1
|
Kobayashi PE, Lainetti PF, Leis-Filho AF, Delella FK, Vicente IST, Fonseca-Alves CE, Laufer-Amorim R. Canine prostate cancer cell transcriptome reveals important dysregulation in PI3K/AKT/mTOR pathway. J Comp Pathol 2025; 219:52-58. [PMID: 40328211 DOI: 10.1016/j.jcpa.2025.03.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 05/08/2025]
Abstract
Dogs are the only large mammals, besides humans, that develop spontaneous prostate cancer, which has a poor prognosis and limited treatment efficacy. Considering the central role of mammalian target of rapamycin (mTOR) in carcinogenesis, the use of rapamycin, an mTOR inhibitor, has attracted considerable attention. In this study, we performed gene expression microarray analyses of normal canine prostate and prostate carcinoma cells. Among the 6,270 differentially expressed genes revealed in the transcriptome, 3,242 were upregulated and 3,028 were downregulated, and were related to phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway activation, as confirmed by enrichment analysis. Among the genes involved in this pathway, we found increased expression levels of FKBP1A, FKBP1B, AKT1S1, PDK2, PIP5K1 and PIP5KL1 in canine prostate cancer cells compared with normal prostate cells. We also treated two canine prostate cancer cell lines (PC1 and PC2) with rapamycin in vitro (6, 10 and 12 μM) for 24 h and observed a dose-dependent decrease in cell viability. Our results indicate that rapamycin significantly increased AKT transcript levels in both cell lines, indicating resistance to treatment. However, mTOR and 4E-BP1 expression were downregulated after rapamycin treatment. We suggest that mTOR inhibition is a potential treatment of choice for canine prostate cancer, which may guide and contribute to future prostate carcinoma clinical trials. However, the acquisition of resistance to treatment remains a challenge, and precision medicine may help overcome this problem.
Collapse
Affiliation(s)
- Priscila E Kobayashi
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Patrícia F Lainetti
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Antonio F Leis-Filho
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Flávia K Delella
- Department of Morphology, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Igor S T Vicente
- Institute of Veterinary Oncology, Pompéia, São Paulo, Brazil; VetPrecision Laboratory, Botucatu, São Paulo, Brazil.
| | - Carlos E Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil; Institute of Veterinary Oncology, Pompéia, São Paulo, Brazil; VetPrecision Laboratory, Botucatu, São Paulo, Brazil.
| | - Renée Laufer-Amorim
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil.
| |
Collapse
|
2
|
Yin M, Wang Y. The role of PIP5K1A in cancer development and progression. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:151. [PMID: 35852640 DOI: 10.1007/s12032-022-01753-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Malignant tumors are formed via a pathological process of uncontrolled cell division that seriously endangers human physical and mental health. The PI3K/AKT signaling pathway plays an important role in the occurrence and development of various cancers. As a lipid kinase, PIP5K1A acts on the upstream of the PI3K/AKT signaling pathway and has a variety of biological functions, including cell differentiation, cell migration, and sperm development. An increasing number of studies have shown that the overexpression of PIP5K1A promotes the growth, invasion, and migration of cancer cells, and the inhibition of PIP5K1A can effectively hinder tumor progression. These findings imply that PIP5K1A are potential markers and targets for cancers. The aim of this study was to systemically review the structure and function of PIP5K1A, the relationship between PIP5K1A and tumors and the potential therapeutic value of PIP5K1A inhibitors in cancer. PIP5K1A affects the occurrence and progression of many tumors and will provide new strategies for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Man Yin
- Department of Clinical Medicine, Jining Medical University, Jining, 272000, Shandong, China
| | - Yunfei Wang
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Gu Huai Road, No.89, Jining, 272029, Shandong, China.
| |
Collapse
|
3
|
Wang T, Sarwar M, Whitchurch JB, Collins HM, Green T, Semenas J, Ali A, Roberts CJ, Morris RD, Hubert M, Chen S, El-Schich Z, Wingren AG, Grundström T, Lundmark R, Mongan NP, Gunhaga L, Heery DM, Persson JL. PIP5K1α is Required for Promoting Tumor Progression in Castration-Resistant Prostate Cancer. Front Cell Dev Biol 2022; 10:798590. [PMID: 35386201 PMCID: PMC8979106 DOI: 10.3389/fcell.2022.798590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
PIP5K1α has emerged as a promising drug target for the treatment of castration-resistant prostate cancer (CRPC), as it acts upstream of the PI3K/AKT signaling pathway to promote prostate cancer (PCa) growth, survival and invasion. However, little is known of the molecular actions of PIP5K1α in this process. Here, we show that siRNA-mediated knockdown of PIP5K1α and blockade of PIP5K1α action using its small molecule inhibitor ISA-2011B suppress growth and invasion of CRPC cells. We demonstrate that targeted deletion of the N-terminal domain of PIP5K1α in CRPC cells results in reduced growth and migratory ability of cancer cells. Further, the xenograft tumors lacking the N-terminal domain of PIP5K1α exhibited reduced tumor growth and aggressiveness in xenograft mice as compared to that of controls. The N-terminal domain of PIP5K1α is required for regulation of mRNA expression and protein stability of PIP5K1α. This suggests that the expression and oncogenic activity of PIP5K1α are in part dependent on its N-terminal domain. We further show that PIP5K1α acts as an upstream regulator of the androgen receptor (AR) and AR target genes including CDK1 and MMP9 that are key factors promoting growth, survival and invasion of PCa cells. ISA-2011B exhibited a significant inhibitory effect on AR target genes including CDK1 and MMP9 in CRPC cells with wild-type PIP5K1α and in CRPC cells lacking the N-terminal domain of PIP5K1α. These results indicate that the growth of PIP5K1α-dependent tumors is in part dependent on the integrity of the N-terminal sequence of this kinase. Our study identifies a novel functional mechanism involving PIP5K1α, confirming that PIP5K1α is an intriguing target for cancer treatment, especially for treatment of CRPC.
Collapse
Affiliation(s)
- Tianyan Wang
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Martuza Sarwar
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Hilary M Collins
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Tami Green
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - Julius Semenas
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Amjad Ali
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Ryan D Morris
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Madlen Hubert
- Department of Integrative Medical Biology (IMB), Umeå University, Umeå, Sweden
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Sa Chen
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Zahra El-Schich
- Department of Biomedical Science, Malmö University, Malmö, Sweden
| | - Anette G Wingren
- Department of Biomedical Science, Malmö University, Malmö, Sweden
| | | | - Richard Lundmark
- Department of Integrative Medical Biology (IMB), Umeå University, Umeå, Sweden
| | - Nigel P Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jenny L Persson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Biomedical Science, Malmö University, Malmö, Sweden
- Department of Translational Medicine, Lund University, Clinical Research Centre in Malmö, Malmö, Sweden
- *Correspondence: Jenny L Persson,
| |
Collapse
|
4
|
Larsson PF, Karlsson R, Sarwar M, Miftakhova R, Wang T, Syed Khaja AS, Semenas J, Chen S, Hedblom A, Ali A, Ekström‐Holka K, Simoulis A, Kumar A, Wingren AG, Robinson B, Nyunt Wai S, Mongan NP, Heery DM, Öhlund D, Grundström T, Ødum N, Persson JL. FcγRIIIa receptor interacts with androgen receptor and PIP5K1α to promote growth and metastasis of prostate cancer. Mol Oncol 2021; 16:2496-2517. [PMID: 34932854 PMCID: PMC9251882 DOI: 10.1002/1878-0261.13166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 11/08/2022] Open
Abstract
Low‐affinity immunoglobulin gamma Fc region receptor III‐A (FcγRIIIa) is a cell surface protein that belongs to a family of Fc receptors that facilitate the protective function of the immune system against pathogens. However, the role of FcγRIIIa in prostate cancer (PCa) progression remained unknown. In this study, we found that FcγRIIIa expression was present in PCa cells and its level was significantly higher in metastatic lesions than in primary tumors from the PCa cohort (P = 0.006). PCa patients with an elevated level of FcγRIIIa expression had poorer biochemical recurrence (BCR)‐free survival compared with those with lower FcγRIIIa expression, suggesting that FcγRIIIa is of clinical importance in PCa. We demonstrated that overexpression of FcγRIIIa increased the proliferative ability of PCa cell line C4‐2 cells, which was accompanied by the upregulation of androgen receptor (AR) and phosphatidylinositol‐4‐phosphate 5‐kinase alpha (PIP5Kα), which are the key players in controlling PCa progression. Conversely, targeted inhibition of FcγRIIIa via siRNA‐mediated knockdown or using its inhibitory antibody suppressed growth of xenograft PC‐3 and PC‐3M prostate tumors and reduced distant metastasis in xenograft mouse models. We further showed that elevated expression of AR enhanced FcγRIIIa expression, whereas inhibition of AR activity using enzalutamide led to a significant downregulation of FcγRIIIa protein expression. Similarly, inhibition of PIP5K1α decreased FcγRIIIa expression in PCa cells. FcγRIIIa physically interacted with PIP5K1α and AR via formation of protein–protein complexes, suggesting that FcγRIIIa is functionally associated with AR and PIP5K1α in PCa cells. Our study identified FcγRIIIa as an important factor in promoting PCa growth and invasion. Further, the elevated activation of FcγRIII and AR and PIP5K1α pathways may cooperatively promote PCa growth and invasion. Thus, FcγRIIIa may serve as a potential new target for improved treatment of metastatic and castration‐resistant PCa.
Collapse
Affiliation(s)
| | - Richard Karlsson
- Department of Molecular Biology Umeå University Umeå Sweden
- Division of Experimental Cancer Research Department of Translational Medicine Lund University Clinical Research Centre Malmö Sweden
| | - Martuza Sarwar
- Department of Molecular Biology Umeå University Umeå Sweden
| | | | - Tianyan Wang
- Department of Molecular Biology Umeå University Umeå Sweden
| | | | - Julius Semenas
- Department of Molecular Biology Umeå University Umeå Sweden
| | - Sa Chen
- Department of Molecular Biology Umeå University Umeå Sweden
| | - Andreas Hedblom
- Department of Molecular Biology Umeå University Umeå Sweden
- Division of Experimental Cancer Research Department of Translational Medicine Lund University Clinical Research Centre Malmö Sweden
| | - Amjad Ali
- Department of Molecular Biology Umeå University Umeå Sweden
| | | | - Athanasios Simoulis
- Department of Clinical Pathology and Cytology Skåne University Hospital Malmö Sweden
| | - Anjani Kumar
- Department of Molecular Biology Umeå University Umeå Sweden
| | | | - Brian Robinson
- Department of Pathology Weill Cornell Medical College New York NY USA
| | - Sun Nyunt Wai
- Department of Molecular Biology Umeå University Umeå Sweden
- Umeå Centre for Microbial Research (UCMR) Umeå University Umeå Sweden
| | - Nigel P Mongan
- Faculty of Medicine and Health Sciences School of Veterinary Medicine and Sciences
| | - David M Heery
- School of Pharmacy University of Nottingham Nottingham United Kingdom
| | - Daniel Öhlund
- Wallenberg Centre for Molecular Medicine, and Department of Radiation Sciences Umeå University Umeå Sweden
| | | | - Niels Ødum
- Department of Immunology and Microbiology University of Copenhagen Copenhagen Denmark
| | - Jenny L Persson
- Department of Molecular Biology Umeå University Umeå Sweden
- Division of Experimental Cancer Research Department of Translational Medicine Lund University Clinical Research Centre Malmö Sweden
- Faculty of Biomedicine Malmö University Malmö Sweden
| |
Collapse
|
5
|
Oracheff ZZ, Xia HL, Poff CD, Isaacson SE, Downey CW. Friedel-Crafts Addition of Indoles to Nitrones Promoted by Trimethylsilyl Trifluoromethanesulfonate. J Org Chem 2021; 86:17328-17336. [PMID: 34780184 DOI: 10.1021/acs.joc.1c01551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
N-Alkylindoles undergo Friedel-Crafts addition to aryl and secondary alkyl nitrones in the presence of trimethylsilyl trifluoromethanesulfonate and trialkylamine to produce 3-(1-(silyloxyamino)alkyl)indoles. Spontaneous conversion to bisindolyl(aryl)methanes, which is thermodynamically favored for nitrones derived from aromatic aldehydes, is suppressed under the reaction conditions. The silyloxyamino group can be deprotected with tetrabutylammonium fluoride to yield hydroxylamines.
Collapse
Affiliation(s)
- Zachary Z Oracheff
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, Virginia 23173, United States
| | - Helen L Xia
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, Virginia 23173, United States
| | - Christopher D Poff
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, Virginia 23173, United States
| | - Scott E Isaacson
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, Virginia 23173, United States
| | - C Wade Downey
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, Virginia 23173, United States
| |
Collapse
|
6
|
Han Y, Ji L, Guan Y, Ma M, Li P, Xue Y, Zhang Y, Huang W, Gong Y, Jiang L, Wang X, Xie H, Zhou B, Wang J, Wang J, Han J, Deng Y, Yi X, Gao F, Huang J. An epigenomic landscape of cervical intraepithelial neoplasia and cervical cancer using single-base resolution methylome and hydroxymethylome. Clin Transl Med 2021; 11:e498. [PMID: 34323415 PMCID: PMC8288011 DOI: 10.1002/ctm2.498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) is the second leading cause of cancer death among women worldwide. Epigenetic regulation of gene expression through DNA methylation and hydroxymethylation plays a pivotal role during tumorigenesis. In this study, to analyze the epigenomic landscape and identify potential biomarkers for CCs, we selected a series of samples from normal to cervical intra-epithelial neoplasia (CINs) to CCs and performed an integrative analysis of whole-genome bisulfite sequencing (WGBS-seq), oxidative WGBS, RNA-seq, and external histone modifications profiling data. RESULTS In the development and progression of CC, there were genome-wide hypo-methylation and hypo-hydroxymethylation, accompanied by local hyper-methylation and hyper-hydroxymethylation. Hydroxymethylation prefers to distribute in the CpG islands and CpG shores, as displayed a trend of gradual decline from health to CIN2, while a trend of increase from CIN3 to CC. The differentially methylated and hydroxymethylated region-associated genes both enriched in Hippo and other cancer-related signaling pathways that drive cervical carcinogenesis. Furthermore, we identified eight novel differentially methylated/hydroxymethylated-associated genes (DES, MAL, MTIF2, PIP5K1A, RPS6KA6, ANGEL2, MPP, and PAPSS2) significantly correlated with the overall survival of CC. In addition, no any correlation was observed between methylation or hydroxymethylation levels and somatic copy number variations in CINs and CCs. CONCLUSION Our current study systematically delineates the map of methylome and hydroxymethylome from CINs to CC, and some differentially methylated/hydroxymethylated-associated genes can be used as the potential epigenetic biomarkers in CC prognosis.
Collapse
Affiliation(s)
- Yingxin Han
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Centre for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | | | - Yanfang Guan
- Department of Computer Science and TechnologySchool of Electronic and Information EngineeringXi'an Jiao Tong UniversityXi'anChina
- GenePlus‐BeijingBeijingChina
| | | | | | - Yinge Xue
- Shanghai FLY Medical LaboratoryShanghaiChina
| | | | - Wanqiu Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Centre for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | | | - Li Jiang
- The Department of Obstetrics and GynecologyXinhua Hospital affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Xipeng Wang
- The Department of Obstetrics and GynecologyXinhua Hospital affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Hong Xie
- The Department of Obstetrics and GynecologyShenzhen People's HospitalShenzhenChina
| | - Boping Zhou
- The Department of Obstetrics and GynecologyShenzhen People's HospitalShenzhenChina
| | - Jiayin Wang
- Department of Computer Science and TechnologySchool of Electronic and Information EngineeringXi'an Jiao Tong UniversityXi'anChina
| | - Junwen Wang
- Genome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Jinghua Han
- Genome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yuliang Deng
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Centre for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xin Yi
- GenePlus‐BeijingBeijingChina
| | - Fei Gao
- Genome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Jian Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Centre for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
7
|
Semenas J, Wang T, Sajid Syed Khaja A, Firoj Mahmud AKM, Simoulis A, Grundström T, Fällman M, Persson JL. Targeted inhibition of ERα signaling and PIP5K1α/Akt pathways in castration-resistant prostate cancer. Mol Oncol 2021; 15:968-986. [PMID: 33275817 PMCID: PMC8024724 DOI: 10.1002/1878-0261.12873] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/26/2020] [Accepted: 11/14/2020] [Indexed: 01/02/2023] Open
Abstract
Selective ERα modulator, tamoxifen, is well tolerated in a heavily pretreated castration-resistant prostate cancer (PCa) patient cohort. However, its targeted gene network and whether expression of intratumor ERα due to androgen deprivation therapy (ADT) may play a role in PCa progression is unknown. In this study, we examined the inhibitory effect of tamoxifen on castration-resistant PCa in vitro and in vivo. We found that tamoxifen is a potent compound that induced a high degree of apoptosis and significantly suppressed growth of xenograft tumors in mice, at a degree comparable to ISA-2011B, an inhibitor of PIP5K1α that acts upstream of PI3K/AKT survival signaling pathway. Moreover, depletion of tumor-associated macrophages using clodronate in combination with tamoxifen increased inhibitory effect of tamoxifen on aggressive prostate tumors. We showed that both tamoxifen and ISA-2011B exert their on-target effects on prostate cancer cells by targeting cyclin D1 and PIP5K1α/AKT network and the interlinked estrogen signaling. Combination treatment using tamoxifen together with ISA-2011B resulted in tumor regression and had superior inhibitory effect compared with that of tamoxifen or ISA-2011B alone. We have identified sets of genes that are specifically targeted by tamoxifen, ISA-2011B or combination of both agents by RNA-seq. We discovered that alterations in unique gene signatures, in particular estrogen-related marker genes are associated with poor patient disease-free survival. We further showed that ERα interacted with PIP5K1α through formation of protein complexes in the nucleus, suggesting a functional link. Our finding is the first to suggest a new therapeutic potential to inhibit or utilize the mechanisms related to ERα, PIP5K1α/AKT network, and MMP9/VEGF signaling axis, providing a strategy to treat castration-resistant ER-positive subtype of prostate cancer tumors with metastatic potential.
Collapse
Affiliation(s)
| | - Tianyan Wang
- Department of Molecular BiologyUmeå UniversitySweden
| | | | | | - Athanasios Simoulis
- Department of Clinical Pathology and CytologySkåne University HospitalMalmöSweden
| | | | - Maria Fällman
- Department of Molecular BiologyUmeå UniversitySweden
| | - Jenny L. Persson
- Department of Molecular BiologyUmeå UniversitySweden
- Division of Experimental Cancer ResearchDepartment of Translational MedicineLund UniversityClinical Research Centre in MalmöSweden
- Department of Biomedical ScienceMalmö UniversitySweden
| |
Collapse
|
8
|
Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of Taxane Resistance. Cancers (Basel) 2020; 12:E3323. [PMID: 33182737 PMCID: PMC7697134 DOI: 10.3390/cancers12113323] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The taxane family of chemotherapy drugs has been used to treat a variety of mostly epithelial-derived tumors and remain the first-line treatment for some cancers. Despite the improved survival time and reduction of tumor size observed in some patients, many have no response to the drugs or develop resistance over time. Taxane resistance is multi-faceted and involves multiple pathways in proliferation, apoptosis, metabolism, and the transport of foreign substances. In this review, we dive deeper into hypothesized resistance mechanisms from research during the last decade, with a focus on the cancer types that use taxanes as first-line treatment but frequently develop resistance to them. Furthermore, we will discuss current clinical inhibitors and those yet to be approved that target key pathways or proteins and aim to reverse resistance in combination with taxanes or individually. Lastly, we will highlight taxane response biomarkers, specific genes with monitored expression and correlated with response to taxanes, mentioning those currently being used and those that should be adopted. The future directions of taxanes involve more personalized approaches to treatment by tailoring drug-inhibitor combinations or alternatives depending on levels of resistance biomarkers. We hope that this review will identify gaps in knowledge surrounding taxane resistance that future research or clinical trials can overcome.
Collapse
Affiliation(s)
- Sara M. Maloney
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Camden A. Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Lorena V. Morejon-Lasso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Jenifer R. Prosperi
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| |
Collapse
|
9
|
Karlsson R, Larsson P, Miftakhova R, Syed Khaja AS, Sarwar M, Semenas J, Chen S, Hedblom A, Wang T, Ekström-Holka K, Simoulis A, Kumar A, Ødum N, Grundström T, Persson JL. Establishment of Prostate Tumor Growth and Metastasis Is Supported by Bone Marrow Cells and Is Mediated by PIP5K1α Lipid Kinase. Cancers (Basel) 2020; 12:cancers12092719. [PMID: 32971916 PMCID: PMC7564679 DOI: 10.3390/cancers12092719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Metastatic castration-resistant PCa (mCRPC) is a clinically highly lethal disease; the mechanisms underlying the lethal disease remain poorly understood. Furthermore, no effective treatment for cancer metastasis exists. In this study, we have demonstrated that prostate cancer cells required bone marrow-derived cells for their growth, survival and metastasis to the host bone marrow. Our findings have provided new evidence suggesting that cancer cell-specific signals may mediate interactions between prostate cancer cells and bone marrow cells during progression of mCRPC. Therapeutic interventions using a selective inhibitor of lipid kinase PIP5K1α may not only inhibit the growth of primary tumors but may also target the lethal mCRPC within tumor-microenvironment. Abstract Cancer cells facilitate growth and metastasis by using multiple signals from the cancer-associated microenvironment. However, it remains poorly understood whether prostate cancer (PCa) cells may recruit and utilize bone marrow cells for their growth and survival. Furthermore, the regulatory mechanisms underlying interactions between PCa cells and bone marrow cells are obscure. In this study, we isolated bone marrow cells that mainly constituted populations that were positive for CD11b and Gr1 antigens from xenograft PC-3 tumor tissues from athymic nu/nu mice. We found that the tumor-infiltrated cells alone were unable to form tumor spheroids, even with increased amounts and time. By contrast, the tumor-infiltrated cells together with PCa cells formed large numbers of tumor spheroids compared with PCa cells alone. We further utilized xenograft athymic nu/nu mice bearing bone metastatic lesions. We demonstrated that PCa cells were unable to survive and give rise to colony-forming units (CFUs) in media that were used for hematopoietic cell colony-formation unit (CFU) assays. By contrast, PC-3M cells survived when bone marrow cells were present and gave rise to CFUs. Our results showed that PCa cells required bone marrow cells to support their growth and survival and establish bone metastasis in the host environment. We showed that PCa cells that were treated with either siRNA for PIP5K1α or its specific inhibitor, ISA-2011B, were unable to survive and produce tumor spheroids, together with bone marrow cells. Given that the elevated expression of PIP5K1α was specific for PCa cells and was associated with the induced expression of VEGF receptor 2 in PCa cells, our findings suggest that cancer cells may utilize PIP5K1α-mediated receptor signaling to recruit growth factors and ligands from the bone marrow-derived cells. Taken together, our study suggests a new mechanism that enables PCa cells to gain proliferative and invasive advantages within their associated host microenvironment. Therapeutic interventions using PIP5K1α inhibitors may not only inhibit tumor invasion and metastasis but also enhance the host immune system.
Collapse
Affiliation(s)
- Richard Karlsson
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, 205 02 Malmö, Sweden; (R.K.); (M.S.); (J.S.); (A.H.)
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
| | - Per Larsson
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
- Department of Immunology and Microbiology, University of Copenhagen, DK2200 Copenhagen, Denmark;
| | - Regina Miftakhova
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
- Department of Genetics, Kazan Federal University, Kazan 420010, Russia
| | - Azharuddin Sajid Syed Khaja
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
| | - Martuza Sarwar
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, 205 02 Malmö, Sweden; (R.K.); (M.S.); (J.S.); (A.H.)
| | - Julius Semenas
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, 205 02 Malmö, Sweden; (R.K.); (M.S.); (J.S.); (A.H.)
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
| | - Sa Chen
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
| | - Andreas Hedblom
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, 205 02 Malmö, Sweden; (R.K.); (M.S.); (J.S.); (A.H.)
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
| | - Tianyan Wang
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
| | | | - Athanasios Simoulis
- Department of Clinical Pathology and Cytology, Skåne University Hospital, 205 02 Malmö, Sweden;
| | - Anjani Kumar
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, DK2200 Copenhagen, Denmark;
| | - Thomas Grundström
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
| | - Jenny L. Persson
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, 205 02 Malmö, Sweden; (R.K.); (M.S.); (J.S.); (A.H.)
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
- Department of Biomedical Sciences, Malmö University, 205 02 Malmö, Sweden
- Correspondence: ; Tel.: +46-706-391-199
| |
Collapse
|
10
|
The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochem J 2019; 476:2321-2346. [DOI: 10.1042/bcj20180622] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is a membrane glycerophospholipid and a major regulator of the characteristic appearance of the Golgi complex as well as its vesicular trafficking, signalling and metabolic functions. Phosphatidylinositol 4-kinases, and in particular the PI4KIIIβ isoform, act in concert with PI4P to recruit macromolecular complexes to initiate the biogenesis of trafficking vesicles for several Golgi exit routes. Dysregulation of Golgi PI4P metabolism and the PI4P protein interactome features in many cancers and is often associated with tumour progression and a poor prognosis. Increased expression of PI4P-binding proteins, such as GOLPH3 or PITPNC1, induces a malignant secretory phenotype and the release of proteins that can remodel the extracellular matrix, promote angiogenesis and enhance cell motility. Aberrant Golgi PI4P metabolism can also result in the impaired post-translational modification of proteins required for focal adhesion formation and cell–matrix interactions, thereby potentiating the development of aggressive metastatic and invasive tumours. Altered expression of the Golgi-targeted PI 4-kinases, PI4KIIIβ, PI4KIIα and PI4KIIβ, or the PI4P phosphate Sac1, can also modulate oncogenic signalling through effects on TGN-endosomal trafficking. A Golgi trafficking role for a PIP 5-kinase has been recently described, which indicates that PI4P is not the only functionally important phosphoinositide at this subcellular location. This review charts new developments in our understanding of phosphatidylinositol 4-kinase function at the Golgi and how PI4P-dependent trafficking can be deregulated in malignant disease.
Collapse
|
11
|
Amos SBTA, Kalli AC, Shi J, Sansom MSP. Membrane Recognition and Binding by the Phosphatidylinositol Phosphate Kinase PIP5K1A: A Multiscale Simulation Study. Structure 2019; 27:1336-1346.e2. [PMID: 31204251 PMCID: PMC6688827 DOI: 10.1016/j.str.2019.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 05/14/2019] [Indexed: 11/28/2022]
Abstract
Phosphatidylinositol phosphates (PIPs) are lipid signaling molecules that play key roles in many cellular processes. PIP5K1A kinase catalyzes phosphorylation of PI4P to form PIP2, which in turn interacts with membrane and membrane-associated proteins. We explore the mechanism of membrane binding by the PIP5K1A kinase using a multiscale molecular dynamics approach. Coarse-grained simulations show binding of monomeric PIP5K1A to a model cell membrane containing PI4P. PIP5K1A did not bind to zwitterionic or anionic membranes lacking PIP molecules. Initial encounter of kinase and bilayer was followed by reorientation to enable productive binding to the PI4P-containing membrane. The simulations suggest that unstructured regions may be important for the preferred orientation for membrane binding. Atomistic simulations indicated that the dimeric kinase could not bind to the membrane via both active sites at the same time, suggesting a conformational change in the protein and/or bilayer distortion may be needed for dual-site binding to occur. PIP5K1A kinase interacts with PIP-containing membranes via its activation loop PIP5K1A does not bind to zwitterionic or anionic membranes lacking PIP molecules Initial encounter of protein and bilayer is followed by reorientation and binding Dimeric PIP5K1A binds with membrane contacts via only one catalytic site at a time
Collapse
Affiliation(s)
- Sarah-Beth T A Amos
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Antreas C Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jiye Shi
- UCB Pharma, 208 Bath Road, Slough SL1 3WE, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
12
|
Sarwar M, Semenas J, Miftakhova R, Simoulis A, Robinson B, Wingren AG, Mongan NP, Heery DM, Johnsson H, Abrahamsson PA, Dizeyi N, Luo J, Persson JL. Targeted suppression of AR-V7 using PIP5K1α inhibitor overcomes enzalutamide resistance in prostate cancer cells. Oncotarget 2016; 7:63065-63081. [PMID: 27588408 PMCID: PMC5325347 DOI: 10.18632/oncotarget.11757] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/20/2016] [Indexed: 01/05/2023] Open
Abstract
One mechanism of resistance of prostate cancer (PCa) to enzalutamide (MDV3100) treatment is the increased expression of AR variants lacking the ligand binding-domain, the best characterized of which is AR-V7. We have previously reported that Phosphatidylinositol-4-phosphate 5-kinase alpha (PIP5Kα), is a lipid kinase that links to CDK1 and AR pathways. The discovery of PIP5Kα inhibitor highlight the potential of PIP5K1α as a drug target in PCa. In this study, we show that AR-V7 expression positively correlates with PIP5K1α in tumor specimens from PCa patients. Overexpression of AR-V7 increases PIP5K1α, promotes rapid growth of PCa in xenograft mice, whereas inhibition of PIP5K1α by its inhibitor ISA-2011B suppresses the growth and invasiveness of xenograft tumors overexpressing AR-V7. PIP5K1α is a key co-factor for both AR-V7 and AR, which are present as protein-protein complexes predominantly in the nucleus of PCa cells. In addition, PIP5K1α and CDK1 influence AR-V7 expression also through AKT-associated mechanism dependent on PTEN-status. ISA-2011B disrupts protein stabilization of AR-V7 which is dependent on PIP5K1α, leading to suppression of invasive growth of AR-V7-high tumors in xenograft mice. Our study suggests that combination of enzalutamide and PIP5K1α may have a significant impact on refining therapeutic strategies to circumvent resistance to antiandrogen therapies.
Collapse
Affiliation(s)
- Martuza Sarwar
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Julius Semenas
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden
- Department of Molecular Biology, Umeå University, Sweden
| | - Regina Miftakhova
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden
- Department of Genetics, Kazan Federal University, Kazan, Russia
- Department of Molecular Biology, Umeå University, Sweden
| | - Athanasios Simoulis
- Department of Clinical Pathology and Cytology, Skåne University Hospital, Malmö, Sweden
| | - Brian Robinson
- Department of Pathology, Weill Cornell Medical College, New York, NY, USA
| | - Anette Gjörloff Wingren
- Faculty of Health and Society, Department of Biomedical Science, Malmö University, Malmö, Sweden
| | - Nigel P. Mongan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David M. Heery
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Heather Johnsson
- Department of Bio-Diagnosis, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Per-Anders Abrahamsson
- Division of Clinical Urology, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Nishtman Dizeyi
- Division of Clinical Urology, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Jun Luo
- Department of Urology, the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jenny L. Persson
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden
- Department of Molecular Biology, Umeå University, Sweden
| |
Collapse
|