1
|
Wakamoto T, Seirin-Lee S. Optimal targeted therapy for multiple cancers based on contrastive Notch signaling networks. J Theor Biol 2025:112143. [PMID: 40374073 DOI: 10.1016/j.jtbi.2025.112143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 03/21/2025] [Accepted: 05/05/2025] [Indexed: 05/17/2025]
Abstract
Over decades, cancer understanding has advanced significantly at molecular and cellular levels, leading to various therapies based on intra-/inter-cellular networks. Despite this, cancer still remains a leading cause of death globally. The Notch signaling pathway, a crucial intercellular network in many cancers, has been extensively studied and therapies targeting the Notch pathway also have been well-studied based on inhibiting various stages of Notch activation. Nonetheless, the unclear pathophysiological mechanisms of metastasis, responsible for about 90% of cancer deaths, complicate treatment development. For example, the role of Notch signaling varies between cancers; in non-small cell lung cancer, Notch1 and Notch2 exhibit opposing effects compared to their roles in embryonal brain tumors. This suggests that a single targeted therapy to Notch signaling could produce opposing effects in the metastatic state, necessitating a more careful selection of therapies. To address this, we considered a scenario involving multiple cancers with contrasting Notch signaling pathways. We developed two mathematical models and explored optimal targeted therapies for reducing cancer cells in the metastatic state of two types of cancers with these contrasting pathways. From the in silico tests of existing Notch-targeted therapies and newly suggested therapies in this study, we found that multiple cancers with contrasting Notch networks can be controlled by one common targeted signal network. Furthermore, combination therapies enhancing Notch production may be most effective in early-stage cancer, whereas cleavage therapies may prove more effective in late-stage cancer. We also found that the order of multiple targeted therapies significantly affects treatment effectiveness and should be a key consideration. Our study proposes that optimal treatment should take into account the cancer stage, with careful selection and sequencing of medication therapies.
Collapse
Affiliation(s)
- Tamaki Wakamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, 606-8315, Japan
| | - Sungrim Seirin-Lee
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, 606-8315, Japan; Department of Mathematical Medicine, Graduated School of Medicine, Kyoto University, Kyoto, 606-8315, Japan.
| |
Collapse
|
2
|
Chen D, Liu X, Wang H, Merks RM, Baker DA. A model of Notch signalling control of angiogenesis: Evidence of a role for Notch ligand heterodimerization. PLoS Comput Biol 2025; 21:e1012825. [PMID: 39932958 PMCID: PMC11841921 DOI: 10.1371/journal.pcbi.1012825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/20/2025] [Accepted: 01/25/2025] [Indexed: 02/13/2025] Open
Abstract
The ubiquitous Notch receptor signalling network is essential for tissue growth and maintenance. Operationally, receptor activity is regulated by two principal, counterposed mechanisms: intercellular Notch transactivation triggered by interactions between receptors and ligands expressed in neighbouring cells; intracellular cis inhibition mediated by ligands binding to receptors expressed in the same cell. Moreover, different Notch receptor/ligand combinations are known to elicit distinct molecular and cellular responses, and together, these phenomena determine the strength, the duration and the specificity of Notch receptor signalling. To date, it has been assumed that these processes involve discrete ligand homomers and not heteromeric complexes composed of more than one ligand species. In this study, we explore the molecular basis of the opposing actions of the Notch ligands, DLL4 and JAG1, which control angiogenic sprouting. Through a combination of experimental approaches and mathematical modelling, we provide evidence that two mechanisms could underpin this process: 1) DLL4 rather than JAG1 induces efficient Notch1 receptor transactivation; 2) JAG1 directly blocks DLL4-dependent cis-inhibition of Notch signalling through the formation of a JAG1/DLL4 complex. We propose a new model of Notch signalling that recapitulates the formation of tip and stalk cells, which is necessary for sprouting angiogenesis.
Collapse
Affiliation(s)
- Daipeng Chen
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Xinxin Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Haijiang Wang
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of General Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Roeland M.H. Merks
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - David A. Baker
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
3
|
Roosma J. A comprehensive review of oncogenic Notch signaling in multiple myeloma. PeerJ 2024; 12:e18485. [PMID: 39619207 PMCID: PMC11608568 DOI: 10.7717/peerj.18485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/16/2024] [Indexed: 12/13/2024] Open
Abstract
Multiple myeloma remains an incurable plasma cell cancer with radical case-by-case heterogeneity. Because of this, personalized and disease-specific biology of multiple myeloma must be understood for the discovery of effective molecular targets. The highly evolutionarily conserved Notch signaling pathway has been extensively described as a multifaceted driver of the multiple myeloma disease process-contributing to both intrinsic effects of malignant cells and to widespread remodeling of the tumor microenvironment that further facilitates disease progression. Namely, Notch signaling amongst malignant cells promotes increased proliferation, tumor-initiating capacity, drug resistance, and invasiveness. Moreover, Notch signaling between malignant cells and cells of the tumor microenvironment leads to increased osteodegenerative disease and angiogenesis. This comprehensive review will discuss both the intrinsic implications of pathological Notch signaling in multiple myeloma and the extrinsic implications of Notch signaling in the multiple myeloma tumor microenvironment. Additionally, the genetic origins of Notch signaling dysregulation in multiple myeloma and current attempts at targeting Notch therapeutically will be reviewed. While the subject has been reviewed previously, recent developments in the intervening years demand a revised synthesis of the literature. The aim of this work is to introduce and thoroughly synthesize the current state of knowledge in this vein of research and to highlight future directions for both new and in-the-field scientists.
Collapse
Affiliation(s)
- Justin Roosma
- Biology, Eastern Washington University, Cheney, Washington, United States
| |
Collapse
|
4
|
Passier M, Bentley K, Loerakker S, Ristori T. YAP/TAZ drives Notch and angiogenesis mechanoregulation in silico. NPJ Syst Biol Appl 2024; 10:116. [PMID: 39368976 PMCID: PMC11455968 DOI: 10.1038/s41540-024-00444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
Endothelial cells are key players in the cardiovascular system. Among other things, they are responsible for sprouting angiogenesis, the process of new blood vessel formation essential for both health and disease. Endothelial cells are strongly regulated by the juxtacrine signaling pathway Notch. Recent studies have shown that both Notch and angiogenesis are influenced by extracellular matrix stiffness; however, the underlying mechanisms are poorly understood. Here, we addressed this challenge by combining computational models of Notch signaling and YAP/TAZ, stiffness- and cytoskeleton-regulated mechanotransducers whose activity inhibits both Dll4 (Notch ligand) and LFng (Notch-Dll4 binding modulator). Our simulations successfully mimicked previous experiments, indicating that this YAP/TAZ-Notch crosstalk elucidates the Notch and angiogenesis mechanoresponse to stiffness. Additional simulations also identified possible strategies to control Notch activity and sprouting angiogenesis via cytoskeletal manipulations or spatial patterns of alternating stiffnesses. Our study thus inspires new experimental avenues and provides a promising modeling framework for further investigations into the role of Notch, YAP/TAZ, and mechanics in determining endothelial cell behavior during angiogenesis and similar processes.
Collapse
Affiliation(s)
- Margot Passier
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Katie Bentley
- The Francis Crick Institute, London, UK
- Department of Informatics, King's College London, London, UK
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
5
|
Greulich P. Emergent order in epithelial sheets by interplay of cell divisions and cell fate regulation. PLoS Comput Biol 2024; 20:e1012465. [PMID: 39401252 PMCID: PMC11501039 DOI: 10.1371/journal.pcbi.1012465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/24/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024] Open
Abstract
The fate choices of stem cells between self-renewal and differentiation are often tightly regulated by juxtacrine (cell-cell contact) signalling. Here, we assess how the interplay between cell division, cell fate choices, and juxtacrine signalling can affect the macroscopic ordering of cell types in self-renewing epithelial sheets, by studying a simple spatial cell fate model with cells being arranged on a 2D lattice. We show in this model that if cells commit to their fate directly upon cell division, macroscopic patches of cells of the same type emerge, if at least a small proportion of divisions are symmetric, except if signalling interactions are laterally inhibiting. In contrast, if cells are first 'licensed' to differentiate, yet retaining the possibility to return to their naive state, macroscopic order only emerges if the signalling strength exceeds a critical threshold: if then the signalling interactions are laterally inducing, macroscopic patches emerge as well. Lateral inhibition, on the other hand, can in that case generate periodic patterns of alternating cell types (checkerboard pattern), yet only if the proportion of symmetric divisions is sufficiently low. These results can be understood theoretically by an analogy to phase transitions in spin systems known from statistical physics.
Collapse
Affiliation(s)
- Philip Greulich
- School of Mathematical Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
6
|
Pujar AA, Barua A, Dey PS, Singh D, Roy U, Jolly MK, Hatzikirou H. Microenvironmental entropy dynamics analysis reveals novel insights into Notch-Delta-Jagged decision-making mechanism. iScience 2024; 27:110569. [PMID: 39318535 PMCID: PMC11420447 DOI: 10.1016/j.isci.2024.110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/31/2024] [Accepted: 07/19/2024] [Indexed: 09/26/2024] Open
Abstract
Notch-Delta-Jagged (NDJ) signaling among neighboring cells contributes crucially to spatiotemporal pattern formation and developmental decision-making. Despite numerous detailed mathematical models, their high-dimensionality parametric space limits analytical treatment, especially regarding local microenvironmental fluctuations. Using the low-dimensional dynamics of the recently postulated least microenvironmental uncertainty principle (LEUP) framework, we showcase how the LEUP formalism recapitulates a noisy NDJ spatial patterning. Our LEUP simulations show that local phenotypic entropy increases for lateral inhibition but decreases for lateral induction. This distinction allows us to identify a critical parameter that captures the transition from a Notch-Delta-driven lateral inhibition to a Notch-Jagged-driven lateral induction phenomenon and suggests random phenotypic patterning in the case of lack of dominance of either Notch-Delta or Notch-Jagged signaling. Our results enable an analytical treatment to map the high-dimensional dynamics of NDJ signaling on tissue-level patterning and can possibly be generalized to decode operating principles of collective cellular decision-making.
Collapse
Affiliation(s)
- Aditi Ajith Pujar
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
- Undergraduate Program, Indian Institute of Science, Bangalore 560012, India
| | - Arnab Barua
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Partha Sarathi Dey
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Divyoj Singh
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
- Undergraduate Program, Indian Institute of Science, Bangalore 560012, India
| | - Ushasi Roy
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Haralampos Hatzikirou
- Mathematics Department, Khalifa University, P.O. Box: 127788, Abu Dhabi, UAE
- Technische Univesität Dresden, Center for Information Services and High Performance Computing, Nöthnitzer Straße 46, P.O. Box: 01062, Dresden, Germany
| |
Collapse
|
7
|
Zhang L, Xue G, Zhou X, Huang J, Li Z. A mathematical framework for understanding the spontaneous emergence of complexity applicable to growing multicellular systems. PLoS Comput Biol 2024; 20:e1011882. [PMID: 38838038 PMCID: PMC11182560 DOI: 10.1371/journal.pcbi.1011882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/17/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
In embryonic development and organogenesis, cells sharing identical genetic codes acquire diverse gene expression states in a highly reproducible spatial distribution, crucial for multicellular formation and quantifiable through positional information. To understand the spontaneous growth of complexity, we constructed a one-dimensional division-decision model, simulating the growth of cells with identical genetic networks from a single cell. Our findings highlight the pivotal role of cell division in providing positional cues, escorting the system toward states rich in information. Moreover, we pinpointed lateral inhibition as a critical mechanism translating spatial contacts into gene expression. Our model demonstrates that the spatial arrangement resulting from cell division, combined with cell lineages, imparts positional information, specifying multiple cell states with increased complexity-illustrated through examples in C.elegans. This study constitutes a foundational step in comprehending developmental intricacies, paving the way for future quantitative formulations to construct synthetic multicellular patterns.
Collapse
Affiliation(s)
- Lu Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Xue
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaolin Zhou
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
8
|
Kang TY, Bocci F, Nie Q, Onuchic JN, Levchenko A. Spatial-temporal order-disorder transition in angiogenic NOTCH signaling controls cell fate specification. eLife 2024; 12:RP89262. [PMID: 38376371 PMCID: PMC10942579 DOI: 10.7554/elife.89262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Angiogenesis is a morphogenic process resulting in the formation of new blood vessels from pre-existing ones, usually in hypoxic micro-environments. The initial steps of angiogenesis depend on robust differentiation of oligopotent endothelial cells into the Tip and Stalk phenotypic cell fates, controlled by NOTCH-dependent cell-cell communication. The dynamics of spatial patterning of this cell fate specification are only partially understood. Here, by combining a controlled experimental angiogenesis model with mathematical and computational analyses, we find that the regular spatial Tip-Stalk cell patterning can undergo an order-disorder transition at a relatively high input level of a pro-angiogenic factor VEGF. The resulting differentiation is robust but temporally unstable for most cells, with only a subset of presumptive Tip cells leading sprout extensions. We further find that sprouts form in a manner maximizing their mutual distance, consistent with a Turing-like model that may depend on local enrichment and depletion of fibronectin. Together, our data suggest that NOTCH signaling mediates a robust way of cell differentiation enabling but not instructing subsequent steps in angiogenic morphogenesis, which may require additional cues and self-organization mechanisms. This analysis can assist in further understanding of cell plasticity underlying angiogenesis and other complex morphogenic processes.
Collapse
Affiliation(s)
- Tae-Yun Kang
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
- Yale UniversityNew HavenUnited States
| | - Federico Bocci
- NSF-Simons Center for Multiscale Cell Fate Research, University of California IrvineIrvineUnited States
- Department of Mathematics, University of California IrvineIrvineUnited States
| | - Qing Nie
- NSF-Simons Center for Multiscale Cell Fate Research, University of California IrvineIrvineUnited States
- Department of Mathematics, University of California IrvineIrvineUnited States
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice UniversityHoustonUnited States
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
- Yale UniversityNew HavenUnited States
| |
Collapse
|
9
|
Fentress MK, De Tomaso AW. Increased collective migration correlates with germline stem cell competition in a basal chordate. PLoS One 2023; 18:e0291104. [PMID: 37903140 PMCID: PMC10615308 DOI: 10.1371/journal.pone.0291104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 11/01/2023] Open
Abstract
Cell competition is a process that compares the relative fitness of progenitor cells, resulting in winners, which contribute further to development, and losers, which are excluded, and is likely a universal quality control process that contributes to the fitness of an individual. Cell competition also has pathological consequences, and can create super-competitor cells responsible for tumor progression. We are studying cell competition during germline regeneration in the colonial ascidian, Botryllus schlosseri. Germline regeneration is due to the presence of germline stem cells (GSCs) which have a unique property: a competitive phenotype. When GSCs from one individual are transplanted into another, the donor and recipient cells compete for germline development. Often the donor GSCs win, and completely replace the gametes of the recipient- a process called germ cell parasitism (gcp). gcp is a heritable trait, and winner and loser genotypes can be found in nature and reared in the lab. However, the molecular and cellular mechanisms underlying gcp are unknown. Using an ex vivo migration assay, we show that GSCs isolated from winner genotypes migrate faster and in larger clusters than losers, and that cluster size correlates with expression of the Notch ligand, Jagged. Both cluster size and jagged expression can be manipulated simultaneously in a genotype dependent manner: treatment of loser GSCs with hepatocyte growth factor increases both jagged expression and cluster size, while inhibitors of the MAPK pathway decrease jagged expression and cluster size in winner GSCs. Live imaging in individuals transplanted with labeled winner and loser GSCs reveal that they migrate to the niche, some as small clusters, with the winners having a slight advantage in niche occupancy. Together, this suggests that the basis of GSC competition resides in a combination in homing ability and niche occupancy, and may be controlled by differential utilization of the Notch pathway.
Collapse
Affiliation(s)
- Megan K. Fentress
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Anthony W. De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| |
Collapse
|
10
|
van Asten JGM, Latorre M, Karakaya C, Baaijens FPT, Sahlgren CM, Ristori T, Humphrey JD, Loerakker S. A multiscale computational model of arterial growth and remodeling including Notch signaling. Biomech Model Mechanobiol 2023; 22:1569-1588. [PMID: 37024602 PMCID: PMC10511605 DOI: 10.1007/s10237-023-01697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 04/08/2023]
Abstract
Blood vessels grow and remodel in response to mechanical stimuli. Many computational models capture this process phenomenologically, by assuming stress homeostasis, but this approach cannot unravel the underlying cellular mechanisms. Mechano-sensitive Notch signaling is well-known to be key in vascular development and homeostasis. Here, we present a multiscale framework coupling a constrained mixture model, capturing the mechanics and turnover of arterial constituents, to a cell-cell signaling model, describing Notch signaling dynamics among vascular smooth muscle cells (SMCs) as influenced by mechanical stimuli. Tissue turnover was regulated by both Notch activity, informed by in vitro data, and a phenomenological contribution, accounting for mechanisms other than Notch. This novel framework predicted changes in wall thickness and arterial composition in response to hypertension similar to previous in vivo data. The simulations suggested that Notch contributes to arterial growth in hypertension mainly by promoting SMC proliferation, while other mechanisms are needed to fully capture remodeling. The results also indicated that interventions to Notch, such as external Jagged ligands, can alter both the geometry and composition of hypertensive vessels, especially in the short term. Overall, our model enables a deeper analysis of the role of Notch and Notch interventions in arterial growth and remodeling and could be adopted to investigate therapeutic strategies and optimize vascular regeneration protocols.
Collapse
Affiliation(s)
- Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, Spain
| | - Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
11
|
Wang XC, Tang YL, Liang XH. Tumour follower cells: A novel driver of leader cells in collective invasion (Review). Int J Oncol 2023; 63:115. [PMID: 37615176 PMCID: PMC10552739 DOI: 10.3892/ijo.2023.5563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Collective cellular invasion in malignant tumours is typically characterized by the cooperative migration of multiple cells in close proximity to each other. Follower cells are led away from the tumour by specialized leader cells, and both cell populations play a crucial role in collective invasion. Follower cells form the main body of the migration system and depend on intercellular contact for migration, whereas leader cells indicate the direction for the entire cell population. Although collective invasion can occur in epithelial and non‑epithelial malignant neoplasms, such as medulloblastoma and rhabdomyosarcoma, the present review mainly provided an extensive analysis of epithelial tumours. In the present review, the cooperative mechanisms of contact inhibition locomotion between follower and leader cells, where follower cells coordinate and direct collective movement through physical (mechanical) and chemical (signalling) interactions, is summarised. In addition, the molecular mechanisms of follower cell invasion and metastasis during remodelling and degradation of the extracellular matrix and how chemotaxis and lateral inhibition mediate follower cell behaviour were analysed. It was also demonstrated that follower cells exhibit genetic and metabolic heterogeneity during invasion, unlike leader cells.
Collapse
Affiliation(s)
- Xiao-Chen Wang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- Departments of Oral Pathology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
12
|
Ristori T, Thuret R, Hooker E, Quicke P, Lanthier K, Ntumba K, Aspalter IM, Uroz M, Herbert SP, Chen CS, Larrivée B, Bentley K. Bmp9 regulates Notch signaling and the temporal dynamics of angiogenesis via Lunatic Fringe. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.557123. [PMID: 37808725 PMCID: PMC10557600 DOI: 10.1101/2023.09.25.557123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
In brief The mechanisms regulating the signaling pathways involved in angiogenesis are not fully known. Ristori et al. show that Lunatic Fringe (LFng) mediates the crosstalk between Bone Morphogenic Protein 9 (Bmp9) and Notch signaling, thereby regulating the endothelial cell behavior and temporal dynamics of their identity during sprouting angiogenesis. Highlights Bmp9 upregulates the expression of LFng in endothelial cells.LFng regulates the temporal dynamics of tip/stalk selection and rearrangement.LFng indicated to play a role in hereditary hemorrhagic telangiectasia.Bmp9 and LFng mediate the endothelial cell-pericyte crosstalk.Bone Morphogenic Protein 9 (Bmp9), whose signaling through Activin receptor-like kinase 1 (Alk1) is involved in several diseases, has been shown to independently activate Notch target genes in an additive fashion with canonical Notch signaling. Here, by integrating predictive computational modeling validated with experiments, we uncover that Bmp9 upregulates Lunatic Fringe (LFng) in endothelial cells (ECs), and thereby also regulates Notch activity in an inter-dependent, multiplicative fashion. Specifically, the Bmp9-upregulated LFng enhances Notch receptor activity creating a much stronger effect when Dll4 ligands are also present. During sprouting, this LFng regulation alters vessel branching by modulating the timing of EC phenotype selection and rearrangement. Our results further indicate that LFng can play a role in Bmp9-related diseases and in pericyte-driven vessel stabilization, since we find LFng contributes to Jag1 upregulation in Bmp9-stimulated ECs; thus, Bmp9-upregulated LFng results in not only enhanced EC Dll4-Notch1 activation, but also Jag1-Notch3 activation in pericytes.
Collapse
|
13
|
Bocci F, Jia D, Nie Q, Jolly MK, Onuchic J. Theoretical and computational tools to model multistable gene regulatory networks. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:10.1088/1361-6633/acec88. [PMID: 37531952 PMCID: PMC10521208 DOI: 10.1088/1361-6633/acec88] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
The last decade has witnessed a surge of theoretical and computational models to describe the dynamics of complex gene regulatory networks, and how these interactions can give rise to multistable and heterogeneous cell populations. As the use of theoretical modeling to describe genetic and biochemical circuits becomes more widespread, theoreticians with mathematical and physical backgrounds routinely apply concepts from statistical physics, non-linear dynamics, and network theory to biological systems. This review aims at providing a clear overview of the most important methodologies applied in the field while highlighting current and future challenges. It also includes hands-on tutorials to solve and simulate some of the archetypical biological system models used in the field. Furthermore, we provide concrete examples from the existing literature for theoreticians that wish to explore this fast-developing field. Whenever possible, we highlight the similarities and differences between biochemical and regulatory networks and 'classical' systems typically studied in non-equilibrium statistical and quantum mechanics.
Collapse
Affiliation(s)
- Federico Bocci
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Qing Nie
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - José Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
14
|
Wengryn P, Silveira KDC, Oborn C, Soltys CL, Beke A, Chacon-Fonseca I, Damseh N, Rodriguez MQ, Badilla-Porras R, Kannu P. Functional Characterization of Novel Lunatic Fringe Variants in Spondylocostal Dysostosis Type-III with Scoliosis. Hum Mutat 2023; 2023:5989733. [PMID: 40225152 PMCID: PMC11919168 DOI: 10.1155/2023/5989733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/10/2023] [Accepted: 06/21/2023] [Indexed: 04/15/2025]
Abstract
Scoliosis affects over four million Americans, with most cases having an idiopathic cause. Pathogenic variants in the LUNATIC FRINGE (LFNG) gene can cause spondylocostal dysostosis type-III (SCD3), which is a rare skeletal dysplasia characterized by the absence, fusion, or partial development of vertebrae and ribs. Acute restrictive lung disease and scoliosis may also be present in some cases. The variability in symptoms suggests that there may be other underlying pathological mechanisms that are yet to be discovered. We conducted an analysis of two novel LFNG variants, c.766G>A (p.G256S) and c.521G>A (p.R174H), that were observed in a patient with SCD3 phenotype and scoliosis. Characterizing these variants can help us better understand the relationship between genotype and phenotype. We assessed both variants for impaired glycosyltransferase activity, subcellular mislocalization, and aberrant pre-proprotein processing. Our results indicate that the p.G256S variant is enzymatically nonfunctional, while the p.R174H variant is functionally less effective. Both variants were correctly localized and processed. Our findings suggest that the hypomorphic variant (p.R174H) may have partially improved the patient's stature, as evidenced by a lower arm span-to-height ratio, increased height, and more vertebrae. However, this variant did not appear to have any effect on the severity of vertebral malformations, including scoliosis. Further research is necessary to determine the extent to which variations in LFNG activity affect the presentation of SCD3.
Collapse
Affiliation(s)
- Parker Wengryn
- Department of Medical Genetics, University of Alberta, 8-39 Medical Sciences Building 8614-114 Street, Edmonton, Alberta, Canada
| | - Karina da Costa Silveira
- Department of Medical Genetics, University of Alberta, 8-39 Medical Sciences Building 8614-114 Street, Edmonton, Alberta, Canada
| | - Connor Oborn
- Department of Medical Genetics, University of Alberta, 8-39 Medical Sciences Building 8614-114 Street, Edmonton, Alberta, Canada
| | - Carrie-Lynn Soltys
- Department of Medical Genetics, University of Alberta, 8-39 Medical Sciences Building 8614-114 Street, Edmonton, Alberta, Canada
| | - Alexander Beke
- Department of Medical Genetics, University of Alberta, 8-39 Medical Sciences Building 8614-114 Street, Edmonton, Alberta, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Inara Chacon-Fonseca
- Department of Medical Genetics, University of Toronto, Toronto, Canada
- Lakeridge Health Oshawa, Oshawa, Canada
| | - Nadirah Damseh
- Department of Medical Genetics, University of Toronto, Toronto, Canada
| | | | | | - Peter Kannu
- Department of Medical Genetics, University of Alberta, 8-39 Medical Sciences Building 8614-114 Street, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Xu X, Seymour PA, Sneppen K, Trusina A, Egeskov-Madsen ALR, Jørgensen MC, Jensen MH, Serup P. Jag1-Notch cis-interaction determines cell fate segregation in pancreatic development. Nat Commun 2023; 14:348. [PMID: 36681690 PMCID: PMC9867774 DOI: 10.1038/s41467-023-35963-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
The Notch ligands Jag1 and Dll1 guide differentiation of multipotent pancreatic progenitor cells (MPCs) into unipotent pro-acinar cells (PACs) and bipotent duct/endocrine progenitors (BPs). Ligand-mediated trans-activation of Notch receptors induces oscillating expression of the transcription factor Hes1, while ligand-receptor cis-interaction indirectly represses Hes1 activation. Despite Dll1 and Jag1 both displaying cis- and trans-interactions, the two mutants have different phenotypes for reasons not fully understood. Here, we present a mathematical model that recapitulates the spatiotemporal differentiation of MPCs into PACs and BPs. The model correctly captures cell fate changes in Notch pathway knockout mice and small molecule inhibitor studies, and a requirement for oscillatory Hes1 expression to maintain the multipotent state. Crucially, the model entails cell-autonomous attenuation of Notch signaling by Jag1-mediated cis-inhibition in MPC differentiation. The model sheds light on the underlying mechanisms, suggesting that cis-interaction is crucial for exiting the multipotent state, while trans-interaction is required for adopting the bipotent fate.
Collapse
Affiliation(s)
- Xiaochan Xu
- The Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Philip Allan Seymour
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Kim Sneppen
- The Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Ala Trusina
- The Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Anuska la Rosa Egeskov-Madsen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Mette Christine Jørgensen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Mogens Høgh Jensen
- The Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark.
| | - Palle Serup
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200, Copenhagen N, Denmark.
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
16
|
Chen D, Forghany Z, Liu X, Wang H, Merks RMH, Baker DA. A new model of Notch signalling: Control of Notch receptor cis-inhibition via Notch ligand dimers. PLoS Comput Biol 2023; 19:e1010169. [PMID: 36668673 PMCID: PMC9891537 DOI: 10.1371/journal.pcbi.1010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 02/01/2023] [Accepted: 12/30/2022] [Indexed: 01/22/2023] Open
Abstract
All tissue development and replenishment relies upon the breaking of symmetries leading to the morphological and operational differentiation of progenitor cells into more specialized cells. One of the main engines driving this process is the Notch signal transduction pathway, a ubiquitous signalling system found in the vast majority of metazoan cell types characterized to date. Broadly speaking, Notch receptor activity is governed by a balance between two processes: 1) intercellular Notch transactivation triggered via interactions between receptors and ligands expressed in neighbouring cells; 2) intracellular cis inhibition caused by ligands binding to receptors within the same cell. Additionally, recent reports have also unveiled evidence of cis activation. Whilst context-dependent Notch receptor clustering has been hypothesized, to date, Notch signalling has been assumed to involve an interplay between receptor and ligand monomers. In this study, we demonstrate biochemically, through a mutational analysis of DLL4, both in vitro and in tissue culture cells, that Notch ligands can efficiently self-associate. We found that the membrane proximal EGF-like repeat of DLL4 was necessary and sufficient to promote oligomerization/dimerization. Mechanistically, our experimental evidence supports the view that DLL4 ligand dimerization is specifically required for cis-inhibition of Notch receptor activity. To further substantiate these findings, we have adapted and extended existing ordinary differential equation-based models of Notch signalling to take account of the ligand dimerization-dependent cis-inhibition reported here. Our new model faithfully recapitulates our experimental data and improves predictions based upon published data. Collectively, our work favours a model in which net output following Notch receptor/ligand binding results from ligand monomer-driven Notch receptor transactivation (and cis activation) counterposed by ligand dimer-mediated cis-inhibition.
Collapse
Affiliation(s)
- Daipeng Chen
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Zary Forghany
- Leiden University Medical Center (LUMC), Department of Cell & Chemical Biology, Leiden, The Netherlands
| | - Xinxin Liu
- Leiden University Medical Center (LUMC), Department of Cell & Chemical Biology, Leiden, The Netherlands
| | - Haijiang Wang
- Leiden University Medical Center (LUMC), Department of Cell & Chemical Biology, Leiden, The Netherlands
- Department of General Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Roeland M. H. Merks
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- * E-mail: (RMHM); (DAB)
| | - David A. Baker
- Leiden University Medical Center (LUMC), Department of Cell & Chemical Biology, Leiden, The Netherlands
- * E-mail: (RMHM); (DAB)
| |
Collapse
|
17
|
Kretschmer M, Mamistvalov R, Sprinzak D, Vollmar AM, Zahler S. Matrix stiffness regulates Notch signaling activity in endothelial cells. J Cell Sci 2023; 136:286810. [PMID: 36718783 DOI: 10.1242/jcs.260442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023] Open
Abstract
Notch signaling is critical for many developmental and disease-related processes. It is widely accepted that Notch has a mechanotransduction module that regulates receptor cleavage. However, the role of biomechanical properties of the cellular environment in Notch signaling in general is still poorly understood. During angiogenesis, differentiation of endothelial cells into tip and stalk cells is regulated by Notch signaling, and remodeling of the extracellular matrix occurs. We investigated the influence of substrate stiffness on the Notch signaling pathway in endothelial cells. Using stiffness-tuned polydimethylsiloxane (PDMS) substrates, we show that activity of the Notch signaling pathway inversely correlates with a physiologically relevant range of substrate stiffness (i.e. increased Notch signaling activity on softer substrates). Trans-endocytosis of the Notch extracellular domain, but not the overall endocytosis, is regulated by substrate stiffness, and integrin cell-matrix connections are both stiffness dependent and influenced by Notch signaling. We conclude that mechanotransduction of Notch activation is modulated by substrate stiffness, highlighting the role of substrate rigidity as an important cue for signaling. This might have implications in pathological situations associated with stiffening of the extracellular matrix, such as tumor growth.
Collapse
Affiliation(s)
- Maibritt Kretschmer
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Rose Mamistvalov
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - David Sprinzak
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Angelika M Vollmar
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Stefan Zahler
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| |
Collapse
|
18
|
Orzechowska MJ, Anusewicz D, Bednarek AK. Age- and Stage-Dependent Prostate Cancer Aggressiveness Associated with Differential Notch Signaling. Int J Mol Sci 2022; 24:ijms24010164. [PMID: 36613607 PMCID: PMC9820176 DOI: 10.3390/ijms24010164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PC) remains a worldwide challenge, as does the question of how to distinguish its indolent from its aggressive form to reconcile proper management of the disease with age-related life expectations. This study aimed to differentiate the Notch-driven course of PC regarding patients’ ages and stage of their disease. We analyzed 397 PC samples split into age subgroups of ≦55, 60−70, and >70 years old, as well as early vs. late stage. The clinical association of Notch signaling was evaluated by DFS and UpSet analyses. The clustering of downstream effectors was performed with ExpressCluster. Finally, for the most relevant findings, functional networks were constructed with MCODE and stringApp. The results have been validated with an independent cohort. We identified specific patterns of Notch expression associated with unfavorable outcomes, which were reflected by entering into a hybrid epithelial/mesenchymal state and thus reaching tumor plasticity with its all consequences. We characterized the molecular determinants of the age-related clinical behavior of prostate tumors that stem from different invasive properties depending on the route of the EMT program. Of the utmost relevance is the discovery of age- and stage-specific combinations of the Notch molecules predicting unfavorable outcomes and constituting a new prognostic and therapeutic approach for PCs.
Collapse
|
19
|
Canciello A, Cerveró-Varona A, Peserico A, Mauro A, Russo V, Morrione A, Giordano A, Barboni B. "In medio stat virtus": Insights into hybrid E/M phenotype attitudes. Front Cell Dev Biol 2022; 10:1038841. [PMID: 36467417 PMCID: PMC9715750 DOI: 10.3389/fcell.2022.1038841] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/02/2022] [Indexed: 08/22/2023] Open
Abstract
Epithelial-mesenchymal plasticity (EMP) refers to the ability of cells to dynamically interconvert between epithelial (E) and mesenchymal (M) phenotypes, thus generating an array of hybrid E/M intermediates with mixed E and M features. Recent findings have demonstrated how these hybrid E/M rather than fully M cells play key roles in most of physiological and pathological processes involving EMT. To this regard, the onset of hybrid E/M state coincides with the highest stemness gene expression and is involved in differentiation of either normal and cancer stem cells. Moreover, hybrid E/M cells are responsible for wound healing and create a favorable immunosuppressive environment for tissue regeneration. Nevertheless, hybrid state is responsible of metastatic process and of the increasing of survival, apoptosis and therapy resistance in cancer cells. The present review aims to describe the main features and the emerging concepts regulating EMP and the formation of E/M hybrid intermediates by describing differences and similarities between cancer and normal hybrid stem cells. In particular, the comprehension of hybrid E/M cells biology will surely advance our understanding of their features and how they could be exploited to improve tissue regeneration and repair.
Collapse
Affiliation(s)
- Angelo Canciello
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Adrián Cerveró-Varona
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annunziata Mauro
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Andrea Morrione
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
- Sbarro Health Research Organization (SHRO), Philadelphia, PA, United States
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
20
|
Jain I, Berg IC, Acharya A, Blaauw M, Gosstola N, Perez-Pinera P, Underhill GH. Delineating cooperative effects of Notch and biomechanical signals on patterned liver differentiation. Commun Biol 2022; 5:1073. [PMID: 36207581 PMCID: PMC9546876 DOI: 10.1038/s42003-022-03840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Controlled in vitro multicellular culture systems with defined biophysical microenvironment have been used to elucidate the role of Notch signaling in the spatiotemporal regulation of stem and progenitor cell differentiation. In addition, computational models incorporating features of Notch ligand-receptor interactions have provided important insights into Notch pathway signaling dynamics. However, the mechanistic relationship between Notch-mediated intercellular signaling and cooperative microenvironmental cues is less clear. Here, liver progenitor cell differentiation patterning was used as a model to systematically evaluate the complex interplay of cellular mechanics and Notch signaling along with identifying combinatorial mechanisms guiding progenitor fate. We present an integrated approach that pairs a computational intercellular signaling model with defined microscale culture configurations provided within a cell microarray platform. Specifically, the cell microarray-based experiments were used to validate and optimize parameters of the intercellular Notch signaling model. This model incorporated the experimentally established multicellular dimensions of the cellular microarray domains, mechanical stress-related activation parameters, and distinct Notch receptor-ligand interactions based on the roles of the Notch ligands Jagged-1 and Delta-like-1. Overall, these studies demonstrate the spatial control of mechanotransduction-associated components, key growth factor and Notch signaling interactions, and point towards a possible role of E-Cadherin in translating intercellular mechanical gradients to downstream Notch signaling.
Collapse
Affiliation(s)
- Ishita Jain
- Department of Bioengineering, University of Illinois at Urbana Champaign, Urbana, USA
| | - Ian C Berg
- Department of Bioengineering, University of Illinois at Urbana Champaign, Urbana, USA
| | - Ayusha Acharya
- Department of Bioengineering, University of Illinois at Urbana Champaign, Urbana, USA
| | - Maddie Blaauw
- Department of Bioengineering, University of Illinois at Urbana Champaign, Urbana, USA
| | - Nicholas Gosstola
- Department of Bioengineering, University of Illinois at Urbana Champaign, Urbana, USA
| | - Pablo Perez-Pinera
- Department of Bioengineering, University of Illinois at Urbana Champaign, Urbana, USA
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois at Urbana Champaign, Urbana, USA.
| |
Collapse
|
21
|
Marles H, Biddle A. Cancer stem cell plasticity and its implications in the development of new clinical approaches for oral squamous cell carcinoma. Biochem Pharmacol 2022; 204:115212. [PMID: 35985402 DOI: 10.1016/j.bcp.2022.115212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Oral squamous cell carcinoma (SCC) represents a major worldwide disease burden, with high rates of recurrence and metastatic spread following existing treatment methods. Populations of treatment resistant cancer stem cells (CSCs) are well characterised in oral SCC. These populations of CSCs engage the cellular programme known as epithelial mesenchymal transition (EMT) to enhance metastatic spread and therapeutic resistance. EMT is characterised by specific morphological changes and the expression of certain cell surface markers that represent a transition from an epithelial phenotype to a mesenchymal phenotype. This process is regulated by several cellular pathways that interact both horizontally and hierarchically. The cellular changes in EMT occur along a spectrum, with sub-populations of cells displaying both epithelial and mesenchymal features. The unique features of these CSCs in terms of their EMT state, cell surface markers and metabolism may offer new druggable targets. In addition, these features could be used to identify more aggressive disease states and the opportunity to personalise therapy depending on the presence of certain CSC sub-populations.
Collapse
Affiliation(s)
- Henry Marles
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Adrian Biddle
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|
22
|
van Asten JGM, Ristori T, Nolan DR, Lally C, Baaijens FPT, Sahlgren CM, Loerakker S. Computational analysis of the role of mechanosensitive Notch signaling in arterial adaptation to hypertension. J Mech Behav Biomed Mater 2022; 133:105325. [PMID: 35839633 PMCID: PMC7613661 DOI: 10.1016/j.jmbbm.2022.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022]
Abstract
Arteries grow and remodel in response to mechanical stimuli. Hypertension, for example, results in arterial wall thickening. Cell-cell Notch signaling between vascular smooth muscle cells (VSMCs) is known to be involved in this process, but the underlying mechanisms are still unclear. Here, we investigated whether Notch mechanosensitivity to strain may regulate arterial thickening in hypertension. We developed a multiscale computational framework by coupling a finite element model of arterial mechanics, including residual stress, to an agent-based model of mechanosensitive Notch signaling, to predict VSMC phenotypes as an indicator of growth and remodeling. Our simulations revealed that the sensitivity of Notch to strain at mean blood pressure may be a key mediator of arterial thickening in hypertensive arteries. Further simulations showed that loss of residual stress can have synergistic effects with hypertension, and that changes in the expression of Notch receptors, but not Jagged ligands, may be used to control arterial growth and remodeling and to intensify or counteract hypertensive thickening. Overall, we identify Notch mechanosensitivity as a potential mediator of vascular adaptation, and we present a computational framework that can facilitate the testing of new therapeutic and regenerative strategies.
Collapse
Affiliation(s)
- Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David R Nolan
- School of Engineering and Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Caitríona Lally
- School of Engineering and Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
23
|
Hashemi G, Dight J, Khosrotehrani K, Sormani L. Melanoma Tumour Vascularization and Tissue-Resident Endothelial Progenitor Cells. Cancers (Basel) 2022; 14:4216. [PMID: 36077754 PMCID: PMC9454996 DOI: 10.3390/cancers14174216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
The aggressiveness of solid cancers, such as melanoma, relies on their metastatic potential. It has become evident that this key cause of mortality is largely conferred by the tumour-associated stromal cells, especially endothelial cells. In addition to their essential role in the formation of the tumour vasculature, endothelial cells significantly contribute to the establishment of the tumour microenvironment, thus enabling the dissemination of cancer cells. Melanoma tumour vascularization occurs through diverse biological processes. Vasculogenesis is the formation of de novo blood vessels from endothelial progenitor cells (EPCs), and recent research has shown the role of EPCs in melanoma tumour vascularization. A more detailed understanding of the complex role of EPCs and how they contribute to the abnormal vessel structures in tumours is of importance. Moreover, anti-angiogenic drugs have a limited effect on melanoma tumour vascularization, and the role of these drugs on EPCs remains to be clarified. Overall, targeting cancer vasculature remains a challenge, and the role of anti-angiogenic drugs and combination therapies in melanoma, a focus of this review, is an area of extensive exploration.
Collapse
Affiliation(s)
| | | | - Kiarash Khosrotehrani
- Experimental Dermatology Group, Dermatology Research Centre, The UQ Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Laura Sormani
- Experimental Dermatology Group, Dermatology Research Centre, The UQ Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
24
|
Vázquez-Ulloa E, Lin KL, Lizano M, Sahlgren C. Reversible and bidirectional signaling of notch ligands. Crit Rev Biochem Mol Biol 2022; 57:377-398. [PMID: 36048510 DOI: 10.1080/10409238.2022.2113029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Notch signaling pathway is a direct cell-cell communication system involved in a wide variety of biological processes, and its disruption is observed in several pathologies. The pathway is comprised of a ligand-expressing (sender) cell and a receptor-expressing (receiver) cell. The canonical ligands are members of the Delta/Serrate/Lag-1 (DSL) family of proteins. Their binding to a Notch receptor in a neighboring cell induces a conformational change in the receptor, which will undergo regulated intramembrane proteolysis (RIP), liberating the Notch intracellular domain (NICD). The NICD is translocated to the nucleus and promotes gene transcription. It has been demonstrated that the ligands can also undergo RIP and nuclear translocation, suggesting a function for the ligands in the sender cell and possible bidirectionality of the Notch pathway. Although the complete mechanism of ligand processing is not entirely understood, and its dependence on Notch receptors has not been ruled out. Also, ligands have autonomous functions beyond Notch activation. Here we review the concepts of reverse and bidirectional signalization of DSL proteins and discuss the characteristics that make them more than just ligands of the Notch pathway.
Collapse
Affiliation(s)
- Elenaé Vázquez-Ulloa
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kai-Lan Lin
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Medicina Genomica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Cecilia Sahlgren
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
25
|
Galbraith M, Bocci F, Onuchic JN. Stochastic fluctuations promote ordered pattern formation of cells in the Notch-Delta signaling pathway. PLoS Comput Biol 2022; 18:e1010306. [PMID: 35862460 PMCID: PMC9345490 DOI: 10.1371/journal.pcbi.1010306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/02/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
The Notch-Delta signaling pathway mediates cell differentiation implicated in many regulatory processes including spatiotemporal patterning in tissues by promoting alternate cell fates between neighboring cells. At the multicellular level, this "lateral inhibition” principle leads to checkerboard patterns with alternation of Sender and Receiver cells. While it is well known that stochasticity modulates cell fate specification, little is known about how stochastic fluctuations at the cellular level propagate during multicell pattern formation. Here, we model stochastic fluctuations in the Notch-Delta pathway in the presence of two different noise types–shot and white–for a multicell system. Our results show that intermediate fluctuations reduce disorder and guide the multicell lattice toward checkerboard-like patterns. By further analyzing cell fate transition events, we demonstrate that intermediate noise amplitudes provide enough perturbation to facilitate “proofreading” of disordered patterns and cause cells to switch to the correct ordered state (Sender surrounded by Receivers, and vice versa). Conversely, high noise can override environmental signals coming from neighboring cells and lead to switching between ordered and disordered patterns. Therefore, in analogy with spin glass systems, intermediate noise levels allow the multicell Notch system to escape frustrated patterns and relax towards the lower energy checkerboard pattern while at large noise levels the system is unable to find this ordered base of attraction. The Notch pathway is involved in many biological processes and is known to form precise spatial patterns alternating Sender and Receiver cell states. Quantifying the implications of stochastic fluctuations provided insight that patterns formed in Notch-mediated pathways must follow a predetermined path towards checkerboard or exist in a noisy environment which promotes order through error correction. We model Notch pattern formation stochastically and analyze the spatiotemporal dynamics. Our results show multicellular systems equilibrate towards ordered systems, but mistakes in the initial lattice propagate causing the systems to relax into frustrated systems. Only through existing in a noisy environment are the systems able to relax into the checkerboard pattern. Analyzing the temporal dynamics confirms, in environments with intermediate noise, the “incorrect” cells (Sender in a Sender environment, and vice versa) can be flipped to the correct state (Sender in a Receiver environment, and vice versa). Comparing with the spin glass energy landscape, we suggest the multicellular model follows a rugged landscape to form patterns with stochastic fluctuations required to enforce order throughout the system.
Collapse
Affiliation(s)
- Madeline Galbraith
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Department of Physics and Astronomy, Rice University, Houston, Texas, United States of America
| | - Federico Bocci
- NSF-Simons Center for Multiscale Cell Fate research, University of California Irvine, California, United States of America
- * E-mail: (FB); (JNO)
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Department of Physics and Astronomy, Rice University, Houston, Texas, United States of America
- Department of Chemistry, Rice University, Houston, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
- * E-mail: (FB); (JNO)
| |
Collapse
|
26
|
Sánchez-Iranzo H, Halavatyi A, Diz-Muñoz A. Strength of interactions in the Notch gene regulatory network determines patterning and fate in the notochord. eLife 2022; 11:75429. [PMID: 35658971 PMCID: PMC9170247 DOI: 10.7554/elife.75429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Development of multicellular organisms requires the generation of gene expression patterns that determines cell fate and organ shape. Groups of genetic interactions known as Gene Regulatory Networks (GRNs) play a key role in the generation of such patterns. However, how the topology and parameters of GRNs determine patterning in vivo remains unclear due to the complexity of most experimental systems. To address this, we use the zebrafish notochord, an organ where coin-shaped precursor cells are initially arranged in a simple unidimensional geometry. These cells then differentiate into vacuolated and sheath cells. Using newly developed transgenic tools together with in vivo imaging, we identify jag1a and her6/her9 as the main components of a Notch GRN that generates a lateral inhibition pattern and determines cell fate. Making use of this experimental system and mathematical modeling we show that lateral inhibition patterning is promoted when ligand-receptor interactions are stronger within the same cell than in neighboring cells. Altogether, we establish the zebrafish notochord as an experimental system to study pattern generation, and identify and characterize how the properties of GRNs determine self-organization of gene patterning and cell fate.
Collapse
Affiliation(s)
- Héctor Sánchez-Iranzo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Aliaksandr Halavatyi
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
27
|
Tiemeijer LA, Ristori T, Stassen OMA, Ahlberg JJ, de Bijl JJ, Chen CS, Bentley K, Bouten CV, Sahlgren CM. Engineered patterns of Notch ligands Jag1 and Dll4 elicit differential spatial control of endothelial sprouting. iScience 2022; 25:104306. [PMID: 35602952 PMCID: PMC9114529 DOI: 10.1016/j.isci.2022.104306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 11/15/2022] Open
Abstract
Spatial regulation of angiogenesis is important for the generation of functional engineered vasculature in regenerative medicine. The Notch ligands Jag1 and Dll4 show distinct expression patterns in endothelial cells and, respectively, promote and inhibit endothelial sprouting. Therefore, patterns of Notch ligands may be utilized to spatially control sprouting, but their potential and the underlying mechanisms of action are unclear. Here, we coupled in vitro and in silico models to analyze the ability of micropatterned Jag1 and Dll4 ligands to spatially control endothelial sprouting. Dll4 patterns, but not Jag1 patterns, elicited spatial control. Computational simulations of the underlying signaling dynamics suggest that different timing of Notch activation by Jag1 and Dll4 underlie their distinct ability to spatially control sprouting. Hence, Dll4 patterns efficiently direct the sprouts, whereas longer exposure to Jag1 patterns is required to achieve spatial control. These insights in sprouting regulation offer therapeutic handles for spatial regulation of angiogenesis.
Collapse
Affiliation(s)
- Laura A. Tiemeijer
- Faculty for Science and Engineering, Biosciences, Åbo Akademi University, Turku, 20500, Finland
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612 AZ, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612 AZ, the Netherlands
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Oscar M.J. A. Stassen
- Faculty for Science and Engineering, Biosciences, Åbo Akademi University, Turku, 20500, Finland
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, the Netherlands
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, 20500, Finland
| | - Jaakko J. Ahlberg
- Faculty for Science and Engineering, Biosciences, Åbo Akademi University, Turku, 20500, Finland
| | - Jonne J.J. de Bijl
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, the Netherlands
| | - Christopher S. Chen
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Katie Bentley
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Informatics, King’s College London, London, WC2B 4BG, UK
| | - Carlijn V.C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612 AZ, the Netherlands
| | - Cecilia M. Sahlgren
- Faculty for Science and Engineering, Biosciences, Åbo Akademi University, Turku, 20500, Finland
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612 AZ, the Netherlands
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, 20500, Finland
| |
Collapse
|
28
|
Kałafut J, Czapiński J, Przybyszewska-Podstawka A, Czerwonka A, Odrzywolski A, Sahlgren C, Rivero-Müller A. Optogenetic control of NOTCH1 signaling. Cell Commun Signal 2022; 20:67. [PMID: 35585598 PMCID: PMC9118860 DOI: 10.1186/s12964-022-00885-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
The Notch signaling pathway is a crucial regulator of cell differentiation as well as tissue organization, whose deregulation is linked to the pathogenesis of different diseases. NOTCH1 plays a key role in breast cancer progression by increasing proliferation, maintenance of cancer stem cells, and impairment of cell death. NOTCH1 is a mechanosensitive receptor, where mechanical force is required to activate the proteolytic cleavage and release of the Notch intracellular domain (NICD). We circumvent this limitation by regulating Notch activity by light. To achieve this, we have engineered an optogenetic NOTCH1 receptor (optoNotch) to control the activation of NOTCH1 intracellular domain (N1ICD) and its downstream transcriptional activities. Using optoNotch we confirm that NOTCH1 activation increases cell proliferation in MCF7 and MDA-MB-468 breast cancer cells in 2D and spheroid 3D cultures, although causing distinct cell-type specific migratory phenotypes. Additionally, optoNotch activation induced chemoresistance on the same cell lines. OptoNotch allows the fine-tuning, ligand-independent, regulation of N1ICD activity and thus a better understanding of the spatiotemporal complexity of Notch signaling. Video Abstract.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | | | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | - Adrian Odrzywolski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland.
| |
Collapse
|
29
|
Vilchez Mercedes SA, Bocci F, Ahmed M, Eder I, Zhu N, Levine H, Onuchic JN, Jolly MK, Wong PK. Nrf2 Modulates the Hybrid Epithelial/Mesenchymal Phenotype and Notch Signaling During Collective Cancer Migration. Front Mol Biosci 2022; 9:807324. [PMID: 35480877 PMCID: PMC9037689 DOI: 10.3389/fmolb.2022.807324] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Hybrid epithelial/mesenchymal cells (E/M) are key players in aggressive cancer metastasis. It remains a challenge to understand how these cell states, which are mostly non-existent in healthy tissue, become stable phenotypes participating in collective cancer migration. The transcription factor Nrf2, which is associated with tumor progression and resistance to therapy, appears to be central to this process. Here, using a combination of immunocytochemistry, single cell biosensors, and computational modeling, we show that Nrf2 functions as a phenotypic stability factor for hybrid E/M cells by inhibiting a complete epithelial-mesenchymal transition (EMT) during collective cancer migration. We also demonstrate that Nrf2 and EMT signaling are spatially coordinated near the leading edge. In particular, computational analysis of an Nrf2-EMT-Notch network and experimental modulation of Nrf2 by pharmacological treatment or CRISPR/Cas9 gene editing reveal that Nrf2 stabilizes a hybrid E/M phenotype which is maximally observed in the interior region immediately behind the leading edge. We further demonstrate that the Nrf2-EMT-Notch network enhances Dll4 and Jagged1 expression at the leading edge, which correlates with the formation of leader cells and protruding tips. Altogether, our results provide direct evidence that Nrf2 acts as a phenotypic stability factor in restricting complete EMT and plays an important role in coordinating collective cancer migration.
Collapse
Affiliation(s)
- Samuel A. Vilchez Mercedes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Mona Ahmed
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Ian Eder
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Ninghao Zhu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Department of Physics and Department of Bioengineering, Northeastern University, Boston, MA, United States
- *Correspondence: Herbert Levine, ; José N. Onuchic, ; Mohit Kumar Jolly, ; Pak Kin Wong,
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Physics and Astronomy, Department of Chemistry and Department of Biosciences, Rice University, Houston, TX, United States
- *Correspondence: Herbert Levine, ; José N. Onuchic, ; Mohit Kumar Jolly, ; Pak Kin Wong,
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
- *Correspondence: Herbert Levine, ; José N. Onuchic, ; Mohit Kumar Jolly, ; Pak Kin Wong,
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
- Department of Mechanical Engineering and Department of Surgery, The Pennsylvania State University, University Park, PA, United States
- *Correspondence: Herbert Levine, ; José N. Onuchic, ; Mohit Kumar Jolly, ; Pak Kin Wong,
| |
Collapse
|
30
|
Fasoulakis Z, Koutras A, Ntounis T, Pergialiotis V, Chionis A, Katrachouras A, Palios VC, Symeonidis P, Valsamaki A, Syllaios A, Diakosavvas M, Angelou K, Samara AA, Pagkalos A, Theodora M, Schizas D, Kontomanolis EN. The Prognostic Role and Significance of Dll4 and Toll-like Receptors in Cancer Development. Cancers (Basel) 2022; 14:1649. [PMID: 35406423 PMCID: PMC8996945 DOI: 10.3390/cancers14071649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
The Notch signaling pathway regulates the development of embryonic and tissue homeostasis of various types of cells. It also controls cell proliferation, variation, fate and cell death because it emits short-range messages to nearby cells. The pathway plays an important role in the pathophysiology of various malignancies, controlling cancer creation. It also limits cancer development by adjusting preserved angiogenesis and cellular programs. One of the Notch signaling ligands (in mammals) is Delta-like ligand 4 (Dll4), which plays a significant role in the overall malignancies' advancement. Particularly, sequencing Notch gene mutations, including those of Dll4, have been detected in many types of cancers portraying information on the growth of particular gynecological types of tumors. The current research article examines the background theory that implies the ability of Dll4 in the development of endometrial and other cancer types, and the probable therapeutic results of Dll4 inhibition.
Collapse
Affiliation(s)
- Zacharias Fasoulakis
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Antonios Koutras
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Thomas Ntounis
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Vasilios Pergialiotis
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Athanasios Chionis
- Department of Obstetrics and Gynecology, Laiko General Hospital of Athens, Agiou Thoma 17, 11527 Athens, Greece;
| | - Alexandros Katrachouras
- Department of Obstetrics and Gynecology, University of Ioannina, University General Hospital of Ioannina, Stavros Niarchos Str., 45500 Ioannina, Greece;
| | - Vasileios-Chrysovalantis Palios
- Department of Obstetrics and Gynecology, University of Larisa, University General Hospital of Larisa, Mezourlo, 41110 Larisa, Greece;
| | - Panagiotis Symeonidis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Vasilissis Sofias Str. 12, 67100 Alexandroupolis, Greece; (P.S.); (E.N.K.)
| | - Asimina Valsamaki
- Department of Internal Medicine, General Hospital of Larisa, Tsakal of 1, 41221 Larisa, Greece;
| | - Athanasios Syllaios
- 1st Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Agiou Thoma Str. 17, 11527 Athens, Greece
| | - Michail Diakosavvas
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Kyveli Angelou
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Athina A. Samara
- Department of Surgery, University Hospital of Larissa, Mezourlo, 41110 Larissa, Greece;
| | - Athanasios Pagkalos
- Department of Obstetrics and Gynecology, General Hospital of Xanthi, Neapoli, 67100 Xanthi, Greece;
| | - Marianna Theodora
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Dimitrios Schizas
- 1st Department of Surgery, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Emmanuel N. Kontomanolis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Vasilissis Sofias Str. 12, 67100 Alexandroupolis, Greece; (P.S.); (E.N.K.)
| |
Collapse
|
31
|
Karakaya C, van Asten JGM, Ristori T, Sahlgren CM, Loerakker S. Mechano-regulated cell-cell signaling in the context of cardiovascular tissue engineering. Biomech Model Mechanobiol 2022; 21:5-54. [PMID: 34613528 PMCID: PMC8807458 DOI: 10.1007/s10237-021-01521-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
Cardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tissues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue G&R, and their behavior is strongly influenced by both mechanical stimuli and cell-cell signaling. An increasing number of signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulating the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell-cell signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell-cell signaling. In addition, we review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and cell-cell signaling to highlight their potential role in future CVTE strategies.
Collapse
Affiliation(s)
- Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
32
|
Pfeuty B. Multistability and transitions between spatiotemporal patterns through versatile Notch-Hes signaling. J Theor Biol 2022; 539:111060. [DOI: 10.1016/j.jtbi.2022.111060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/02/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
|
33
|
Liu F, Yamamoto E, Shirahama K, Saitoh T, Aoyama S, Harada Y, Murakami R, Matsuno H. Analysis of Pattern Formation by Colored Petri Nets With Quantitative Regulation of Gene Expression Level. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:317-327. [PMID: 32750877 DOI: 10.1109/tcbb.2020.3005392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Modeling and simulation are becoming indispensable tools for studying multicellular events such as pattern formation during embryonic development. In this paper, we propose a new approach for analyzing multicellular biological phenomena by combining colored hybrid Petri nets (ColHPNs) with newly devised biological experiments that can control level of a gene quantitatively. With this approach, we analyzed patterning of the boundary cells in the Drosophila large intestine, where one-cell-wide domain of boundary cells differentiate through Delta-Notch signaling. Biological experiments regulating the level of Delta resulted in six distinct patterns of boundary cells correlating with the level of Delta. All these patterns were successfully reproduced by simulation based on ColHPN modeling only by changing the parameter related to the level of Delta. By monitoring the concentration of the active form of Notch in each cell during simulation, it was revealed that these distinct modes of patterning correlate with the fluctuation range of active Notch. Combination of simulation and quantitative manipulation of a gene activity described here is a reliable and powerful approach for analyzing and understanding the patterning process regulated by Notch signaling. This approach can be easily adapted to address other similar pattern formation issues in the systems biology area.
Collapse
|
34
|
Cucu I, Nicolescu MI. A Synopsis of Signaling Crosstalk of Pericytes and Endothelial Cells in Salivary Gland. Dent J (Basel) 2021; 9:dj9120144. [PMID: 34940041 PMCID: PMC8700478 DOI: 10.3390/dj9120144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
The salivary gland (SG) microvasculature constitutes a dynamic cellular organization instrumental to preserving tissue stability and homeostasis. The interplay between pericytes (PCs) and endothelial cells (ECs) culminates as a key ingredient that coordinates the development, maturation, and integrity of vessel building blocks. PCs, as a variety of mesenchymal stem cells, enthrall in the field of regenerative medicine, supporting the notion of regeneration and repair. PC-EC interconnections are pivotal in the kinetic and intricate process of angiogenesis during both embryological and post-natal development. The disruption of this complex interlinkage corresponds to SG pathogenesis, including inflammation, autoimmune disorders (Sjögren’s syndrome), and tumorigenesis. Here, we provided a global portrayal of major signaling pathways between PCs and ECs that cooperate to enhance vascular steadiness through the synergistic interchange. Additionally, we delineated how the crosstalk among molecular networks affiliate to contribute to a malignant context. Additionally, within SG microarchitecture, telocytes and myoepithelial cells assemble a labyrinthine companionship, which together with PCs appear to synchronize the regenerative potential of parenchymal constituents. By underscoring the intricacy of signaling cascades within cellular latticework, this review sketched a perceptive basis for target-selective drugs to safeguard SG function.
Collapse
Affiliation(s)
- Ioana Cucu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
- Correspondence:
| |
Collapse
|
35
|
Teomy E, Kessler DA, Levine H. Ordered hexagonal patterns via notch-delta signaling. Phys Biol 2021; 18. [PMID: 34547743 DOI: 10.1088/1478-3975/ac28a4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/21/2021] [Indexed: 01/02/2023]
Abstract
Many developmental processes in biology utilize notch-delta signaling to construct an ordered pattern of cellular differentiation. This signaling modality is based on nearest-neighbor contact, as opposed to the more familiar mechanism driven by the release of diffusible ligands. Here, exploiting this 'juxtacrine' property, we present an exact treatment of the pattern formation problem via a system of nine coupled ordinary differential equations. The possible patterns that are realized for realistic parameters can be analyzed by considering a co-dimension 2 pitchfork bifurcation of this system. This analysis explains the observed prevalence of hexagonal patterns with high delta at their center, as opposed to those with central high notch levels (referred to as anti-hexagons). We show that outside this range of parameters, in particular for lowcis-coupling, a novel kind of pattern is produced, where high delta cells have high notch as well. It also suggests that the biological system is only weakly first order, so that an additional mechanism is required to generate the observed defect-free patterns. We construct a simple strategy for producing such defect-free patterns.
Collapse
Affiliation(s)
- Eial Teomy
- Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - David A Kessler
- Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Herbert Levine
- Dept of Physics, Northeastern Univ., Boston MA, United States of America.,Center for Theoretical Biological Physics, Northeastern Univ., Boston, MA 02115, United States of America
| |
Collapse
|
36
|
Kuyyamudi C, Menon SN, Sinha S. Contact-mediated cellular communication supplements positional information to regulate spatial patterning during development. Phys Rev E 2021; 103:062409. [PMID: 34271677 DOI: 10.1103/physreve.103.062409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Development in multicellular organisms is marked by a high degree of spatial organization of the cells attaining distinct fates in the embryo. Recent experiments showing that suppression of intercellular interactions can alter the spatial patterns arising during development suggest that cell fates cannot be determined by the exclusive regulation of differential gene expression by morphogen gradients (the conventional view encapsulated in the French flag model). Using a mathematical model that describes the receptor-ligand interaction between cells in close physical proximity, we show that such intercellular signaling can regulate the process of selective gene expression within each cell, allowing information from the cellular neighborhood to influence the process by which the thresholds of morphogen concentration that dictate cell fates adaptively emerge. This results in local modulations of the positional cues provided by the global field set up by the morphogen, allowing interaction-mediated self-organized pattern formation to complement boundary-organized mechanisms in the context of development.
Collapse
Affiliation(s)
- Chandrashekar Kuyyamudi
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
37
|
Biga V, Hawley J, Soto X, Johns E, Han D, Bennett H, Adamson AD, Kursawe J, Glendinning P, Manning CS, Papalopulu N. A dynamic, spatially periodic, micro-pattern of HES5 underlies neurogenesis in the mouse spinal cord. Mol Syst Biol 2021; 17:e9902. [PMID: 34031978 PMCID: PMC8144840 DOI: 10.15252/msb.20209902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 11/12/2022] Open
Abstract
Ultradian oscillations of HES Transcription Factors (TFs) at the single-cell level enable cell state transitions. However, the tissue-level organisation of HES5 dynamics in neurogenesis is unknown. Here, we analyse the expression of HES5 ex vivo in the developing mouse ventral spinal cord and identify microclusters of 4-6 cells with positively correlated HES5 level and ultradian dynamics. These microclusters are spatially periodic along the dorsoventral axis and temporally dynamic, alternating between high and low expression with a supra-ultradian persistence time. We show that Notch signalling is required for temporal dynamics but not the spatial periodicity of HES5. Few Neurogenin 2 cells are observed per cluster, irrespective of high or low state, suggesting that the microcluster organisation of HES5 enables the stable selection of differentiating cells. Computational modelling predicts that different cell coupling strengths underlie the HES5 spatial patterns and rate of differentiation, which is consistent with comparison between the motoneuron and interneuron progenitor domains. Our work shows a previously unrecognised spatiotemporal organisation of neurogenesis, emergent at the tissue level from the synthesis of single-cell dynamics.
Collapse
Affiliation(s)
- Veronica Biga
- Faculty of Biology Medicine and HealthThe University of ManchesterManchesterUK
| | - Joshua Hawley
- Faculty of Biology Medicine and HealthThe University of ManchesterManchesterUK
| | - Ximena Soto
- Faculty of Biology Medicine and HealthThe University of ManchesterManchesterUK
| | - Emma Johns
- Faculty of Biology Medicine and HealthThe University of ManchesterManchesterUK
| | - Daniel Han
- Department of MathematicsSchool of Natural SciencesFaculty of Science and EngineeringThe University of ManchesterManchesterUK
| | - Hayley Bennett
- Faculty of Biology Medicine and HealthThe University of ManchesterManchesterUK
| | - Antony D Adamson
- Faculty of Biology Medicine and HealthThe University of ManchesterManchesterUK
| | - Jochen Kursawe
- School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK
| | - Paul Glendinning
- Department of MathematicsSchool of Natural SciencesFaculty of Science and EngineeringThe University of ManchesterManchesterUK
| | - Cerys S Manning
- Faculty of Biology Medicine and HealthThe University of ManchesterManchesterUK
| | - Nancy Papalopulu
- Faculty of Biology Medicine and HealthThe University of ManchesterManchesterUK
| |
Collapse
|
38
|
Ristori T, Sjöqvist M, Sahlgren CM. Ex Vivo Models to Decipher the Molecular Mechanisms of Genetic Notch Cardiovascular Disorders. Tissue Eng Part C Methods 2021; 27:167-176. [PMID: 33403934 PMCID: PMC7984653 DOI: 10.1089/ten.tec.2020.0327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/04/2020] [Indexed: 12/13/2022] Open
Abstract
Notch is an evolutionary, conserved, cell-cell signaling pathway that is central to several biological processes, from tissue morphogenesis to homeostasis. It is therefore not surprising that several genetic mutations of Notch components cause inherited human diseases, especially cardiovascular disorders. Despite numerous efforts, current in vivo models are still insufficient to unravel the underlying mechanisms of these pathologies, hindering the development of utmost needed medical therapies. In this perspective review, we discuss the limitations of current murine models and outline how the combination of microphysiological systems (MPSs) and targeted computational models can lead to breakthroughs in this field. In particular, while MPSs enable the experimentation on human cells in controlled and physiological environments, in silico models can provide a versatile tool to translate the in vitro findings to the more complex in vivo setting. As a showcase example, we focus on Notch-related cardiovascular diseases, such as Alagille syndrome, Adams-Oliver syndrome, and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Impact statement In this review, a comprehensive overview of the limitations of current in vivo models of genetic Notch cardiovascular diseases is provided, followed by a discussion over the potential of microphysiological systems and computational models in overcoming these limitations and in potentiating drug testing and modeling of these pathologies.
Collapse
Affiliation(s)
- Tommaso Ristori
- Department of Biomedical Engineering, Technical University of Eindhoven, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Marika Sjöqvist
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia M. Sahlgren
- Department of Biomedical Engineering, Technical University of Eindhoven, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
| |
Collapse
|
39
|
Singh D, Bocci F, Kulkarni P, Jolly MK. Coupled Feedback Loops Involving PAGE4, EMT and Notch Signaling Can Give Rise to Non-genetic Heterogeneity in Prostate Cancer Cells. ENTROPY (BASEL, SWITZERLAND) 2021; 23:288. [PMID: 33652914 PMCID: PMC7996788 DOI: 10.3390/e23030288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Non-genetic heterogeneity is emerging as a crucial factor underlying therapy resistance in multiple cancers. However, the design principles of regulatory networks underlying non-genetic heterogeneity in cancer remain poorly understood. Here, we investigate the coupled dynamics of feedback loops involving (a) oscillations in androgen receptor (AR) signaling mediated through an intrinsically disordered protein PAGE4, (b) multistability in epithelial-mesenchymal transition (EMT), and c) Notch-Delta-Jagged signaling mediated cell-cell communication, each of which can generate non-genetic heterogeneity through multistability and/or oscillations. Our results show how different coupling strengths between AR and EMT signaling can lead to monostability, bistability, or oscillations in the levels of AR, as well as propagation of oscillations to EMT dynamics. These results reveal the emergent dynamics of coupled oscillatory and multi-stable systems and unravel mechanisms by which non-genetic heterogeneity in AR levels can be generated, which can act as a barrier to most existing therapies for prostate cancer patients.
Collapse
Affiliation(s)
- Divyoj Singh
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA;
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| |
Collapse
|
40
|
Akil A, Gutiérrez-García AK, Guenter R, Rose JB, Beck AW, Chen H, Ren B. Notch Signaling in Vascular Endothelial Cells, Angiogenesis, and Tumor Progression: An Update and Prospective. Front Cell Dev Biol 2021; 9:642352. [PMID: 33681228 PMCID: PMC7928398 DOI: 10.3389/fcell.2021.642352] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The Notch signaling pathway plays an essential role in a wide variety of biological processes including cell fate determination of vascular endothelial cells and the regulation of arterial differentiation and angiogenesis. The Notch pathway is also an essential regulator of tumor growth and survival by functioning as either an oncogene or a tumor suppressor in a context-dependent manner. Crosstalk between the Notch and other signaling pathways is also pivotal in tumor progression by promoting cancer cell growth, migration, invasion, metastasis, tumor angiogenesis, and the expansion of cancer stem cells (CSCs). In this review, we provide an overview and update of Notch signaling in endothelial cell fate determination and functioning, angiogenesis, and tumor progression, particularly in the development of CSCs and therapeutic resistance. We further summarize recent studies on how endothelial signaling crosstalk with the Notch pathway contributes to tumor angiogenesis and the development of CSCs, thereby providing insights into vascular biology within the tumor microenvironment and tumor progression.
Collapse
Affiliation(s)
- Abdellah Akil
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ana K. Gutiérrez-García
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rachael Guenter
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. Bart Rose
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Adam W. Beck
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Herbert Chen
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bin Ren
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
41
|
Stepanova D, Byrne HM, Maini PK, Alarcón T. A multiscale model of complex endothelial cell dynamics in early angiogenesis. PLoS Comput Biol 2021; 17:e1008055. [PMID: 33411727 PMCID: PMC7817011 DOI: 10.1371/journal.pcbi.1008055] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/20/2021] [Accepted: 11/19/2020] [Indexed: 12/30/2022] Open
Abstract
We introduce a hybrid two-dimensional multiscale model of angiogenesis, the process by which endothelial cells (ECs) migrate from a pre-existing vascular bed in response to local environmental cues and cell-cell interactions, to create a new vascular network. Recent experimental studies have highlighted a central role of cell rearrangements in the formation of angiogenic networks. Our model accounts for this phenomenon via the heterogeneous response of ECs to their microenvironment. These cell rearrangements, in turn, dynamically remodel the local environment. The model reproduces characteristic features of angiogenic sprouting that include branching, chemotactic sensitivity, the brush border effect, and cell mixing. These properties, rather than being hardwired into the model, emerge naturally from the gene expression patterns of individual cells. After calibrating and validating our model against experimental data, we use it to predict how the structure of the vascular network changes as the baseline gene expression levels of the VEGF-Delta-Notch pathway, and the composition of the extracellular environment, vary. In order to investigate the impact of cell rearrangements on the vascular network structure, we introduce the mixing measure, a scalar metric that quantifies cell mixing as the vascular network grows. We calculate the mixing measure for the simulated vascular networks generated by ECs of different lineages (wild type cells and mutant cells with impaired expression of a specific receptor). Our results show that the time evolution of the mixing measure is directly correlated to the generic features of the vascular branching pattern, thus, supporting the hypothesis that cell rearrangements play an essential role in sprouting angiogenesis. Furthermore, we predict that lower cell rearrangement leads to an imbalance between branching and sprout elongation. Since the computation of this statistic requires only individual cell trajectories, it can be computed for networks generated in biological experiments, making it a potential biomarker for pathological angiogenesis. Angiogenesis, the process by which new blood vessels are formed by sprouting from the pre-existing vascular bed, plays a key role in both physiological and pathological processes, including tumour growth. The structure of a growing vascular network is determined by the coordinated behaviour of endothelial cells in response to various signalling cues. Recent experimental studies have highlighted the importance of cell rearrangements as a driver for sprout elongation. However, the functional role of this phenomenon remains unclear. We formulate a new multiscale model of angiogenesis which, by accounting explicitly for the complex dynamics of endothelial cells within growing angiogenic sprouts, is able to reproduce generic features of angiogenic structures (branching, chemotactic sensitivity, cell mixing, etc.) as emergent properties of its dynamics. We validate our model against experimental data and then use it to quantify the phenomenon of cell mixing in vascular networks generated by endothelial cells of different lineages. Our results show that there is a direct correlation between the time evolution of cell mixing in a growing vascular network and its branching structure, thus paving the way for understanding the functional role of cell rearrangements in angiogenesis.
Collapse
Affiliation(s)
- Daria Stepanova
- Centre de Recerca Matemàtica, Bellaterra (Barcelona), Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
- * E-mail:
| | - Helen M. Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Philip K. Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Tomás Alarcón
- Centre de Recerca Matemàtica, Bellaterra (Barcelona), Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| |
Collapse
|
42
|
Orzechowska M, Anusewicz D, Bednarek AK. Functional Gene Expression Differentiation of the Notch Signaling Pathway in Female Reproductive Tract Tissues-A Comprehensive Review With Analysis. Front Cell Dev Biol 2021; 8:592616. [PMID: 33384996 PMCID: PMC7770115 DOI: 10.3389/fcell.2020.592616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
The Notch pathway involves evolutionarily conserved signaling regulating the development of the female tract organs such as breast, ovary, cervix, and uterine endometrium. A great number of studies revealed Notch aberrancies in association with their carcinogenesis and disease progression, the management of which is still challenging. The present study is a comprehensive review of the available literature on Notch signaling during the normal development and carcinogenesis of the female tract organs. The review has been enriched with our analyses of the TCGA data including breast, cervical, ovarian, and endometrial carcinomas concerning the effects of Notch signaling at two levels: the core components and downstream effectors, hence filling the lack of global overview of Notch-driven carcinogenesis and disease progression. Phenotype heterogeneity regarding Notch signaling was projected in two uniform manifold approximation and projection algorithm dimensions, preceded by the principal component analysis step reducing the data burden. Additionally, overall and disease-free survival analyses were performed with the optimal cutpoint determination by Evaluate Cutpoints software to establish the character of particular Notch components in tumorigenesis. In addition to the review, we demonstrated separate models of the examined cancers of the Notch pathway and its targets, although expression profiles of all normal tissues were much more similar to each other than to its cancerous compartments. Such Notch-driven cancerous differentiation resulted in a case of opposite association with DFS and OS. As a consequence, target genes also show very distinct profiles including genes associated with cell proliferation and differentiation, energy metabolism, or the EMT. In conclusion, the observed Notch associations with the female tract malignancies resulted from differential expression of target genes. This may influence a future analysis to search for new therapeutic targets based on specific Notch pathway profiles.
Collapse
Affiliation(s)
| | - Dorota Anusewicz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
43
|
Abstract
The epithelial-mesenchymal transition (EMT) and the corresponding reverse process, mesenchymal-epithelial transition (MET), are dynamic and reversible cellular programs orchestrated by many changes at both biochemical and morphological levels. A recent surge in identifying the molecular mechanisms underlying EMT/MET has led to the development of various mathematical models that have contributed to our improved understanding of dynamics at single-cell and population levels: (a) multi-stability-how many phenotypes can cells attain during an EMT/MET?, (b) reversibility/irreversibility-what time and/or concentration of an EMT inducer marks the "tipping point" when cells induced to undergo EMT cannot revert?, (c) symmetry in EMT/MET-do cells take the same path when reverting as they took during the induction of EMT?, and (d) non-cell autonomous mechanisms-how does a cell undergoing EMT alter the tendency of its neighbors to undergo EMT? These dynamical traits may facilitate a heterogenous response within a cell population undergoing EMT/MET. Here, we present a few examples of designing different mathematical models that can contribute to decoding EMT/MET dynamics.
Collapse
Affiliation(s)
- Shubham Tripathi
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
- Department of Physics and Department of Bioengineering, Northeastern University, Boston, MA, USA.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
44
|
Stassen OMJA, Ristori T, Sahlgren CM. Notch in mechanotransduction - from molecular mechanosensitivity to tissue mechanostasis. J Cell Sci 2020; 133:133/24/jcs250738. [PMID: 33443070 DOI: 10.1242/jcs.250738] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue development and homeostasis are controlled by mechanical cues. Perturbation of the mechanical equilibrium triggers restoration of mechanostasis through changes in cell behavior, while defects in these restorative mechanisms lead to mechanopathologies, for example, osteoporosis, myopathies, fibrosis or cardiovascular disease. Therefore, sensing mechanical cues and integrating them with the biomolecular cell fate machinery is essential for the maintenance of health. The Notch signaling pathway regulates cell and tissue fate in nearly all tissues. Notch activation is directly and indirectly mechanosensitive, and regulation of Notch signaling, and consequently cell fate, is integral to the cellular response to mechanical cues. Fully understanding the dynamic relationship between molecular signaling, tissue mechanics and tissue remodeling is challenging. To address this challenge, engineered microtissues and computational models play an increasingly large role. In this Review, we propose that Notch takes on the role of a 'mechanostat', maintaining the mechanical equilibrium of tissues. We discuss the reciprocal role of Notch in the regulation of tissue mechanics, with an emphasis on cardiovascular tissues, and the potential of computational and engineering approaches to unravel the complex dynamic relationship between mechanics and signaling in the maintenance of cell and tissue mechanostasis.
Collapse
Affiliation(s)
- Oscar M J A Stassen
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland.,Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Cecilia M Sahlgren
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland .,Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
45
|
Mulberry N, Edelstein-Keshet L. Self-organized multicellular structures from simple cell signaling: a computational model. Phys Biol 2020; 17:066003. [PMID: 33210618 DOI: 10.1088/1478-3975/abb2dc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent synthetic biology experiments reveal that signaling modules designed to target cell-cell adhesion enable self-organization of multicellular structures Toda et al (2018 Science 361 156-162). Changes in homotypic adhesion that arise through contact-dependent signaling networks result in sorting of an aggregate into two- or three-layered structures. Here we investigate the formation, maintenance, and robustness of such self-organization in the context of a computational model. To do so, we use an established model for Notch/ligand signaling within cells to set up differential E-cadherin expression. This signaling model is integrated with the cellular Potts model to track state changes, adhesion, and cell sorting in a group of cells. The resulting multicellular structures are in accordance with those observed in the experimental reference. In addition to reproducing these experimental results, we track the dynamics of the evolving structures and cell states to understand how such morphologies are dynamically maintained. This appears to be an important developmental principle that was not emphasized in previous models. Our computational model facilitates more detailed understanding of the link between intra- and intercellular signaling, spatio-temporal rearrangement, and emergent behavior at the scale of hundred(s) of cells.
Collapse
|
46
|
Sinha D, Saha P, Samanta A, Bishayee A. Emerging Concepts of Hybrid Epithelial-to-Mesenchymal Transition in Cancer Progression. Biomolecules 2020; 10:E1561. [PMID: 33207810 PMCID: PMC7697085 DOI: 10.3390/biom10111561] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a complex process through which epithelial (E) cells lose their adherens junctions, transform into mesenchymal (M) cells and attain motility, leading to metastasis at distant organs. Nowadays, the concept of EMT has shifted from a binary phase of interconversion of pure E to M cells and vice versa to a spectrum of E/M transition states preferably coined as hybrid/partial/intermediate EMT. Hybrid EMT, being a plastic transient state, harbours cells which co-express both E and M markers and exhibit high tumourigenic properties, leading to stemness, metastasis, and therapy resistance. Several preclinical and clinical studies provided the evidence of co-existence of E/M phenotypes. Regulators including transcription factors, epigenetic regulators and phenotypic stability factors (PSFs) help in maintaining the hybrid state. Computational and bioinformatics approaches may be excellent for identifying new factors or combinations of regulatory elements that govern the different EMT transition states. Therapeutic intervention against hybrid E/M cells, though few, may evolve as a rational strategy against metastasis and drug resistance. This review has attempted to present the recent advancements on the concept and regulation of the process of hybrid EMT which generates hybrid E/M phenotypes, evidence of intermediate EMT in both preclinical and clinical setup, impact of partial EMT on promoting tumourigenesis, and future strategies which might be adapted to tackle this phenomenon.
Collapse
Affiliation(s)
- Dona Sinha
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Priyanka Saha
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Anurima Samanta
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
47
|
Fang Y, Che X, You M, Xu Y, Wang Y. Perinatal exposure to nonylphenol promotes proliferation of granule cell precursors in offspring cerebellum: Involvement of the activation of Notch2 signaling. Neurochem Int 2020; 140:104843. [PMID: 32866557 DOI: 10.1016/j.neuint.2020.104843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 10/23/2022]
Abstract
Nonylphenol (NP), a widely diffused persistent organic pollutant (POP), has been shown to impair cerebellar development and cause cerebellum-dependent behavioral and motor deficits. The precise proliferation of granule cell precursors (GCPs), the source of granular cells (GCs), is required for normal development of cerebellum. Thus, we established an animal model of perinatal exposure to NP, investigated the effect of NP exposure on the cerebellar GCPs proliferation, and explored the potential mechanism involved. Our results showed that perinatal exposure to NP increased cerebellar weight, area, and internal granular cell layer (IGL) thickness in offspring rats. Perinatal exposure to NP also resulted in the GCPs hyperproliferation in the external granular layer (EGL) of the developing cerebellum, which may underlie the above-mentioned cerebellar alterations. However, our results suggested that perinatal exposure to NP had no effects on the length of GCPs proliferation. Meanwhile, perinatal exposure to NP also increased the activation of Notch2 signaling, the regulator of GCPs proliferation. In conclusion, our results supported the idea that exposure to NP caused the hyperproliferation of GCPs in the developing cerebellum. Furthermore, our study also provided the evidence that the activation of Notch2 signaling may be involved in the GCPs hyperproliferation.
Collapse
Affiliation(s)
- Yawen Fang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Xiaoyu Che
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
48
|
Sancho JM, Ibañes M. Landau theory for cellular patterns driven by lateral inhibition interaction. Phys Rev E 2020; 102:032404. [PMID: 33075875 DOI: 10.1103/physreve.102.032404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/13/2020] [Indexed: 11/07/2022]
Abstract
The phenomenology of Landau theory with spatial coupling through diffusion has been widely used in the study of phase transitions and patterning. Here we follow this theory and apply it to study theoretically and numerically continuous and discontinuous transitions to periodic spatial cellular patterns driven by lateral inhibition coupling. As opposed to diffusion, lateral inhibition coupling drives differences between adjacent cells. We analyze the appearance of errors in these patterns (disordered metastable states) and propose mechanisms to prevent them. These mechanisms are based on a temporal-dependent lateral inhibition coupling strength, which can be mediated, among others, by gradients of diffusing molecules. The simplicity and generality of the framework used herein is expected to facilitate future analyses of additional phenomena taking place through lateral inhibition interactions in more complex scenarios.
Collapse
Affiliation(s)
- J M Sancho
- Universitat de Barcelona, Departament de Física de la Matèria Condensada, Universitat de Barcelona Institute of Complex System (UBICS), Martí i Franqués, 1. E-08028 Barcelona, Spain
| | - Marta Ibañes
- Universitat de Barcelona, Departament de Física de la Matèria Condensada, Universitat de Barcelona Institute of Complex System (UBICS), Martí i Franqués, 1. E-08028 Barcelona, Spain
| |
Collapse
|
49
|
Fasoulakis Z, Daskalakis G, Theodora M, Antsaklis P, Sindos M, Diakosavvas M, Angelou K, Loutradis D, Kontomanolis EN. The Relevance of Notch Signaling in Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1287:169-181. [PMID: 33034032 DOI: 10.1007/978-3-030-55031-8_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Notch signaling pathway controls normal embryonic development and tissue homeostasis of many cell types. It regulates cell proliferation, fate, differentiation, and cell death by short-range signaling between nearby cells that come in contact. The Notch pathway has also been critically involved in the pathobiology of a variety of malignancies, regulating cancer initiation and development, as well as early stages of cancer progression, by adjusting conserved cellular programs. Fibroblasts, an essential for tumor growth component of stroma, have also been affected by Notch regulation. Sequencing Notch gene mutations have been identified in a number of human tumors, revealing information on the progression of specific cancer types, such as ovarian cancer and melanoma, immune-associated tumors such as myeloid neoplasms, but especially in lymphocytic leukemia. Activation of the Notch can be either oncogenic or it may contain growth-suppressive functions, acting as a tumor suppressor in other hematopoietic cells, hepatocytes, skin, and pancreatic epithelium.
Collapse
Affiliation(s)
- Zacharias Fasoulakis
- National and Kapodistrian University of Athens - 1st Department of Obstetrics and Gynecology, Athens, Greece.
| | - George Daskalakis
- National and Kapodistrian University of Athens - 1st Department of Obstetrics and Gynecology, Athens, Greece
| | - Marianna Theodora
- National and Kapodistrian University of Athens - 1st Department of Obstetrics and Gynecology, Athens, Greece
| | - Panos Antsaklis
- National and Kapodistrian University of Athens - 1st Department of Obstetrics and Gynecology, Athens, Greece
| | - Michael Sindos
- National and Kapodistrian University of Athens - 1st Department of Obstetrics and Gynecology, Athens, Greece
| | - Michail Diakosavvas
- National and Kapodistrian University of Athens - 1st Department of Obstetrics and Gynecology, Athens, Greece
| | - Kyveli Angelou
- National and Kapodistrian University of Athens - 1st Department of Obstetrics and Gynecology, Athens, Greece
| | - Dimitrios Loutradis
- National and Kapodistrian University of Athens - 1st Department of Obstetrics and Gynecology, Athens, Greece
| | - Emmanuel N Kontomanolis
- Democritus University of Thrace - Department of Obstetrics and Gynecology, Alexandroupolis, Greece
| |
Collapse
|
50
|
Boolean model of anchorage dependence and contact inhibition points to coordinated inhibition but semi-independent induction of proliferation and migration. Comput Struct Biotechnol J 2020; 18:2145-2165. [PMID: 32913583 PMCID: PMC7451872 DOI: 10.1016/j.csbj.2020.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/23/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
Epithelial cells respond to their physical neighborhood with mechano-sensitive behaviors required for development and tissue maintenance. These include anchorage dependence, matrix stiffness-dependent proliferation, contact inhibition of proliferation and migration, and collective migration that balances cell crawling with the maintenance of cell junctions. While required for development and tissue repair, these coordinated responses to the microenvironment also contribute to cancer metastasis. Predictive models of the signaling networks that coordinate these behaviors are critical in controlling cell behavior to halt disease. Here we propose a Boolean regulatory network model that synthesizes mechanosensitive signaling that links anchorage to a matrix of varying stiffness and cell density sensing to contact inhibition, proliferation, migration, and apoptosis. Our model can reproduce anchorage dependence and anoikis, detachment-induced cytokinesis errors, the effect of matrix stiffness on proliferation, and contact inhibition of proliferation and migration by two mechanisms that converge on the YAP transcription factor. In addition, we offer testable predictions related to cell cycle-dependent anoikis sensitivity, the molecular requirements for abolishing contact inhibition, and substrate stiffness dependent expression of the catalytic subunit of PI3K. Moreover, our model predicts heterogeneity in migratory vs. non-migratory phenotypes in sub-confluent monolayers, and co-inhibition but semi-independent induction of proliferation vs. migration as a function of cell density and mitogenic stimulation. Our model serves as a stepping-stone towards modeling mechanosensitive routes to the epithelial to mesenchymal transition, capturing the effects of the mesenchymal state on anoikis resistance, and understanding the balance between migration versus proliferation at each stage of the epithelial to mesenchymal transition.
Collapse
|