mean-field model with uniform and clustered arrangement of motors for different cargo sizes and motor number has been used. Our findings indicate that cylindrical microtubule geometry maximizes the microtubule-bound motors which enhances the runlength and velocity of cargo transport. Our results show that microtubule-bound motors decrease with cargo size for uniform arrangement of motors on cargo thus decreasing its runlength and velocity, whereas in clustered arrangement, the number of microtubule-bound motors increase with cargo size which leads to increase in runlength and velocity.
Collapse
Affiliation(s)
- Saumya Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Aritra Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India.
| |
Collapse
|
8
|
Li Q, Ferrare JT, Silver J, Wilson JO, Arteaga-Castaneda L, Qiu W, Vershinin M, King SJ, Neuman KC, Xu J. Cholesterol in the cargo membrane amplifies tau inhibition of kinesin-1-based transport. Proc Natl Acad Sci U S A 2023; 120:e2212507120. [PMID: 36626558 PMCID: PMC9934065 DOI: 10.1073/pnas.2212507120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
Intracellular cargos are often membrane-enclosed and transported by microtubule-based motors in the presence of microtubule-associated proteins (MAPs). Whereas increasing evidence reveals how MAPs impact the interactions between motors and microtubules, critical questions remain about the impact of the cargo membrane on transport. Here we combined in vitro optical trapping with theoretical approaches to determine the effect of a lipid cargo membrane on kinesin-based transport in the presence of MAP tau. Our results demonstrate that attaching kinesin to a fluid lipid membrane reduces the inhibitory effect of tau on kinesin. Moreover, adding cholesterol, which reduces kinesin diffusion in the cargo membrane, amplifies the inhibitory effect of tau on kinesin binding in a dosage-dependent manner. We propose that reduction of kinesin diffusion in the cargo membrane underlies the effect of cholesterol on kinesin binding in the presence of tau, and we provide a simple model for this proposed mechanism. Our study establishes a direct link between cargo membrane cholesterol and MAP-based regulation of kinesin-1. The cholesterol effects uncovered here may more broadly extend to other lipid alterations that impact motor diffusion in the cargo membrane, including those associated with aging and neurological diseases.
Collapse
Affiliation(s)
- Qiaochu Li
- Department of Physics, University of California, Merced, CA95343
| | - James T. Ferrare
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Jonathan Silver
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, NIH, Bethesda, MD20892
| | - John O. Wilson
- Department of Physics, University of California, Merced, CA95343
| | | | - Weihong Qiu
- Department of Physics, Oregon State University, Corvallis, OR97331
| | - Michael Vershinin
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT84112
| | - Stephen J. King
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL32827
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Jing Xu
- Department of Physics, University of California, Merced, CA95343
| |
Collapse
|
9
|
Sarpangala N, Gopinathan A. Cargo surface fluidity can reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors. PLoS Comput Biol 2022; 18:e1010217. [PMID: 35675381 PMCID: PMC9212169 DOI: 10.1371/journal.pcbi.1010217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 06/21/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
In cells, multiple molecular motors work together as teams to carry cargoes such as vesicles and organelles over long distances to their destinations by stepping along a network of cytoskeletal filaments. How motors that typically mechanically interfere with each other, work together as teams is unclear. Here we explored the possibility that purely physical mechanisms, such as cargo surface fluidity, may potentially enhance teamwork, both at the single motor and cargo level. To explore these mechanisms, we developed a three dimensional simulation of cargo transport along microtubules by teams of kinesin-1 motors. We accounted for cargo membrane fluidity by explicitly simulating the Brownian dynamics of motors on the cargo surface and considered both the load and ATP dependence of single motor functioning. Our simulations show that surface fluidity could lead to the reduction of negative mechanical interference between kinesins and enhanced load sharing thereby increasing the average duration of single motors on the filament. This, along with a cooperative increase in on-rates as more motors bind leads to enhanced collective processivity. At the cargo level, surface fluidity makes more motors available for binding, which can act synergistically with the above effects to further increase transport distances though this effect is significant only at low ATP or high motor density. Additionally, the fluid surface allows for the clustering of motors at a well defined location on the surface relative to the microtubule and the fluid-coupled motors can exert more collective force per motor against loads. Our work on understanding how teamwork arises in cargo-coupled motors allows us to connect single motor properties to overall transport, sheds new light on cellular processes, reconciles existing observations, encourages new experimental validation efforts and can also suggest new ways of improving the transport of artificial cargo powered by motor teams.
Collapse
Affiliation(s)
- Niranjan Sarpangala
- Department of Physics, and Center for Cellular and Biomolecular Machines, University of California, Merced, California, United States of America
| | - Ajay Gopinathan
- Department of Physics, and Center for Cellular and Biomolecular Machines, University of California, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Gelber I. Variance reducing and noise correction in protein quantification by measuring fluctuations in fluorescence due to photobleaching. Phys Biol 2022; 19. [PMID: 35290963 DOI: 10.1088/1478-3975/ac5e0f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/15/2022] [Indexed: 11/11/2022]
Abstract
Quantifying the absolute protein number using the ratio between the variance and the mean of the protein Fluorescence intensity is a straightforward method for microscopy imaging. Recently, this method has been expanded to fluorescence decaying processes due to photobleaching with binomial distribution. The article examines the method proposed and shows how it can be adapted to the case of variance in the initial number of proteins between the cells. The article shows that the method can be improved by the implementation of the information processing of each frame independently from other frames. By doing so, the variance in determining the protein number can be reduced. In addition, the article examines the management of unwanted noises in the measurement, offers a solution for the shot noise and background noise, examines the expected error caused by the decay constant inaccuracy, and analyzes the expected difficulties in conducting a practical experiment, which includes a non-exponential decay and variance in the photobleaching rate of the cells. The method can be applied to any superposition of n_0 discrete decaying processes. However, the evaluation of expected errors in quantification is essential for early planning of the experimental conditions and evaluation of the error.
Collapse
Affiliation(s)
- Itay Gelber
- Department of Physics, Ben-Gurion University of the Negev, beer sheva, Beer-Sheva, 84105, ISRAEL
| |
Collapse
|
11
|
Walcott S, Warshaw DM. Modeling myosin Va liposome transport through actin filament networks reveals a percolation threshold that modulates transport properties. Mol Biol Cell 2021; 33:ar18. [PMID: 34935414 PMCID: PMC9236151 DOI: 10.1091/mbc.e21-08-0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Myosin Va (myoVa) motors transport membrane-bound cargo through three-dimensional, intracellular actin filament networks. We developed a coarse-grained, in silico model to predict how actin filament density (3-800 filaments) within a randomly oriented actin network affects fluid-like liposome (350 nm vs. 1750 nm) transport by myoVa motors. Five thousand simulated liposomes transported within each network adopted one of three states: transport, tug-of-war, or diffusion. Diffusion due to liposome detachment from actin rarely occurred given at least 10 motors on the liposome surface. However, with increased actin density, liposomes transitioned from primarily directed transport on single actin filaments to an apparent random walk, resulting from a mixture of transport and tug-of-wars as the probability of encountering additional actin filaments increased. This phase transition arises from a percolation phase transition at a critical number of accessible actin filaments, Nc. Nc is a geometric property of the actin network that depends only on the position and polarity of the actin filaments, transport distance, and the liposome diameter, as evidenced by a fivefold increase in liposome diameter resulting in a fivefold decrease in Nc. Thus in cells, actin network density and cargo size may be regulated to match cargo delivery to the cell’s physiological demands.
Collapse
Affiliation(s)
- S Walcott
- Department of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609
| | - D M Warshaw
- Molecular Physiology and Biophysics, University of Vermont, Health Science Research Facility, 149 Beaumont Avenue, Burlington, VT 05405
| |
Collapse
|
12
|
Fernández Casafuz AB, De Rossi MC, Bruno L. Intracellular motor-driven transport of rodlike smooth organelles along microtubules. Phys Rev E 2021; 101:062416. [PMID: 32688554 DOI: 10.1103/physreve.101.062416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Abstract
Molecular motors are fascinating proteins that use the energy of ATP hydrolysis to drive vesicles and organelles along cytoskeleton filaments toward their final destination within the cell. Several copies of these proteins bind to the cargo and take turns transporting the cargo attaching to and detaching from the track stochastically. Despite the relevance of molecular motors to cell physiology, key aspects of their collective functioning are still unknown. In this work we propose a one-dimensional model for the transport of extensive and smooth organelles driven by molecular motors. We ran numerical simulations to study the behavior of the cargo for different motor configurations, focusing on the transport properties observable in the experiments, e.g., average speed of the organelle and variations in length. We found that active motors drive the cargo using two different mechanisms: Either they locate in front of the cargo and pull the organelle or they situate at the cargo lagging edge and push. Variations in the organelle length is in close relation with the fraction of motors in each configuration, which depends on the resisting load. The results of this model were contrasted with experimental data obtained from the tracking of rodlike mitochondria during active transport in Xenopus laevis melanophores.
Collapse
Affiliation(s)
- A B Fernández Casafuz
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - M C De Rossi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - L Bruno
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| |
Collapse
|
13
|
Bovyn M, Janakaloti Narayanareddy BR, Gross S, Allard J. Diffusion of kinesin motors on cargo can enhance binding and run lengths during intracellular transport. Mol Biol Cell 2021; 32:984-994. [PMID: 33439674 PMCID: PMC8108528 DOI: 10.1091/mbc.e20-10-0658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022] Open
Abstract
Cellular cargoes, including lipid droplets and mitochondria, are transported along microtubules using molecular motors such as kinesins. Many experimental and computational studies focused on cargoes with rigidly attached motors, in contrast to many biological cargoes that have lipid surfaces that may allow surface mobility of motors. We extend a mechanochemical three-dimensional computational model by adding coupled-viscosity effects to compare different motor arrangements and mobilities. We show that organizational changes can optimize for different objectives: Cargoes with clustered motors are transported efficiently but are slow to bind to microtubules, whereas those with motors dispersed rigidly on their surface bind microtubules quickly but are transported inefficiently. Finally, cargoes with freely diffusing motors have both fast binding and efficient transport, although less efficient than clustered motors. These results suggest that experimentally observed changes in motor organization may be a control point for transport.
Collapse
Affiliation(s)
- Matthew Bovyn
- Department of Physics and Astronomy
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697
| | | | - Steven Gross
- Department of Physics and Astronomy
- Department of Developmental and Cell Biology
- Department of Biomedical Engineering
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697
| | - Jun Allard
- Department of Physics and Astronomy
- Department of Mathematics, and
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
14
|
Khetan N, Athale CA. Aster swarming by symmetry breaking of cortical dynein transport and coupling kinesins. SOFT MATTER 2020; 16:8554-8564. [PMID: 32840555 DOI: 10.1039/d0sm01086c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microtubule (MT) radial arrays or asters establish the internal topology of a cell by interacting with organelles and molecular motors. We proceed to understand the general pattern forming potential of aster-motor systems using a computational model of multiple MT asters interacting with motors in cellular confinement. In this model dynein motors are attached to the cell cortex and plus-ended motors resembling kinesin-5 diffuse in the cell interior. The introduction of 'noise' in the form of MT length fluctuations spontaneously results in the emergence of coordinated, achiral vortex-like rotation of asters. The coherence and persistence of rotation require a threshold density of both cortical dyneins and coupling kinesins, while the onset is diffusion-limited with relation to the cortical dynein mobility. The coordinated rotational motion emerges due to the resolution of a 'tug-of-war' of multiple cortical dynein motors bound to MTs of the same aster by 'noise' in the form of MT dynamic instability. This transient symmetry breaking is amplified by local coupling by kinesin-5 complexes. The lack of widespread aster rotation across cell types suggests that biophysical mechanisms that suppress such intrinsic dynamics may have evolved. This model is analogous to more general models of locally coupled self-propelled particles (SPP) that spontaneously undergo collective transport in the presence of 'noise' that have been invoked to explain swarming in birds and fish. However, the aster-motor system is distinct from SPP models with regard to the particle density and 'noise' dependence, providing a set of experimentally testable predictions for a novel sub-cellular pattern forming system.
Collapse
Affiliation(s)
- Neha Khetan
- Div. of Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Chaitanya A Athale
- Div. of Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| |
Collapse
|
15
|
Uçar MC, Lipowsky R. Collective Force Generation by Molecular Motors Is Determined by Strain-Induced Unbinding. NANO LETTERS 2020; 20:669-676. [PMID: 31797672 DOI: 10.1021/acs.nanolett.9b04445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the living cell, we encounter a large variety of motile processes such as organelle transport and cytoskeleton remodeling. These processes are driven by motor proteins that generate force by transducing chemical free energy into mechanical work. In many cases, the molecular motors work in teams to collectively generate larger forces. Recent optical trapping experiments on small teams of cytoskeletal motors indicated that the collectively generated force increases with the size of the motor team but that this increase depends on the motor type and on whether the motors are studied in vitro or in vivo. Here, we use the theory of stochastic processes to describe the motion of N motors in a stationary optical trap and to compute the N-dependence of the collectively generated forces. We consider six distinct motor types, two kinesins, two dyneins, and two myosins. We show that the force increases always linearly with N but with a prefactor that depends on the performance of the single motor. Surprisingly, this prefactor increases for weaker motors with a lower stall force. This counter-intuitive behavior reflects the increased probability with which stronger motors detach from the filament during strain generation. Our theoretical results are in quantitative agreement with experimental data on small teams of kinesin-1 motors.
Collapse
Affiliation(s)
- Mehmet Can Uçar
- Institute of Science and Technology Austria , Am Campus 1 , 3400 Klosterneuburg , Austria
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| |
Collapse
|
16
|
Fluorescence correlation spectroscopy reveals the dynamics of kinesins interacting with organelles during microtubule-dependent transport in cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118572. [DOI: 10.1016/j.bbamcr.2019.118572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 01/26/2023]
|
17
|
Microtubule binding kinetics of membrane-bound kinesin-1 predicts high motor copy numbers on intracellular cargo. Proc Natl Acad Sci U S A 2019; 116:26564-26570. [PMID: 31822619 DOI: 10.1073/pnas.1916204116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bidirectional vesicle transport along microtubules is necessary for cell viability and function, particularly in neurons. When multiple motors are attached to a vesicle, the distance a vesicle travels before dissociating is determined by the race between detachment of the bound motors and attachment of the unbound motors. Motor detachment rate constants (k off) can be measured via single-molecule experiments, but motor reattachment rate constants (k on) are generally unknown, as they involve diffusion through the bilayer, geometrical considerations of the motor tether length, and the intrinsic microtubule binding rate of the motor. To understand the attachment dynamics of motors bound to fluid lipid bilayers, we quantified the microtubule accumulation rate of fluorescently labeled kinesin-1 motors in a 2-dimensional (2D) system where motors were linked to a supported lipid bilayer. From the first-order accumulation rate at varying motor densities, we extrapolated a k off that matched single-molecule measurements and measured a 2D k on for membrane-bound kinesin-1 motors binding to the microtubule. This k on is consistent with kinesin-1 being able to reach roughly 20 tubulin subunits when attaching to a microtubule. By incorporating cholesterol to reduce membrane diffusivity, we demonstrate that this k on is not limited by the motor diffusion rate, but instead is determined by the intrinsic motor binding rate. For intracellular vesicle trafficking, this 2D k on predicts that long-range transport of 100-nm-diameter vesicles requires 35 kinesin-1 motors, suggesting that teamwork between different motor classes and motor clustering may play significant roles in long-range vesicle transport.
Collapse
|
18
|
Tjioe M, Shukla S, Vaidya R, Troitskaia A, Bookwalter CS, Trybus KM, Chemla YR, Selvin PR. Multiple kinesins induce tension for smooth cargo transport. eLife 2019; 8:50974. [PMID: 31670658 PMCID: PMC6904222 DOI: 10.7554/elife.50974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022] Open
Abstract
How cargoes move within a crowded cell—over long distances and at speeds nearly the same as when moving on unimpeded pathway—has long been mysterious. Through an in vitro force-gliding assay, which involves measuring nanometer displacement and piconewtons of force, we show that multiple mammalian kinesin-1 (from 2 to 8) communicate in a team by inducing tension (up to 4 pN) on the cargo. Kinesins adopt two distinct states, with one-third slowing down the microtubule and two-thirds speeding it up. Resisting kinesins tend to come off more rapidly than, and speed up when pulled by driving kinesins, implying an asymmetric tug-of-war. Furthermore, kinesins dynamically interact to overcome roadblocks, occasionally combining their forces. Consequently, multiple kinesins acting as a team may play a significant role in facilitating smooth cargo motion in a dense environment. This is one of few cases in which single molecule behavior can be connected to ensemble behavior of multiple motors. The inside of a cell is a crowded space, full of proteins and other molecules. Yet, the molecular motors that transport some of those molecules within the cell move at the same speed as they would in pure water – about one micrometer per second. How the molecular motors could achieve such speeds in crowded cells was unclear. Nevertheless, Tjioe et al. suspected that the answer might be related to how multiple motors work together. Molecular motors move by walking along filaments inside the cell and pulling their cargo from one location to another. Other molecules that bind to the filaments should, in theory, act like “roadblocks” and impede the movement of the cargo. Tjioe et al. studied a motor protein called kinesin, which walks on filaments called microtubules. But instead of looking at these motors moving along microtubules inside a cell, Tjioe et al. used a simpler system where the cell was eliminated, and all parts were purified. Specifically, Tjioe et al. tethered purified motors to a piece of glass and then observed them under an extremely accurate microscope as they moved free-floating, fluorescently labelled microtubules. The microtubules, in this scenario, were acting like cargoes, where many kinesins could bind. Each kinesin motor also had a small chemical tag that could emit light. By following the movement of the lights, it was possible to calculate what each kinesin was doing and how the cargo moved. When more than one kinesin molecule was acting, the tension and speed of one kinesin affected the movement of the others. In any group of kinesins, about two-thirds of kinesin pulled the cargo, and unexpectedly, about one-third tended to resist and slow the cargo. These latter kinesins were moved along with the group without actually driving the cargo. These resisting kinesins did come off more rapidly than the driving kinesins, meaning the cargo should be able to quickly bypass roadblocks. This would help to keep the whole group travelling in the right direction at a steady pace.
Collapse
Affiliation(s)
- Marco Tjioe
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Saurabh Shukla
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Rohit Vaidya
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Alice Troitskaia
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Carol S Bookwalter
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
| | - Yann R Chemla
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Paul R Selvin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
19
|
Estimating numbers of intracellular molecules through analysing fluctuations in photobleaching. Sci Rep 2019; 9:15238. [PMID: 31645577 PMCID: PMC6811640 DOI: 10.1038/s41598-019-50921-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/18/2019] [Indexed: 01/18/2023] Open
Abstract
The impact of fluorescence microscopy has been limited by the difficulties of expressing measurements of fluorescent proteins in numbers of molecules. Absolute numbers enable the integration of results from different laboratories, empower mathematical modelling, and are the bedrock for a quantitative, predictive biology. Here we propose an estimator to infer numbers of molecules from fluctuations in the photobleaching of proteins tagged with Green Fluorescent Protein. Performing experiments in budding yeast, we show that our estimates of numbers agree, within an order of magnitude, with published biochemical measurements, for all six proteins tested. The experiments we require are straightforward and use only a wide-field fluorescence microscope. As such, our approach has the potential to become standard for those practising quantitative fluorescence microscopy.
Collapse
|
20
|
Ferro LS, Can S, Turner MA, ElShenawy MM, Yildiz A. Kinesin and dynein use distinct mechanisms to bypass obstacles. eLife 2019; 8:e48629. [PMID: 31498080 PMCID: PMC6783262 DOI: 10.7554/elife.48629] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/07/2019] [Indexed: 12/20/2022] Open
Abstract
Kinesin-1 and cytoplasmic dynein are microtubule (MT) motors that transport intracellular cargoes. It remains unclear how these motors move along MTs densely coated with obstacles of various sizes in the cytoplasm. Here, we tested the ability of single and multiple motors to bypass synthetic obstacles on MTs in vitro. Contrary to previous reports, we found that single mammalian dynein is highly capable of bypassing obstacles. Single human kinesin-1 motors fail to avoid obstacles, consistent with their inability to take sideways steps on to neighboring MT protofilaments. Kinesins overcome this limitation when working in teams, bypassing obstacles as effectively as multiple dyneins. Cargos driven by multiple kinesins or dyneins are also capable of rotating around the MT to bypass large obstacles. These results suggest that multiplicity of motors is required not only for transporting cargos over long distances and generating higher forces, but also for maneuvering cargos on obstacle-coated MT surfaces.
Collapse
Affiliation(s)
- Luke S Ferro
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Sinan Can
- Department of PhysicsUniversity of California, BerkeleyBerkeleyUnited States
| | - Meghan A Turner
- Biophysics Graduate GroupUniversity of California, BerkeleyBerkeleyUnited States
| | - Mohamed M ElShenawy
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Ahmet Yildiz
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Department of PhysicsUniversity of California, BerkeleyBerkeleyUnited States
- Biophysics Graduate GroupUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
21
|
Lopes J, Quint DA, Chapman DE, Xu M, Gopinathan A, Hirst LS. Membrane mediated motor kinetics in microtubule gliding assays. Sci Rep 2019; 9:9584. [PMID: 31270348 PMCID: PMC6610617 DOI: 10.1038/s41598-019-45847-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/13/2019] [Indexed: 01/05/2023] Open
Abstract
Motor-based transport mechanisms are critical for a wide range of eukaryotic cell functions, including the transport of vesicle cargos over long distances. Our understanding of the factors that control and regulate motors when bound to a lipid substrate is however incomplete. We used microtubule gliding assays on a lipid bilayer substrate to investigate the role of membrane diffusion in kinesin-1 on/off binding kinetics and thereby transport velocity. Fluorescence imaging experiments demonstrate motor clustering on single microtubules due to membrane diffusion in the absence of ATP, followed by rapid ATP-induced dissociation during gliding. Our experimental data combined with analytical modeling show that the on/off binding kinetics of the motors are impacted by diffusion and, as a consequence, both the effective binding and unbinding rates for motors are much lower than the expected bare rates. Our results suggest that motor diffusion in the membrane can play a significant role in transport by impacting motor kinetics and can therefore function as a regulator of intracellular transport dynamics.
Collapse
Affiliation(s)
- Joseph Lopes
- Department of Physics, University of California, Merced, CA, 95343, USA
| | - David A Quint
- Department of Physics, University of California, Merced, CA, 95343, USA.,Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA, 95343, USA
| | - Dail E Chapman
- Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Melissa Xu
- Department of Bioengineering, University of California, Merced, CA, 95343, USA
| | - Ajay Gopinathan
- Department of Physics, University of California, Merced, CA, 95343, USA.,Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA, 95343, USA
| | - Linda S Hirst
- Department of Physics, University of California, Merced, CA, 95343, USA.
| |
Collapse
|
22
|
Budaitis BG, Jariwala S, Reinemann DN, Schimert KI, Scarabelli G, Grant BJ, Sept D, Lang MJ, Verhey KJ. Neck linker docking is critical for Kinesin-1 force generation in cells but at a cost to motor speed and processivity. eLife 2019; 8:44146. [PMID: 31084716 PMCID: PMC6533058 DOI: 10.7554/elife.44146] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Kinesin force generation involves ATP-induced docking of the neck linker (NL) along the motor core. However, the roles of the proposed steps of NL docking, cover-neck bundle (CNB) and asparagine latch (N-latch) formation, during force generation are unclear. Furthermore, the necessity of NL docking for transport of membrane-bound cargo in cells has not been tested. We generated kinesin-1 motors impaired in CNB and/or N-latch formation based on molecular dynamics simulations. The mutant motors displayed reduced force output and inability to stall in optical trap assays but exhibited increased speeds, run lengths, and landing rates under unloaded conditions. NL docking thus enhances force production but at a cost to speed and processivity. In cells, teams of mutant motors were hindered in their ability to drive transport of Golgi elements (high-load cargo) but not peroxisomes (low-load cargo). These results demonstrate that the NL serves as a mechanical element for kinesin-1 transport under physiological conditions.
Collapse
Affiliation(s)
- Breane G Budaitis
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, United States
| | - Shashank Jariwala
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, United States
| | - Dana N Reinemann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, United States
| | | | - Guido Scarabelli
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, United States
| | - Barry J Grant
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, San Diego, United States
| | - David Sept
- Biophysics Program, University of Michigan, Ann Arbor, United States.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, United States
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
| | - Kristen J Verhey
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, United States.,Biophysics Program, University of Michigan, Ann Arbor, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
23
|
Myosin Va transport of liposomes in three-dimensional actin networks is modulated by actin filament density, position, and polarity. Proc Natl Acad Sci U S A 2019; 116:8326-8335. [PMID: 30967504 DOI: 10.1073/pnas.1901176116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cell's dense 3D actin filament network presents numerous challenges to vesicular transport by teams of myosin Va (MyoVa) molecular motors. These teams must navigate their cargo through diverse actin structures ranging from Arp2/3-branched lamellipodial networks to the dense, unbranched cortical networks. To define how actin filament network organization affects MyoVa cargo transport, we created two different 3D actin networks in vitro. One network was comprised of randomly oriented, unbranched actin filaments; the other was comprised of Arp2/3-branched actin filaments, which effectively polarized the network by aligning the actin filament plus-ends. Within both networks, we defined each actin filament's 3D spatial position using superresolution stochastic optical reconstruction microscopy (STORM) and its polarity by observing the movement of single fluorescent reporter MyoVa. We then characterized the 3D trajectories of fluorescent, 350-nm fluid-like liposomes transported by MyoVa teams (∼10 motors) moving within each of the two networks. Compared with the unbranched network, we observed more liposomes with directed and fewer with stationary motion on the Arp2/3-branched network. This suggests that the modes of liposome transport by MyoVa motors are influenced by changes in the local actin filament polarity alignment within the network. This mechanism was supported by an in silico 3D model that provides a broader platform to understand how cellular regulation of the actin cytoskeletal architecture may fine tune MyoVa-based intracellular cargo transport.
Collapse
|
24
|
Cargo diffusion shortens single-kinesin runs at low viscous drag. Sci Rep 2019; 9:4104. [PMID: 30858425 PMCID: PMC6411862 DOI: 10.1038/s41598-019-40550-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/18/2019] [Indexed: 02/03/2023] Open
Abstract
Molecular motors such as kinesin-1 drive active, long-range transport of cargos along microtubules in cells. Thermal diffusion of the cargo can impose a randomly directed, fluctuating mechanical load on the motor carrying the cargo. Recent experiments highlighted a strong asymmetry in the sensitivity of single-kinesin run length to load direction, raising the intriguing possibility that cargo diffusion may non-trivially influence motor run length. To test this possibility, here we employed Monte Carlo-based simulations to evaluate the transport of cargo by a single kinesin. Our simulations included physiologically relevant viscous drag on the cargo and interrogated a large parameter space of cytoplasmic viscosities, cargo sizes, and motor velocities that captures their respective ranges in living cells. We found that cargo diffusion significantly shortens single-kinesin runs. This diffusion-based shortening is countered by viscous drag, leading to an unexpected, non-monotonic variation in run length as viscous drag increases. To our knowledge, this is the first identification of a significant effect of cargo diffusion on motor-based transport. Our study highlights the importance of cargo diffusion and load-detachment kinetics on single-motor functions under physiologically relevant conditions.
Collapse
|
25
|
Abstract
Kinesin motor proteins that drive intracellular transport share an overall architecture of two motor domain-containing subunits that dimerize through a coiled-coil stalk. Dimerization allows kinesins to be processive motors, taking many steps along the microtubule track before detaching. However, whether dimerization is required for intracellular transport remains unknown. Here, we address this issue using a combination of in vitro and cellular assays to directly compare dimeric motors across the kinesin-1, -2, and -3 families to their minimal monomeric forms. Surprisingly, we find that monomeric motors are able to work in teams to drive peroxisome dispersion in cells. However, peroxisome transport requires minimal force output, and we find that most monomeric motors are unable to disperse the Golgi complex, a high-load cargo. Strikingly, monomeric versions of the kinesin-2 family motors KIF3A and KIF3B are able to drive Golgi dispersion in cells, and teams of monomeric KIF3B motors can generate over 8 pN of force in an optical trap. We find that intracellular transport and force output by monomeric motors, but not dimeric motors, are significantly decreased by the addition of longer and more flexible motor-to-cargo linkers. Together, these results suggest that dimerization of kinesin motors is not required for intracellular transport; however, it enables motor-to-motor coordination and high force generation regardless of motor-to-cargo distance. Dimerization of kinesin motors is thus critical for cellular events that require an ability to generate or withstand high forces.
Collapse
|
26
|
Li Q, Tseng KF, King SJ, Qiu W, Xu J. A fluid membrane enhances the velocity of cargo transport by small teams of kinesin-1. J Chem Phys 2018; 148:123318. [PMID: 29604873 DOI: 10.1063/1.5006806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Kinesin-1 (hereafter referred to as kinesin) is a major microtubule-based motor protein for plus-end-directed intracellular transport in live cells. While the single-molecule functions of kinesin are well characterized, the physiologically relevant transport of membranous cargos by small teams of kinesins remains poorly understood. A key experimental challenge remains in the quantitative control of the number of motors driving transport. Here we utilized "motile fraction" to overcome this challenge and experimentally accessed transport by a single kinesin through the physiologically relevant transport by a small team of kinesins. We used a fluid lipid bilayer to model the cellular membrane in vitro and employed optical trapping to quantify the transport of membrane-enclosed cargos versus traditional membrane-free cargos under identical conditions. We found that coupling motors via a fluid membrane significantly enhances the velocity of cargo transport by small teams of kinesins. Importantly, enclosing a cargo in a fluid lipid membrane did not impact single-kinesin transport, indicating that membrane-dependent velocity enhancement for team-based transport arises from altered interactions between kinesins. Our study demonstrates that membrane-based coupling between motors is a key determinant of kinesin-based transport. Enhanced velocity may be critical for fast delivery of cargos in live cells.
Collapse
Affiliation(s)
- Qiaochu Li
- Department of Physics, University of California, Merced, California 95343, USA
| | - Kuo-Fu Tseng
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Stephen J King
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32827, USA
| | - Weihong Qiu
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Jing Xu
- Department of Physics, University of California, Merced, California 95343, USA
| |
Collapse
|
27
|
Gardini L, Heissler SM, Arbore C, Yang Y, Sellers JR, Pavone FS, Capitanio M. Dissecting myosin-5B mechanosensitivity and calcium regulation at the single molecule level. Nat Commun 2018; 9:2844. [PMID: 30030431 PMCID: PMC6054644 DOI: 10.1038/s41467-018-05251-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/22/2018] [Indexed: 11/08/2022] Open
Abstract
Myosin-5B is one of three members of the myosin-5 family of actin-based molecular motors. Despite its fundamental role in recycling endosome trafficking and in collective actin network dynamics, the molecular mechanisms underlying its motility are inherently unknown. Here we combine single-molecule imaging and high-speed laser tweezers to dissect the mechanoenzymatic properties of myosin-5B. We show that a single myosin-5B moves processively in 36-nm steps, stalls at ~2 pN resistive forces, and reverses its directionality at forces >2 pN. Interestingly, myosin-5B mechanosensitivity differs from that of myosin-5A, while it is strikingly similar to kinesin-1. In particular, myosin-5B run length is markedly and asymmetrically sensitive to force, a property that might be central to motor ensemble coordination. Furthermore, we show that Ca2+ does not affect the enzymatic activity of the motor unit, but abolishes myosin-5B processivity through calmodulin dissociation, providing important insights into the regulation of postsynaptic cargoes trafficking in neuronal cells.
Collapse
Affiliation(s)
- Lucia Gardini
- LENS-European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- National Institute of Optics-National Research Council, Largo Fermi 6, 50125, Florence, Italy
| | - Sarah M Heissler
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-8015, USA
| | - Claudia Arbore
- LENS-European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019, Sesto Fiorentino, Italy
| | - Yi Yang
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-8015, USA
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-8015, USA
| | - Francesco S Pavone
- LENS-European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- National Institute of Optics-National Research Council, Largo Fermi 6, 50125, Florence, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019, Sesto Fiorentino, Italy
| | - Marco Capitanio
- LENS-European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
28
|
Retraction of rod-like mitochondria during microtubule-dependent transport. Biosci Rep 2018; 38:BSR20180208. [PMID: 29752335 PMCID: PMC6013701 DOI: 10.1042/bsr20180208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/07/2018] [Accepted: 05/04/2018] [Indexed: 12/23/2022] Open
Abstract
Molecular motors play relevant roles on the regulation of mitochondria size and shape, essential properties for the cell homeostasis. In this work, we tracked single rod-shaped mitochondria with nanometer precision to explore the performance of microtubule motor teams during processive anterograde and retrograde transport. We analyzed simultaneously the organelle size and verified that mitochondria retracted during retrograde transport with their leading tip moving slower in comparison with the rear tip. In contrast, mitochondria preserved their size during anterograde runs indicating a different performance of plus-end directed teams. These results were interpreted considering the different performance of dynein and kinesin teams and provide valuable information on the collective action of motors during mitochondria transport.
Collapse
|
29
|
Defective phagosome motility and degradation in cell nonautonomous RPE pathogenesis of a dominant macular degeneration. Proc Natl Acad Sci U S A 2018; 115:5468-5473. [PMID: 29735674 DOI: 10.1073/pnas.1709211115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stargardt macular dystrophy 3 (STGD3) is caused by dominant mutations in the ELOVL4 gene. Like other macular degenerations, pathogenesis within the retinal pigment epithelium (RPE) appears to contribute to the loss of photoreceptors from the central retina. However, the RPE does not express ELOVL4, suggesting photoreceptor cell loss in STGD3 occurs through two cell nonautonomous events: mutant photoreceptors first affect RPE cell pathogenesis, and then, second, RPE dysfunction leads to photoreceptor cell death. Here, we have investigated how the RPE pathology occurs, using a STGD3 mouse model in which mutant human ELOVL4 is expressed in the photoreceptors. We found that the mutant protein was aberrantly localized to the photoreceptor outer segment (POS), and that resulting POS phagosomes were degraded more slowly in the RPE. In cell culture, the mutant POSs are ingested by primary RPE cells normally, but the phagosomes are processed inefficiently, even by wild-type RPE. The mutant phagosomes excessively sequester RAB7A and dynein, and have impaired motility. We propose that the abnormal presence of ELOVL4 protein in POSs results in phagosomes that are defective in recruiting appropriate motor protein linkers, thus contributing to slower degradation because their altered motility results in slower basal migration and fewer productive encounters with endolysosomes. In the transgenic mouse retinas, the RPE accumulated abnormal-looking phagosomes and oxidative stress adducts; these pathological changes were followed by pathology in the neural retina. Our results indicate inefficient phagosome degradation as a key component of the first cell nonautonomous event underlying retinal degeneration due to mutant ELOVL4.
Collapse
|
30
|
Sanghavi P, D'Souza A, Rai A, Rai A, Padinhatheeri R, Mallik R. Coin Tossing Explains the Activity of Opposing Microtubule Motors on Phagosomes. Curr Biol 2018; 28:1460-1466.e4. [PMID: 29706510 PMCID: PMC5954897 DOI: 10.1016/j.cub.2018.03.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/03/2018] [Accepted: 03/19/2018] [Indexed: 01/08/2023]
Abstract
How the opposing activity of kinesin and dynein motors generates polarized distribution of organelles inside cells is poorly understood and hotly debated [1, 2]. Possible explanations include stochastic mechanical competition [3, 4], coordinated regulation by motor-associated proteins [5-7], mechanical activation of motors [8], and lipid-induced organization [9]. Here, we address this question by using phagocytosed latex beads to generate early phagosomes (EPs) that move bidirectionally along microtubules (MTs) in an in vitro assay [9]. Dynein/kinesin activity on individual EPs is recorded as real-time force generation of the motors against an optical trap. Activity of one class of motors frequently coincides with, or is rapidly followed by opposite motors. This leads to frequent and rapid reversals of EPs in the trap. Remarkably, the choice between dynein and kinesin can be explained by the tossing of a coin. Opposing motors therefore appear to function stochastically and independently of each other, as also confirmed by observing no effect on kinesin function when dynein is inhibited on the EPs. A simple binomial probability calculation based on the geometry of EP-microtubule contact explains the observed activity of dynein and kinesin on phagosomes. This understanding of intracellular transport in terms of a hypothetical coin, if it holds true for other cargoes, provides a conceptual framework to explain the polarized localization of organelles inside cells.
Collapse
Affiliation(s)
- Paulomi Sanghavi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Ashwin D'Souza
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Ashim Rai
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Arpan Rai
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Ranjith Padinhatheeri
- Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Roop Mallik
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| |
Collapse
|
31
|
McIntosh BB, Pyrpassopoulos S, Holzbaur ELF, Ostap EM. Opposing Kinesin and Myosin-I Motors Drive Membrane Deformation and Tubulation along Engineered Cytoskeletal Networks. Curr Biol 2018; 28:236-248.e5. [PMID: 29337076 DOI: 10.1016/j.cub.2017.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/29/2017] [Accepted: 12/07/2017] [Indexed: 01/22/2023]
Abstract
Microtubule and actin filament molecular motors such as kinesin-1 and myosin-Ic (Myo1c) transport and remodel membrane-bound vesicles; however, it is unclear how they coordinate to accomplish these tasks. We introduced kinesin-1- and Myo1c-bound giant unilamellar vesicles (GUVs) into a micropatterned in vitro cytoskeletal matrix modeled after the subcellular architecture where vesicular sorting and membrane remodeling are observed. This array was composed of sparse microtubules intersecting regions dense with actin filaments, and revealed that Myo1c-dependent tethering of GUVs enabled kinesin-1-driven membrane deformation and tubulation. Membrane remodeling at actin/microtubule intersections was modulated by lipid composition and the addition of the Bin-Amphiphysin-Rvs-domain (BAR-domain) proteins endophilin or FCH-domain-only (FCHo). Myo1c not only tethered microtubule-transported cargo, but also transported, deformed, and tubulated GUVs along actin filaments in a lipid-composition- and BAR-protein-responsive manner. These results suggest a mechanism for actin-based involvement in vesicular transport and remodeling of intracellular membranes, and implicate lipid composition as a key factor in determining whether vesicles will undergo transport, deformation, or tubulation driven by opposing actin and microtubule motors and BAR-domain proteins.
Collapse
Affiliation(s)
- Betsy B McIntosh
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Serapion Pyrpassopoulos
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Erika L F Holzbaur
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| | - E Michael Ostap
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
32
|
Malgaretti P, Pagonabarraga I, Joanny JF. Bistability, Oscillations, and Bidirectional Motion of Ensemble of Hydrodynamically Coupled Molecular Motors. PHYSICAL REVIEW LETTERS 2017; 119:168101. [PMID: 29099219 DOI: 10.1103/physrevlett.119.168101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Indexed: 06/07/2023]
Abstract
We analyze the collective behavior of hydrodynamically coupled molecular motors. We show that the local fluxes induced by motor displacement can induce the experimentally observed bidirectional motion of cargoes and vesicles. By means of a mean-field approach we show that sustained oscillations as well as bistable collective motor motion arise even for very large collection of motors, when thermal noise is irrelevant. The analysis clarifies the physical mechanisms responsible for such dynamics by identifying the relevant coupling parameter and its dependence on the geometry of the hydrodynamic coupling as well as on system size. We quantify the phase diagram for the different phases that characterize the collective motion of hydrodynamically coupled motors and show that sustained oscillations can be reached for biologically relevant parameters, hence, demonstrating the relevance of hydrodynamic interactions in intracellular transport.
Collapse
Affiliation(s)
- P Malgaretti
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - I Pagonabarraga
- Departament de Fisica de la Matèria Condensada, Facultat de Fisica, Universitat de Barcelona, Carre Martí i Franques 1, Barcelona 08028, Spain
- UBICS, Institute of Complex Systems, Universitat de Barcelona, Barcelona 08028, Spain
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lasuanne, Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
| | - J-F Joanny
- Physicochiemie Curie (Institut Curie/CNRS-UMR168/UPMC), Institut Curie, Centre de Recherche, PSL Reseach University, 26 rue d'Ulm 75248 Paris Cedex 05, France
- ESPCI 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
33
|
Pyrpassopoulos S, Shuman H, Ostap EM. Adhesion force and attachment lifetime of the KIF16B-PX domain interaction with lipid membranes. Mol Biol Cell 2017; 28:3315-3322. [PMID: 28931594 PMCID: PMC5687032 DOI: 10.1091/mbc.e17-05-0324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 11/21/2022] Open
Abstract
KIF16B is a motor that binds early endosomes and controls the recycling of receptors. It has a PX domain that binds PI(3)P, which has been proposed to mechanically link motor to cargo. We determined the strength of this bond and its lifetime under load, and found it to be a suitable mechanical linkage for the KIF16B motor under working conditions. KIF16B is a highly processive kinesin-3 family member that participates in the trafficking and tubulation of early endosomes along microtubules. KIF16B attaches to lipid cargoes via a PX motif at its C-terminus, which has nanomolar affinity for bilayers containing phosphatidylinositol-3-phosphate (PI[3]P). As the PX domain has been proposed to be a primary mechanical anchor for the KIF16B-cargo attachment, we measured the adhesion forces and detachment kinetics of the PX domain as it interacts with membranes containing 2% PI(3)P and 98% phosphatidylcholine. Using optical tweezers, we found that the adhesion strength of a single PX domain ranged between 19 and 54 pN at loading rates between 80 and 1500 pN/s. These forces are substantially larger than the interaction of the adhesion of a pleckstrin homology domain with phosphatidylinositol 4,5-bisphosphate. This increased adhesion is the result of the membrane insertion of hydrophobic residues adjacent to the PI(3)P binding site, in addition to electrostatic interactions with PI(3)P. Attachment lifetimes under load decrease monotonically with force, indicating slip-bond behavior. However, the lifetime of membrane attachment under load appears to be well matched to the duration of processive motility of the KIF16B motor, indicating the PX domain is a suitable mechanical anchor for intracellular transport.
Collapse
Affiliation(s)
- Serapion Pyrpassopoulos
- Pennsylvania Muscle Institute, Department of Physiology, and Center for Engineering Mechanobiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Henry Shuman
- Pennsylvania Muscle Institute, Department of Physiology, and Center for Engineering Mechanobiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - E Michael Ostap
- Pennsylvania Muscle Institute, Department of Physiology, and Center for Engineering Mechanobiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
34
|
De Rossi MC, Wetzler DE, Benseñor L, De Rossi ME, Sued M, Rodríguez D, Gelfand V, Bruno L, Levi V. Mechanical coupling of microtubule-dependent motor teams during peroxisome transport in Drosophila S2 cells. Biochim Biophys Acta Gen Subj 2017; 1861:3178-3189. [PMID: 28935608 DOI: 10.1016/j.bbagen.2017.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/04/2017] [Accepted: 09/15/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Intracellular transport requires molecular motors that step along cytoskeletal filaments actively dragging cargoes through the crowded cytoplasm. Here, we explore the interplay of the opposed polarity motors kinesin-1 and cytoplasmic dynein during peroxisome transport along microtubules in Drosophila S2 cells. METHODS We used single particle tracking with nanometer accuracy and millisecond time resolution to extract quantitative information on the bidirectional motion of organelles. The transport performance was studied in cells expressing a slow chimeric plus-end directed motor or the kinesin heavy chain. We also analyzed the influence of peroxisomes membrane fluidity in methyl-β-ciclodextrin treated cells. The experimental data was also confronted with numerical simulations of two well-established tug of war scenarios. RESULTS AND CONCLUSIONS The velocity distributions of retrograde and anterograde peroxisomes showed a multimodal pattern suggesting that multiple motor teams drive transport in either direction. The chimeric motors interfered with the performance of anterograde transport and also reduced the speed of the slowest retrograde team. In addition, increasing the fluidity of peroxisomes membrane decreased the speed of the slowest anterograde and retrograde teams. GENERAL SIGNIFICANCE Our results support the existence of a crosstalk between opposed-polarity motor teams. Moreover, the slowest teams seem to mechanically communicate with each other through the membrane to trigger transport.
Collapse
Affiliation(s)
- María Cecilia De Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Dinámica Intracelular, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Diana E Wetzler
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Dinámica Intracelular, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Lorena Benseñor
- Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina
| | - María Emilia De Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales y Ciclo Básico Común, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Astronomía y Física del Espacio (IAFE), Buenos Aires, Argentina
| | - Mariela Sued
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Buenos Aires, Argentina
| | - Daniela Rodríguez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Buenos Aires, Argentina
| | - Vladimir Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Luciana Bruno
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina.
| | - Valeria Levi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Dinámica Intracelular, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
35
|
Ušaj M, Henn A. Kinetic adaptation of human Myo19 for active mitochondrial transport to growing filopodia tips. Sci Rep 2017; 7:11596. [PMID: 28912602 PMCID: PMC5599584 DOI: 10.1038/s41598-017-11984-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/29/2017] [Indexed: 11/09/2022] Open
Abstract
Myosins are actin-based molecular motors which are enzymatically adapted for their cellular functions such as transportation and membrane tethering. Human Myo19 affects mitochondrial motility, and promotes their localization to stress-induced filopodia. Therefore, studying Myo19 enzymology is essential to understand how this motor may facilitate mitochondrial motility. Towards this goal, we have purified Myo19 motor domain (Myo19-3IQ) from a human-cell expression system and utilized transient kinetics to study the Myo19-3IQ ATPase cycle. We found that Myo19-3IQ exhibits noticeable conformational changes (isomerization steps) preceding both ATP and ADP binding, which may contribute to nucleotide binding regulation. Notably, the ADP isomerization step and subsequent ADP release contribute significantly to the rate-limiting step of the Myo19-3IQ ATPase cycle. Both the slow ADP isomerization and ADP release prolong the time Myo19-3IQ spend in the strong actin binding state and hence contribute to its relatively high duty ratio. However, the predicted duty ratio is lower than required to support motility as a monomer. Therefore, it may be that several Myo19 motors are required to propel mitochondria movement on actin filaments efficiently. Finally, we provide a model explaining how Myo19 translocation may be regulated by the local ATP/ADP ratio, coupled to the mitochondria presence in the filopodia.
Collapse
Affiliation(s)
- Marko Ušaj
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
| | - Arnon Henn
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
36
|
Aoyama M, Yoshioka Y, Arai Y, Hirai H, Ishimoto R, Nagano K, Higashisaka K, Nagai T, Tsutsumi Y. Intracellular trafficking of particles inside endosomal vesicles is regulated by particle size. J Control Release 2017; 260:183-193. [DOI: 10.1016/j.jconrel.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 05/10/2017] [Accepted: 06/11/2017] [Indexed: 02/04/2023]
|
37
|
Ali MY, Vilfan A, Trybus KM, Warshaw DM. Cargo Transport by Two Coupled Myosin Va Motors on Actin Filaments and Bundles. Biophys J 2017; 111:2228-2240. [PMID: 27851945 DOI: 10.1016/j.bpj.2016.09.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/18/2016] [Accepted: 09/28/2016] [Indexed: 01/17/2023] Open
Abstract
Myosin Va (myoVa) is a processive, actin-based molecular motor essential for intracellular cargo transport. When a cargo is transported by an ensemble of myoVa motors, each motor faces significant physical barriers and directional challenges created by the complex actin cytoskeleton, a network of actin filaments and actin bundles. The principles that govern the interaction of multiple motors attached to the same cargo are still poorly understood. To understand the mechanical interactions between multiple motors, we developed a simple in vitro model in which two individual myoVa motors labeled with different-colored Qdots are linked via a third Qdot that acts as a cargo. The velocity of this two-motor complex was reduced by 27% as compared to a single motor, whereas run length was increased by only 37%, much less than expected from multimotor transport models. Therefore, at low ATP, which allowed us to identify individual motor steps, we investigated the intermotor dynamics within the two-motor complex. The randomness of stepping leads to a buildup of tension in the linkage between motors-which in turn slows down the leading motor-and increases the frequency of backward steps and the detachment rate. We establish a direct relationship between the velocity reduction and the distribution of intermotor distances. The analysis of run lengths and dwell times for the two-motor complex, which has only one motor engaged with the actin track, reveals that half of the runs are terminated by almost simultaneous detachment of both motors. This finding challenges the assumptions of conventional multimotor models based on consecutive motor detachment. Similar, but even more drastic, results were observed with two-motor complexes on actin bundles, which showed a run length that was even shorter than that of a single motor.
Collapse
Affiliation(s)
- M Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont.
| | | | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| |
Collapse
|
38
|
Liang WH, Li Q, Rifat Faysal KM, King SJ, Gopinathan A, Xu J. Microtubule Defects Influence Kinesin-Based Transport In Vitro. Biophys J 2017; 110:2229-40. [PMID: 27224488 DOI: 10.1016/j.bpj.2016.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 10/25/2022] Open
Abstract
Microtubules are protein polymers that form "molecular highways" for long-range transport within living cells. Molecular motors actively step along microtubules to shuttle cellular materials between the nucleus and the cell periphery; this transport is critical for the survival and health of all eukaryotic cells. Structural defects in microtubules exist, but whether these defects impact molecular motor-based transport remains unknown. Here, we report a new, to our knowledge, approach that allowed us to directly investigate the impact of such defects. Using a modified optical-trapping method, we examined the group function of a major molecular motor, conventional kinesin, when transporting cargos along individual microtubules. We found that microtubule defects influence kinesin-based transport in vitro. The effects depend on motor number: cargos driven by a few motors tended to unbind prematurely from the microtubule, whereas cargos driven by more motors tended to pause. To our knowledge, our study provides the first direct link between microtubule defects and kinesin function. The effects uncovered in our study may have physiological relevance in vivo.
Collapse
Affiliation(s)
- Winnie H Liang
- Department of Physics, School of Natural Sciences, University of California, Merced, California
| | - Qiaochu Li
- Department of Physics, School of Natural Sciences, University of California, Merced, California
| | - K M Rifat Faysal
- Department of Physics, School of Natural Sciences, University of California, Merced, California
| | - Stephen J King
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - Ajay Gopinathan
- Department of Physics, School of Natural Sciences, University of California, Merced, California
| | - Jing Xu
- Department of Physics, School of Natural Sciences, University of California, Merced, California.
| |
Collapse
|
39
|
Lombardo AT, Nelson SR, Ali MY, Kennedy GG, Trybus KM, Walcott S, Warshaw DM. Myosin Va molecular motors manoeuvre liposome cargo through suspended actin filament intersections in vitro. Nat Commun 2017; 8:15692. [PMID: 28569841 PMCID: PMC5461480 DOI: 10.1038/ncomms15692] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 04/13/2017] [Indexed: 01/15/2023] Open
Abstract
Intracellular cargo transport relies on myosin Va molecular motor ensembles to travel along the cell's three-dimensional (3D) highway of actin filaments. At actin filament intersections, the intersecting filament is a structural barrier to and an alternate track for directed cargo transport. Here we use 3D super-resolution fluorescence imaging to determine the directional outcome (that is, continues straight, turns or terminates) for an ∼10 motor ensemble transporting a 350 nm lipid-bound cargo that encounters a suspended 3D actin filament intersection in vitro. Motor–cargo complexes that interact with the intersecting filament go straight through the intersection 62% of the time, nearly twice that for turning. To explain this, we develop an in silico model, supported by optical trapping data, suggesting that the motors' diffusive movements on the vesicle surface and the extent of their engagement with the two intersecting actin tracks biases the motor–cargo complex on average to go straight through the intersection. Cellular cargo transported along actin filaments is faced with a directional choice at an intersection. Here the authors show that myosin Va-bound cargo prefers to go straight through the intersection, and propose a model to explain this by a tug-of-war between motors on the lipid cargo that engage the actin tracks.
Collapse
Affiliation(s)
- Andrew T Lombardo
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA
| | - Shane R Nelson
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA
| | - M Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA
| | - Guy G Kennedy
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA
| | - Sam Walcott
- Department of Mathematics, University of California, Davis, California 95616, USA
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
40
|
Krementsova EB, Furuta K, Oiwa K, Trybus KM, Ali MY. Small teams of myosin Vc motors coordinate their stepping for efficient cargo transport on actin bundles. J Biol Chem 2017; 292:10998-11008. [PMID: 28476885 DOI: 10.1074/jbc.m117.780791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/03/2017] [Indexed: 11/06/2022] Open
Abstract
Myosin Vc (myoVc) is unique among vertebrate class V myosin isoforms in that it requires teams of motors to move continuously on single actin filaments. Single molecules of myoVc cannot take multiple hand-over-hand steps from one actin-binding site to the next without dissociating, in stark contrast to the well studied myosin Va (myoVa) isoform. At low salt, single myoVc motors can, however, move processively on actin bundles, and at physiologic ionic strength, even teams of myoVc motors require actin bundles to sustain continuous motion. Here, we linked defined numbers of myoVc or myoVa molecules to DNA nanostructures as synthetic cargos. Using total internal reflectance fluorescence microscopy, we compared the stepping behavior of myoVc versus myoVa ensembles and myoVc stepping patterns on single actin filaments versus actin bundles. Run lengths of both myoVc and myoVa teams increased with motor number, but only multiple myoVc motors showed a run-length enhancement on actin bundles compared with actin filaments. By resolving the stepping behavior of individual myoVc motors with a quantum dot bound to the motor domain, we found that coupling of two myoVc motors significantly decreased the futile back and side steps that were frequently observed for single myoVc motors. Changes in the inter-motor distance between two coupled myoVc motors affected stepping dynamics, suggesting that mechanical tension coordinates the stepping behavior of two myoVc motors for efficient directional motion. Our study provides a molecular basis to explain how teams of myoVc motors are suited to transport cargos such as zymogen granules on actin bundles.
Collapse
Affiliation(s)
- Elena B Krementsova
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Ken'ya Furuta
- the Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Kazuhiro Oiwa
- the Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Kathleen M Trybus
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - M Yusuf Ali
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| |
Collapse
|
41
|
Exploiting molecular motors as nanomachines: the mechanisms of de novo and re-engineered cytoskeletal motors. Curr Opin Biotechnol 2017; 46:20-26. [PMID: 28088100 DOI: 10.1016/j.copbio.2016.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/28/2016] [Indexed: 11/30/2022]
Abstract
Cytoskeletal molecular motors provide exciting proof that nanoscale transporters can be highly efficient, moving for microns along filamentous tracks by hydrolyzing ATP to fuel nanometer-size steps. For nanotechnology, such conversion of chemical energy into productive work serves as an enticing platform for re-purposing and re-engineering. It also provides a roadmap for successful molecular mechanisms that can be mimicked to create de novo molecular motors for nanotechnology applications. Here we focus specifically on how the mechanisms of molecular motors are being re-engineered for greater control over their transport parameters. We then discuss mechanistic work to create fully synthetic motors de novo and conclude with future directions in creating novel motor systems.
Collapse
|
42
|
Driller-Colangelo AR, Chau KWL, Morgan JM, Derr ND. Cargo rigidity affects the sensitivity of dynein ensembles to individual motor pausing. Cytoskeleton (Hoboken) 2016; 73:693-702. [PMID: 27718534 DOI: 10.1002/cm.21339] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/19/2022]
Abstract
Cytoplasmic dynein is a minus-end directed microtubule-based motor protein that drives intracellular cargo transport in eukaryotic cells. Although many intracellular cargos are propelled by small groups of dynein motors, the biophysical mechanisms governing ensemble motility remain largely unknown. To investigate the emergent motility of motor ensembles, we have designed a programmable DNA origami synthetic cargo "chassis" enabling us to control the number of dynein motors in the ensemble and vary the rigidity of the cargo chassis itself. Using total internal reflection fluorescence microscopy, we have observed dynein ensembles transporting these cargo chassis along microtubules in vitro. We find that ensemble motility depends on cargo rigidity: as the number of motors increases, ensembles transporting flexible cargos move comparatively faster than a single motor, whereas ensembles transporting rigid cargos move slower than a single motor. To explain this, we show that ensembles connected through flexible cargos are less sensitive to the pauses of individual motors within the ensemble. We conclude that cargo rigidity plays an important role in communicating and coordinating the states of motors, and consequently in the subsequent mechanisms of collective motility. The insensitivity of ensemble-driven cargos to the pausing of individual motors may contribute to the robustness and versatility of intracellular cargo transport. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Karen W L Chau
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Jessica M Morgan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Nathan D Derr
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Center for Microscopy and Imaging, Smith College, Northampton, Massachusetts
| |
Collapse
|
43
|
Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity. Proc Natl Acad Sci U S A 2016; 113:E7185-E7193. [PMID: 27803325 DOI: 10.1073/pnas.1611398113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In eukaryotic cells, membranous vesicles and organelles are transported by ensembles of motor proteins. These motors, such as kinesin-1, have been well characterized in vitro as single molecules or as ensembles rigidly attached to nonbiological substrates. However, the collective transport by membrane-anchored motors, that is, motors attached to a fluid lipid bilayer, is poorly understood. Here, we investigate the influence of motors' anchorage to a lipid bilayer on the collective transport characteristics. We reconstituted "membrane-anchored" gliding motility assays using truncated kinesin-1 motors with a streptavidin-binding peptide tag that can attach to streptavidin-loaded, supported lipid bilayers. We found that the diffusing kinesin-1 motors propelled the microtubules in the presence of ATP. Notably, we found the gliding velocity of the microtubules to be strongly dependent on the number of motors and their diffusivity in the lipid bilayer. The microtubule gliding velocity increased with increasing motor density and membrane viscosity, reaching up to the stepping velocity of single motors. This finding is in contrast to conventional gliding motility assays where the density of surface-immobilized kinesin-1 motors does not influence the microtubule velocity over a wide range. We reason that the transport efficiency of membrane-anchored motors is reduced because of their slippage in the lipid bilayer, an effect that we directly observed using single-molecule fluorescence microscopy. Our results illustrate the importance of motor-cargo coupling, which potentially provides cells with an additional means of regulating the efficiency of cargo transport.
Collapse
|
44
|
Pathak D, Mallik R. Lipid - Motor Interactions: Soap Opera or Symphony? Curr Opin Cell Biol 2016; 44:79-85. [PMID: 27697416 DOI: 10.1016/j.ceb.2016.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/08/2016] [Indexed: 11/29/2022]
Abstract
Intracellular transport of organelles can be driven by multiple motor proteins that bind to the lipid membrane of the organelle and work as a team. We review present knowledge on how lipids orchestrate the recruitment of motors to a membrane. Looking beyond recruitment, we also discuss how heterogeneity and local mechanical properties of the membrane may influence function of motor-teams. These issues gain importance because phagocytosed pathogens use lipid-centric strategies to manipulate motors and survive in host cells.
Collapse
Affiliation(s)
- Divya Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Roop Mallik
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India.
| |
Collapse
|
45
|
Nirschl JJ, Ghiretti AE, Holzbaur ELF. Lipid Rafts Assemble Dynein Ensembles. Trends Biochem Sci 2016; 41:393-394. [PMID: 27061495 DOI: 10.1016/j.tibs.2016.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 11/17/2022]
Abstract
New work by Rai et al. identifies a novel mechanism regulating phagosome transport in cells: the clustering of dynein motors into lipid microdomains, leading to enhanced unidirectional motility. Clustering may be especially important for dynein, a motor that works most efficiently in teams.
Collapse
Affiliation(s)
- Jeffrey J Nirschl
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, 638A Clinical Research Building, 415 Curie Boulevard, PA 19104-6085, USA
| | - Amy E Ghiretti
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, 638A Clinical Research Building, 415 Curie Boulevard, PA 19104-6085, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, 638A Clinical Research Building, 415 Curie Boulevard, PA 19104-6085, USA.
| |
Collapse
|
46
|
Heissler SM, Sellers JR. Kinetic Adaptations of Myosins for Their Diverse Cellular Functions. Traffic 2016; 17:839-59. [PMID: 26929436 DOI: 10.1111/tra.12388] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/18/2022]
Abstract
Members of the myosin superfamily are involved in all aspects of eukaryotic life. Their function ranges from the transport of organelles and cargos to the generation of membrane tension, and the contraction of muscle. The diversity of physiological functions is remarkable, given that all enzymatically active myosins follow a conserved mechanoenzymatic cycle in which the hydrolysis of ATP to ADP and inorganic phosphate is coupled to either actin-based transport or tethering of actin to defined cellular compartments. Kinetic capacities and limitations of a myosin are determined by the extent to which actin can accelerate the hydrolysis of ATP and the release of the hydrolysis products and are indispensably linked to its physiological tasks. This review focuses on kinetic competencies that - together with structural adaptations - result in myosins with unique mechanoenzymatic properties targeted to their diverse cellular functions.
Collapse
Affiliation(s)
- Sarah M Heissler
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, B50/3523, Bethesda, MD 20892-8015, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, B50/3523, Bethesda, MD 20892-8015, USA
| |
Collapse
|
47
|
McLaughlin RT, Diehl MR, Kolomeisky AB. Collective dynamics of processive cytoskeletal motors. SOFT MATTER 2016; 12:14-21. [PMID: 26444155 PMCID: PMC4684438 DOI: 10.1039/c5sm01609f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Major cellular processes are supported by various biomolecular motors that usually operate together as teams. We present an overview of the collective dynamics of processive cytokeletal motor proteins based on recent experimental and theoretical investigations. Experimental studies show that multiple motors function with different degrees of cooperativity, ranging from negative to positive. This effect depends on the mechanical properties of individual motors, the geometry of their connections, and the surrounding cellular environment. Theoretical models based on stochastic approaches underline the importance of intermolecular interactions, the properties of single motors, and couplings with cellular medium in predicting the collective dynamics. We discuss several features that specify the cooperativity in motor proteins. Based on this approach a general picture of collective dynamics of motor proteins is formulated, and the future directions and challenges are discussed.
Collapse
Affiliation(s)
- R Tyler McLaughlin
- Rice University, Systems, Synthetic, and Physical Biology, Houston, TX 77005, USA and Rice University, Department of Bioengineering, Houston, TX 77005, USA
| | - Michael R Diehl
- Rice University, Systems, Synthetic, and Physical Biology, Houston, TX 77005, USA and Rice University, Department of Bioengineering, Houston, TX 77005, USA
| | - Anatoly B Kolomeisky
- Rice University, Systems, Synthetic, and Physical Biology, Houston, TX 77005, USA and Rice University, Department of Chemistry, Houston, TX 77005, USA.
| |
Collapse
|
48
|
Affiliation(s)
- Edward P Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
49
|
Kumar EA, Tsao D, Radhakrishnan A, Diehl M. Building cells for quantitative, live-cell analyses of collective motor protein functions. Methods Cell Biol 2015; 128:69-82. [PMID: 25997343 DOI: 10.1016/bs.mcb.2015.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Examining the collective mechanical behaviors of interacting cytoskeletal motors has become increasingly important to dissecting the complex and multifaceted mechanisms that regulate the transport and trafficking of materials in cells. Although studying these processes in living cells has been challenging, the development of new Synthetic Biology techniques has opened unique opportunities to both manipulate and probe how these motors function in groups as they navigate the native cytoskeleton. Here, we describe an approach to engineer mammalian cells for a new class of inducible cargo motility assays that utilize drug-dependent protein dimerization switches to regulate motor-cargo coupling and transport. Our adaptations provide genetic-level control over the densities of motor proteins coupled to, as well as the sizes of endogenous vesicular cargos in these assays. By allowing the examination of transport responses to changes in motor density and cargo size-dependent viscous drag force, such control can enable quantitative comparisons of mechanistic distinctions between the collective behaviors of different types of processive cytoskeletal motors.
Collapse
Affiliation(s)
- Eric A Kumar
- Department of Chemistry, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA
| | - David Tsao
- Department of Chemistry, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA
| | - Anand Radhakrishnan
- Department of Chemistry, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA
| | - Michael Diehl
- Department of Chemistry, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
50
|
Kovacic S, Samii L, Curmi PMG, Linke H, Zuckermann MJ, Forde NR. Design and Construction of the Lawnmower, An Artificial Burnt-Bridges Motor. IEEE Trans Nanobioscience 2015; 14:305-12. [DOI: 10.1109/tnb.2015.2393872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|