1
|
Iqbal S, Qu Y, Dong Z, Zhao J, Rauf Khan A, Rehman S, Zhao Z. Poly (β‐amino esters) based potential drug delivery and targeting polymer; an overview and perspectives (review). Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
2
|
Karlsson J, Rhodes KR, Green JJ, Tzeng SY. Poly(beta-amino ester)s as gene delivery vehicles: challenges and opportunities. Expert Opin Drug Deliv 2020; 17:1395-1410. [PMID: 32700581 PMCID: PMC7658038 DOI: 10.1080/17425247.2020.1796628] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Gene delivery technologies are being developed for an increasing number of biomedical applications, with delivery vehicles including viruses and non-viral materials. Among biomaterials used for non-viral gene delivery, poly(beta-amino ester)s (PBAEs), a class of synthetic, biodegradable polymers, have risen as a leading gene delivery vehicle that has been used for multiple applications in vitro and in vivo. AREAS COVERED This review summarizes the key properties of PBAEs and their development, including a discussion of the advantages and disadvantages of PBAEs for gene delivery applications. The use of PBAEs to improve the properties of other drug delivery vehicles is also summarized. EXPERT OPINION PBAEs are designed to have multiple characteristics that are ideal for gene delivery, including their reversible positive charge, which promotes binding to nucleic acids as well as imparting high buffering capacity, and their rapid degradability under mild conditions. Simultaneously, some of their properties also lead to nanoparticle instability and low transfection efficiency in physiological environments. The ease with which PBAEs can be chemically modified as well as non-covalently blended with other materials, however, allows them to be customized specifically to overcome delivery barriers for varied applications.
Collapse
Affiliation(s)
- Johan Karlsson
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kelly R. Rhodes
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Departments of Materials Science and Engineering and Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Departments of Oncology, Ophthalmology, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
3
|
Cordeiro RA, Serra A, Coelho JF, Faneca H. Poly(β-amino ester)-based gene delivery systems: From discovery to therapeutic applications. J Control Release 2019; 310:155-187. [DOI: 10.1016/j.jconrel.2019.08.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/29/2022]
|
4
|
Arabipour I, Amani J, Mirhosseini SA, Salimian J. The study of genes and signal transduction pathways involved in mustard lung injury: A gene therapy approach. Gene 2019; 714:143968. [PMID: 31323308 DOI: 10.1016/j.gene.2019.143968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Sulfur mustard (SM) is a destructive and harmful chemical agent for the eyes, skin and lungs that causes short-term and long-term lesions and was widely used in Iraq war against Iran (1980-1988). SM causes DNA damages, oxidative stress, and Inflammation. Considering the similarities between SM and COPD (Chronic Obstructive Pulmonary Disease) pathogens and limited available treatments, a novel therapeutic approach is not developed. Gene therapy is a novel therapeutic approach that uses genetic engineering science in treatment of most diseases including chronic obstructive pulmonary disease. In this review, attempts to presenting a comprehensive study of mustard lung and introducing the genes therapy involved in chronic obstructive pulmonary disease and emphasizing the pathways and genes involved in the pathology and pathogenesis of sulfur Mustard. It seems that, given the high potential of gene therapy and the fact that this experimental technique is a candidate for the treatment of pulmonary diseases, further study of genes, vectors and gene transfer systems can draw a very positive perspective of gene therapy in near future.
Collapse
Affiliation(s)
- Iman Arabipour
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Sung YK, Kim SW. Recent Advances in the Development of Bio-Reducible Polymers for Efficient Cancer Gene Delivery Systems. CANCER MEDICINE JOURNAL 2019; 2:6-13. [PMID: 31032485 PMCID: PMC6481959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gene therapy is the unique method for the use of genetic materials such as Messenger ribonucleic acid (mRNA), plasmid deoxyribonucleic acid (pDNA), and small interfering ribonucleic acid (siRNA) into specific host-cells for the treatment of inherited disorders in any diseases. The successful way to utilize the gene therapy is to develop the efficient cancer gene delivery systems. In this paper, the successful and efficient gene delivery systems are briefly reviewed on the basis of bio-reducible polymeric systems for cancer therapy. The viral gene delivery systems such as RNA-based viral and DNA-based viral vectors are also discussed. The development of bio-reducible polymer for gene delivery system has briefly discussed for the efficient cancer gene delivery of viral vectors and non-viral vectors.
Collapse
Affiliation(s)
- Yong Kiel Sung
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
- Center for Chemically Controlled Delivery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sung Wan Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
- Center for Chemically Controlled Delivery, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
6
|
Sung YK, Kim SW. Recent advances in the development of gene delivery systems. Biomater Res 2019; 23:8. [PMID: 30915230 PMCID: PMC6417261 DOI: 10.1186/s40824-019-0156-z] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
Background Gene delivery systems are essentially necessary for the gene therapy of human genetic diseases. Gene therapy is the unique way that is able to use the adjustable gene to cure any disease. The gene therapy is one of promising therapies for a number of diseases such as inherited disorders, viral infection and cancers. The useful results of gene delivery systems depend open the adjustable targeting gene delivery systems. Some of successful gene delivery systems have recently reported for the practical application of gene therapy. Main body The recent developments of viral gene delivery systems and non-viral gene delivery systems for gene therapy have briefly reviewed. The viral gene delivery systems have discussed for the viral vectors based on DNA, RNA and oncolytic viral vectors. The non-viral gene delivery systems have also treated for the physicochemical approaches such as physical methods and chemical methods. Several kinds of successful gene delivery systems have briefly discussed on the bases of the gene delivery systems such as cationic polymers, poly(L-lysine), polysaccharides, and poly(ethylenimine)s. Conclusion The goal of the research for gene delivery system is to develop the clinically relevant vectors such as viral and non-viral vectors that use to combat elusive diseases such as AIDS, cancer, Alzheimer, etc. Next step research will focus on advancing DNA and RNA molecular technologies to become the standard treatment options in the clinical area of biomedical application.
Collapse
Affiliation(s)
- Y K Sung
- 1Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112 USA.,2Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112 USA.,3Department of Chemistry, Dongguk University, Chung-gu, Seoul 04620 Korea.,4Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, BPRB, Room 205, Salt Lake City, UT 84112 USA
| | - S W Kim
- 1Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112 USA.,2Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
7
|
Beitelshees M, Hill A, Li Y, Chen M, Ahmadi MK, Smith RJ, Andreadis ST, Rostami P, Jones CH, Pfeifer BA. Antigen delivery format variation and formulation stability through use of a hybrid vector. Vaccine X 2019; 1:100012. [PMID: 31384734 PMCID: PMC6668244 DOI: 10.1016/j.jvacx.2019.100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 02/04/2023] Open
Abstract
A hybrid biological-biomaterial antigen delivery vector comprised of a polymeric shell encapsulating an Escherichia coli core was previously developed for in situ antigen production and subsequent delivery. Due to the engineering capacity of the bacterial core, the hybrid vector provides unique opportunities for immunogenicity optimization through varying cellular localization (cytoplasm, periplasm, cellular surface) and type (protein or DNA) of antigen. In this work, three protein-based hybrid vector formats were compared in which the pneumococcal surface protein A (PspA) was localized to the cytoplasm, surface, and periplasmic space of the bacterial core for vaccination against pneumococcal disease. Furthermore, we tested the hybrid vector's capacity as a DNA vaccine against Streptococcus pneumoniae by introducing a plasmid into the bacterial core to facilitate PspA expression in antigen presenting cells (APCs). Through testing these various formulations, we determined that cytoplasmic accumulation of PspA elicited the strongest immune response (antibody production and protection against bacterial challenge) and enabled complete protection at substantially lower doses when compared to vaccination with PspA + adjuvant. We also improved the storage stability of the hybrid vector to retain complete activity after 1 month at 4 °C using an approach in which hybrid vectors suspended in a microbial freeze drying buffer were desiccated. These results demonstrate the flexibility and robustness of the hybrid vector formulation, which has the potential to be a potent vaccine against S. pneumoniae.
Collapse
Key Words
- APCs, antigen presenting cells
- AS, aqueous storage
- CDM, chemically defined bacterial growth medium
- CFA, Complete Freund's Adjuvant
- CHV, cytoplasmic hybrid vector
- CPSs, capsular polysaccharides
- ClyA, cytolysin A
- DNA vaccine
- DS, desiccated storage
- EHV, empty hybrid vector
- IN, intranasal
- IP, intraperitoneal
- LBVs, live bacterial vectors
- LLO, listeriolysin O
- NVT, non-vaccine type
- PAMPs, pathogen-associated molecular patterns
- PCVs, pneumococcal conjugate vaccines
- PHV, periplasmic hybrid vector
- PcpA, pneumococcal choline-binding protein A
- PhtD, histidine triad protein D
- Pneumococcal disease
- Pneumococcal surface protein A (PspA)
- PspA, pneumococcal surface protein A
- SC, subcutaneous
- SHV, surface hybrid vector
- Streptococcus pneumoniae
- Vaccine delivery
- pHV, plasmid hybrid vector
Collapse
Affiliation(s)
- Marie Beitelshees
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Andrew Hill
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Abcombi Biosciences Inc., Buffalo, NY 14260-4200, USA
| | - Yi Li
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Mingfu Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Mahmoud Kamal Ahmadi
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Randall J. Smith
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Pooya Rostami
- Abcombi Biosciences Inc., Buffalo, NY 14260-4200, USA
| | | | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Corresponding author at: Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA.
| |
Collapse
|
8
|
Liu Y, Li Y, Keskin D, Shi L. Poly(β-Amino Esters): Synthesis, Formulations, and Their Biomedical Applications. Adv Healthc Mater 2019; 8:e1801359. [PMID: 30549448 DOI: 10.1002/adhm.201801359] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/04/2018] [Indexed: 12/12/2022]
Abstract
Poly(β-amino ester) (abbreviated as PBAE or PAE) refers to a polymer synthesized from an acrylate and an amine by Michael addition and has properties inherent to tertiary amines and esters, such as pH responsiveness and biodegradability. The versatility of building blocks provides a library of polymers with miscellaneous physicochemical and mechanical properties. When used alone or together with other materials, PBAEs can be fabricated into different formulations in order to fulfill various requirements in drug delivery (for instance, gene, anticancer drugs, and antimicrobials delivery) and natural complex mimicry (nanochaperones). This progress report discusses the recent developments in design, synthesis, formulations, and applications of PBAEs in biomedical fields and provides a perspective view for the future of the PBAEs.
Collapse
Affiliation(s)
- Yong Liu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Functional Polymer MaterialsMinistry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University Tianjin 300071 China
- Department of Biomedical EngineeringUniversity of Groningen and University Medical Center Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Yuanfeng Li
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Functional Polymer MaterialsMinistry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University Tianjin 300071 China
- Department of Biomedical EngineeringUniversity of Groningen and University Medical Center Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Damla Keskin
- Department of Biomedical EngineeringUniversity of Groningen and University Medical Center Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Functional Polymer MaterialsMinistry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
9
|
Rui Y, Quiñones G, Green JJ. Biodegradable and bioreducible poly(beta-amino ester) nanoparticles for intracellular delivery to treat brain cancer. AIChE J 2017. [DOI: 10.1002/aic.15698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yuan Rui
- Dept. of Biomedical Engineering; Institute for Nanobiotechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine; Baltimore MD 21231
| | - Gabriella Quiñones
- Dept. of Biomedical Engineering; Institute for Nanobiotechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine; Baltimore MD 21231
| | - Jordan J. Green
- Depts. of Biomedical Engineering, Chemical and Biomolecular Engineering, Materials Science and Engineering, Oncology, Ophthalmology, and Neurosurgery; Institute for Nanobiotechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine; Baltimore MD 21231
| |
Collapse
|
10
|
Chitgupi U, Li Y, Chen M, Shao S, Beitelshees M, Tan MJ, Neelamegham S, Pfeifer BA, Jones C, Lovell JF. Bimodal Targeting Using Sulfonated, Mannosylated PEI for Combined Gene Delivery and Photodynamic Therapy. Photochem Photobiol 2017; 93:600-608. [PMID: 27935058 DOI: 10.1111/php.12688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
Photodynamic therapy (PDT) and gene delivery have both been used to target both cancer cells and tumor-associated macrophages (TAMs). Given the complex nature of tumor tissue, there could be merit in combining these strategies simultaneously. In this study, we developed a bimodal targeting approach to both cancer cells and macrophages, employing materials conducive to both gene delivery and PDT. Polymers libraries were created that consisted of cationic polyethyleneimine (PEI) conjugated to the photosensitizer pyropheophorbide-a, with sulfonation (to target selectin-expressing cells) and mannosylation (to target TAMs). Polyplexes, consisting of these polymers electrostatically bound to DNA, were analyzed for transfection efficacy and cytotoxicity toward epithelial cells and macrophages to assess dual-targeting. This study provides preliminary proof of principle for using modified PEI for targeted gene delivery and PDT.
Collapse
Affiliation(s)
- Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY
| | - Yi Li
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY
| | - Mingfu Chen
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY
| | - Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY.,Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY
| | - Marie Beitelshees
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY
| | - Myles Joshua Tan
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY
| | | | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY.,Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY
| |
Collapse
|
11
|
Affiliation(s)
- Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Yanhang Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Wenjuan Chen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Chun Wang
- Department
of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo
Hall, 312 Church Street S. E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Immunization with electroporation enhances the protective effect of a DNA vaccine candidate expressing prME antigen against dengue virus serotype 2 infection. Clin Immunol 2016; 171:41-49. [DOI: 10.1016/j.clim.2016.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 11/24/2022]
|
13
|
Li Y, Beitelshees M, Fang L, Hill A, Ahmadi MK, Chen M, Davidson BA, Knight P, Smith RJ, Andreadis ST, Hakansson AP, Jones CH, Pfeifer BA. In situ pneumococcal vaccine production and delivery through a hybrid biological-biomaterial vector. SCIENCE ADVANCES 2016; 2:e1600264. [PMID: 27419235 PMCID: PMC4942325 DOI: 10.1126/sciadv.1600264] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/06/2016] [Indexed: 05/14/2023]
Abstract
The type and potency of an immune response provoked during vaccination will determine ultimate success in disease prevention. The basis for this response will be the design and implementation of antigen presentation to the immune system. Whereas direct antigen administration will elicit some form of immunological response, a more sophisticated approach would couple the antigen of interest to a vector capable of broad delivery formats and designed for heightened response. New antigens associated with pneumococcal disease virulence were used to test the delivery and adjuvant capabilities of a hybrid biological-biomaterial vector consisting of a bacterial core electrostatically coated with a cationic polymer. The hybrid design provides (i) passive and active targeting of antigen-presenting cells, (ii) natural and multicomponent adjuvant properties, (iii) dual intracellular delivery mechanisms, and (iv) a simple formulation mechanism. In addition, the hybrid format enables device-specific, or in situ, antigen production and consolidation via localization within the bacterial component of the vector. This capability eliminates the need for dedicated antigen production and purification before vaccination efforts while leveraging the aforementioned features of the overall delivery device. We present the first disease-specific utilization of the vector toward pneumococcal disease highlighted by improved immune responses and protective capabilities when tested against traditional vaccine formulations and a range of clinically relevant Streptococcus pneumoniae strains. More broadly, the results point to similar levels of success with other diseases that would benefit from the production, delivery, and efficacy capabilities offered by the hybrid vector.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260–4200, USA
| | - Marie Beitelshees
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260–4200, USA
| | - Lei Fang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260–4200, USA
| | - Andrew Hill
- Abcombi Biosciences Inc., Buffalo, NY 14260–4200, USA
| | - Mahmoud Kamal Ahmadi
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260–4200, USA
| | - Mingfu Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260–4200, USA
| | - Bruce A. Davidson
- Department of Anesthesiology, University at Buffalo, The State University of New York, Buffalo, NY 14260–4200, USA
| | - Paul Knight
- Department of Anesthesiology, University at Buffalo, The State University of New York, Buffalo, NY 14260–4200, USA
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260–4200, USA
| | - Randall J. Smith
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260–4200, USA
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260–4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260–4200, USA
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Anders P. Hakansson
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260–4200, USA
- Division of Experimental Infection Medicine, Department of Laboratory Medicine, Lund University, Malmö SE-20502, Sweden
| | - Charles H. Jones
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260–4200, USA
- Abcombi Biosciences Inc., Buffalo, NY 14260–4200, USA
- Corresponding author. (C.H.J.); (B.A.P.)
| | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260–4200, USA
- Abcombi Biosciences Inc., Buffalo, NY 14260–4200, USA
- Corresponding author. (C.H.J.); (B.A.P.)
| |
Collapse
|
14
|
Beitelshees M, Li Y, Pfeifer BA. Enhancing vaccine effectiveness with delivery technology. Curr Opin Biotechnol 2016; 42:24-29. [PMID: 26954947 DOI: 10.1016/j.copbio.2016.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/11/2016] [Accepted: 02/22/2016] [Indexed: 12/13/2022]
Abstract
Vaccines stand as a very powerful means of disease prevention and treatment. Fundamental to the success of vaccination is the efficient delivery of antigenic cargo needed to trigger an effective immune response. In this article, we will review recent advances in delivery technology with a focus on devices designed to optimally maximize responses to antigen cargo. Included with the review is an overview of traditional vaccine applications and how these approaches can benefit by well-designed delivery methods.
Collapse
Affiliation(s)
- Marie Beitelshees
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Yi Li
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
15
|
Hill AB, Chen M, Chen CK, Pfeifer BA, Jones CH. Overcoming Gene-Delivery Hurdles: Physiological Considerations for Nonviral Vectors. Trends Biotechnol 2016; 34:91-105. [PMID: 26727153 PMCID: PMC5800990 DOI: 10.1016/j.tibtech.2015.11.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/13/2022]
Abstract
With the use of contemporary tools and techniques, it has become possible to more precisely tune the biochemical mechanisms associated with using nonviral vectors for gene delivery. Consequently, nonviral vectors can incorporate numerous vector compositions and types of genetic cargo to develop diverse genetic therapies. Despite these advantages, gene-delivery strategies using nonviral vectors have poorly translated into clinical success due to preclinical experimental design considerations that inadequately predict therapeutic efficacy. Furthermore, the manufacturing and distribution processes are critical considerations for clinical application that should be considered when developing therapeutic platforms. In this review, we evaluate potential avenues towards improving the transition of gene-delivery technologies from in vitro assessment to human clinical therapy.
Collapse
Affiliation(s)
- Andrew B Hill
- Abcombi Biosciences Inc, Buffalo, NY, USA; McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Mingfu Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, BY, USA
| | - Chih-Kuang Chen
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan, ROC
| | - Blaine A Pfeifer
- Abcombi Biosciences Inc, Buffalo, NY, USA; Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, BY, USA.
| | - Charles H Jones
- Abcombi Biosciences Inc, Buffalo, NY, USA; Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, BY, USA.
| |
Collapse
|
16
|
Jones CH, Hill A, Chen M, Pfeifer BA. Contemporary approaches for nonviral gene therapy. DISCOVERY MEDICINE 2015; 19:447-54. [PMID: 26175402 PMCID: PMC9892924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gene therapy is the manipulation of gene expression patterns in specific cells to treat genetic and pathological diseases. This manipulation is accomplished by the controlled introduction of exogenous nucleic acids into target cells. Given the size and negative charge of these biomacromolecules, the delivery process is driven by the carrier vector, of which the usage of viral vectors dominates. Taking into account the limitations of viral vectors, nonviral alternatives have gained significant attention due to their flexible design, low cytotoxicity and immunogenicity, and their gene delivery efficacy. That stated, the field of nonviral vectors has been dominated by research dedicated to overcoming barriers in gene transfer. Unfortunately, these traditional nonviral vectors have failed to completely overcome the barriers required for clinical translation and thus, have failed to match the delivery outcomes of viral vector. This has consequently encouraged the development of new, more radical approaches that have the potential for higher clinical translation. In this review, we discuss recent advances in vector technology and nucleic acid chemistry that have challenged the current understanding of nonviral systems. The diversity of these approaches highlights the numerous alternative avenues for overcoming innate and technical barriers associated with gene delivery.
Collapse
Affiliation(s)
- Charles H. Jones
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Andrew Hill
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Mingfu Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA,Corresponding authors. Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260-4200, USA, Phone: 716-645-1198, Fax: 716-645-3822.
| |
Collapse
|
17
|
Total Biosynthesis and Diverse Applications of the Nonribosomal Peptide-Polyketide Siderophore Yersiniabactin. Appl Environ Microbiol 2015; 81:5290-8. [PMID: 26025901 DOI: 10.1128/aem.01373-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/15/2015] [Indexed: 02/02/2023] Open
Abstract
Yersiniabactin (Ybt) is a mixed nonribosomal peptide-polyketide natural product natively produced by the pathogen Yersinia pestis. The compound enables iron scavenging capabilities upon host infection and is biosynthesized by a nonribosomal peptide synthetase featuring a polyketide synthase module. This pathway has been engineered for expression and biosynthesis using Escherichia coli as a heterologous host. In the current work, the biosynthetic process for Ybt formation was improved through the incorporation of a dedicated step to eliminate the need for exogenous salicylate provision. When this improvement was made, the compound was tested in parallel applications that highlight the metal-chelating nature of the compound. In the first application, Ybt was assessed as a rust remover, demonstrating a capacity of ∼40% compared to a commercial removal agent and ∼20% relative to total removal capacity. The second application tested Ybt in removing copper from a variety of nonbiological and biological solution mixtures. Success across a variety of media indicates potential utility in diverse scenarios that include environmental and biomedical settings.
Collapse
|
18
|
Jones CH, Gollakota A, Chen M, Chung TC, Ravikrishnan A, Zhang G, Pfeifer BA. Influence of molecular weight upon mannosylated bio-synthetic hybrids for targeted antigen presenting cell gene delivery. Biomaterials 2015; 58:103-11. [PMID: 25941787 DOI: 10.1016/j.biomaterials.2015.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 11/24/2022]
Abstract
Given the rise of antibiotic resistant microbes, genetic vaccination is a promising prophylactic strategy that enables rapid design and manufacture. Facilitating this process is the choice of vector, which is often situationally-specific and limited in engineering capacity. Furthermore, these shortcomings are usually tied to an incomplete understanding of the structure-function relationships driving vector-mediated gene delivery. Building upon our initial report of a hybrid bacterial-biomaterial gene delivery vector, a comprehensive structure-function assessment was completed using a class of mannosylated poly(beta-amino esters). Through a top-down screening methodology, an ideal polymer was selected on the basis of gene delivery efficacy and then used for the synthesis of a stratified molecular weight polymer library. By eliminating contributions of polymer chemical background, we were able to complete an in-depth assessment of gene delivery as a function of (1) polymer molecular weight, (2) relative mannose content, (3) polymer-membrane biophysical properties, (4) APC uptake specificity, and (5) serum inhibition. In summary, the flexibility and potential of the hybrid design featured in this work highlights the ability to systematically probe vector-associated properties for the development of translational gene delivery candidates.
Collapse
Affiliation(s)
- Charles H Jones
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Akhila Gollakota
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Mingfu Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Tai-Chun Chung
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Anitha Ravikrishnan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Guojian Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA.
| |
Collapse
|
19
|
Jones CH, Chen M, Gollakota A, Ravikrishnan A, Zhang G, Lin S, Tan M, Cheng C, Lin H, Pfeifer BA. Structure-Function Assessment of Mannosylated Poly(β-amino esters) upon Targeted Antigen Presenting Cell Gene Delivery. Biomacromolecules 2015; 16:1534-41. [PMID: 25848953 PMCID: PMC9898688 DOI: 10.1021/acs.biomac.5b00062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antigen presenting cell (APC) gene delivery is a promising avenue for modulating immunological outcomes toward a desired state. Recently, our group developed a delivery methodology to elicit targeted and elevated levels of APC-mediated gene delivery. During these initial studies, we observed APC-specific structure-function relationships with the vectors used during gene delivery that differ from current non-APC cell lines, thus, emphasizing a need to re-evaluate vector-associated parameters in the context of APC gene transfer. Thus, we describe the synthesis and characterization of a second-generation mannosylated poly(β-amino ester) library stratified by molecular weight. To better understand the APC-specific structure-function relationships governing polymeric gene delivery, the library was systematically characterized by (1) polymer molecular weight, (2) relative mannose content, (3) polyplex biophysical properties, and (4) gene delivery efficacy. In this library, polymers with the lowest molecular weight and highest relative mannose content possessed gene delivery transfection efficiencies as good as or better than commercial controls. Among this group, the most effective polymers formed the smallest polymer-plasmid DNA complexes (∼300 nm) with moderate charge densities (<10 mV). This convergence in polymer structure and polyplex biophysical properties suggests a unique mode of action and provides a framework within which future APC-targeting polymers can be designed.
Collapse
|
20
|
Chung TC, Jones CH, Gollakota A, Ahmadi MK, Rane S, Zhang G, Pfeifer BA. Improved Escherichia coli Bactofection and Cytotoxicity by Heterologous Expression of Bacteriophage ΦX174 Lysis Gene E. Mol Pharm 2015; 12:1691-700. [PMID: 25849744 PMCID: PMC9896019 DOI: 10.1021/acs.molpharmaceut.5b00172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bactofection offers a gene delivery option particularly useful in the context of immune modulation. The bacterial host naturally attracts recognition and cellular uptake by antigen presenting cells (APCs) as the initial step in triggering an immune response. Moreover, depending on the bacterial vector, molecular biology tools are available to influence and/or overcome additional steps and barriers to effective antigen presentation. In this work, molecular engineering was applied using Escherichia coli as a bactofection vector. In particular, the bacteriophage ΦX174 lysis E (LyE) gene was designed for variable expression across strains containing different levels of lysteriolysin O (LLO). The objective was to generate a bacterial vector with improved attenuation and delivery characteristics. The resulting strains exhibited enhanced gene and protein release and inducible cellular death. In addition, the new vectors demonstrated improved gene delivery and cytotoxicity profiles to RAW264.7 macrophage APCs.
Collapse
|
21
|
Jones CH, Chen CK, Chen M, Ravikrishnan A, Zhang H, Gollakota A, Chung T, Cheng C, Pfeifer BA. PEGylated cationic polylactides for hybrid biosynthetic gene delivery. Mol Pharm 2015; 12:846-56. [PMID: 25625426 PMCID: PMC9893229 DOI: 10.1021/mp500683c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic vaccination is predicated on the underlying principle that diseases can be prevented by the controlled introduction of genetic material encoding antigenic proteins from pathogenic organisms to elicit the formation of protective immune responses. Driving this process is the choice of carrier that is responsible for navigating the obstacles associated with gene delivery. In this work, we expand upon a novel class of hybrid biosynthetic gene delivery vectors that are composed of a biomaterial outer coating and a bacterial (Escherichia coli) inner core. Specifically, a series of newly developed biodegradable cationic polylactides (CPLAs) and their PEGylated variants were selected to investigate the role of low polydispersity index (PDI), charge density, and PEGylation upon hybrid vector assembly and gene delivery efficacy. Upon assembly, hybrid vectors mediated increased gene delivery beyond that of the individual bacterial vector in isolation, including assays with increasing medium protein content to highlight shielding properties afforded by the PEG-functionalized CPLA component. Furthermore, after extensive characterization of surface deposition of the polymer, results prompted a new model for describing hybrid vector assembly that includes cellular coating and penetration of the CPLA component. In summary, these results provide new options and insight toward the assembly and application of next-generation hybrid biosynthetic gene delivery vectors.
Collapse
Affiliation(s)
- Charles H. Jones
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Chih-Kuang Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States,Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan, ROC
| | - Mingfu Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Anitha Ravikrishnan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Hanguang Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Akhila Gollakota
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Taichun Chung
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States,Corresponding Author: Phone: 716-645-1198. Fax: 716-645-3822.
| |
Collapse
|
22
|
Jones CH, Chen M, Ravikrishnan A, Reddinger R, Zhang G, Hakansson AP, Pfeifer BA. Mannosylated poly(beta-amino esters) for targeted antigen presenting cell immune modulation. Biomaterials 2014; 37:333-44. [PMID: 25453962 DOI: 10.1016/j.biomaterials.2014.10.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/02/2014] [Indexed: 11/17/2022]
Abstract
Given the rise of antibiotic resistance and other difficult-to-treat diseases, genetic vaccination is a promising preventative approach that can be tailored and scaled according to the vector chosen for gene delivery. However, most vectors currently utilized rely on ubiquitous delivery mechanisms that ineffectively target important immune effectors such as antigen presenting cells (APCs). As such, APC targeting allows the option for tuning the direction (humoral vs cell-mediated) and strength of the resulting immune responses. In this work, we present the development and assessment of a library of mannosylated poly(beta-amino esters) (PBAEs) that represent a new class of easily synthesized APC-targeting cationic polymers. Polymeric characterization and assessment methodologies were designed to provide a more realistic physiochemical profile prior to in vivo evaluation. Gene delivery assessment in vitro showed significant improvement upon PBAE mannosylation and suggested that mannose-mediated uptake and processing influence the magnitude of gene delivery. Furthermore, mannosylated PBAEs demonstrated a strong, efficient, and safe in vivo humoral immune response without use of adjuvants when compared to genetic and protein control antigens. In summary, the gene delivery effectiveness provided by mannosylated PBAE vectors offers specificity and potency in directing APC activation and subsequent immune responses.
Collapse
Affiliation(s)
- Charles H Jones
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Mingfu Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Anitha Ravikrishnan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Ryan Reddinger
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Guojian Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Anders P Hakansson
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA; The Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA.
| |
Collapse
|
23
|
Jones CH, Hakansson AP, Pfeifer BA. Biomaterials at the interface of nano- and micro-scale vector-cellular interactions in genetic vaccine design. J Mater Chem B 2014; 46:8053-8068. [PMID: 29887986 PMCID: PMC5990286 DOI: 10.1039/c4tb01058b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The development of safe and effective vaccines for the prevention of elusive infectious diseases remains a public health priority. Immunization, characterized by adaptive immune responses to specific antigens, can be raised by an array of delivery vectors. However, current commercial vaccination strategies are predicated on the retooling of archaic technology. This review will discuss current and emerging strategies designed to elicit immune responses in the context of genetic vaccination. Selected strategies at the biomaterial-biological interface will be emphasized to illustrate the potential of coupling both fields towards a common goal.
Collapse
Affiliation(s)
- Charles H Jones
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Anders P Hakansson
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- The Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| |
Collapse
|