1
|
Sandel AA, Scott JE, Kamilar JM. Primate Behavior and the Importance of Comparative Studies in Biological Anthropology. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 186 Suppl 78:e70009. [PMID: 40071872 DOI: 10.1002/ajpa.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/06/2024] [Accepted: 12/21/2024] [Indexed: 04/02/2025]
Abstract
Biological anthropology seeks to understand humans from an evolutionary perspective. Namely, what makes humans different from other animals, and how did we get this way? Many relevant traits are physical, but many others are behavioral. For example, when and why did our species develop complex cognition, enduring bonds, and intense cooperation? Given the importance of behavior, biological anthropologists have a long history of turning to our primate relatives to generate hypotheses about the evolutionary processes shaping humans. Indeed, primate behavior is foundational to our field. But not all biological anthropologists appreciate the value of primate behavior for understanding human evolution. Beyond lip service in introductory paragraphs and grant proposals, many primatologists do not make explicit how their work is relevant to human evolution. In this review, we have three main goals: (1) emphasize how comparative studies of primate behavior are crucial to biological anthropology; (2) outline how primatologists and biological anthropologists can improve their work by avoiding common problems that arise when making such comparisons; and (3) provide a primer on the concepts and methods underlying comparative analyses of traits. We provide examples to highlight these points related to cognition, sociality, and diet. We conclude with several recommendations including (1) detailed, high-quality studies of behavior that allow for appropriate comparisons within and across species; (2) using primates as a "gateway clade" and expanding our research to any relevant taxa; and (3) careful attention to the ethical implications of making comparisons to other primates given racist tropes and a history of eugenics.
Collapse
Affiliation(s)
- Aaron A Sandel
- Department of Anthropology, The University of Texas at Austin, Austin, Texas, USA
| | - Jeremiah E Scott
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Jason M Kamilar
- Department of Anthropology and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
2
|
Spear JK. Reduced limb integration characterizes primate clades with diverse locomotor adaptations. J Hum Evol 2024; 194:103567. [PMID: 39068699 DOI: 10.1016/j.jhevol.2024.103567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024]
Abstract
Hominoids exhibit a strikingly diverse set of locomotor adaptations-including knuckle-walking, brachiation, quadrumanuous suspension, and striding bipedalism-while also possessing morphologies associated with forelimb suspension. It has been suggested that changes in limb element integration facilitated the evolution of diverse locomotor modes by reducing covariation between serial homologs and allowing the evolution of a greater diversity of limb lengths. Here, I compare limb element integration in hominoids with that of other primate taxa, including two that have converged with them in forelimb morphology, Ateles and Pygathrix. Ateles is part of a clade that, such as hominoids, exhibits diverse locomotor adaptations, whereas Pygathrix is an anomaly in a much more homogeneous (in terms of locomotor adaptations) clade. I find that all atelines (and possibly all atelids), not just Ateles, share reduced limb element integration with hominoids. Pygathrix does not, however, instead resembling other members of its own family. Indriids also seem to have higher limb integration than apes, despite using their forelimbs and hindlimbs in divergent ways, although there is more uncertainty in this group due to poor sample size. These results suggest that reduced limb integration is characteristic of certain taxonomic groups with high locomotor diversity rather than taxa with specific, specialized locomotor adaptations. This is consistent with the hypothesis that reduced integration serves to open new areas of morphospace to those clades while suggesting that derived locomotion with divergent demands on limbs is not necessarily associated with reduced limb integration.
Collapse
Affiliation(s)
- Jeffrey K Spear
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E 57th Street, Chicago, 60637, USA; Center for the Study of Human Origins and Department of Anthropology, New York University, 25 Waverly Place, New York, 10003, USA; New York Consortium in Evolutionary Primatology, New York, USA.
| |
Collapse
|
3
|
Bouchet F, Zanolli C, Urciuoli A, Almécija S, Fortuny J, Robles JM, Beaudet A, Moyà-Solà S, Alba DM. The Miocene primate Pliobates is a pliopithecoid. Nat Commun 2024; 15:2822. [PMID: 38561329 PMCID: PMC10984959 DOI: 10.1038/s41467-024-47034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
The systematic status of the small-bodied catarrhine primate Pliobates cataloniae, from the Miocene (11.6 Ma) of Spain, is controversial because it displays a mosaic of primitive and derived features compared with extant hominoids (apes and humans). Cladistic analyses have recovered Pliobates as either a stem hominoid or as a pliopithecoid stem catarrhine (i.e., preceding the cercopithecoid-hominoid divergence). Here, we describe additional dental remains of P. cataloniae from another locality that display unambiguous synapomorphies of crouzeliid pliopithecoids. Our cladistic analyses support a close phylogenetic link with poorly-known small crouzeliids from Europe based on (cranio)dental characters but recover pliopithecoids as stem hominoids when postcranial characters are included. We conclude that Pliobates is a derived stem catarrhine that shows postcranial convergences with modern apes in the elbow and wrist joints-thus clarifying pliopithecoid evolution and illustrating the plausibility of independent acquisition of postcranial similarities between hylobatids and hominids.
Collapse
Grants
- This publication is part of R+D+I projects PID2020-116908GB-I00 (to S.M.S. and J.M.R.), PID2020-117289GB-I00 (to D.M.A. and J.M.R.), and PID2020-117118GB-I00 (to J.F.), funded by the Agencia Estatal de Investigación of the Ministerio de Ciencia e Innovación from Spain (MCIN/AEI/10.13039/501100011033/). Research has also been funded by the Generalitat de Catalunya/CERCA Programme (to F.B., A.U., S.A., J.F., J.M.R., S.M.S., and D.M.A.); the Agència de Gestió d’Ajuts Universitaris i de Recerca of the Generalitat de Catalunya (Consolidated Research Groups 2022 SGR 00620 to D.M.A. and J.M.R., 2022 SGR 01184 to J.F., and 2022 SGR 01188 to S.M.S.); the Departament de Cultura of the Generalitat de Catalunya (CLT009/18/00071 to S.M.S. and CLT0009_22_000018 to D.M.A.); a predoctoral grant from the Ministerio de Ciencia e Innovación (PRE2018-083299 to F.B.); a Margarita Salas postdoctoral fellowship funded by the European Union NextGenerationEU to A.U.; and a Ramón y Cajal grant (RYC2021-032857-I) financed by the Agencia Estatal de Investigación of the Ministerio de Ciencia e Innovación from Spain (MCIN/AEI/10.13039/501100011033) and the European Union «NextGenerationEU» / PRTR to J.F.
Collapse
Affiliation(s)
- Florian Bouchet
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, F-33600, Pessac, France
| | - Alessandro Urciuoli
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Universidad de Alcalá, Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-UAH), Departamento de Ciencias de la Vida, 28871 Alcalá de Henares, Madrid, Spain
| | - Sergio Almécija
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Division of Anthropology, American Museum of Natural History, New York, NY, 10024, USA
- New York Consortium in Evolutionary Primatology, New York, NY, 10016, USA
| | - Josep Fortuny
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Josep M Robles
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Amélie Beaudet
- Laboratoire de Paléontologie, Évolution, Paléoécosystèmes et Paléoprimatologie (PALEVOPRIM), UMR 7262 CNRS, Univ. Poitiers, Poitiers, France
- Department of Archaeology, University of Cambridge, Cambridge, CB2 1QH, United Kingdom
- School of Geography, Archaeology, and Environmental Studies, University of the Witwatersrand, Johannesburg, WITS, 2050, South Africa
| | - Salvador Moyà-Solà
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
- Unitat d'Antropologia Biològica (Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
4
|
O'Neill MC, Nagano A, Umberger BR. A three-dimensional musculoskeletal model of the pelvis and lower limb of Australopithecus afarensis. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24845. [PMID: 37671481 DOI: 10.1002/ajpa.24845] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 07/08/2023] [Accepted: 08/17/2023] [Indexed: 09/07/2023]
Abstract
OBJECTIVES Musculoskeletal modeling is a powerful approach for studying the biomechanics and energetics of locomotion. Australopithecus (A.) afarensis is among the best represented fossil hominins and provides critical information about the evolution of musculoskeletal design and locomotion in the hominin lineage. Here, we develop and evaluate a three-dimensional (3-D) musculoskeletal model of the pelvis and lower limb of A. afarensis for predicting muscle-tendon moment arms and moment-generating capacities across lower limb joint positions encompassing a range of locomotor behaviors. MATERIALS AND METHODS A 3-D musculoskeletal model of an adult A. afarensis pelvis and lower limb was developed based primarily on the A.L. 288-1 partial skeleton. The model includes geometric representations of bones, joints and 35 muscle-tendon units represented using 43 Hill-type muscle models. Two muscle parameter datasets were created from human and chimpanzee sources. 3-D muscle-tendon moment arms and isometric joint moments were predicted over a wide range of joint positions. RESULTS Predicted muscle-tendon moment arms generally agreed with skeletal metrics, and corresponded with human and chimpanzee models. Human and chimpanzee-based muscle parameterizations were similar, with some differences in maximum isometric force-producing capabilities. The model is amenable to size scaling from A.L. 288-1 to the larger KSD-VP-1/1, which subsumes a wide range of size variation in A. afarensis. DISCUSSION This model represents an important tool for studying the integrated function of the neuromusculoskeletal systems in A. afarensis. It is similar to current human and chimpanzee models in musculoskeletal detail, and will permit direct, comparative 3-D simulation studies.
Collapse
Affiliation(s)
- Matthew C O'Neill
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA
| | - Akinori Nagano
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Brian R Umberger
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Kuderna LFK, Gao H, Janiak MC, Kuhlwilm M, Orkin JD, Bataillon T, Manu S, Valenzuela A, Bergman J, Rousselle M, Silva FE, Agueda L, Blanc J, Gut M, de Vries D, Goodhead I, Harris RA, Raveendran M, Jensen A, Chuma IS, Horvath JE, Hvilsom C, Juan D, Frandsen P, Schraiber JG, de Melo FR, Bertuol F, Byrne H, Sampaio I, Farias I, Valsecchi J, Messias M, da Silva MNF, Trivedi M, Rossi R, Hrbek T, Andriaholinirina N, Rabarivola CJ, Zaramody A, Jolly CJ, Phillips-Conroy J, Wilkerson G, Abee C, Simmons JH, Fernandez-Duque E, Kanthaswamy S, Shiferaw F, Wu D, Zhou L, Shao Y, Zhang G, Keyyu JD, Knauf S, Le MD, Lizano E, Merker S, Navarro A, Nadler T, Khor CC, Lee J, Tan P, Lim WK, Kitchener AC, Zinner D, Gut I, Melin AD, Guschanski K, Schierup MH, Beck RMD, Umapathy G, Roos C, Boubli JP, Rogers J, Farh KKH, Marques Bonet T. A global catalog of whole-genome diversity from 233 primate species. Science 2023; 380:906-913. [PMID: 37262161 DOI: 10.1126/science.abn7829] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/06/2023] [Indexed: 06/03/2023]
Abstract
The rich diversity of morphology and behavior displayed across primate species provides an informative context in which to study the impact of genomic diversity on fundamental biological processes. Analysis of that diversity provides insight into long-standing questions in evolutionary and conservation biology and is urgent given severe threats these species are facing. Here, we present high-coverage whole-genome data from 233 primate species representing 86% of genera and all 16 families. This dataset was used, together with fossil calibration, to create a nuclear DNA phylogeny and to reassess evolutionary divergence times among primate clades. We found within-species genetic diversity across families and geographic regions to be associated with climate and sociality, but not with extinction risk. Furthermore, mutation rates differ across species, potentially influenced by effective population sizes. Lastly, we identified extensive recurrence of missense mutations previously thought to be human specific. This study will open a wide range of research avenues for future primate genomic research.
Collapse
Affiliation(s)
- Lukas F K Kuderna
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA 94404, USA
| | - Hong Gao
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA 94404, USA
| | - Mareike C Janiak
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Martin Kuhlwilm
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Austria
| | - Joseph D Orkin
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Département d'anthropologie, Université de Montréal, 3150 Jean-Brillant, Montréal, QC H3T 1N8, Canada
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Shivakumara Manu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Alejandro Valenzuela
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
| | - Juraj Bergman
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Felipe Ennes Silva
- Research Group on Primate Biology and Conservation, Mamirauá Institute for Sustainable Development, Estrada da Bexiga 2584, CEP 69553-225, Tefé, Amazonas, Brazil
- Evolutionary Biology and Ecology (EBE), Département de Biologie des Organismes, Université libre de Bruxelles (ULB), Av. Franklin D. Roosevelt 50, CP 160/12, B-1050 Brussels Belgium
| | - Lidia Agueda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
| | - Julie Blanc
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
| | - Dorien de Vries
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Ian Goodhead
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, SE-75236 Uppsala, Sweden
| | | | - Julie E Horvath
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - David Juan
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
| | | | - Joshua G Schraiber
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA 94404, USA
| | | | - Fabrício Bertuol
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas 69080-900, Brazil
| | - Hazel Byrne
- Department of Anthropology, University of Utah, Salt Lake City. UT 84102, USA
| | | | - Izeni Farias
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas 69080-900, Brazil
| | - João Valsecchi
- Research Group on Terrestrial Vertebrate Ecology, Mamirauá Institute for Sustainable Development, Tefé, Amazonas, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia - RedeFauna, Manaus, Amazonas, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica - ComFauna, Iquitos, Loreto, Peru
| | - Malu Messias
- Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | | | - Mihir Trivedi
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Rogerio Rossi
- Instituto de Biociências, Universidade Federal do Mato Grosso, Cuiabá, MT, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas 69080-900, Brazil
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Nicole Andriaholinirina
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Clément J Rabarivola
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Alphonse Zaramody
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Clifford J Jolly
- Department of Anthropology, New York University, New York, NY 10003, USA
| | - Jane Phillips-Conroy
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Gregory Wilkerson
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop TX 78602, USA
| | - Christian Abee
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop TX 78602, USA
| | - Joe H Simmons
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop TX 78602, USA
| | | | - Sree Kanthaswamy
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85004, USA
| | - Fekadu Shiferaw
- Guinea Worm Eradication Program, The Carter Center Ethiopia, Addis Ababa, Ethiopia
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Long Zhou
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Shangcheng District, Hangzhou 310006, China
| | - Julius D Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Head Office, P.O. Box 661, Arusha, Tanzania
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Minh D Le
- Department of Environmental Ecology, Faculty of Environmental Sciences, University of Science and Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam
| | - Esther Lizano
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stefan Merker
- Department of Zoology, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Arcadi Navarro
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra. Pg. Luís Companys 23, 08010 Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Av. Doctor Aiguader, N88, 08003 Barcelona, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, C. Wellington 30, 08005 Barcelona, Spain
| | - Tilo Nadler
- Cuc Phuong Commune, Nho Quan District, Ninh Binh Province, Vietnam
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Jessica Lee
- Mandai Nature, 80 Mandai Lake Road, Singapore
| | - Patrick Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK, and School of Geosciences, Drummond Street, Edinburgh EH8 9XP, UK
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, Germany Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, 37077 Göttingen, Germany
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
- Department of Medical Genetics, University of Calgary, 3330 Hospital Drive NW, HMRB 202, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, HMRB 202, Calgary, AB T2N 4N1, Canada
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, SE-75236 Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Robin M D Beck
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Govindhaswamy Umapathy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Jean P Boubli
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA 94404, USA
| | - Tomas Marques Bonet
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra. Pg. Luís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
6
|
Urciuoli A, Alba DM. Systematics of Miocene apes: State of the art of a neverending controversy. J Hum Evol 2023; 175:103309. [PMID: 36716680 DOI: 10.1016/j.jhevol.2022.103309] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/29/2023]
Abstract
Hominoids diverged from cercopithecoids during the Oligocene in Afro-Arabia, initially radiating in that continent and subsequently dispersing into Eurasia. From the Late Miocene onward, the geographic range of hominoids progressively shrank, except for hominins, which dispersed out of Africa during the Pleistocene. Although the overall picture of hominoid evolution is clear based on available fossil evidence, many uncertainties persist regarding the phylogeny and paleobiogeography of Miocene apes (nonhominin hominoids), owing to their sparse record, pervasive homoplasy, and the decimated current diversity of this group. We review Miocene ape systematics and evolution by focusing on the most parsimonious cladograms published during the last decade. First, we provide a historical account of the progress made in Miocene ape phylogeny and paleobiogeography, report an updated classification of Miocene apes, and provide a list of Miocene ape species-locality occurrences together with an analysis of their paleobiodiversity dynamics. Second, we discuss various critical issues of Miocene ape phylogeny and paleobiogeography (hylobatid and crown hominid origins, plus the relationships of Oreopithecus) in the light of the highly divergent results obtained from cladistic analyses of craniodental and postcranial characters separately. We conclude that cladistic efforts to disentangle Miocene ape phylogeny are potentially biased by a long-branch attraction problem caused by the numerous postcranial similarities shared between hylobatids and hominids-despite the increasingly held view that they are likely homoplastic to a large extent, as illustrated by Sivapithecus and Pierolapithecus-and further aggravated by abundant missing data owing to incomplete preservation. Finally, we argue that-besides the recovery of additional fossils, the retrieval of paleoproteomic data, and a better integration between cladistics and geometric morphometrics-Miocene ape phylogenetics should take advantage of total-evidence (tip-dating) Bayesian methods of phylogenetic inference combining morphologic, molecular, and chronostratigraphic data. This would hopefully help ascertain whether hylobatid divergence was more basal than currently supported.
Collapse
Affiliation(s)
- Alessandro Urciuoli
- Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
7
|
O'Neill MC, Demes B, Thompson NE, Larson SG, Stern JT, Umberger BR. Adaptations for bipedal walking: Musculoskeletal structure and three-dimensional joint mechanics of humans and bipedal chimpanzees (Pan troglodytes). J Hum Evol 2022; 168:103195. [PMID: 35596976 DOI: 10.1016/j.jhevol.2022.103195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 11/25/2022]
Abstract
Humans are unique among apes and other primates in the musculoskeletal design of their lower back, pelvis, and lower limbs. Here, we describe the three-dimensional ground reaction forces and lower/hindlimb joint mechanics of human and bipedal chimpanzees walking over a full stride and test whether: 1) the estimated limb joint work and power during the stance phase, especially the single-support period, is lower in humans than bipedal chimpanzees, 2) the limb joint work and power required for limb swing is lower in humans than in bipedal chimpanzees, and 3) the estimated total mechanical power during walking, accounting for the storage of passive elastic strain energy in humans, is lower in humans than in bipedal chimpanzees. Humans and bipedal chimpanzees were compared at matched dimensionless and dimensional velocities. Our results indicate that humans walk with significantly less work and power output in the first double-support period and the single-support period of stance, but markedly exceed chimpanzees in the second double-support period (i.e., push-off). Humans generate less work and power in limb swing, although the species difference in limb swing power was not statistically significant. We estimated that total mechanical positive 'muscle fiber' work and power were 46.9% and 35.8% lower, respectively, in humans than in bipedal chimpanzees at matched dimensionless speeds. This is due in part to mechanisms for the storage and release of elastic energy at the ankle and hip in humans. Furthermore, these results indicate distinct 'heel strike' and 'lateral balance' mechanics in humans and bipedal chimpanzees and suggest a greater dissipation of mechanical energy through soft tissue deformations in humans. Together, our results document important differences between human and bipedal chimpanzee walking mechanics over a full stride, permitting a more comprehensive understanding of the mechanics and energetics of chimpanzee bipedalism and the evolution of hominin walking.
Collapse
Affiliation(s)
- Matthew C O'Neill
- Department of Anatomy, Midwestern University, Glendale, AZ 85308, USA.
| | - Brigitte Demes
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Nathan E Thompson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Susan G Larson
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Jack T Stern
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Brian R Umberger
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48109-2013, USA
| |
Collapse
|
8
|
Pugh KD. Phylogenetic analysis of Middle-Late Miocene apes. J Hum Evol 2022; 165:103140. [DOI: 10.1016/j.jhevol.2021.103140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 01/18/2023]
|
9
|
Gavazzi LM, Kjosness KM, Reno PL. Ossification pattern of the unusual pisiform in two-toed (Choloepus) and three-toed sloths (Bradypus). Anat Rec (Hoboken) 2021; 305:1804-1819. [PMID: 34779120 DOI: 10.1002/ar.24832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/06/2022]
Abstract
Two-toed (Choloepus sp.) and three-toed (Bradypus sp.) sloths possess short, rounded pisiforms that are rare among mammals and differ from other members of Xenarthra like the giant anteater (Myrmecophaga tridactyla) which retain elongated, rod-like pisiforms in common with most mammals. Using photographs, radiographs, and μCT, we assessed ossification patterns in the pisiform and the paralogous tarsal, the calcaneus, for two-toed sloths, three-toed sloths, and giant anteaters to determine the process by which pisiform reduction occurs in sloths and compare it to other previously studied examples of pisiform reduction in humans and orangutans. Both extant sloth genera achieve pisiform reduction through the loss of a secondary ossification center and the likely disruption of the associated growth plate based on an unusually porous subchondral surface. This represents a third unique mechanism of pisiform reduction among mammals, along with primary ossification center loss in humans and retention of two ossification centers with likely reduced growth periods in orangutans. Given the remarkable similarities between two-toed and three-toed sloth pisiform ossification patterns and the presence of pisiform reduction in fossil sloths, extant sloth pisiform morphology does not appear to represent a recent convergent adaptation to suspensory locomotion, but instead is likely to be an ancestral trait of Folivora that emerged early in the radiation of extant and fossil sloths.
Collapse
Affiliation(s)
- Lia M Gavazzi
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA.,Musculoskeletal Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Kelsey M Kjosness
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Philip L Reno
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Williams SA, Pilbeam D. Homeotic change in segment identity derives the human vertebral formula from a chimpanzee-like one. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:283-294. [PMID: 34227681 DOI: 10.1002/ajpa.24356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/12/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES One of the most contentious issues in paleoanthropology is the nature of the last common ancestor of humans and our closest living relatives, chimpanzees and bonobos (panins). The numerical composition of the vertebral column has featured prominently, with multiple models predicting distinct patterns of evolution and contexts from which bipedalism evolved. Here, we study total numbers of vertebrae from a large sample of hominoids to quantify variation in and patterns of regional and total numbers of vertebrae in hominoids. MATERIALS AND METHODS We compile and study a large sample (N = 893) of hominoid vertebral formulae (numbers of cervical, thoracic, lumbar, sacral, caudal segments in each specimen) and analyze full vertebral formulae, total numbers of vertebrae, and super-regional numbers of vertebrae: presacral (cervical, thoracic, lumbar) vertebrae and sacrococcygeal vertebrae. We quantify within- and between-taxon variation using heterogeneity and similarity measures derived from population genetics. RESULTS We find that humans are most similar to African apes in total and super-regional numbers of vertebrae. Additionally, our analyses demonstrate that selection for bipedalism reduced variation in numbers of vertebrae relative to other hominoids. DISCUSSION The only proposed ancestral vertebral configuration for the last common ancestor of hominins and panins that is consistent with our results is the modal formula demonstrated by chimpanzees and bonobos (7 cervical-13 thoracic-4 lumbar-6 sacral-3 coccygeal). Hox gene expression boundaries suggest that a rostral shift in Hox10/Hox11-mediated complexes could produce the human modal formula from the proposal ancestral and panin modal formula.
Collapse
Affiliation(s)
- Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, USA.,New York Consortium in Evolutionary Primatology, New York, USA
| | - David Pilbeam
- Department of Human Evolutionary Biology, Harvard University, Cambridge, USA
| |
Collapse
|
11
|
Machnicki AL, Reno PL. Great apes and humans evolved from a long-backed ancestor. J Hum Evol 2020; 144:102791. [DOI: 10.1016/j.jhevol.2020.102791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
|
12
|
|
13
|
Abstract
Oreopithecus bambolii (8.3-6.7 million years old) is the latest known hominoid from Europe, dating to approximately the divergence time of the Pan-hominin lineages. Despite being the most complete nonhominin hominoid in the fossil record, the O. bambolii skeleton IGF 11778 has been, for decades, at the center of intense debate regarding the species' locomotor behavior, phylogenetic position, insular paleoenvironment, and utility as a model for early hominin anatomy. Here we investigate features of the IGF 11778 pelvis and lumbar region based on torso preparations and supplemented by other O. bambolii material. We correct several crucial interpretations relating to the IGF 11778 anterior inferior iliac spine and lumbar vertebrae structure and identifications. We find that features of the early hominin Ardipithecus ramidus torso that are argued to have permitted both lordosis and pelvic stabilization during upright walking are not present in O. bambolii However, O. bambolii also lacks the complete reorganization for torso stiffness seen in extant great apes (i.e., living members of the Hominidae), and is more similar to large hylobatids in certain aspects of torso form. We discuss the major implications of the O. bambolii lower torso anatomy and how O. bambolii informs scenarios of hominoid evolution.
Collapse
|
14
|
Fatica LM, Almécija S, McFarlin SC, Hammond AS. Pelvic shape variation among gorilla subspecies: Phylogenetic and ecological signals. J Hum Evol 2019; 137:102684. [DOI: 10.1016/j.jhevol.2019.102684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/28/2023]
|
15
|
Early anthropoid femora reveal divergent adaptive trajectories in catarrhine hind-limb evolution. Nat Commun 2019; 10:4778. [PMID: 31699998 PMCID: PMC6838095 DOI: 10.1038/s41467-019-12742-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/26/2019] [Indexed: 11/08/2022] Open
Abstract
The divergence of crown catarrhines—i.e., the split of cercopithecoids (Old World monkeys) from hominoids (apes and humans)—is a poorly understood phase in our shared evolutionary history with other primates. The two groups differ in the anatomy of the hip joint, a pattern that has been linked to their locomotor strategies: relatively restricted motion in cercopithecoids vs. more eclectic movements in hominoids. Here we take advantage of the first well-preserved proximal femur of the early Oligocene stem catarrhine Aegyptopithecus to investigate the evolution of this anatomical region using 3D morphometric and phylogenetically-informed evolutionary analyses. Our analyses reveal that cercopithecoids and hominoids have undergone divergent evolutionary transformations of the proximal femur from a similar ancestral morphology that is not seen in any living anthropoid, but is preserved in Aegyptopithecus, stem platyrrhines, and stem cercopithecoids. These results highlight the relevance of fossil evidence for illuminating key adaptive shifts in primate evolution. The proximal femur is key for understanding locomotion in primates. Here, the authors analyze the evolution of the proximal femur in catarrhines, including a new Aegyptopithecus fossil, and suggest that Old World monkeys and hominoids diverged from an ancestral state similar to Aegyptopithecus.
Collapse
|
16
|
A late Miocene hominid partial pelvis from Hungary. J Hum Evol 2019; 136:102645. [DOI: 10.1016/j.jhevol.2019.102645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 11/22/2022]
|
17
|
Pina M, Alba DM, Moyà-Solà S, Almécija S. Femoral neck cortical bone distribution of dryopithecin apes and the evolution of hominid locomotion. J Hum Evol 2019; 136:102651. [DOI: 10.1016/j.jhevol.2019.102651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
|
18
|
O'Neill MC, Demes B, Thompson NE, Umberger BR. Three-dimensional kinematics and the origin of the hominin walking stride. J R Soc Interface 2019; 15:rsif.2018.0205. [PMID: 30089686 DOI: 10.1098/rsif.2018.0205] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/13/2018] [Indexed: 11/12/2022] Open
Abstract
Humans are unique among apes and other primates in the musculoskeletal design of their lower back and pelvis. While the last common ancestor of the Pan-Homo lineages has long been thought to be 'African ape-like', including in its lower back and ilia design, recent descriptions of early hominin and Miocene ape fossils have led to the proposal that its lower back and ilia were more similar to those of some Old World monkeys, such as macaques. Here, we compared three-dimensional kinematics of the pelvis and hind/lower limbs of bipedal macaques, chimpanzees and humans walking at similar dimensionless speeds to test the effects of lower back and ilia design on gait. Our results indicate that locomotor kinematics of bipedal macaques and chimpanzees are remarkably similar, with both species exhibiting greater pelvis motion and more flexed, abducted hind limbs than humans during walking. Some differences between macaques and chimpanzees in pelvis tilt and hip abduction were noted, but they were small in magnitude; larger differences were observed in ankle flexion. Our results suggest that if Pan and Homo diverged from a common ancestor whose lower back and ilia were either 'African ape-like' or more 'Old World monkey-like', at its origin, the hominin walking stride likely involved distinct (i.e. non-human-like) pelvis motion on flexed, abducted hind limbs.
Collapse
Affiliation(s)
- Matthew C O'Neill
- Department of Anatomy, Midwestern University, Glendale, AZ 85308, USA
| | - Brigitte Demes
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Nathan E Thompson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Brian R Umberger
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48109-2013, USA
| |
Collapse
|
19
|
Chaimanee Y, Lazzari V, Chaivanich K, Jaeger JJ. First maxilla of a late Miocene hominid from Thailand and the evolution of pongine derived characters. J Hum Evol 2019; 134:102636. [DOI: 10.1016/j.jhevol.2019.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 11/27/2022]
|
20
|
Mongle CS, Strait DS, Grine FE. Expanded character sampling underscores phylogenetic stability of Ardipithecus ramidus as a basal hominin. J Hum Evol 2019; 131:28-39. [DOI: 10.1016/j.jhevol.2019.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 02/24/2019] [Accepted: 03/01/2019] [Indexed: 11/16/2022]
|
21
|
Wuthrich C, MacLatchy LM, Nengo IO. Wrist morphology reveals substantial locomotor diversity among early catarrhines: an analysis of capitates from the early Miocene of Tinderet (Kenya). Sci Rep 2019; 9:3728. [PMID: 30842461 PMCID: PMC6403298 DOI: 10.1038/s41598-019-39800-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/24/2019] [Indexed: 11/28/2022] Open
Abstract
Considerable taxonomic diversity has been recognised among early Miocene catarrhines (apes, Old World monkeys, and their extinct relatives). However, locomotor diversity within this group has eluded characterization, bolstering a narrative that nearly all early catarrhines shared a primitive locomotor repertoire resembling that of the well-described arboreal quadruped Ekembo heseloni. Here we describe and analyse seven catarrhine capitates from the Tinderet Miocene sequence of Kenya, dated to ~20 Ma. 3D morphometrics derived from these specimens and a sample of extant and fossil capitates are subjected to a series of multivariate comparisons, with results suggesting a variety of locomotor repertoires were present in this early Miocene setting. One of the fossil specimens is uniquely derived among early and middle Miocene capitates, representing the earliest known instance of great ape-like wrist morphology and supporting the presence of a behaviourally advanced ape at Songhor. We suggest Rangwapithecus as this catarrhine’s identity, and posit expression of derived, ape-like features as a criterion for distinguishing this taxon from Proconsul africanus. We also introduce a procedure for quantitative estimation of locomotor diversity and find the Tinderet sample to equal or exceed large extant catarrhine groups in this metric, demonstrating greater functional diversity among early catarrhines than previously recognised.
Collapse
Affiliation(s)
- Craig Wuthrich
- Department of Anthropology, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA.
| | - Laura M MacLatchy
- Department of Anthropology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Isaiah O Nengo
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, 11794, USA.,Turkana University College, P.O. Box 69-30500, Lodwar, Kenya
| |
Collapse
|
22
|
First record of the Miocene hominoid Sivapithecus from Kutch, Gujarat state, western India. PLoS One 2018; 13:e0206314. [PMID: 30427876 PMCID: PMC6235281 DOI: 10.1371/journal.pone.0206314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/10/2018] [Indexed: 11/23/2022] Open
Abstract
Hominoid remains from Miocene deposits in India and Pakistan have played a pivotal role in understanding the evolution of great apes and humans since they were first described in the 19th Century. We describe here a hominoid maxillary fragment preserving the canine and cheek teeth collected in 2011 from the Kutch (= Kachchh) basin in the Kutch district, Gujarat state, western India. A basal Late Miocene age is proposed based on the associated faunal assemblage that includes Hipparion and other age-diagnostic mammalian taxa. Miocene Hominoidea are known previously from several areas of the Siwalik Group in the outer western Himalayas of India, Pakistan, and Nepal. This is the first record of a hominoid from the Neogene of the Kutch Basin and represents a significant southern range extension of Miocene hominoids in the Indian peninsula. The specimen is assigned to the Genus Sivapithecus, species unspecified.
Collapse
|
23
|
Ward CV, Maddux SD, Middleton ER. Three‐dimensional anatomy of the anthropoid bony pelvis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:3-25. [DOI: 10.1002/ajpa.23425] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/11/2017] [Accepted: 01/12/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Carol V. Ward
- Department of Pathology and Anatomical Sciences, M263 Medical Sciences BuildingUniversity of MissouriColumbia Missouri 65212
| | - Scott D. Maddux
- Center for Anatomical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie BoulevardFt. Worth Texas 76107
| | - Emily R. Middleton
- Department of Pathology and Anatomical Sciences, M263 Medical Sciences BuildingUniversity of MissouriColumbia Missouri 65212
| |
Collapse
|
24
|
Finestone EM, Brown MH, Ross SR, Pontzer H. Great ape walking kinematics: Implications for hominoid evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:43-55. [PMID: 29313896 DOI: 10.1002/ajpa.23397] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Great apes provide a point of reference for understanding the evolution of locomotion in hominoids and early hominins. We assessed (1) the extent to which great apes use diagonal sequence, diagonal couplet gaits, like other primates, (2) the extent to which gait and posture vary across great apes, and (3) the role of body mass and limb proportions on ape quadrupedal kinematics. METHODS High-speed digital video of zoo-housed bonobos (Pan paniscus, N = 8), chimpanzees (Pan troglodytes, N = 13), lowland gorillas (Gorilla gorilla, N = 13), and orangutans (Pongo spp. N = 6) walking over-ground at self-selected speeds were used to determine the timing of limb touch-down, take-off, and to measure joint and segment angles at touch-down, midstance, and take-off. RESULTS The great apes in our study showed broad kinematic and spatiotemporal similarity in quadrupedal walking. Size-adjusted walking speed was the strongest predictor of gait variables. Body mass had a negligible effect on variation in joint and segment angles, but stride frequency did trend higher among larger apes in analyses including size-adjusted speed. In contrast to most other primates, great apes did not favor diagonal sequence footfall patterns, but exhibited variable gait patterns that frequently shifted between diagonal and lateral sequences. CONCLUSION Similarities in the terrestrial walking kinematics of extant great apes likely reflect their similar post-cranial anatomy and proportions. Our results suggest that the walking kinematics of orthograde, suspensory Miocene ape species were likely similar to living great apes, and highlight the utility of videographic and behavioral data in interpreting primate skeletal morphology.
Collapse
Affiliation(s)
- Emma M Finestone
- Department of Anthropology, The Graduate Center, City University of New York, New York, New York 10016.,New York Consortium in Evolutionary Primatology (NYCEP), New York, New York
| | - Mary H Brown
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, Ilinois 60614
| | - Stephen R Ross
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, Ilinois 60614
| | - Herman Pontzer
- Department of Anthropology, The Graduate Center, City University of New York, New York, New York 10016.,New York Consortium in Evolutionary Primatology (NYCEP), New York, New York.,Department of Anthropology, Hunter College, City University of New York, New York, New York, 10065
| |
Collapse
|
25
|
Rosenberg KR, DeSilva JM. Evolution of the Human Pelvis. Anat Rec (Hoboken) 2017; 300:789-797. [PMID: 28406563 DOI: 10.1002/ar.23580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/12/2022]
Abstract
No bone in the human postcranial skeleton differs more dramatically from its match in an ape skeleton than the pelvis. Humans have evolved a specialized pelvis, well-adapted for the rigors of bipedal locomotion. Precisely how this happened has been the subject of great interest and contention in the paleoanthropological literature. In part, this is because of the fragility of the pelvis and its resulting rarity in the human fossil record. However, new discoveries from Miocene hominoids and Plio-Pleistocene hominins have reenergized debates about human pelvic evolution and shed new light on the competing roles of bipedal locomotion and obstetrics in shaping pelvic anatomy. In this issue, 13 papers address the evolution of the human pelvis. Here, we summarize these new contributions to our understanding of pelvic evolution, and share our own thoughts on the progress the field has made, and the questions that still remain. Anat Rec, 300:789-797, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Karen R Rosenberg
- Department of Anthropology, University of Delaware, Newark, Delaware
| | - Jeremy M DeSilva
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
26
|
Hammond AS, Almécija S. Lower Ilium Evolution in Apes and Hominins. Anat Rec (Hoboken) 2017; 300:828-844. [PMID: 28406561 DOI: 10.1002/ar.23545] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 10/09/2016] [Indexed: 01/18/2023]
Abstract
Elucidating the pelvic morphology of the Pan-Homo last common ancestor (LCA) is crucial for understanding ape and human evolution. The pelvis of Ardipithecus ramidus has been the basis of controversial interpretations of the LCA pelvis. In particular, it was proposed that the lower ilium became elongate independently in the orangutan and chimpanzee clades, making these taxa poor analogues for the pelvis of the LCA. This study examines the variation in relative lower ilium height between and within living and fossil hominoid species (and other anthropoids), and models its evolution using available fossil hominoids as calibration points. We find nuanced differences in relative lower ilium height among living hominoids, particularly in regards to gorillas, which do not have elongate lower ilia (because they are likely to represent the plesiomorphic hominoid condition for this trait). We also show that differences in relative lower ilium height among hominoid taxa are not readily explained by differences in size between species. Our maximum likelihood ancestral state reconstructions support inferences that chimpanzees (Pan troglodytes in particular) and orangutans evolved their elongate lower ilia independently. We also find that the predicted lower ilium height of the Pan-Homo LCA is shorter than all great apes except gorillas. This study adds to a growing body of evidence that finds different regions of the body show different evolutionary histories in different hominoids, and underscores that the unique combinations of morphologies of each modern and fossil hominoid species should be considered when reconstructing the mosaic nature of the Pan-Homo LCA. Anat Rec, 300:828-844, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ashley S Hammond
- Center for Advanced Study of Human Paleobiology, Department of Anthropology, George Washington University, Washington, District of Columbia, 20052
| | - Sergio Almécija
- Center for Advanced Study of Human Paleobiology, Department of Anthropology, George Washington University, Washington, District of Columbia, 20052.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Middleton ER, Winkler ZJ, Hammond AS, Plavcan JM, Ward CV. Determinants of Iliac Blade Orientation in Anthropoid Primates. Anat Rec (Hoboken) 2017; 300:810-827. [PMID: 28406557 DOI: 10.1002/ar.23557] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/15/2016] [Accepted: 10/09/2016] [Indexed: 01/22/2023]
Abstract
Orientation of the iliac blades is a key feature that appears to distinguish extant apes from monkeys. Iliac morphology is hypothesized to reflect variation in thoracic shape that, in turn, reflects adaptations for shoulder and forearm function in anthropoids. Iliac orientation is traditionally measured relative to the acetabulum, whereas functional explanations pertain to its orientation relative to the cardinal anatomical planes. We investigated iliac orientation relative to a median plane using digital models of hipbones registered to landmark data from articulated pelves. We fit planes to the iliac surfaces, midline, and acetabulum, and investigated linear metrics that characterize geometric relationships of the iliac margins. Our results demonstrate that extant hominoid ilia are not rotated into a coronal plane from a more sagittal position in basal apes and monkeys but that the apparent rotation is the result of geometric changes within the ilia. The whole ilium and its gluteal surface are more coronally oriented in apes, but apes and monkeys do not differ in orientation of the iliac fossa. The angular differences in the whole blade and gluteal surface primarily reflect a narrower iliac tuberosity set closer to the midline in extant apes, reflecting a decrease in erector spinae muscle mass associated with stiffening of the lumbar spine. Mediolateral breadth across the ventral dorsal iliac spines is only slightly greater in extant apes than in monkeys. These results demonstrate that spinal musculature and mobility have a more significant effect on pelvic morphology than does shoulder orientation, as had been previously hypothesized. Anat Rec, 300:810-827, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emily R Middleton
- Department of Pathology and Anatomical Sciences, M263 Medical Sciences Building, University of Missouri, Columbia, Missouri, 65212
| | - Zachariah J Winkler
- Department of Pathology and Anatomical Sciences, M263 Medical Sciences Building, University of Missouri, Columbia, Missouri, 65212
| | - Ashley S Hammond
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, Washington DC, 20052
| | - J Michael Plavcan
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, 72701
| | - Carol V Ward
- Department of Pathology and Anatomical Sciences, M263 Medical Sciences Building, University of Missouri, Columbia, Missouri, 65212
| |
Collapse
|
28
|
Machnicki AL, Lovejoy CO, Reno PL. Developmental identity versus typology: Lucy has only four sacral segments. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 160:729-39. [DOI: 10.1002/ajpa.22997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 02/25/2016] [Accepted: 03/31/2016] [Indexed: 12/28/2022]
Affiliation(s)
| | - C. Owen Lovejoy
- Department of Anthropology and School of Biomedical SciencesKent State UniversityKent OH
| | - Philip L. Reno
- Department of AnthropologyPennsylvania State UniversityUniversity Park PA
| |
Collapse
|
29
|
Hunt KD. Why are there apes? Evidence for the co-evolution of ape and monkey ecomorphology. J Anat 2016; 228:630-85. [PMID: 27004976 PMCID: PMC4804131 DOI: 10.1111/joa.12454] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2016] [Indexed: 11/28/2022] Open
Abstract
Apes, members of the superfamily Hominoidea, possess a distinctive suite of anatomical and behavioral characters which appear to have evolved relatively late and relatively independently. The timing of paleontological events, extant cercopithecine and hominoid ecomorphology and other evidence suggests that many distinctive ape features evolved to facilitate harvesting ripe fruits among compliant terminal branches in tree edges. Precarious, unpredictably oriented, compliant supports in the canopy periphery require apes to maneuver using suspensory and non-sterotypical postures (i.e. postures with eccentric limb orientations or extreme joint excursions). Diet differences among extant species, extant species numbers and evidence of cercopithecoid diversification and expansion, in concert with a reciprocal decrease in hominoid species, suggest intense competition between monkeys and apes over the last 20 Ma. It may be that larger body masses allow great apes to succeed in contest competitions for highly desired food items, while the ability of monkeys to digest antifeedant-rich unripe fruits allows them to win scramble competitions. Evolutionary trends in morphology and inferred ecology suggest that as monkeys evolved to harvest fruit ever earlier in the fruiting cycle they broadened their niche to encompass first more fibrous, tannin- and toxin-rich unripe fruits and later, for some lineages, mature leaves. Early depletion of unripe fruit in the central core of the tree canopy by monkeys leaves a hollow sphere of ripening fruits, displacing antifeedant-intolerant, later-arriving apes to small-diameter, compliant terminal branches. Hylobatids, orangutans, Pan species, gorillas and the New World atelines may have each evolved suspensory behavior independently in response to local competition from an expanding population of monkeys. Genetic evidence of rapid evolution among chimpanzees suggests that adaptations to suspensory behavior, vertical climbing, knuckle-walking, consumption of terrestrial piths and intercommunity violence had not yet evolved or were still being refined when panins (chimpanzees and bonobos) and hominins diverged.
Collapse
Affiliation(s)
- Kevin D Hunt
- Department of Anthropology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
30
|
Clay mineralogy indicates a mildly warm and humid living environment for the Miocene hominoid from the Zhaotong Basin, Yunnan, China. Sci Rep 2016; 6:20012. [PMID: 26829756 PMCID: PMC4734328 DOI: 10.1038/srep20012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/22/2015] [Indexed: 11/17/2022] Open
Abstract
Global and regional environmental changes have influenced the evolutionary processes of hominoid primates, particularly during the Miocene. Recently, a new Lufengpithecus cf. lufengensis hominoid fossil with a late Miocene age of ~6.2 Ma was discovered in the Shuitangba (STB) section of the Zhaotong Basin in Yunnan on the southeast margin of the Tibetan Plateau. To understand the relationship between paleoclimate and hominoid evolution, we have studied sedimentary, clay mineralogy and geochemical proxies for the late Miocene STB section (~16 m thick; ca. 6.7–6.0 Ma). Our results show that Lufengpithecus cf. lufengensis lived in a mildly warm and humid climate in a lacustrine or swamp environment. Comparing mid to late Miocene records from hominoid sites in Yunnan, Siwalik in Pakistan, and tropical Africa we find that ecological shifts from forest to grassland in Siwalik are much later than in tropical Africa, consistent with the disappearance of hominoid fossils. However, no significant vegetation changes are found in Yunnan during the late Miocene, which we suggest is the result of uplift of the Tibetan plateau combined with the Asian monsoon geographically and climatically isolating these regions. The resultant warm and humid conditions in southeastern China offered an important refuge for Miocene hominoids.
Collapse
|
31
|
Machnicki AL, Spurlock LB, Strier KB, Reno PL, Lovejoy CO. First steps of bipedality in hominids: evidence from the atelid and proconsulid pelvis. PeerJ 2016; 4:e1521. [PMID: 26793418 PMCID: PMC4715437 DOI: 10.7717/peerj.1521] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/29/2015] [Indexed: 11/20/2022] Open
Abstract
Upright walking absent a bent-hip-bent-knee gait requires lumbar lordosis, a ubiquitous feature in all hominids for which it can be observed. Its first appearance is therefore a central problem in human evolution. Atelids, which use the tail during suspension, exhibit demonstrable lordosis and can achieve full extension of their hind limbs during terrestrial upright stance. Although obviously homoplastic with hominids, the pelvic mechanisms facilitating lordosis appear largely similar in both taxa with respect to abbreviation of upper iliac height coupled with broad sacral alae. Both provide spatial separation of the most caudal lumbar(s) from the iliac blades. A broad sacrum is therefore a likely facet of earliest hominid bipedality. All tailed monkeys have broad alae. By contrast all extant apes have very narrow sacra, which promote “trapping” of their most caudal lumbars to achieve lower trunk rigidity during suspension. The alae in the tailless proconsul Ekembo nyanzae appear to have been quite broad, a character state that may have been primitive in Miocene hominoids not yet adapted to suspension and, by extension, exaptive for earliest bipedality in the hominid/panid last common ancestor. This hypothesis receives strong support from other anatomical systems preserved in Ardipithecus ramidus.
Collapse
Affiliation(s)
- Allison L Machnicki
- Department of Anthropology, Pennsylvania State University , University Park, PA , United States
| | - Linda B Spurlock
- Department of Anthropology, Kent State University , Kent, OH , United States
| | - Karen B Strier
- Department of Anthropology, University of Wisconsin-Madison , Madison, WI , United States
| | - Philip L Reno
- Department of Anthropology, Pennsylvania State University , University Park, PA , United States
| | - C Owen Lovejoy
- Department of Anthropology, Kent State University , Kent, OH , United States
| |
Collapse
|
32
|
Nowak MG, Reichard UH. Locomotion and Posture in Ancestral Hominoids Prior to the Split of Hylobatids. DEVELOPMENTS IN PRIMATOLOGY: PROGRESS AND PROSPECTS 2016. [DOI: 10.1007/978-1-4939-5614-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Alba DM, Almecija S, DeMiguel D, Fortuny J, de los Rios MP, Pina M, Robles JM, Moya-Sola S. Miocene small-bodied ape from Eurasia sheds light on hominoid evolution. Science 2015; 350:aab2625. [DOI: 10.1126/science.aab2625] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/21/2015] [Indexed: 11/02/2022]
|
34
|
Grabowski M, Roseman CC. Complex and changing patterns of natural selection explain the evolution of the human hip. J Hum Evol 2015; 85:94-110. [DOI: 10.1016/j.jhevol.2015.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022]
|