1
|
Rastogi K, Weerts EM, Ellis JD. Oxytocin as a treatment for alcohol use disorder and heavy drinking: A narrative review. Exp Clin Psychopharmacol 2024; 32:625-638. [PMID: 39298263 PMCID: PMC11995404 DOI: 10.1037/pha0000741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Oxytocin is increasingly being studied for treating symptoms of alcohol use disorders and heavy drinking behavior. The neuropeptide oxytocin facilitates social relationships and modulates the body's stress response by strengthening coping mechanisms and reducing anxiety. Relatedly, oxytocin is also thought to play a role in processes associated with craving and withdrawal from alcohol. This review aims to primarily provide an overview of preclinical and clinical literature on the applications of oxytocin in alcohol use, and additionally discuss a framework for types of trials and the variety of parameters that affect different study designs. A review of the existing literature in this area suggests that while low dosages of oxytocin do not affect drinking behavior and tolerance, higher dosages taken prior to alcohol exposure have varying behavioral and physiological results. Depending on quantity and timing, oxytocin treatments resulted in declines in withdrawal symptoms and alcohol self-administration in preclinical studies and may decrease neural cue reactivity and withdrawal symptoms in clinical studies. Current ongoing trials are expanding on this work to thoroughly explore clinical applications of oxytocin. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Kriti Rastogi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health
| | - Elise M Weerts
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine
| | - Jennifer D Ellis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine
| |
Collapse
|
2
|
Paliwal NP, Taksande BG, Jain SP, Borikar SP. Possible involvement of GABAergic system on central amygdala Mediated anxiolytic effect of agmatine in rats. Int J Neurosci 2024; 134:1346-1356. [PMID: 37801395 DOI: 10.1080/00207454.2023.2268262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
OBJECTIVES To study the pharmacological interactions between agmatine and gamma aminobutyric acid (GABA) modulatory agents in the regulation of anxiety-like behavior in rats. MATERIALS AND METHODS Male Wistar rats were treated drugs per se or in combination and 15 min after last injection were subjected to elevated plus-maze (EPM) test. Anxiety-like behavior was evaluated by measuring behavioral conventional readout, open arm activity (duration and/or entries) for 5-minute duration. RESULTS Acute intra-central amygdala (CeA) injection of agmatine (0.1-0.6 μmol/site/rat), muscimol (0.25-1 nmol/site/rat), diazepam (5-20 μg/site/rat) and allopregnanolone (2-8 μg/site/rat) increased open arm entries of the rats in EPM suggesting anxiolytic effect in dose dependent manner. Moreover, the anxiolytic effect at subeffective dose of agmatine (0.1 μmol/site/rat) was potentiated by subeffective dose of muscimol (0.25 nmol/site/rat), diazepam (5 μg/site/rat) and allopregnanolone (4 μg/site/rat). Whereas, pretreatment with GABAA receptor antagonist, bicuculline (10 ng/site/rat) blocked the anxiolytic effect of agmatine and its synergistic effect of agmatine plus muscimol. Similarly, benzodiazepine (BZD) receptor antagonist, flumazenil (15 μg/site/rat) and GABA allosteric modulator antagonist, RO 15-45 13 (10 μg/site/rat) reduced the anxiolytic effect of agmatine, given alone and with diazepam and allopregnanolone, respectively. CONCLUSION These results indicated that anxiolytic effect of agmatine is medicated via GABAergic mechanisms, probably conciliated by the GABAA receptor subtypes. Modulation of interplay between agmatine and GABAA receptor activity might be a pertinent solution for the regulation of anxiety.
Collapse
Affiliation(s)
- Nikhilesh P Paliwal
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | - Brijesh G Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | - Shirish P Jain
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, India
| | - Sachin P Borikar
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, India
| |
Collapse
|
3
|
Havranek T, Bacova Z, Bakos J. Oxytocin, GABA, and dopamine interplay in autism. Endocr Regul 2024; 58:105-114. [PMID: 38656256 DOI: 10.2478/enr-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Oxytocin plays an important role in brain development and is associated with various neurotransmitter systems in the brain. Abnormalities in the production, secretion, and distribution of oxytocin in the brain, at least during some stages of the development, are critical for the pathogenesis of neuropsychiatric diseases, particularly in the autism spectrum disorder. The etiology of autism includes changes in local sensory and dopaminergic areas of the brain, which are also supplied by the hypothalamic sources of oxytocin. It is very important to understand their mutual relationship. In this review, the relationship of oxytocin with several components of the dopaminergic system, gamma-aminobutyric acid (GABA) inhibitory neurotransmission and their alterations in the autism spectrum disorder is discussed. Special attention has been paid to the results describing a reduced expression of inhibitory GABAergic markers in the brain in the context of dopaminergic areas in various models of autism. It is presumed that the altered GABAergic neurotransmission, due to the absence or dysfunction of oxytocin at certain developmental stages, disinhibits the dopaminergic signaling and contributes to the autism symptoms.
Collapse
Affiliation(s)
- Tomas Havranek
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
4
|
Schimmer J, Patwell R, Küppers S, Grinevich V. The Relationship Between Oxytocin and Alcohol Dependence. Curr Top Behav Neurosci 2023. [PMID: 37697074 DOI: 10.1007/7854_2023_444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The hypothalamic neuropeptide oxytocin (OT) is well known for its prosocial, anxiolytic, and ameliorating effects on various psychiatric conditions, including alcohol use disorder (AUD). In this chapter, we will first introduce the basic neurophysiology of the OT system and its interaction with other neuromodulatory and neurotransmitter systems in the brain. Next, we provide an overview over the current state of research examining the effects of acute and chronic alcohol exposure on the OT system as well as the effects of OT system manipulation on alcohol-related behaviors in rodents and humans. In rodent models of AUD, OT has been repeatedly shown to reduce ethanol consumption, particularly in models of acute alcohol exposure. In humans however, the results of OT administration on alcohol-related behaviors are promising but not yet conclusive. Therefore, we further discuss several physiological and methodological limitations to the effective application of OT in the clinic and how they may be mitigated by the application of synthetic OT receptor (OTR) agonists. Finally, we discuss the potential efficacy of cutting-edge pharmacology and gene therapies designed to specifically enhance endogenous OT release and thereby rescue deficient expression of OT in the brains of patients with severe forms of AUD and other incurable mental disorders.
Collapse
Affiliation(s)
- Jonas Schimmer
- Department of Neuropeptide Research in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Ryan Patwell
- Department of Neuropeptide Research in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Stephanie Küppers
- Department of Neuropeptide Research in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
5
|
Bozkurt M. Neuroscientific Basis of Treatment for Substance Use Disorders. Noro Psikiyatr Ars 2022; 59:S75-S80. [PMID: 36578985 PMCID: PMC9767124 DOI: 10.29399/npa.28172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/07/2022] [Indexed: 12/31/2022] Open
Abstract
Substance use disorder is a chronic and relapsing disease that burdens both the individual and the society. In addition to psychosocial treatment approaches, currently there are approved pharmacological treatment options for opioid, alcohol and tobacco use disorders, but only symptomatic treatment can be offered to patients with other substance use disorders. Advances in neuroscience and a better understanding of the addiction process offer an opportunity to create new treatment options. There is a wide range of studies, ranging from the use of drugs with different indications to the development of new pharmacological treatments, and from vaccine studies to neuromodulation techniques. Establishing novel treatment goals in addition to complete abstinence and individualizing treatment by focusing on endophenotypes may increase the treatment alternatives and the efficacy of these treatments for SUD.
Collapse
Affiliation(s)
- Müge Bozkurt
- İstanbul University, İstanbul Faculty of Medicine, Department of Psychiatry, İstanbul, Turkey
| |
Collapse
|
6
|
Fish KN, Joffe ME. Targeting prefrontal cortex GABAergic microcircuits for the treatment of alcohol use disorder. Front Synaptic Neurosci 2022; 14:936911. [PMID: 36105666 PMCID: PMC9465392 DOI: 10.3389/fnsyn.2022.936911] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Developing novel treatments for alcohol use disorders (AUDs) is of paramount importance for improving patient outcomes and alleviating the suffering related to the disease. A better understanding of the molecular and neurocircuit mechanisms through which alcohol alters brain function will be instrumental in the rational development of new efficacious treatments. Clinical studies have consistently associated the prefrontal cortex (PFC) function with symptoms of AUDs. Population-level analyses have linked the PFC structure and function with heavy drinking and/or AUD diagnosis. Thus, targeting specific PFC cell types and neural circuits holds promise for the development of new treatments. Here, we overview the tremendous diversity in the form and function of inhibitory neuron subtypes within PFC and describe their therapeutic potential. We then summarize AUD population genetics studies, clinical neurophysiology findings, and translational neuroscience discoveries. This study collectively suggests that changes in fast transmission through PFC inhibitory microcircuits are a central component of the neurobiological effects of ethanol and the core symptoms of AUDs. Finally, we submit that there is a significant and timely need to examine sex as a biological variable and human postmortem brain tissue to maximize the efforts in translating findings to new clinical treatments.
Collapse
Affiliation(s)
| | - Max E. Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Sakimoto Y, Shintani A, Yoshiura D, Goshima M, Kida H, Mitsushima D. A critical period for learning and plastic changes at hippocampal CA1 synapses. Sci Rep 2022; 12:7199. [PMID: 35504922 PMCID: PMC9065057 DOI: 10.1038/s41598-022-10453-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Postnatal development of hippocampal function has been reported in many mammalian species, including humans. To obtain synaptic evidence, we analyzed developmental changes in plasticity after an inhibitory avoidance task in rats. Learning performance was low in infants (postnatal 2 weeks) but clearly improved from the juvenile period (3-4 weeks) to adulthood (8 weeks). One hour after the training, we prepared brain slices and sequentially recorded miniature excitatory postsynaptic currents (mEPSCs) and inhibitory postsynaptic currents (mIPSCs) from the same hippocampal CA1 neuron. Although the training failed to affect the amplitude of either mEPSCs or mIPSCs at 2 weeks, it increased mEPSC, but not mIPSC, amplitude at 3 weeks. At 4 weeks, the training had increased the amplitude of both mEPSCs and mIPSCs, whereas mIPSC, but not mEPSC, amplitude was increased at 8 weeks. Because early-life physiological functions can affect performance, we also evaluated sensory-motor functions together with emotional state and found adequate sensory/motor functions from infancy to adulthood. Moreover, by analyzing performance of rats in multiple hippocampal-dependent tasks, we found that the developmental changes in the performance are task dependent. Taken together, these findings delineate a critical period for learning and plastic changes at hippocampal CA1 synapses.
Collapse
Affiliation(s)
- Yuya Sakimoto
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan.
| | - Ako Shintani
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Daiki Yoshiura
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Makoto Goshima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Hiroyuki Kida
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Dai Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan.
- The Research Institute for Time Studies, Yamaguchi University, Yamaguchi, 753-8511, Japan.
| |
Collapse
|
8
|
Hines RM, Aquino EA, Khumnark MI, Dávila MP, Hines DJ. Comparative Assessment of TSPO Modulators on Electroencephalogram Activity and Exploratory Behavior. Front Pharmacol 2022; 13:750554. [PMID: 35444539 PMCID: PMC9015213 DOI: 10.3389/fphar.2022.750554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/07/2022] [Indexed: 01/04/2023] Open
Abstract
Network communication in the CNS relies upon multiple neuronal and glial signaling pathways. In addition to synaptic transmission, other organelles such as mitochondria play roles in cellular signaling. One highly conserved mitochondrial signaling mechanism involves the 18 kDa translocator protein (TSPO) of the outer mitochondrial membrane. Originally, TSPO was identified as a binding site for benzodiazepines in the periphery. It was later discovered that TSPO is found in mitochondria, including in CNS cells. TSPO is implicated in multiple cellular processes, including the translocation of cholesterol and steroidogenesis, porphyrin transport, cellular responses to stress, inflammation, and tumor progression. Yet the impacts of modulating TSPO signaling on network activity and behavioral performance have not been characterized. In the present study, we assessed the effects of TSPO modulators PK11195, Ro5-4864, and XBD-173 via electroencephalography (EEG) and the open field test (OFT) at low to moderate doses. Cortical EEG recordings revealed increased power in the δ and θ frequency bands after administration of each of the three modulators, as well as compound- and dose-specific changes in α and γ. Behaviorally, these compounds reduced locomotor activity in the OFT in a dose-dependent manner, with XBD-173 having the subtlest behavioral effects while still strongly modulating the EEG. These findings indicate that TSPO modulators, despite their diversity, exert similar effects on the EEG while displaying a range of sedative/hypnotic effects at moderate to high doses. These findings bring us one step closer to understanding the functions of TSPO in the brain and as a target in CNS disease.
Collapse
Affiliation(s)
| | | | | | | | - Dustin J. Hines
- Department of Psychology, Psychological and Brain Sciences & Interdisciplinary Neuroscience Programs, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
9
|
Sikstus S, Benkherouf AY, Soini SL, Uusi-Oukari M. The Influence of AA29504 on GABA A Receptor Ligand Binding Properties and Its Implications on Subtype Selectivity. Neurochem Res 2022; 47:667-678. [PMID: 34727270 PMCID: PMC8847198 DOI: 10.1007/s11064-021-03475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/03/2021] [Accepted: 10/27/2021] [Indexed: 10/26/2022]
Abstract
The unique pharmacological properties of δ-containing γ-aminobutyric acid type A receptors (δ-GABAARs) make them an attractive target for selective and persistent modulation of neuronal excitability. However, the availability of selective modulators targeting δ-GABAARs remains limited. AA29504 ([2-amino-4-(2,4,6-trimethylbenzylamino)-phenyl]-carbamic acid ethyl ester), an analog of K+ channel opener retigabine, acts as an agonist and a positive allosteric modulator (Ago-PAM) of δ-GABAARs. Based on electrophysiological studies using recombinant receptors, AA29504 was found to be a more potent and effective agonist in δ-GABAARs than in γ2-GABAARs. In comparison, AA29504 positively modulated the activity of recombinant δ-GABAARs more effectively than γ2-GABAARs, with no significant differences in potency. The impact of AA29504's efficacy- and potency-associated GABAAR subtype selectivity on radioligand binding properties remain unexplored. Using [3H]4'-ethynyl-4-n-propylbicycloorthobenzoate ([3H]EBOB) binding assay, we found no difference in the modulatory potency of AA29504 on GABA- and THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol)-induced responses between native forebrain GABAARs of wild type and δ knock-out mice. In recombinant receptors expressed in HEK293 cells, AA29504 showed higher efficacy on δ- than γ2-GABAARs in the GABA-independent displacement of [3H]EBOB binding. Interestingly, AA29504 showed a concentration-dependent stimulation of [3H]muscimol binding to γ2-GABAARs, which was absent in δ-GABAARs. This was explained by AA29504 shifting the low-affinity γ2-GABAAR towards a higher affinity desensitized state, thereby rising new sites capable of binding GABAAR agonists with low nanomolar affinity. Hence, the potential of AA29504 to act as a desensitization-modifying allosteric modulator of γ2-GABAARs deserves further investigation for its promising influence on shaping efficacy, duration and plasticity of GABAAR synaptic responses.
Collapse
Affiliation(s)
- Sylvia Sikstus
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Ali Y Benkherouf
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Sanna L Soini
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Mikko Uusi-Oukari
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland.
| |
Collapse
|
10
|
Ryabinin AE, Zhang Y. Barriers and Breakthroughs in Targeting the Oxytocin System to Treat Alcohol Use Disorder. Front Psychiatry 2022; 13:842609. [PMID: 35295777 PMCID: PMC8919088 DOI: 10.3389/fpsyt.2022.842609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Development of better treatments for alcohol use disorder (AUD) is urgently needed. One promising opportunity for this development is the potential of targeting the oxytocin peptide system. Preclinical studies showed that administration of exogenous oxytocin or, more recently, stimulation of neurons expressing endogenous oxytocin lead to a decreased alcohol consumption across several rodent models. Initial clinical studies also showed that administration of oxytocin decreased craving for alcohol and heavy alcohol drinking. However, several more recent clinical studies were not able to replicate these effects. Thus, although targeting the oxytocin system holds promise for the treatment of AUD, more nuanced approaches toward development and application of these treatments are needed. In this mini-review we discuss potential caveats resulting in differential success of attempts to use oxytocin for modulating alcohol use disorder-related behaviors in clinical studies and evaluate three directions in which targeting the oxytocin system could be improved: (1) increasing potency of exogenously administered oxytocin, (2) developing oxytocin receptor agonists, and (3) stimulating components of the endogenous oxytocin system. Both advances and potential pitfalls of these directions are discussed.
Collapse
Affiliation(s)
- Andrey E. Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | | |
Collapse
|
11
|
Bowen MT, George O, Muskiewicz DE, Hall FS. FACTORS CONTRIBUTING TO THE ESCALATION OF ALCOHOL CONSUMPTION. Neurosci Biobehav Rev 2022; 132:730-756. [PMID: 34839930 PMCID: PMC8892842 DOI: 10.1016/j.neubiorev.2021.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023]
Abstract
Understanding factors that contribute to the escalation of alcohol consumption is key to understanding how an individual transitions from non/social drinking to AUD and to providing better treatment. In this review, we discuss how the way ethanol is consumed as well as individual and environmental factors contribute to the escalation of ethanol consumption from intermittent low levels to consistently high levels. Moreover, we discuss how these factors are modelled in animals. It is clear a vast array of complex, interacting factors influence changes in alcohol consumption. Some of these factors act early in the acquisition of ethanol consumption and initial escalation, while others contribute to escalation of ethanol consumption at a later stage and are involved in the development of alcohol dependence. There is considerable need for more studies examining escalation associated with the formation of dependence and other hallmark features of AUD, especially studies examining mechanisms, as it is of considerable relevance to understanding and treating AUD.
Collapse
Affiliation(s)
- Michael T. Bowen
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, 2050, Australia,The University of Sydney, Faculty of Science, School of Psychology, Sydney, NSW, 2006, Australia,Corresponding Author: Michael T. Bowen, Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia,
| | - Olivier George
- Department of Psychology, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Dawn E. Muskiewicz
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacology and Pharmacological Science, University of Toledo, OH, USA
| | - F. Scott Hall
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacology and Pharmacological Science, University of Toledo, OH, USA
| |
Collapse
|
12
|
Cid-Jofré V, Moreno M, Reyes-Parada M, Renard GM. Role of Oxytocin and Vasopressin in Neuropsychiatric Disorders: Therapeutic Potential of Agonists and Antagonists. Int J Mol Sci 2021; 22:ijms222112077. [PMID: 34769501 PMCID: PMC8584779 DOI: 10.3390/ijms222112077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Oxytocin (OT) and vasopressin (AVP) are hypothalamic neuropeptides classically associated with their regulatory role in reproduction, water homeostasis, and social behaviors. Interestingly, this role has expanded in recent years and has positioned these neuropeptides as therapeutic targets for various neuropsychiatric diseases such as autism, addiction, schizophrenia, depression, and anxiety disorders. Due to the chemical-physical characteristics of these neuropeptides including short half-life, poor blood-brain barrier penetration, promiscuity for AVP and OT receptors (AVP-R, OT-R), novel ligands have been developed in recent decades. This review summarizes the role of OT and AVP in neuropsychiatric conditions, as well as the findings of different OT-R and AVP-R agonists and antagonists, used both at the preclinical and clinical level. Furthermore, we discuss their possible therapeutic potential for central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Valeska Cid-Jofré
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (V.C.-J.); (M.M.)
| | - Macarena Moreno
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (V.C.-J.); (M.M.)
- Facultad de Ciencias Sociales, Escuela de Psicología, Universidad Bernardo OHiggins, Santiago 8370993, Chile
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (V.C.-J.); (M.M.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia 7500912, Chile
- Correspondence: (M.R.-P.); (G.M.R.)
| | - Georgina M. Renard
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (V.C.-J.); (M.M.)
- Correspondence: (M.R.-P.); (G.M.R.)
| |
Collapse
|
13
|
Oxytocin blood concentrations in alcohol use disorder: A cross-sectional, longitudinal, and sex-separated study. Eur Neuropsychopharmacol 2021; 51:55-67. [PMID: 34077851 DOI: 10.1016/j.euroneuro.2021.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
Alcohol use disorder (AUD) is a severe illness, for which we lack sufficient mechanistic understanding. Preliminary evidence associates AUD with the oxytocin (OXT) system. Here we investigated alterations in endogenous OXT blood concentrations in patients with AUD and their association with alcohol drinking and prospective course. In sex-separated analyses, OXT serum concentrations of 200 in-patients with AUD (56.5% male; baseline, 24-72 h of abstinence) were compared with those of 240 age-matched healthy controls (55.4% male), investigated longitudinally (follow-up, 5 days later), and tested for associations with alcohol drinking behavior and prospective 24-month alcohol-related hospital readmissions. At baseline, the patients showed increased OXT concentrations relative to controls (men, 156%, P < 0.001; women, 124%, P = 0.002). The elevations normalized at follow-up. In male patients, baseline OXT concentrations correlated positively with alcohol concentration at admission, the amount of alcohol consumption per drinking year, and the number of previous withdrawal treatments (Rho > 0.195, P < 0.044). In beverage type-specific analysis, baseline OXT concentrations correlated with liquor consumption positively in male and negatively in female patients (|Rho| > 0.277, P < 0.017). Higher baseline OXT concentrations predicted more readmissions and fewer days to the first readmission (|Rho| > 0.185, P < 0.050) in male patients. This study provides novel and sex-separated insights into the role of the OXT system in AUD. We identified a mechanism that might underlie the sex-separated choice of beverage type and established that increased OXT concentrations during early abstinence predict a worse outcome in male patients with AUD.
Collapse
|
14
|
Baldi E, Costa A, Rani B, Passani MB, Blandina P, Romano A, Provensi G. Oxytocin and Fear Memory Extinction: Possible Implications for the Therapy of Fear Disorders? Int J Mol Sci 2021; 22:10000. [PMID: 34576161 PMCID: PMC8467761 DOI: 10.3390/ijms221810000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Several psychiatric conditions such as phobias, generalized anxiety, and post-traumatic stress disorder (PTSD) are characterized by pathological fear and anxiety. The main therapeutic approach used in the management of these disorders is exposure-based therapy, which is conceptually based upon fear extinction with the formation of a new safe memory association, allowing the reduction in behavioral conditioned fear responses. Nevertheless, this approach is only partially resolutive, since many patients have difficulty following the demanding and long process, and relapses are frequently observed over time. One strategy to improve the efficacy of the cognitive therapy is the combination with pharmacological agents. Therefore, the identification of compounds able to strengthen the formation and persistence of the inhibitory associations is a key goal. Recently, growing interest has been aroused by the neuropeptide oxytocin (OXT), which has been shown to have anxiolytic effects. Furthermore, OXT receptors and binding sites have been found in the critical brain structures involved in fear extinction. In this review, the recent literature addressing the complex effects of OXT on fear extinction at preclinical and clinical levels is discussed. These studies suggest that the OXT roles in fear behavior are due to its local effects in several brain regions, most notably, distinct amygdaloid regions.
Collapse
Affiliation(s)
- Elisabetta Baldi
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Alessia Costa
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences (DSS), University of Florence, 50139 Florence, Italy; (A.C.); (B.R.); (M.B.P.)
| | - Barbara Rani
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences (DSS), University of Florence, 50139 Florence, Italy; (A.C.); (B.R.); (M.B.P.)
| | - Maria Beatrice Passani
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences (DSS), University of Florence, 50139 Florence, Italy; (A.C.); (B.R.); (M.B.P.)
| | - Patrizio Blandina
- Section of Pharmacology of Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy;
| | - Adele Romano
- Department of Physiology and Pharmacology ‘V. Erspamer’, Sapienza University of Rome, 00185 Rome, Italy;
| | - Gustavo Provensi
- Section of Pharmacology of Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy;
| |
Collapse
|
15
|
Alcohol and oxytocin: Scrutinizing the relationship. Neurosci Biobehav Rev 2021; 127:852-864. [PMID: 34102150 DOI: 10.1016/j.neubiorev.2021.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
The initial enthusiasm towards oxytocin (OXT) as a potential treatment for alcohol use disorder has been recently tempered by recognizing existing gaps in literature and the recent appearance of a relatively small number of clinical studies with negative outcomes. On the other hand, several new studies continue to support the OXT system's potential for such treatment. In this review, we thoroughly analyze existing literature assessing both alcohol's effects on the OXT system and OXT's effects on alcohol-related behaviors. Both rodent and clinical research is discussed. We identify areas that have been studied extensively and those that have been undeservingly understudied. OXT's potential effects on tolerance, withdrawal, craving, anxiety and social behaviors, and how these processes ultimately affect alcohol consumption, are critically explored. We conclude that while OXT can affect alcohol consumption in males and females, more comprehensive studies on OXT's effects on alcohol-related tolerance, withdrawal, craving, anxiety and social affiliations in subjects of both sexes and across several levels of analyses are needed.
Collapse
|
16
|
Liao VWY, Chebib M, Ahring PK. Efficient expression of concatenated α1β2δ and α1β3δ GABA A receptors, their pharmacology and stoichiometry. Br J Pharmacol 2021; 178:1556-1573. [PMID: 33491192 DOI: 10.1111/bph.15380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE GABAA receptors containing δ-subunits are notorious for being difficult to study in vitro due to heterogeneity of expressed receptor populations and low GABA-evoked current amplitudes. Thus, there are some published misconceptions and contradictory conclusions made regarding the pharmacology and stoichiometry of δ-containing receptors. The aim of this study was to obtain robust homogenous expression of α1βδ receptors for in-depth investigation. EXPERIMENTAL APPROACH Novel δ-containing pentameric concatenated constructs were designed. The resulting α1β2δ and α1β3δ GABAA receptor concatemers were investigated by two-electrode voltage-clamp electrophysiology using Xenopus laevis oocytes. KEY RESULTS First, while homogenous α1βδ GABAA receptor pools could not be obtained by manipulating the ratio of injected cRNAs of free α1, β2/3, and δ subunits, concatenated pentameric α1β2δ and α1β3δ constructs resulted in robust expression levels of concatemers. Second, by using optimised constructs that give unidirectional assembly of concatemers, we found that the δ subunit cannot directly participate in GABA binding and receptor activation. Hence, functional δ-containing receptors are likely to all have a conventional 2α:2β:1δ stoichiometry arranged as βαβαδ when viewed counterclockwise from the extracellular side. Third, α1β2/3δ receptors were found to express efficiently in X. laevis oocytes but have a low estimated open probability of ~0.5% upon GABA activation. Because of this, these receptors are uniquely susceptible to positive allosteric modulation by, for example, neurosteroids. CONCLUSION AND IMPLICATIONS Our data answer important outstanding questions regarding the pharmacology and stoichiometry of α1δ-containing GABAA receptors and pave the way for future analysis and drug discovery efforts.
Collapse
Affiliation(s)
- Vivian Wan Yu Liao
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Mary Chebib
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Philip Kiaer Ahring
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Xu JF, Lu JJ, Cao Y, Wang W, Li HH, Chen JG, Wang F, Wu PF. Sulforaphane alleviates ethanol-mediated central inhibition and reverses chronic stress-induced aggravation of acute alcoholism via targeting Nrf2-regulated catalase expression. Neuropharmacology 2020; 176:108235. [PMID: 32710977 DOI: 10.1016/j.neuropharm.2020.108235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/12/2020] [Accepted: 07/07/2020] [Indexed: 01/09/2023]
Abstract
Acute ethanol intoxication by excessive drinking is an important cause of alcohol-induced death. Stress exposure has been identified as one risk factor for alcohol abuse. Previous reports indicated that stressors may augment inhibitory effects of alcohol, but the underlying mechanism remains unknown. Here, we reported that chronic unpredictable stress increased the sensitivity to the acute ethanol intoxication in mice via impairing nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-catalase signaling. Nrf2 activity regulates the expression of catalase, a key antioxidant enzyme that mediates ethanol oxidation in the brain. Pharmacological blockade of catalase or Nrf2 activity significantly aggravated acute ethanol intoxication. Sulforaphane, a cruciferous vegetable-derived activator of Nrf2, significantly attenuated acute ethanol intoxication. Furthermore, the stress-induced aggravation of acute alcoholism was rapidly reversed by sulforaphane. Our findings suggest that Nrf2 may function as a novel drug target for the prevention of acute alcoholism, especially in psychiatric patients, by controlling catalase-mediated ethanol oxidation.
Collapse
Affiliation(s)
- Jun-Feng Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Jing Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Cao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hou-Hong Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China.
| |
Collapse
|
18
|
Rodriguez KM, Smith BL, Caldwell HK. Voluntary alcohol consumption is increased in female, but not male, oxytocin receptor knockout mice. Brain Behav 2020; 10:e01749. [PMID: 32666677 PMCID: PMC7507036 DOI: 10.1002/brb3.1749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION The oxytocin (Oxt) system, while typically associated with the neural regulation of social behaviors, also plays a role in an individual's vulnerability to develop alcohol use disorders (AUD). In humans, changes to the Oxt system, due to early life experience and/or genetic mutations, are associated with increased vulnerability to AUD. While a considerable amount is known about Oxt's role in AUD in males, less is known or understood, about how Oxt may affect AUD in females, likely due to many clinical and preclinical studies of AUD not directly considering sex as a biological variable. This is unfortunate given that females are more vulnerable to the effects of alcohol and have increased alcohol consumption, as compared to males. Therefore, in the current study we wanted to determine whether genetic disruption of the Oxt receptor (Oxtr), that is, Oxtr knockout (-/-) mice, affected stress-induced alcohol consumption in males and females. We hypothesized that genetic disruption of the Oxtr would result in increased stress-induced alcohol consumption in both males and females compared to wild-type (+/+) controls. Though, we predicted that these disruptions might be greater in female Oxtr -/- mice. METHODS To test this hypothesis, a two-bottle preference test was utilized along with the forced swim test (FST), and pre- and poststress alcohol consumption and preference measured within each sex (males and females were run separately). As a follow-up experiment, a taste preference test, to control for possible genotypic differences in taste, was also performed. RESULTS In males, we found no significant genotypic differences in alcohol consumption or preference. However, in females, we found that genetic disruption of the Oxtr resulted in a greater consumption of alcohol both pre- and poststress compared to controls. CONCLUSION These data suggest that in females, disruptions in Oxt signaling may contribute to increased vulnerability to alcohol-associated addiction.
Collapse
Affiliation(s)
- Karla M Rodriguez
- School of Biomedical Sciences and the Brain Health Research Institute, Kent State University, Kent, OH, USA.,Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Brittany L Smith
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, Kent, OH, USA.,Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Heather K Caldwell
- School of Biomedical Sciences and the Brain Health Research Institute, Kent State University, Kent, OH, USA.,Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
19
|
King CE, Gano A, Becker HC. The role of oxytocin in alcohol and drug abuse. Brain Res 2020; 1736:146761. [PMID: 32142721 PMCID: PMC7137097 DOI: 10.1016/j.brainres.2020.146761] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
The neuropeptide oxytocin (OXT) plays a key role in adaptive processes associated with reward, tolerance, memory and stress responses. Through interactions with brain reward and stress systems, OXT is known to play a role in several neuropsychiatric disorders, particularly those that involve altered social integration, such as alcohol and drug addiction (Heilig et al., 2016). As such, there is growing interest in the oxytocin system as a potential therapeutic target for the treatment of alcohol and substance use disorders. Accumulating preclinical evidence suggests that administration of OXT influences the development of tolerance, sensitization and withdrawal symptoms, and modulates numerous alcohol/drug-seeking and alcohol/drug-taking behaviors. Further, there is some evidence to suggest that OXT may help to reverse neuroadaptations that occur as a result of chronic alcohol or drug exposure. To date, there have been only a handful of clinical studies conducted in alcohol and drug dependent populations. This review summarizes the preclinical and clinical literature on the effects of OXT administration on alcohol- and drug-related behaviors. In addition, we discuss OXT interactions with the hypothalamic-pituitaryadrenal axis and multiple neurotransmitter systems within addiction circuitry.
Collapse
Affiliation(s)
- Courtney E King
- Charleston Alcohol Research Center, Department of Psychiatry and Neuroscience, Medical University of South Carolina & VAMC, Charleston, SC 29425, United States
| | - Anny Gano
- Charleston Alcohol Research Center, Department of Psychiatry and Neuroscience, Medical University of South Carolina & VAMC, Charleston, SC 29425, United States
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Neuroscience, Medical University of South Carolina & VAMC, Charleston, SC 29425, United States.
| |
Collapse
|
20
|
Peris J, Steck MR, Krause EG. Oxytocin treatment for alcoholism: Potential neurocircuitry targets. Neuropharmacology 2020; 171:108091. [PMID: 32304701 DOI: 10.1016/j.neuropharm.2020.108091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/19/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
Abstract
Oxytocin (OT) has gained considerable interest in recent years as a potential treatment for alcoholism and other substance use disorders. Evidence continues to mount that OT administered either centrally, peripherally or intranasally can decrease ethanol intake in both humans and animal models. The potential mechanisms for the ability of OT to decrease ethanol reward, and importantly, cue- and stress-induced ethanol relapse, are explored by reviewing the specific neuronal circuits involved in mediating these actions and their sensitivity to OT. In addition to dopamine neurons that project from ventral tegmental area (VTA) to nucleus accumbens (NAc) to signal positively reinforcing events, OT receptors (OxTR) are also expressed by dopamine neurons that project from VTA to brain regions that can convey aversive properties of a stimulus. Moreover, OxTR are expressed by non-dopaminergic neurons in the VTA, such as GABA and glutamate neurons, which can both modulate the activity of dopamine VTA neurons locally (in opposite directions) or can project to other brain regions, including the NAc, where it can alter either positive reinforcement or aversion caused by ethanol. The ability of OT to regulate limbic circuitry and the hypothalamic-pituitary-adrenal axis is discussed as a potential mechanism for the ability of OT to inhibit ethanol-induced negative reinforcement. Together, understanding the diversity and complexity of OT regulation of ethanol reward may contribute to more effective use of OT as pharmacotherapy for alcohol use disorder. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Joanna Peris
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, 32610, USA.
| | - Madeline R Steck
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, 32610, USA
| | - Eric G Krause
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
21
|
Raymond JS, Wilson BB, Tan O, Gururajan A, Bowen MT. Acute alcohol exposure dose-dependently alleviates social avoidance in adolescent mice and inhibits social investigation in adult mice. Psychopharmacology (Berl) 2019; 236:3625-3639. [PMID: 31346653 DOI: 10.1007/s00213-019-05335-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/16/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Motivations for alcohol consumption often focus on ethanol's purported prosocial effects: social enhancement and reduction of socially focused anxiety. Despite substantial research supporting prosocial effects, contrary research exists demonstrating alcohol-elicited antisocial and asocial behaviours. Additionally, evidence typically fails to delineate whether alcohol-induced prosocial effects are due to alcohol expectancies or pharmacological actions of ethanol. Studies exploring ethanol's pharmacological effects on social behaviour and factors that modulate apparent contradictory prosocial versus asocial effects are lacking. OBJECTIVES This study investigated whether factors of age, ethanol dose and social fear modulate ethanol-induced pharmacological effects on sociability and social anxiety-like avoidance. METHODS Experiments examined the acute effects of ethanol doses (0, 0.25, 0.8, 1.6 g/kg; i.p.) in adult (10-week-old) and adolescent (PND 31-33) C57BL/6J male mice on social interaction using a social fear conditioning paradigm. Control experiments assessed whether ethanol-induced effects were social-specific. RESULTS In adult mice, no specific effects of ethanol on social avoidance were observed at any dose. However, high-dose ethanol (1.6 g/kg) suppressed social approach in all adult mice. In contrast, low-dose ethanol (0.25 g/kg) alleviated social avoidance in adolescent mice and no social suppression was observed at higher ethanol doses. Thus, higher doses of ethanol impair social behaviour in adult mice, whereas lower doses specifically alleviate social anxiety-like avoidance in adolescent mice. CONCLUSIONS Age, dose and social fear are critical modulators of acute ethanol-induced pharmacological effects on social behaviour. Inconsistencies in ethanol-induced social consequences appear at least partly mediated by pharmacological interactions-not solely alcohol expectancies.
Collapse
Affiliation(s)
- Joel S Raymond
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia.,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Bianca B Wilson
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia.,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Oliver Tan
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia.,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Anand Gururajan
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia.,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Michael T Bowen
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia. .,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia.
| |
Collapse
|
22
|
Stauffer CS, Meinzer NK, Morrison T, Wen JH, Radanovich L, Leung D, Niles A, O'Donovan A, Batki SL, Woolley JD. Effects of Oxytocin Administration on Cue-Induced Craving in Co-occurring Alcohol Use Disorder and PTSD: A Within-Participant Randomized Clinical Trial. Alcohol Clin Exp Res 2019; 43:2627-2636. [PMID: 31610033 PMCID: PMC7450809 DOI: 10.1111/acer.14217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/07/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Individuals with alcohol use disorder (AUD) are much more likely to meet criteria for posttraumatic stress disorder (PTSD) than the general population. Compared to AUD alone, those with comorbid AUD-PTSD experience worse outcomes. Prior literature suggests that oxytocin, a hypothalamic neuropeptide, may be effective in the treatment of both AUD and PTSD when administered intranasally, although specific mechanisms remain elusive. METHODS Forty-seven male patients with comorbid AUD-PTSD were administered intranasal oxytocin in a randomized, double-blind, dose-ranging (20 IU, 40 IU, and matched placebo), within-participant design with study visits at least 1 week apart. A cue-induced craving paradigm was conducted using each participant's preferred alcoholic beverage versus a neutral water cue. Self-reported alcohol craving and heart rate (HR) were recorded and analyzed using linear mixed-effect models. RESULTS While alcohol cues significantly induced self-reported craving and increased HR compared to neutral water cues, neither dosage of oxytocin compared to placebo reduced self-reported cue-induced alcohol craving nor cue-induced changes in HR in patients with PTSD-AUD. CONCLUSIONS These preliminary findings suggest that oxytocin does not affect cue-induced craving. Our results contribute to an ever-growing field of research investigating the effects of intranasal oxytocin on the symptoms of substance use disorders and will help further refine methodology and streamline future inquiries in this area.
Collapse
Affiliation(s)
- Christopher S Stauffer
- From the, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, California
| | | | - Tyler Morrison
- University of California, San Francisco, San Francisco, California
| | - Jin-Hui Wen
- University of British Columbia, Vancouver, British Columbia
| | - Lily Radanovich
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - David Leung
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| | | | - Aoife O'Donovan
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Steven L Batki
- From the, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, California
| | - Joshua D Woolley
- From the, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, California
| |
Collapse
|
23
|
Oxytocin blocks enhanced motivation for alcohol in alcohol dependence and blocks alcohol effects on GABAergic transmission in the central amygdala. PLoS Biol 2019; 17:e2006421. [PMID: 30990816 PMCID: PMC6467366 DOI: 10.1371/journal.pbio.2006421] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 03/08/2019] [Indexed: 11/19/2022] Open
Abstract
Oxytocin administration has been reported to decrease consumption, withdrawal, and drug-seeking associated with several drugs of abuse and thus represents a promising pharmacological approach to treat drug addiction. We used an established rat model of alcohol dependence to investigate oxytocin's effects on dependence-induced alcohol drinking, enhanced motivation for alcohol, and altered GABAergic transmission in the central nucleus of the amygdala (CeA). Intraperitoneal oxytocin administration blocked escalated alcohol drinking and the enhanced motivation for alcohol in alcohol-dependent but not nondependent rats. Intranasal oxytocin delivery fully replicated these effects. Intraperitoneal administration had minor but significant effects of reducing locomotion and intake of non-alcoholic palatable solutions, whereas intranasal oxytocin administration did not. In dependent rats, intracerebroventricular administration of oxytocin or the oxytocin receptor agonist PF-06655075, which does not cross the blood-brain barrier (i.e., it would not diffuse to the periphery), but not systemic administration of PF-06655075 (i.e., it would not reach the brain), decreased alcohol drinking. Administration of a peripherally restricted oxytocin receptor antagonist did not reverse the effect of intranasal oxytocin on alcohol drinking. Ex vivo electrophysiological recordings from CeA neurons indicated that oxytocin decreases evoked GABA transmission in nondependent but not in dependent rats, whereas oxytocin decreased the amplitude of spontaneous GABAergic responses in both groups. Oxytocin blocked the facilitatory effects of acute alcohol on GABA release in the CeA of dependent but not nondependent rats. Together, these results provide converging evidence that oxytocin specifically and selectively blocks the enhanced motivation for alcohol drinking that develops in alcohol dependence likely via a central mechanism that may result from altered oxytocin effects on CeA GABA transmission in alcohol dependence. Neuroadaptations in endogenous oxytocin signaling may provide a mechanism to further our understanding of alcohol use disorder.
Collapse
|
24
|
Campbell RR, Domingo RD, Williams AR, Wroten MG, McGregor HA, Waltermire RS, Greentree DI, Goulding SP, Thompson AB, Lee KM, Quadir SG, Jimenez Chavez CL, Coelho MA, Gould AT, von Jonquieres G, Klugmann M, Worley PF, Kippin TE, Szumlinski KK. Increased Alcohol-Drinking Induced by Manipulations of mGlu5 Phosphorylation within the Bed Nucleus of the Stria Terminalis. J Neurosci 2019; 39:2745-2761. [PMID: 30737312 PMCID: PMC6445984 DOI: 10.1523/jneurosci.1909-18.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/06/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is part of the limbic-hypothalamic system important for behavioral responses to stress, and glutamate transmission within this region has been implicated in the neurobiology of alcoholism. Herein, we used a combination of immunoblotting, neuropharmacological and transgenic procedures to investigate the role for metabotropic glutamate receptor 5 (mGlu5) signaling within the BNST in excessive drinking. We discovered that mGlu5 signaling in the BNST is linked to excessive alcohol consumption in a manner distinct from behavioral or neuropharmacological endophenotypes that have been previously implicated as triggers for heavy drinking. Our studies demonstrate that, in male mice, a history of chronic binge alcohol-drinking elevates BNST levels of the mGlu5-scaffolding protein Homer2 and activated extracellular signal-regulated kinase (ERK) in an adaptive response to limit alcohol consumption. Male and female transgenic mice expressing a point mutation of mGlu5 that cannot be phosphorylated by ERK exhibit excessive alcohol-drinking, despite greater behavioral signs of alcohol intoxication and reduced anxiety, and are insensitive to local manipulations of signaling in the BNST. These transgenic mice also show selective insensitivity to alcohol-aversion and increased novelty-seeking, which may be relevant to excessive drinking. Further, the insensitivity to alcohol-aversion exhibited by male mice can be mimicked by the local inhibition of ERK signaling within the BNST. Our findings elucidate a novel mGluR5-linked signaling state within BNST that plays a central and unanticipated role in excessive alcohol consumption.SIGNIFICANCE STATEMENT The bed nucleus of the stria terminalis (BNST) is part of the limbic-hypothalamic system important for behavioral responses to stress and alcohol, and glutamate transmission within BNST is implicated in the neurobiology of alcoholism. The present study provides evidence that a history of excessive alcohol drinking increases signaling through the metabotropic glutamate receptor 5 (mGlu5) receptor within the BNST in an adaptive response to limit alcohol consumption. In particular, disruption of mGlu5 phosphorylation by extracellular signal-regulated kinase within this brain region induces excessive alcohol-drinking, which reflects a selective insensitivity to the aversive properties of alcohol intoxication. These data indicate that a specific signaling state of mGlu5 within BNST plays a central and unanticipated role in excessive alcohol consumption.
Collapse
Affiliation(s)
- Rianne R Campbell
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Racquel D Domingo
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Amy R Williams
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Melissa G Wroten
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Hadley A McGregor
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Ryan S Waltermire
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Daniel I Greentree
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Scott P Goulding
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Andrew B Thompson
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Kaziya M Lee
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Sema G Quadir
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - C Leonardo Jimenez Chavez
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Michal A Coelho
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Adam T Gould
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Georg von Jonquieres
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, New South Wales 2052, Australia, and
| | - Matthias Klugmann
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, New South Wales 2052, Australia, and
| | - Paul F Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, the Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9660,
| |
Collapse
|
25
|
Zhang C, Fan SJ, Sun AB, Liu ZZ, Liu L. Prenatal nicotine exposure induces depression‑like behavior in adolescent female rats via modulating neurosteroid in the hippocampus. Mol Med Rep 2019; 19:4185-4194. [PMID: 30942466 PMCID: PMC6471439 DOI: 10.3892/mmr.2019.10105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/28/2019] [Indexed: 01/01/2023] Open
Abstract
Prenatal nicotine exposure (PNE) is closely related to depression in offspring. However, the underlying mechanism is still unclear. We hypothesized that neurosteroid in the hippocampus may mediate PNE-induced depression-like behaviors. Nicotine was subcutaneously administered (1.0 mg/kg) to pregnant rats twice daily from gestational day (GD) 9 to 20. In adolescent offspring, PNE significantly increased immobility time and decreased the sucrose preference in female rats. The numbers of hippocampal neurons declined in the CA3 and DG regions. Steroidogenic acute regulatory protein (StAR) expression was suppressed in female rats. In fetal offspring, the neuronal numbers of CA3 regions in PNE female fetal hippocampal were significantly decreased, accompanied by the enhanced content of corticosterone and StAR expression. These data indicated that PNE induced depression-like behavior in adolescent female rats via the regulation of neurosteroid levels in the hippocampus.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Pharmacy, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Si-Jing Fan
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - An-Bang Sun
- Laboratory of Neuronal and Brain Disease Modulation, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Zhen-Zhen Liu
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
26
|
Onaka T, Takayanagi Y. Role of oxytocin in the control of stress and food intake. J Neuroendocrinol 2019; 31:e12700. [PMID: 30786104 PMCID: PMC7217012 DOI: 10.1111/jne.12700] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
Abstract
Oxytocin neurones in the hypothalamus are activated by stressful stimuli and food intake. The oxytocin receptor is located in various brain regions, including the sensory information-processing cerebral cortex; the cognitive information-processing prefrontal cortex; reward-related regions such as the ventral tegmental areas, nucleus accumbens and raphe nucleus; stress-related areas such as the amygdala, hippocampus, ventrolateral part of the ventromedial hypothalamus and ventrolateral periaqueductal gray; homeostasis-controlling hypothalamus; and the dorsal motor complex controlling intestinal functions. Oxytocin affects behavioural and neuroendocrine stress responses and terminates food intake by acting on the metabolic or nutritional homeostasis system, modulating emotional processing, reducing reward values of food intake, and facilitating sensory and cognitive processing via multiple brain regions. Oxytocin also plays a role in interactive actions between stress and food intake and contributes to adaptive active coping behaviours.
Collapse
Affiliation(s)
- Tatsushi Onaka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiJapan
| | - Yuki Takayanagi
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiJapan
| |
Collapse
|
27
|
Lopatina OL, Komleva YK, Gorina YV, Olovyannikova RY, Trufanova LV, Hashimoto T, Takahashi T, Kikuchi M, Minabe Y, Higashida H, Salmina AB. Oxytocin and excitation/inhibition balance in social recognition. Neuropeptides 2018; 72:1-11. [PMID: 30287150 DOI: 10.1016/j.npep.2018.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Social recognition is the sensitive domains of complex behavior critical for identification, interpretation and storage of socially meaningful information. Social recognition develops throughout childhood and adolescent, and is affected in a wide variety of psychiatric disorders. Recently, new data appeared on the molecular mechanisms of these processes, particularly, the excitatory-inhibitory (E/I) ratio which is modified during development, and then E/I balance is established in the adult brain. While E/I imbalance has been proposed as a mechanism for schizophrenia, it also seems to be the common mechanism in autism spectrum disorder (ASD). In addition, there is a strong suggestion that the oxytocinergic system is related to GABA-mediated E/I control in the context of brain socialization. In this review, we attempt to summarize the underpinning molecular mechanisms of E/I balance and its imbalance, and related biomarkers in the brain in healthiness and pathology. In addition, because there are increasing interest on oxytocin in the social neuroscience field, we will pay intensive attention to the role of oxytocin in maintaining E/I balance from the viewpoint of its effects on improving social impairment in psychiatric diseases, especially in ASD.
Collapse
Affiliation(s)
- Olga L Lopatina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yulia K Komleva
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Yana V Gorina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Raisa Ya Olovyannikova
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Lyudmila V Trufanova
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Takanori Hashimoto
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Tetsuya Takahashi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Mitsuru Kikuchi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yoshio Minabe
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Alla B Salmina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| |
Collapse
|
28
|
Wilson LC, Goodson JL, Kingsbury MA. Neural responses to familiar conspecifics are modulated by a nonapeptide receptor in a winter flocking sparrow. Physiol Behav 2018; 196:165-175. [PMID: 30196086 DOI: 10.1016/j.physbeh.2018.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/27/2022]
Abstract
The social behavior network, a collection of reciprocally connected areas within the basal forebrain and midbrain, plays a conserved role in the regulation of vertebrate social behavior. Specific behaviors are associated with patterns of activity across the network, and these activity profiles vary with species and context. We investigated how the social behavior network responds to familiar social stimuli in a seasonally flocking songbird. Further, we explored how socially-induced neural responses are modulated by endogenous nonapeptide receptor blockade. Winter flocking dark-eyed juncos were exposed to either familiar conspecifics or a familiar empty aviary following a peripheral injection of either saline or [desGly-NH2,d(CH2)5, Tyr(Me)2,Thr4]-ornithine vasotocin, an VT3 receptor antagonist. Socially-exposed animals exhibited greater Fos induction across the social behavior network. Sex and drug effects were site-specific, with females tending to exhibit greater Fos responses to social stimuli and a greater sensitivity to VT3 antagonism. We suggest that in flocking animals, VT3 activation during social interaction may shift the pattern of neural activity towards the dorsocaudal lateral septum and rostral arcopallium and away from the extended amygdala, anterior and ventromedial hypothalamus, and the caudal ventral/ventrolateral lateral septum.
Collapse
Affiliation(s)
- Leah C Wilson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Marcy A Kingsbury
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
29
|
Abstract
Interest for the use of oxytocin as a treatment for addiction began over 40years ago. Better known for its roles in parturition, lactation and pair bonding, oxytocin also has anxiolytic properties, reduces immune and inflammatory responses, and has a role in learning and memory. In this chapter, oxytocin effects on addiction processes are described by highlighting research findings that have used oxytocin within current preclinical animal models of addiction, relapse, or craving. First, we provide a brief background of the endogenous oxytocin system followed by descriptions of the behavioral models used to study addiction, including models of drug taking and seeking. Then we review recent preclinical studies that have used oxytocin as a therapeutic intervention throughout multiple stages of the addiction cycle from a behavioral and neurobiological perspective. These models encompass the entire range of the addiction cycle including acquisition and maintenance of drug taking, withdrawal and craving during periods of drug abstinence, and ultimately relapse. We then posit several theories about how oxytocin interacts with both drug and social reward, as well as presenting a mechanistic account of how specific oxytocin receptor localization may contribute to oxytocin's efficacy as an addiction therapeutic.
Collapse
|
30
|
Vena A, King A, Lee R, de Wit H. Intranasal Oxytocin Does Not Modulate Responses to Alcohol in Social Drinkers. Alcohol Clin Exp Res 2018; 42:1725-1734. [PMID: 29917245 DOI: 10.1111/acer.13814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/12/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Preclinical and clinical evidence suggest that the neuropeptide oxytocin may be of value in treating alcohol use disorder, by either reducing the rewarding effects of alcohol or reducing negative affect induced by alcohol withdrawal. However, the effect of a single dose of oxytocin on subjective and psychomotor responses to alcohol in social drinkers is not known. METHODS This study examined the effect of intranasal oxytocin on subjective, behavioral, and physiological responses to a moderate dose of alcohol (0.8 g/kg) in young adult social drinkers. Participants (N = 35) completed 2 study sessions at which they consumed beverages containing alcohol (ALC; N = 20) or placebo (NoALC; N = 15) in combination with intranasal oxytocin (40 IU with a 20 IU booster) or placebo. They received oxytocin at one session and placebo at the other session (order counterbalanced) 20 minutes before consuming beverages. Subjective mood and drug effects ratings, heart rate and blood pressure, and 4 behavioral tasks (flanker task, digit span, go/no-go, and pursuit rotor) were the primary outcome measures. RESULTS ALC produced its expected subjective and behavioral effects; including feeling intoxicated and impaired performance on the digit span and go/no-go tasks. Oxytocin alone had no significant subjective or physiological effects, and it did not affect responses to alcohol on any measure. CONCLUSIONS We can conclude that, under these conditions, a single dose of intranasal oxytocin does not alter the effects of acute alcohol in healthy young adult social drinkers. Further research is needed to determine whether oxytocin alters responses to alcohol under different conditions, and to determine its potential as an aid in treatment for substance use disorders.
Collapse
Affiliation(s)
- Ashley Vena
- Department of Psychiatry and Behavioral Neuroscience (AV, AK, RL, HdW), University of Chicago, Chicago, Illinois
| | - Andrea King
- Department of Psychiatry and Behavioral Neuroscience (AV, AK, RL, HdW), University of Chicago, Chicago, Illinois
| | - Royce Lee
- Department of Psychiatry and Behavioral Neuroscience (AV, AK, RL, HdW), University of Chicago, Chicago, Illinois
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience (AV, AK, RL, HdW), University of Chicago, Chicago, Illinois
| |
Collapse
|
31
|
Zanos P, Georgiou P, Weber C, Robinson F, Kouimtsidis C, Niforooshan R, Bailey A. Oxytocin and opioid addiction revisited: old drug, new applications. Br J Pharmacol 2018; 175:2809-2824. [PMID: 28378414 PMCID: PMC6016632 DOI: 10.1111/bph.13757] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/01/2017] [Accepted: 02/13/2017] [Indexed: 12/28/2022] Open
Abstract
Opioid addiction has devastating health and socio-economic consequences, and current pharmacotherapy is limited and often accompanied by side effects, thus novel treatment is warranted. Traditionally, the neurohypophyseal peptide oxytocin (OT) is known for its effects on mediating reward, social affiliation and bonding, stress and learning and memory. There is now strong evidence that OT is a possible candidate for the treatment of drug addiction and depression-addiction co-morbidities. This review summarizes and critically discusses the preclinical evidence surrounding the consequences of pharmacological manipulation of the oxytocinergic system on opioid addiction-related processes, as well as the effects of opioids on the OT system at different stages of the addiction cycle. The mechanisms underlying the effects of OT on opioid addiction, including OT' interaction with the monoaminergic, glutamatergic, opioidergic systems and its effect on the amygdala, the hypothalamic-pituitary-adrenal axis and on memory consolidation of traumatic memories, are also reviewed. We also review clinical evidence on the effects of intranasal OT administration on opioid-dependent individuals and discuss the therapeutic potential along with the limitations that accompany OT-based pharmacotherapies. Review of these studies clearly indicates that the OT system is profoundly affected by opioid use and abstinence and points towards the OT system as an important target for developing pharmacotherapies for the treatment of opioid addiction and co-existing affective disorders, thereby preventing relapse. Therefore, there is a clear need for clinical studies assessing the efficacy of OT-based pharmacotherapies in opioid addiction. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Panos Zanos
- School of Biosciences and Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Polymnia Georgiou
- School of Biosciences and Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Carol Weber
- School of Biosciences and Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Fiona Robinson
- Surrey and Borders Partnership NHS Foundation TrustChertseySurreyUK
| | | | | | - Alexis Bailey
- School of Biosciences and Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- Institute of Medical and Biomedical EducationSt George's University of LondonLondonUK
| |
Collapse
|
32
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 408] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
33
|
da Silva FBR, Cunha PA, Ribera PC, Barros MA, Cartágenes SC, Fernandes LMP, Teixeira FB, Fontes-Júnior EA, Prediger RD, Lima RR, Maia CSF. Heavy Chronic Ethanol Exposure From Adolescence to Adulthood Induces Cerebellar Neuronal Loss and Motor Function Damage in Female Rats. Front Behav Neurosci 2018; 12:88. [PMID: 29867389 PMCID: PMC5968384 DOI: 10.3389/fnbeh.2018.00088] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/20/2018] [Indexed: 01/23/2023] Open
Abstract
Over the last years, heavy ethanol consumption by teenagers/younger adults has increased considerably among females. However, few studies have addressed the long-term impact on brain structures’ morphology and function of chronic exposure to high ethanol doses from adolescence to adulthood in females. In line with this idea, in the current study we investigated whether heavy chronic ethanol exposure during adolescence to adulthood may induce motor impairments and morphological and cellular alterations in the cerebellum of female rats. Adolescent female Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage. At 90 days of age, motor function of animals was assessed using open field (OF), pole, beam walking and rotarod tests. Following completion of behavioral tests, morphological and immunohistochemical analyses of the cerebellum were performed. Chronic ethanol exposure impaired significantly motor performance of female rats, inducing spontaneous locomotor activity deficits, bradykinesia, incoordination and motor learning disruption. Moreover, histological analysis revealed that ethanol exposure induced atrophy and neuronal loss in the cerebellum. These findings indicate that heavy ethanol exposure during adolescence is associated with long-lasting cerebellar degeneration and motor impairments in female rats.
Collapse
Affiliation(s)
- Fernando B R da Silva
- Laboratory of Pharmacology of Inflammation and Behavior (LAFICO), Institute of Health Sciences, Universidade Federal do Pará, Belém, Brazil
| | - Polyane A Cunha
- Laboratory of Pharmacology of Inflammation and Behavior (LAFICO), Institute of Health Sciences, Universidade Federal do Pará, Belém, Brazil
| | - Paula C Ribera
- Laboratory of Pharmacology of Inflammation and Behavior (LAFICO), Institute of Health Sciences, Universidade Federal do Pará, Belém, Brazil
| | - Mayara A Barros
- Laboratory of Pharmacology of Inflammation and Behavior (LAFICO), Institute of Health Sciences, Universidade Federal do Pará, Belém, Brazil
| | - Sabrina C Cartágenes
- Laboratory of Pharmacology of Inflammation and Behavior (LAFICO), Institute of Health Sciences, Universidade Federal do Pará, Belém, Brazil
| | - Luanna M P Fernandes
- Laboratory of Pharmacology of Inflammation and Behavior (LAFICO), Institute of Health Sciences, Universidade Federal do Pará, Belém, Brazil
| | - Francisco B Teixeira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Universidade Federal do Pará, Belém, Brazil
| | - Enéas A Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior (LAFICO), Institute of Health Sciences, Universidade Federal do Pará, Belém, Brazil
| | - Rui D Prediger
- Laboratório Experimental de Doenças Neurodegenerativas (LEXDON), Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Rafael R Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Universidade Federal do Pará, Belém, Brazil
| | - Cristiane S F Maia
- Laboratory of Pharmacology of Inflammation and Behavior (LAFICO), Institute of Health Sciences, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
34
|
Ch’Ng SS, Lawrence AJ. Investigational drugs for alcohol use disorders: a review of preclinical data. Expert Opin Investig Drugs 2018; 27:459-474. [DOI: 10.1080/13543784.2018.1472763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sarah S Ch’Ng
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
35
|
Everett NA, McGregor IS, Baracz SJ, Cornish JL. The role of the vasopressin V1A receptor in oxytocin modulation of methamphetamine primed reinstatement. Neuropharmacology 2018; 133:1-11. [DOI: 10.1016/j.neuropharm.2017.12.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022]
|
36
|
Oxytocin Reduces Alcohol Cue-Reactivity in Alcohol-Dependent Rats and Humans. Neuropsychopharmacology 2018; 43:1235-1246. [PMID: 29090683 PMCID: PMC5916348 DOI: 10.1038/npp.2017.257] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/08/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022]
Abstract
Approved pharmacological treatments for alcohol use disorder are limited in their effectiveness, and new drugs that can easily be translated into the clinic are warranted. One of those candidates is oxytocin because of its interaction with several alcohol-induced effects. Alcohol-dependent rats as well as post-mortem brains of human alcoholics and controls were analyzed for the expression of the oxytocin system by qRT-PCR, in situ hybridization, receptor autoradiography ([125I]OVTA binding), and immunohistochemistry. Alcohol self-administration and cue-induced reinstatement behavior was measured after intracerebroventricular injection of 10 nM oxytocin in dependent rats. Here we show a pronounced upregulation of oxytocin receptors in brain tissues of alcohol-dependent rats and deceased alcoholics, primarily in frontal and striatal areas. This upregulation stems most likely from reduced oxytocin expression in hypothalamic nuclei. Pharmacological validation showed that oxytocin reduced cue-induced reinstatement response in dependent rats-an effect that was not observed in non-dependent rats. Finally, a clinical pilot study (German clinical trial number DRKS00009253) using functional magnetic resonance imaging in heavy social male drinkers showed that intranasal oxytocin (24 IU) decreased neural cue-reactivity in brain networks similar to those detected in dependent rats and humans with increased oxytocin receptor expression. These studies suggest that oxytocin might be used as an anticraving medication and thus may positively affect treatment outcomes in alcoholics.
Collapse
|
37
|
Abstract
Patients who suffer from alcohol use disorders (AUDs) usually go through various socio-behavioral and pathophysiological changes that take place in the brain and other organs. Recently, consumption of unhealthy food and excess alcohol along with a sedentary lifestyle has become a norm in both developed and developing countries. Despite the beneficial effects of moderate alcohol consumption, chronic and/or excessive alcohol intake is reported to negatively affect the brain, liver and other organs, resulting in cell death, organ damage/failure and death. The most effective therapy for alcoholism and alcohol related comorbidities is alcohol abstinence, however, chronic alcoholic patients cannot stop drinking alcohol. Therefore, targeted therapies are urgently needed to treat such populations. Patients who suffer from alcoholism and/or alcohol abuse experience harmful effects and changes that occur in the brain and other organs. Upon stopping alcohol consumption, alcoholic patients experience acute withdrawal symptoms followed by a protracted abstinence syndrome resulting in the risk of relapse to heavy drinking. For the past few decades, several drugs have been available for the treatment of AUDs. These drugs include medications to reduce or stop severe alcohol withdrawal symptoms during alcohol detoxification as well as recovery medications to reduce alcohol craving and support abstinence. However, there is no drug that completely antagonizes the adverse effects of excessive amounts of alcohol. This review summarizes the drugs which are available and approved by the FDA and their mechanisms of action as well as the medications that are under various phases of preclinical and clinical trials. In addition, the repurposing of the FDA approved drugs, such as anticonvulsants, antipsychotics, antidepressants and other medications, to prevent alcoholism and treat AUDs and their potential target mechanisms are summarized.
Collapse
Affiliation(s)
- Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA.
| | - Mark Egli
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Young-Eun Cho
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Antonio Noronha
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
38
|
Abstract
There is growing interest in the use of oxytocin (OT) as a potential treatment for alcohol and other substance-use disorders. OT is a neuropeptide that modulates adaptive processes associated with addiction including reward, tolerance, associative learning, memory, and stress responses. OT exerts its effects through interactions with the hypothalamic-pituitary-adrenal axis and multiple neurotransmitter systems including the dopamine mesolimbic reward and corticotrophin-releasing factor stress systems. The effects of OT on stress systems are of high interest, given the strong link between stress, drug use and relapse, and known dysregulation of hypothalamic-pituitary-adrenal-axis activity associated with substance-use disorders. At the same time, the OT system is itself altered by acute or chronic drug exposure. This review summarizes the preclinical and clinical literature on the OT system and its relevance to drug and alcohol addiction. In addition, findings from recent clinical trials conducted in participants with cocaine, cannabis, or alcohol use disorder are included and evidence that OT may help to normalize blunted stress responses, and attenuate withdrawal-associated hypercortisolism, negative mood, and withdrawal symptoms is summarized.
Collapse
|
39
|
Bowen MT, Neumann ID. Rebalancing the Addicted Brain: Oxytocin Interference with the Neural Substrates of Addiction. Trends Neurosci 2017; 40:691-708. [PMID: 29128108 DOI: 10.1016/j.tins.2017.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022]
Abstract
Drugs that act on the brain oxytocin (OXT) system may provide a much-needed treatment breakthrough for substance-use disorders. Targeting the brain OXT system has the potential to treat addiction to all major classes of addictive substance and to intervene across all stages of the addiction cycle. Emerging evidence suggests that OXT is able to interfere with such a wide range of addictive behaviours for such a wide range of addictive substances by rebalancing core neural systems that become dysregulated over the course of addiction. By improving our understanding of these interactions between OXT and the neural substrates of addiction, we will not only improve our understanding of addiction, but also our ability to effectively treat these devastating disorders.
Collapse
Affiliation(s)
- Michael T Bowen
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, NSW, Australia; The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia
| | - Inga D Neumann
- Regensburg Center of Neuroscience, Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
40
|
Pedersen CA. Oxytocin, Tolerance, and the Dark Side of Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:239-274. [PMID: 29056153 DOI: 10.1016/bs.irn.2017.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Substance use disorders blight the lives of millions of people and inflict a heavy financial burden on society. There is a compelling need for new pharmacological treatments as current drugs have limited efficacy and other major drawbacks. A substantial number of animal and recent clinical studies indicate that the neuropeptide, oxytocin, is a particularly promising therapeutic agent for human addictions, especially alcohol use disorders. In preliminary trials, we found that oxytocin administered by the intranasal route, which produces some neuropeptide penetration into the CNS, potently blocked withdrawal and reduced alcohol consumption in heavy drinkers. A considerable body of earlier animal studies demonstrated that oxytocin inhibits tolerance to alcohol, opioids, and stimulants as well as withdrawal from alcohol and opioids. Based on these preclinical findings and our clinical results, we hypothesize that oxytocin may exert therapeutic effects in substance dependence by the novel mechanism of diminishing established tolerance. A newer wave of studies has almost unanimously found that oxytocin decreases self-administration of a number of addictive substances in several animal models of addiction. Reduction of established tolerance should be included among the potential explanations of oxytocin effects in these studies and changes in tolerance should be examined in future studies in relationship to oxytocin influences on acquisition and reinstatement of self-administration as well as extinction of drug seeking. Oxytocin efficacy in reducing anxiety and stress responses as well as established tolerance suggests it may be uniquely effective in reducing negative reinforcement (Koob's "dark side" of addiction) that maintains chronic substance use.
Collapse
Affiliation(s)
- Cort A Pedersen
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
41
|
Wang Y, Chen ZP, Zhuang QX, Zhang XY, Li HZ, Wang JJ, Zhu JN. Role of Corticotropin-Releasing Factor in Cerebellar Motor Control and Ataxia. Curr Biol 2017; 27:2661-2669.e5. [DOI: 10.1016/j.cub.2017.07.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 02/02/2023]
|
42
|
Abstract
PURPOSE OF REVIEW This review aims to evaluate the most recent literature examining the oxytocin (OXT) system's role in human anxiety by surveying various fields of preclinical and clinical research supporting this role, and queries whether the OXT system might be a target for novel anxiolytics. RECENT FINDINGS Evidence from the diverse body of literature presented here, from translational research, genetic and neuroimaging studies, to clinical trials of intranasal (IN) OXT reveals a positive association. In addition, some moderators (e.g., sex, specificities to cues) of OXT's anxiolytic effects can have an important influence on its outcomes, awaiting further research. Evidence for the role of OXT in regulating anxiety is undeniable. We expect that the diverse particularities of the OXT system will help broaden our understanding of anxiety and stress-related disorders. We conclude that OXT promises an enticing treatment option for human anxiety disorders especially those associated with socio-emotional dysfunctions.
Collapse
Affiliation(s)
- Wadih Jean Naja
- Department of Psychiatry, Lebanese University, Beirut, Lebanon. .,Gharios Medical Center, Mount Lebanon Hospital, Hazmieh, Beirut, Lebanon.
| | - Michaelangelo Pietro Aoun
- Department of Psychiatry, Lebanese University, Beirut, Lebanon.,Gharios Medical Center, Mount Lebanon Hospital, Hazmieh, Beirut, Lebanon
| |
Collapse
|
43
|
Becker HC. Influence of stress associated with chronic alcohol exposure on drinking. Neuropharmacology 2017; 122:115-126. [PMID: 28431971 PMCID: PMC5497303 DOI: 10.1016/j.neuropharm.2017.04.028] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 12/24/2022]
Abstract
Stress is commonly regarded as an important trigger for relapse and a significant factor that promotes increased motivation to drink in some individuals. However, the relationship between stress and alcohol is complex, likely changing in form during the transition from early moderated alcohol use to more heavy uncontrolled alcohol intake. A growing body of evidence indicates that prolonged excessive alcohol consumption serves as a potent stressor, producing persistent dysregulation of brain reward and stress systems beyond normal homeostatic limits. This progressive dysfunctional (allostatic) state is characterized by changes in neuroendocrine and brain stress pathways that underlie expression of withdrawal symptoms that reflect a negative affective state (dysphoria, anxiety), as well as increased motivation to self-administer alcohol. This review highlights literature supportive of this theoretical framework for alcohol addiction. In particular, evidence for stress-related neural, physiological, and behavioral changes associated with chronic alcohol exposure and withdrawal experience is presented. Additionally, this review focuses on the effects of chronic alcohol-induced changes in several pro-stress neuropeptides (corticotropin-releasing factor, dynorphin) and anti-stress neuropeptide systems (nocicepton, neuropeptide Y, oxytocin) in contributing to the stress, negative emotional, and motivational consequences of chronic alcohol exposure. Studies involving use of animal models have significantly increased our understanding of the dynamic stress-related physiological mechanisms and psychological underpinnings of alcohol addiction. This, in turn, is crucial for developing new and more effective therapeutics for treating excessive, harmful drinking, particularly stress-enhanced alcohol consumption. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Department of Neuroscience, Medical University of South Carolina, RHJ Department of Veterans Affairs, Charleston, SC 29464, USA.
| |
Collapse
|
44
|
Stevenson JR, Young KA, Bohidar AE, Francomacaro LM, Fasold TR, Buirkle JM, Ndem JR, Christian SC. Alcohol Consumption Decreases Oxytocin Neurons in the Anterior Paraventricular Nucleus of the Hypothalamus in Prairie Voles. Alcohol Clin Exp Res 2017; 41:1444-1451. [PMID: 28617958 DOI: 10.1111/acer.13430] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/05/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alcohol use disorders are associated with dysfunctional social relationships and stress responses. The neuropeptides oxytocin (OT) and vasopressin (AVP) are known to orchestrate or mediate many aspects of social behavior, stress responses, and ingestive behaviors. Because of the overlap between the effects of alcohol and the roles of OT and AVP, we sought to determine whether alcohol consumption altered expression of OT and AVP in the paraventricular nucleus (PVN) of the hypothalamus, one of the key sites for OT and AVP synthesis. METHODS Pair-housed adult male prairie voles were allowed to consume 15% ethanol versus water in the home cage continuously (Continuous-Access [CA] group) or every other day for 4 hours (Intermittent-Access [IA] group). Control animals never had access to alcohol. After 7 weeks, animals were sacrificed and their brains were removed and immunohistochemical analysis of OT- and AVP-immunopositive neurons was performed. RESULTS OT-immunopositive neurons were significantly decreased in the anterior PVN in the CA but not IA group, relative to Control animals, suggesting that continuous alcohol consumption decreases the number of OT neurons. There was no effect of alcohol consumption on posterior PVN OT neurons, and no effect on PVN AVP neurons. CONCLUSIONS These data show that continuous-access voluntary alcohol consumption is associated with decreased OT neurons in the anterior PVN, suggesting that alcohol-induced alterations in the OT system should be investigated as a mechanism for alcohol-related changes in social behavior, stress responses, and exacerbation of alcohol use disorders.
Collapse
Affiliation(s)
- Jennie R Stevenson
- Department of Psychology, Bucknell University, Lewisburg, Pennsylvania.,Program in Neuroscience, Bucknell University, Lewisburg, Pennsylvania.,Program in Animal Behavior, Bucknell University, Lewisburg, Pennsylvania
| | - Katelyn A Young
- Department of Psychology, Bucknell University, Lewisburg, Pennsylvania.,Program in Neuroscience, Bucknell University, Lewisburg, Pennsylvania.,Program in Animal Behavior, Bucknell University, Lewisburg, Pennsylvania
| | - Amelia E Bohidar
- Department of Psychology, Bucknell University, Lewisburg, Pennsylvania.,Program in Neuroscience, Bucknell University, Lewisburg, Pennsylvania.,Program in Animal Behavior, Bucknell University, Lewisburg, Pennsylvania
| | - Lisa M Francomacaro
- Department of Psychology, Bucknell University, Lewisburg, Pennsylvania.,Program in Neuroscience, Bucknell University, Lewisburg, Pennsylvania.,Program in Animal Behavior, Bucknell University, Lewisburg, Pennsylvania
| | - Terra R Fasold
- Department of Psychology, Bucknell University, Lewisburg, Pennsylvania.,Program in Neuroscience, Bucknell University, Lewisburg, Pennsylvania.,Program in Animal Behavior, Bucknell University, Lewisburg, Pennsylvania
| | - Julia M Buirkle
- Department of Psychology, Bucknell University, Lewisburg, Pennsylvania.,Program in Neuroscience, Bucknell University, Lewisburg, Pennsylvania.,Program in Animal Behavior, Bucknell University, Lewisburg, Pennsylvania
| | - Jackie R Ndem
- Department of Psychology, Bucknell University, Lewisburg, Pennsylvania.,Program in Neuroscience, Bucknell University, Lewisburg, Pennsylvania.,Program in Animal Behavior, Bucknell University, Lewisburg, Pennsylvania
| | - Sara C Christian
- Department of Psychology, Bucknell University, Lewisburg, Pennsylvania.,Program in Neuroscience, Bucknell University, Lewisburg, Pennsylvania.,Program in Animal Behavior, Bucknell University, Lewisburg, Pennsylvania
| |
Collapse
|
45
|
Oxytocin reduces alcohol consumption in prairie voles. Physiol Behav 2017; 179:411-421. [PMID: 28716609 DOI: 10.1016/j.physbeh.2017.07.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 11/23/2022]
Abstract
Alcohol use disorder (AUD) negatively affects millions of people every year in the United States, and effective treatments for AUD are still needed. The neuropeptide oxytocin has shown promise for reducing alcohol drinking in mice and rats. Because oxytocin also plays a key role in complex prosocial behaviors like bonding and attachment, we tested the effect of oxytocin on alcohol drinking in prairie voles, a species that both consumes high amounts of alcohol and forms oxytocin dependent social bonds in a manner similar to humans. Oxytocin treatment (1.0, 3.0, and 10.0mg/kg, i.p.) reduced alcohol consumption in male and female prairie voles in animals that had access to 15% ethanol vs water every other day for 12 alcohol drinking sessions. In animals with continuous access to 15% alcohol and water, oxytocin (3.0mg/kg) reduced alcohol consumption only in the first hour of access after treatment, with no significant effects on consumption over the 24-hr period. In an open field locomotor test, oxytocin (1.0, 3.0, and 10.0mg/kg, i.p.) did not affect overall locomotor activity; however, ethanol (2g/kg, i.p.) increased locomotor activity in males and females, and produced anxiolytic effects (increased time in the center of an open field) in females only. Because prairie voles have been shown to match the alcohol consumption of their cage mate, we evaluated the relationship between cage mates' alcohol drinking. There was an overall pattern of social facilitation (consumption by one cage mate predicted consumption by the other cage mate); however, we found significant individual differences across cages in which many cages did not show significant matching, and, in some cases one cage mate's consumption negatively predicted the other cage mate's consumption. Overall, our data provide support for the potential of oxytocin as a treatment to reduce alcohol consumption.
Collapse
|
46
|
Sabihi S, Dong SM, Maurer SD, Post C, Leuner B. Oxytocin in the medial prefrontal cortex attenuates anxiety: Anatomical and receptor specificity and mechanism of action. Neuropharmacology 2017; 125:1-12. [PMID: 28655609 DOI: 10.1016/j.neuropharm.2017.06.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 01/12/2023]
Abstract
Numerous studies in animals and humans have established that oxytocin (OT) reduces anxiety. In rats, the prelimbic (PL) subregion of the medial prefrontal cortex (mPFC) is among the brain areas implicated in the anxiolytic actions of OT. However, questions remain about the anatomical and receptor specificity of OT and its mechanism of action. Here we assessed whether the regulation of anxiety by mPFC OT is restricted to the PL subregion and evaluated whether oxytocin receptor (OTR) activation is required for OT to have an anxiolytic effect. We also examined whether OT interacts with GABA in the mPFC to reduce anxiety and investigated the extent to which OT in the mPFC affects activation of mPFC GABA neurons as well as neuronal activation in the amygdala, a primary target of the mPFC which is part of the neural network regulating anxiety. We found that OT reduced anxiety-like behavior when delivered to the PL, but not infralimbic or anterior cingulate subregions of the mPFC. The anxiolytic effect of OT in the PL mPFC was blocked by pretreatment with an OTR, but not a vasopressin receptor, antagonist as well as with a GABAA receptor antagonist. Lastly, administration of OT to the PL mPFC was accompanied by increased activation of GABA neurons in the PL mPFC and altered neuronal activation of the amygdala following anxiety testing. These results demonstrate that OT in the PL mPFC attenuates anxiety-related behavior and may do so by engaging GABAergic neurons which ultimately modulate downstream brain regions implicated in anxiety.
Collapse
Affiliation(s)
- Sara Sabihi
- The Ohio State University, Department of Psychology, Columbus, OH 43210, United States
| | - Shirley M Dong
- The Ohio State University, Department of Psychology, Columbus, OH 43210, United States
| | - Skyler D Maurer
- The Ohio State University, Department of Psychology, Columbus, OH 43210, United States
| | - Caitlin Post
- The Ohio State University, Department of Psychology, Columbus, OH 43210, United States
| | - Benedetta Leuner
- The Ohio State University, Department of Psychology, Columbus, OH 43210, United States; The Ohio State University, Department of Neuroscience, Columbus, OH 43210, United States; The Ohio State University, Behavioral Neuroendocrinology Group, Columbus, OH 43210, United States.
| |
Collapse
|
47
|
King CE, Griffin WC, Luderman LN, Kates MM, McGinty JF, Becker HC. Oxytocin Reduces Ethanol Self-Administration in Mice. Alcohol Clin Exp Res 2017; 41:955-964. [PMID: 28212464 PMCID: PMC5404956 DOI: 10.1111/acer.13359] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/14/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Excessive ethanol (EtOH) consumption remains an important health concern and effective treatments are lacking. The central oxytocin system has emerged as a potentially important therapeutic target for alcohol and drug addiction. These studies tested the hypothesis that oxytocin reduces EtOH consumption. METHODS Male C57BL/6J mice were given access to EtOH (20% v/v) using a model of binge-like drinking ("drinking in the dark") that also included the use of lickometer circuits to evaluate the temporal pattern of intake as well as 2-bottle choice drinking in the home cage. In addition, EtOH (12% v/v) and sucrose (5% w/v) self-administration on fixed- and progressive-ratio schedules were also evaluated. A wide range of systemically administered oxytocin doses were tested (0 to 10 mg/kg) in these models. RESULTS Oxytocin (0, 0.3, 1, 3, or 10 mg/kg) dose dependently reduced EtOH consumption (maximal 45% reduction) in the binge drinking model, with lower effective doses having minimal effects on general locomotor activity. Oxytocin's effect was blocked by pretreatment with an oxytocin receptor antagonist, and the pattern of contacts (licks) at the EtOH bottle suggested a reduction in motivation to drink EtOH. Oxytocin decreased 2-bottle choice drinking without altering general fluid intake. Oxytocin also reduced operant responding for EtOH and sucrose in a dose-related manner. However, oxytocin decreased responding and motivation (breakpoint values) for EtOH at doses that did not alter responding for sucrose. CONCLUSIONS These results indicate that oxytocin reduces EtOH consumption in different models of self-administration. The effects are not likely due to a general sedative effect of the neuropeptide. Further, oxytocin reduces motivation for EtOH at doses that do not alter responding for a natural reward (sucrose). While some evidence supports a role for oxytocin receptors in mediating these effects, additional studies are needed to further elucidate underlying mechanisms. Nevertheless, these results support the therapeutic potential of oxytocin as a treatment for alcohol use disorder.
Collapse
Affiliation(s)
- Courtney E. King
- Charleston Alcohol Research Center, Departments of Psychiatry and Neuroscience, Medical University of South Carolina & VAMC, Charleston, SC 29425
| | - William C. Griffin
- Charleston Alcohol Research Center, Departments of Psychiatry and Neuroscience, Medical University of South Carolina & VAMC, Charleston, SC 29425
| | - Lauryn N. Luderman
- Charleston Alcohol Research Center, Departments of Psychiatry and Neuroscience, Medical University of South Carolina & VAMC, Charleston, SC 29425
| | - Malcolm M. Kates
- Charleston Alcohol Research Center, Departments of Psychiatry and Neuroscience, Medical University of South Carolina & VAMC, Charleston, SC 29425
| | - Jacqueline F. McGinty
- Charleston Alcohol Research Center, Departments of Psychiatry and Neuroscience, Medical University of South Carolina & VAMC, Charleston, SC 29425
| | - Howard C. Becker
- Charleston Alcohol Research Center, Departments of Psychiatry and Neuroscience, Medical University of South Carolina & VAMC, Charleston, SC 29425
| |
Collapse
|
48
|
Peters ST, Bowen MT, Bohrer K, McGregor IS, Neumann ID. Oxytocin inhibits ethanol consumption and ethanol-induced dopamine release in the nucleus accumbens. Addict Biol 2017; 22:702-711. [PMID: 26810371 DOI: 10.1111/adb.12362] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 11/29/2022]
Abstract
Alcohol (EtOH) is one of the most widely abused recreational drugs and is arguably the most harmful. However, current treatment options for alcohol-use disorders generally have limited efficacy and poor uptake in the community. In this context, the neuropeptide oxytocin (OXT) has emerged as a promising potential treatment option for a number of substance-use disorders, including alcoholism. The utility of OXT in reducing consumption of and craving for a wide range of substances may lie in its ability to modulate drug-induced neurochemical effects within the mesolimbic dopamine pathway. However, the impact of OXT on EtOH actions in this pathway has yet to be explored. Here, we reveal that an acute intracerebroventricular (icv) infusion of OXT (1 µg/5 µl) attenuated voluntary EtOH (20 percent) self-administration after chronic intermittent access to EtOH for 59 days (28 drinking sessions) in male Wistar rats. Next, we demonstrated that an acute intraperitoneal (ip) injection of EtOH (1.5 g/kg, 15 percent w/v) increased dopamine release within the nucleus accumbens in both EtOH-naive rats and rats that had received 10 daily ip injections of EtOH. Icv OXT completely blocked the EtOH-induced dopamine release in both EtOH-naive and chronically treated rats. The attenuation of EtOH-induced dopamine release by OXT may help to explain the reduced EtOH self-administration observed following icv OXT infusion.
Collapse
Affiliation(s)
- Sebastian T. Peters
- Department of Behavioral and Molecular Neurobiology; University of Regensburg; Germany
- Current address: Department of Neurology; University Clinic Regensburg; Germany
| | | | - Kathrin Bohrer
- Department of Behavioral and Molecular Neurobiology; University of Regensburg; Germany
| | | | - Inga D. Neumann
- Department of Behavioral and Molecular Neurobiology; University of Regensburg; Germany
| |
Collapse
|
49
|
Intranasal Oxytocin Selectively Modulates Social Perception, Craving, and Approach Behavior in Subjects With Alcohol Use Disorder. J Addict Med 2017; 10:182-9. [PMID: 27159342 DOI: 10.1097/adm.0000000000000213] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES A pharmacotherapy that both improves social abilities and promotes abstinence may be particularly helpful for the treatment of alcohol use disorder. Recent clinical and preclinical evidence suggests that oxytocin has prosocial and antiaddiction effects. We performed a pilot, laboratory-based, preclinical trial of oxytocin in subjects with alcohol abuse (as per Diagnostic and Statistical Manual of Mental Disorders, 4 Edition criteria) to evaluate therapeutic potential and assess tolerability. METHODS Social perceptual ability, cue-induced craving, and approach bias for alcohol and appetitive imagery were quantified after intranasal oxytocin and placebo administration to 32 nontreatment-seeking individuals with alcohol abuse in a double-blind, crossover study. Because attachment style can moderate the effects of oxytocin, we also explored whether attachment style moderated oxytocin's effects on our behavioral measures. RESULTS Oxytocin significantly improved recognition of easier items on a social perception task, but had no significant group-level effect on cue-induced craving. However, oxytocin effects on craving were moderated by attachment anxiety, with oxytocin reducing craving in more anxiously attached individuals and increasing craving in less anxiously attached individuals. Subjects did not display an approach bias to alcohol images on the placebo day, preventing meaningful analysis of this measure. Subjects did display an approach bias to appetitive images on the placebo day, which was significantly reduced by oxytocin administration. No adverse reactions were observed. CONCLUSIONS Intranasal oxytocin has potential to improve social perception, reduce cue-induced alcohol cravings, and reduce appetitive approach bias in subjects with alcohol abuse, and can be safely tolerated in this population. The effects of oxytocin are complex, however, and require further investigation.
Collapse
|
50
|
Bowen MT, Neumann ID. The Multidimensional Therapeutic Potential of Targeting the Brain Oxytocin System for the Treatment of Substance Use Disorders. Curr Top Behav Neurosci 2017; 35:269-287. [PMID: 28942596 DOI: 10.1007/7854_2017_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The neuropeptide oxytocin is released both into the blood and within the brain in response to reproductive stimuli, such as birth, suckling and sex, but also in response to social interaction and stressors. Substance use disorders, or addictions, are chronic, relapsing brain disorders and are one of the major causes of global burden of disease. Unfortunately, current treatment options for substance use disorders are extremely limited and a treatment breakthrough is sorely needed. There is mounting preclinical evidence that targeting the brain oxytocin system may provide that breakthrough. Substance use disorders are characterised by a viscous cycle of bingeing and intoxication, followed by withdrawal and negative affect, and finally preoccupation and anticipation that triggers relapse and further consumption. Administration of oxytocin has been shown to have a potential therapeutic benefit at each stage of this addiction cycle for numerous drugs of abuse. This multidimensional therapeutic utility is likely due to oxytocin's interactions with key biological systems that underlie the development and maintenance of addiction. Only a few human trials of oxytocin in addicted populations have been completed with the results thus far being mixed. There are numerous other trials underway, and the results are eagerly awaited. However, the ability to fully harness the potential therapeutic benefit of targeting the brain oxytocin system may depend on the development of molecules that selectively stimulate the oxytocin system, but that have superior pharmacokinetic properties to oxytocin itself.
Collapse
Affiliation(s)
- Michael T Bowen
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|