1
|
Williams S, Hawley RS. From conservation to adaptation: understanding the synaptonemal complex's evolutionary dynamics. Curr Opin Genet Dev 2025; 93:102349. [PMID: 40250163 DOI: 10.1016/j.gde.2025.102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/20/2025]
Abstract
The synaptonemal complex (SC) is structurally conserved across eukaryotes and is essential for a proper progression of meiosis. Despite this conservation, SC protein sequences diverge drastically. In this review, we explore findings on SC protein evolution, highlighting key differences and commonalities among lineages like the Caenorhabditis and the Drosophila genera. We further explore known cases where the SC and its proteins adopt novel functional roles and discuss why knowledge of these cases could be important for the study of canonical SC biology. The existing studies demonstrate that work on the evolutionary biology of SC proteins and functional studies in more diverse meiotic research organisms should play a major role in aiding our understanding of SC structure and functions.
Collapse
Affiliation(s)
- Stefanie Williams
- Stowers Institute for Medical Research, Kansas City, Missouri, United States.
| | - Robin Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States
| |
Collapse
|
2
|
Guo L, Guo F, Zhang S, Zeng A, Yi K, McClain M, Kuhn CD, Parmely T, Alvarado AS. Oogenesis involves a novel nuclear envelop remodeling mechanism in Schmidtea mediterranea. Dev Biol 2025; 520:13-20. [PMID: 39732384 DOI: 10.1016/j.ydbio.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively. Besides closed mitosis in fungi and open mitosis in some animals, little is known about the evolution of nuclear envelope remodeling dynamics during oogenesis. Here, we uncovered a novel form of nuclear envelope remodeling as oocytes are formed in the flatworm Schmidtea mediterranea. From zygotene to metaphase II, both nuclear envelope (NE) and peripheral endoplasmic reticulum (ER) expand notably in size, likely involving de novo membrane synthesis. 3-D electron microscopy reconstructions demonstrated that the NE transforms itself into numerous double-membraned vesicles similar in membrane architecture to NE doublets in mammalian oocytes after germinal vesicle breakdown. The vesicles are devoid of nuclear pore complexes and DNA, yet are loaded with nuclear proteins, including a planarian homologue of PIWI, a protein essential for the maintenance of stem cells in this and other organisms. Our data contribute a new model to the canonical view of NE dynamics and suggest important roles of NE remodeling in planarian oogenesis.
Collapse
Affiliation(s)
- Longhua Guo
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA; Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Shasha Zhang
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - An Zeng
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Melainia McClain
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Claus-D Kuhn
- Gene Regulation by Non-coding RNA, Elite Network of Bavaria and University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95447, Germany
| | - Tari Parmely
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
| |
Collapse
|
3
|
Zheng H, Li L, Wang D, Zhang S, Li W, Cheng M, Ge C, Chen J, Qiang Y, Chen F, Yu Y. FoxO is required for neoblast differentiation during planarian regeneration. Int J Biol Macromol 2025; 288:138729. [PMID: 39672403 DOI: 10.1016/j.ijbiomac.2024.138729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Stem cells are of great importance in the maintenance and regeneration of tissues, with Forkhead box O (FoxO) proteins emerging as pivotal regulators of their functions. However, the precise impact of FoxO proteins on stem cell behavior within regenerative environments remains ambiguous. Planarians, renowned for their abundance of adult stem cells (neoblasts), serve as an excellent model for investigating the dynamics of stem cells during regeneration. In this study, we identified DjfoxO, a conserved foxO gene in the planarian Dugesia japonica, and demonstrated its expression in neoblasts, with elevated levels detected in the regenerative blastema during the regeneration process. Using a FoxO inhibitor (AS1842856) together with RNA interference techniques, we demonstrated that inhibition of FoxO signaling in planarians hinders the regeneration of missing tissues, including the central nervous system, eyespots, anterior intestinal branches, and pharynx. It is noteworthy that the knockdown of DjfoxO does not significantly affect the mitotic activity of neoblasts. Conversely, it impedes the production of lineage-specific progenitors, potentially via modulation of the Erk pathway. These findings elucidate the instructive function of FoxO signaling in regulating stem cell differentiation and provide valuable insights into its potential for improving stem cell-based regenerative therapies.
Collapse
Affiliation(s)
- Hanxue Zheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Linfeng Li
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Du Wang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Shengchao Zhang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Wenhui Li
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Mengdi Cheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Cui Ge
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Jiayi Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yanmei Qiang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Fulin Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
4
|
Billmyre KK, Kesler EA, Tsuchiya D, Corbin TJ, Weaver K, Moran A, Yu Z, Adams L, Delventhal K, Durnin M, Davies OR, Hawley RS. SYCP1 head-to-head assembly is required for chromosome synapsis in mouse meiosis. SCIENCE ADVANCES 2023; 9:eadi1562. [PMID: 37862414 PMCID: PMC10588951 DOI: 10.1126/sciadv.adi1562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/20/2023] [Indexed: 10/22/2023]
Abstract
In almost all sexually reproducing organisms, meiotic recombination and cell division require the synapsis of homologous chromosomes by a large proteinaceous structure, the synaptonemal complex (SC). While the SC's overall structure is highly conserved across eukaryotes, its constituent proteins diverge between phyla. Transverse filament protein, SYCP1, spans the width of the SC and undergoes amino-terminal head-to-head self-assembly in vitro through a motif that is unusually highly conserved across kingdoms of life. Here, we report creation of mouse mutants, Sycp1L102E and Sycp1L106E, that target SYCP1's head-to-head interface. L106E resulted in a complete loss of synapsis, while L102E had no apparent effect on synapsis, in agreement with their differential effects on the SYCP1 head-to-head interface in molecular dynamics simulations. In Sycp1L106E mice, homologs aligned and recruited low levels of mutant SYCP1 and other SC proteins, but the absence of synapsis led to failure of crossover formation and meiotic arrest. We conclude that SYCP1's conserved head-to-head interface is essential for meiotic chromosome synapsis in vivo.
Collapse
Affiliation(s)
| | - Emily A. Kesler
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Kyle Weaver
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Andrea Moran
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Lane Adams
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Kym Delventhal
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Michael Durnin
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Owen Richard Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
5
|
Chu X, Bukhari I, Thorne RF, Shi Q. Editorial: Molecular and cytogenetic research advances in human reproduction - volume II. Front Endocrinol (Lausanne) 2023; 14:1232953. [PMID: 37529612 PMCID: PMC10390250 DOI: 10.3389/fendo.2023.1232953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 08/03/2023] Open
Affiliation(s)
- Xiufeng Chu
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ihtisham Bukhari
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rick Francis Thorne
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qinghua Shi
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Munro C, Cadis H, Pagnotta S, Houliston E, Huynh JR. Conserved meiotic mechanisms in the cnidarian Clytia hemisphaerica revealed by Spo11 knockout. SCIENCE ADVANCES 2023; 9:eadd2873. [PMID: 36706182 PMCID: PMC9882977 DOI: 10.1126/sciadv.add2873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
During meiosis, DNA recombination allows the shuffling of genetic information between the maternal and paternal chromosomes. Recombination is initiated by double-strand breaks (DSBs) catalyzed by the conserved enzyme Spo11. How this crucial event is connected to other meiotic processes is unexpectedly variable depending on the species. Here, we knocked down Spo11 by CRISPR in the jellyfish Clytia hemisphaerica. Germ cells in Clytia Spo11 mutants fail to assemble synaptonemal complexes and chiasmata, and in consequence, homologous chromosome pairs in females remain unassociated during oocyte growth and meiotic divisions, creating aneuploid but fertilizable eggs that develop into viable larvae. Clytia thus shares an ancient eukaryotic dependence of synapsis and chromosome segregation on Spo11-generated DSBs. Phylogenetically, Clytia belongs to Cnidaria, the sister clade to Bilateria where classical animal model species are found, so these results provide fresh evolutionary perspectives on meiosis regulation.
Collapse
Affiliation(s)
- Catriona Munro
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Villefranche-sur-Mer 06230, France
| | - Hugo Cadis
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Villefranche-sur-Mer 06230, France
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée, Université Nice Côte d’Azur, Parc Valrose, Nice 06108, France
| | - Evelyn Houliston
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Villefranche-sur-Mer 06230, France
| | - Jean-René Huynh
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
7
|
Lenykó-Thegze A, Fábián A, Mihók E, Makai D, Cseh A, Sepsi A. Pericentromeric chromatin reorganisation follows the initiation of recombination and coincides with early events of synapsis in cereals. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1585-1602. [PMID: 34171148 DOI: 10.1111/tpj.15391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The reciprocal exchange of genetic information between homologous chromosomes during meiotic recombination is essential to secure balanced chromosome segregation and to promote genetic diversity. The chromosomal position and frequency of reciprocal genetic exchange shapes the efficiency of breeding programmes and influences crop improvement under a changing climate. In large genome cereals, such as wheat and barley, crossovers are consistently restricted to subtelomeric chromosomal regions, thus preventing favourable allele combinations being formed within a considerable proportion of the genome, including interstitial and pericentromeric chromatin. Understanding the key elements driving crossover designation is therefore essential to broaden the regions available for crossovers. Here, we followed early meiotic chromatin dynamism in cereals through the visualisation of a homologous barley chromosome arm pair stably transferred into the wheat genetic background. By capturing the dynamics of a single chromosome arm at the same time as detecting the undergoing events of meiotic recombination and synapsis, we showed that subtelomeric chromatin of homologues synchronously transitions to an open chromatin structure during recombination initiation. By contrast, pericentromeric and interstitial regions preserved their closed chromatin organisation and become unpackaged only later, concomitant with initiation of recombinatorial repair and the initial assembly of the synaptonemal complex. Our results raise the possibility that the closed pericentromeric chromatin structure in cereals may influence the fate decision during recombination initiation, as well as the spatial development of synapsis, and may also explain the suppression of crossover events in the proximity of the centromeres.
Collapse
Affiliation(s)
- Andrea Lenykó-Thegze
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Attila Fábián
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Edit Mihók
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Diána Makai
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - András Cseh
- Department of Molecular Breeding, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Adél Sepsi
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
- Department of Applied Biotechnology and Food Science (ABÉT), BME, Budapest University of Technology and Economics, Műegyetem rkp. 3-9, Budapest, 1111, Hungary
| |
Collapse
|
8
|
Meiotic analyses show adaptations to maintenance of fertility in X1Y1X2Y2X3Y3X4Y4X5Y5 system of amazon frog Leptodactylus pentadactylus (Laurenti, 1768). Sci Rep 2020; 10:16327. [PMID: 33004883 PMCID: PMC7529792 DOI: 10.1038/s41598-020-72867-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Heterozygous chromosomal rearrangements can result in failures during the meiotic cycle and the apoptosis of germline, making carrier individuals infertile. The Amazon frog Leptodactylus pentadactylus has a meiotic multivalent, composed of 12 sex chromosomes. The mechanisms by which this multi-chromosome system maintains fertility in males of this species remain undetermined. In this study we investigated the meiotic behavior of this multivalent to understand how synapse, recombination and epigenetic modifications contribute to maintaining fertility and chromosomal sexual determination in this species. Our sample had 2n = 22, with a ring formed by ten chromosomes in meiosis, indicating a new system of sex determination for this species (X1Y1X2Y2X3Y3X4Y4X5Y5). Synapsis occurs in the homologous terminal portion of the chromosomes, while part of the heterologous interstitial regions performed synaptic adjustment. The multivalent center remains asynaptic until the end of pachytene, with interlocks, gaps and rich-chromatin in histone H2A phosphorylation at serine 139 (γH2AX), suggesting transcriptional silence. In late pachytene, paired regions show repair of double strand-breaks (DSBs) with RAD51 homolog 1 (Rad51). These findings suggest that Rad51 persistence creates positive feedback at the pachytene checkpoint, allowing meiosis I to progress normally. Additionally, histone H3 trimethylation at lysine 27 in the pericentromeric heterochromatin of this anuran can suppress recombination in this region, preventing failed chromosomal segregation. Taken together, these results indicate that these meiotic adaptations are required for maintenance of fertility in L. pentadactylus.
Collapse
|
9
|
Zhang F, Shen Y, Miao C, Cao Y, Shi W, Du G, Tang D, Li Y, Luo Q, Cheng Z. OsRAD51D promotes homologous pairing and recombination by preventing nonhomologous interactions in rice meiosis. THE NEW PHYTOLOGIST 2020; 227:824-839. [PMID: 32275774 DOI: 10.1111/nph.16595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Homologous recombination is carefully orchestrated to maintain genome integrity. RAD51D has been previously shown to be essential for double-strand break repair in mammalian somatic cells. However, the function of RAD51D during meiosis is largely unknown. Here, through detailed analyses of Osrad51d single and double mutants, we pinpoint the specific function of OsRAD51D in coordinating homologous pairing and recombination by preventing nonhomologous interactions during meiosis. OsRAD51D is associated with telomeres in both meiocytes and somatic cells. Loss of OsRAD51D leads to significant induction of nonhomologous pairing and chromosome entanglements, suggesting its role in suppressing nonhomologous interactions. The failed localization of OsRAD51 and OsDMC1 in Osrad51d, together with the genetic analysis of Osrad51d Osdmc1a Osdmc1b, indicates that OsRAD51D acts at a very early stage of homologous recombination. Observations from the Osrad51d pair1 and Osrad51d ku70 double mutants further demonstrate that nonhomologous interactions require double-strand break formation but do not depend on the KU70-mediated repair pathway. Moreover, the interplay between OsRAD51D and OsRAD51C indicates both conservation and divergence of their functions in meiosis. Altogether, this work reveals that OsRAD51D plays an essential role in the inhibition of nonhomologous connections, thus guaranteeing faithful pairing and recombination during meiosis.
Collapse
Affiliation(s)
- Fanfan Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Chunbo Miao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yiwei Cao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wenqing Shi
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Guijie Du
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qiong Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhukuan Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, 225009, China
| |
Collapse
|
10
|
Blokhina YP, Nguyen AD, Draper BW, Burgess SM. The telomere bouquet is a hub where meiotic double-strand breaks, synapsis, and stable homolog juxtaposition are coordinated in the zebrafish, Danio rerio. PLoS Genet 2019; 15:e1007730. [PMID: 30653507 PMCID: PMC6336226 DOI: 10.1371/journal.pgen.1007730] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 11/30/2022] Open
Abstract
Meiosis is a cellular program that generates haploid gametes for sexual reproduction. While chromosome events that contribute to reducing ploidy (homologous chromosome pairing, synapsis, and recombination) are well conserved, their execution varies across species and even between sexes of the same species. The telomere bouquet is a conserved feature of meiosis that was first described nearly a century ago, yet its role is still debated. Here we took advantage of the prominent telomere bouquet in zebrafish, Danio rerio, and super-resolution microscopy to show that axis morphogenesis, synapsis, and the formation of double-strand breaks (DSBs) all take place within the immediate vicinity of telomeres. We established a coherent timeline of events and tested the dependence of each event on the formation of Spo11-induced DSBs. First, we found that the axis protein Sycp3 loads adjacent to telomeres and extends inward, suggesting a specific feature common to all telomeres seeds the development of the axis. Second, we found that newly formed axes near telomeres engage in presynaptic co-alignment by a mechanism that depends on DSBs, even when stable juxtaposition of homologous chromosomes at interstitial regions is not yet evident. Third, we were surprised to discover that ~30% of telomeres in early prophase I engage in associations between two or more chromosome ends and these interactions decrease in later stages. Finally, while pairing and synapsis were disrupted in both spo11 males and females, their reproductive phenotypes were starkly different; spo11 mutant males failed to produce sperm while females produced offspring with severe developmental defects. Our results support zebrafish as an important vertebrate model for meiosis with implications for differences in fertility and genetically derived birth defects in males and females. Inherent to reproduction is the transmission of genetic information from one generation to the next. In sexually reproducing organisms, each parent contributes an equal amount of genetic information, packaged in chromosomes, to the offspring. Diploid organisms, like humans, have two copies of every chromosome, while their haploid gametes (e.g. eggs and sperm) have only one. This reduction in ploidy depends on the segregation of chromosomes during meiosis, resulting in gametes with one copy of each chromosome. Missegregation of the chromosomes in the parents leads to abnormal chromosome numbers in the offspring, which is usually lethal or has detrimental developmental effects. While it has been known for over a century that homologous chromosomes pair and recombine to facilitate proper segregation, how homologs find their partners has remained elusive. A structure that has been central to the discussion of homolog pairing is the bouquet, or the dynamic clustering of telomeres during early stages of meiosis. Here we use zebrafish to show that the telomere bouquet is the site where key events leading to homologous chromosome pairing are coordinated. Furthermore, we show that deletion of spo11, a gene required for proper recombination in most studied organisms, resulted in very different effects in males and females where males were sterile while females produced deformed progeny.
Collapse
Affiliation(s)
- Yana P. Blokhina
- Department of Molecular and Cellular Biology, University of California, Davis, CA, United States of America
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, United States of America
| | - An D. Nguyen
- Department of Molecular and Cellular Biology, University of California, Davis, CA, United States of America
| | - Bruce W. Draper
- Department of Molecular and Cellular Biology, University of California, Davis, CA, United States of America
| | - Sean M. Burgess
- Department of Molecular and Cellular Biology, University of California, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Haenel Q, Laurentino TG, Roesti M, Berner D. Meta-analysis of chromosome-scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Mol Ecol 2018; 27:2477-2497. [PMID: 29676042 DOI: 10.1111/mec.14699] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023]
Abstract
Understanding the distribution of crossovers along chromosomes is crucial to evolutionary genomics because the crossover rate determines how strongly a genome region is influenced by natural selection on linked sites. Nevertheless, generalities in the chromosome-scale distribution of crossovers have not been investigated formally. We fill this gap by synthesizing joint information on genetic and physical maps across 62 animal, plant and fungal species. Our quantitative analysis reveals a strong and taxonomically widespread reduction of the crossover rate in the centre of chromosomes relative to their peripheries. We demonstrate that this pattern is poorly explained by the position of the centromere, but find that the magnitude of the relative reduction in the crossover rate in chromosome centres increases with chromosome length. That is, long chromosomes often display a dramatically low crossover rate in their centre, whereas short chromosomes exhibit a relatively homogeneous crossover rate. This observation is compatible with a model in which crossover is initiated from the chromosome tips, an idea with preliminary support from mechanistic investigations of meiotic recombination. Consequently, we show that organisms achieve a higher genome-wide crossover rate by evolving smaller chromosomes. Summarizing theory and providing empirical examples, we finally highlight that taxonomically widespread and systematic heterogeneity in crossover rate along chromosomes generates predictable broad-scale trends in genetic diversity and population differentiation by modifying the impact of natural selection among regions within a genome. We conclude by emphasizing that chromosome-scale heterogeneity in crossover rate should urgently be incorporated into analytical tools in evolutionary genomics, and in the interpretation of resulting patterns.
Collapse
Affiliation(s)
- Quiterie Haenel
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | - Marius Roesti
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Berner
- Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
DNA damage and tissue repair: What we can learn from planaria. Semin Cell Dev Biol 2018; 87:145-159. [PMID: 29727725 DOI: 10.1016/j.semcdb.2018.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/22/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022]
Abstract
Faithful renewal of aging and damaged tissues is central to organismal lifespan. Stem cells (SCs) generate the cellular progeny that replenish adult tissues across the body but this task becomes increasingly compromised over time. The age related decline in SC-mediated tissue maintenance is a multifactorial event that commonly affects genome integrity. The presence of DNA damage in SCs that are under continuous demand to divide poses a great risk for age-related disorders such as cancer. However, performing analysis of SCs with genomic instability and the DNA damage response during tissue renewal present significant challenges. Here we introduce an alternative experimental system based on the planaria flatworm Schmidtea mediterranea to address at the organismal level studies intersecting SC-mediated tissue renewal in the presence of genomic instability. Planaria have abundant SCs (neoblasts) that maintain high rates of cellular turnover and a variety of molecular tools have been developed to induce DNA damage and dissect how neoblasts respond to this stressor. S. mediterranea displays high evolutionary conservation of DNA repair mechanisms and signaling pathways regulating adult SCs. We describe genetically induced-DNA damage models and highlight body-wide signals affecting cellular decisions such as survival, proliferation, and death in the presence of genomic instability. We also discuss transcriptomic changes in the DNA damage response during injury repair and propose DNA repair as key component of tissue regeneration. Additional studies using planaria will provide insights about mechanisms regulating survival and growth of cells with DNA damage during tissue renewal and regeneration.
Collapse
|
13
|
Strand NS, Allen JM, Zayas RM. Post-translational regulation of planarian regeneration. Semin Cell Dev Biol 2018; 87:58-68. [PMID: 29705300 DOI: 10.1016/j.semcdb.2018.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
Most mammals cannot easily overcome degenerative disease or traumatic injuries. In contrast, an innate ability to regenerate is observed across animal phyla. Freshwater planarians are amongst the organisms that are capable of stem cell-mediated whole-body regeneration and have served as an exemplary model to study how pluripotency is maintained and regulated in vivo. Here, we review findings on the role of post-translational modifications and the genes regulating phosphorylation, ubiquitylation, and chromatin remodeling in planarian regeneration. Furthermore, we discuss how technological advances for identifying cellular targets of these processes will fill gaps in our knowledge of the signaling mechanisms that underlie regeneration in planarians, which should inform how tissue repair can be stimulated in non-regenerative model organisms and in humans.
Collapse
Affiliation(s)
- Nicholas S Strand
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - John M Allen
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
14
|
Thiruvalluvan M, Barghouth PG, Tsur A, Broday L, Oviedo NJ. SUMOylation controls stem cell proliferation and regional cell death through Hedgehog signaling in planarians. Cell Mol Life Sci 2018; 75:1285-1301. [PMID: 29098326 PMCID: PMC7083543 DOI: 10.1007/s00018-017-2697-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/21/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022]
Abstract
Mechanisms underlying anteroposterior body axis differences during adult tissue maintenance and regeneration are poorly understood. Here, we identify that post-translational modifications through the SUMO (Small Ubiquitin-like Modifier) machinery are evolutionarily conserved in the Lophotrocozoan Schmidtea mediterranea. Disruption of SUMOylation in adult animals by RNA-interference of the only SUMO E2 conjugating enzyme Ubc9 leads to a systemic increase in DNA damage and a remarkable regional defect characterized by increased cell death and loss of the posterior half of the body. We identified that Ubc9 is mainly expressed in planarian stem cells (neoblasts) but it is also transcribed in differentiated cells including neurons. Regeneration in Ubc9(RNAi) animals is impaired and associated with low neoblast proliferation. We present evidence indicating that Ubc9-induced regional cell death is preceded by alterations in transcription and spatial expression of repressors and activators of the Hedgehog signaling pathway. Our results demonstrate that SUMOylation acts as a regional-specific cue to regulate cell fate during tissue renewal and regeneration.
Collapse
Affiliation(s)
- Manish Thiruvalluvan
- Department of Molecular and Cell Biology, University of California, 5200 North Lake Road, Merced, CA, 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Paul G Barghouth
- Department of Molecular and Cell Biology, University of California, 5200 North Lake Road, Merced, CA, 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Assaf Tsur
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Limor Broday
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Néstor J Oviedo
- Department of Molecular and Cell Biology, University of California, 5200 North Lake Road, Merced, CA, 95343, USA.
- Quantitative and Systems Biology Graduate Program, University of California, Merced, USA.
- Health Sciences Research Institute, University of California, Merced, USA.
| |
Collapse
|
15
|
Almazan EMP, Lesko SL, Markey MP, Rouhana L. Girardia dorotocephala transcriptome sequence, assembly, and validation through characterization of piwi homologs and stem cell progeny markers. Dev Biol 2018; 433:433-447. [PMID: 28774726 PMCID: PMC5750089 DOI: 10.1016/j.ydbio.2017.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/05/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022]
Abstract
Planarian flatworms are popular models for the study of regeneration and stem cell biology in vivo. Technical advances and increased availability of genetic information have fueled the discovery of molecules responsible for stem cell pluripotency and regeneration in flatworms. Unfortunately, most of the planarian research performed worldwide utilizes species that are not natural habitants of North America, which limits their availability to newcomer laboratories and impedes their distribution for educational activities. In order to circumvent these limitations and increase the genetic information available for comparative studies, we sequenced the transcriptome of Girardia dorotocephala, a planarian species pandemic and commercially available in North America. A total of 254,802,670 paired sequence reads were obtained from RNA extracted from intact individuals, regenerating fragments, as well as freshly excised auricles of a clonal line of G. dorotocephala (MA-C2), and used for de novo assembly of its transcriptome. The resulting transcriptome draft was validated through functional analysis of genetic markers of stem cells and their progeny in G. dorotocephala. Akin to orthologs in other planarian species, G. dorotocephala Piwi1 (GdPiwi1) was found to be a robust marker of the planarian stem cell population and GdPiwi2 an essential component for stem cell-driven regeneration. Identification of G. dorotocephala homologs of the early stem cell descendent marker PROG-1 revealed a family of lysine-rich proteins expressed during epithelial cell differentiation. Sequences from the MA-C2 transcriptome were found to be 98-99% identical to nucleotide sequences from G. dorotocephala populations with different chromosomal number, demonstrating strong conservation regardless of karyotype evolution. Altogether, this work establishes G. dorotocephala as a viable and accessible option for analysis of gene function in North America.
Collapse
Affiliation(s)
- Eugene Matthew P Almazan
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States
| | - Sydney L Lesko
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States
| | - Michael P Markey
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States
| | - Labib Rouhana
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States.
| |
Collapse
|
16
|
Chu HP, Froberg JE, Kesner B, Oh HJ, Ji F, Sadreyev R, Pinter SF, Lee JT. PAR-TERRA directs homologous sex chromosome pairing. Nat Struct Mol Biol 2017; 24:620-631. [PMID: 28692038 PMCID: PMC5553554 DOI: 10.1038/nsmb.3432] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 06/09/2017] [Indexed: 12/25/2022]
Abstract
In mammals, homologous chromosomes rarely pair outside of meiosis. An exception is the X-chromosome, which transiently pairs during X-chromosome inactivation (XCI). How two chromosomes find each other in 3D space is not known. Here, we reveal a required interaction between the X-inactivation center (Xic) and the telomere in mouse embryonic stem cells. The sub-telomeric, pseudoautosomal region (PAR) of both sex chromosomes (X,Y) also undergoes pairing. PAR transcribes a class of telomeric RNA, dubbed “PAR-TERRA”, which accounts for a vast majority of all TERRA transcripts. PAR-TERRA binds throughout the genome, including PAR and Xic. PAR-TERRA anchors the Xic to PAR, creating a “tetrad” of pairwise homologous interactions (Xic:Xic, PAR:PAR, Xic:PAR). Xic pairing occurs within the tetrad. Depleting PAR-TERRA abrogates pairing and blocks initiation of XCI, whereas autosomal PAR-TERRA induces ectopic pairing. We proposed a Constrained Diffusion Model in which PAR-TERRA creates an interaction hub to guide Xic homology searching during XCI.
Collapse
Affiliation(s)
- Hsueh-Ping Chu
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - John E Froberg
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Barry Kesner
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Hyun Jung Oh
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stefan F Pinter
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Newton AA, Schnittker RR, Yu Z, Munday SS, Baumann DP, Neaves WB, Baumann P. Widespread failure to complete meiosis does not impair fecundity in parthenogenetic whiptail lizards. Development 2016; 143:4486-4494. [PMID: 27802173 PMCID: PMC5201048 DOI: 10.1242/dev.141283] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/12/2016] [Indexed: 11/20/2022]
Abstract
Parthenogenetic species of whiptail lizards in the genus Aspidoscelis constitute a striking example of speciation by hybridization, in which first-generation hybrids instantly attain reproductive isolation and procreate as clonal all-female lineages. Production of eggs containing a full complement of chromosomes in the absence of fertilization involves genome duplication prior to the meiotic divisions. In these pseudo-tetraploid oocytes, pairing and recombination occur exclusively between identical chromosomes instead of homologs; a deviation from the normal meiotic program that maintains heterozygosity. Whether pseudo-tetraploid cells arise early in germ cell development or just prior to meiosis has remained unclear. We now show that in the obligate parthenogenetic species A. neomexicana the vast majority of oocytes enter meiosis as diploid cells. Telomere bouquet formation is normal, but synapsis fails and oocytes accumulate in large numbers at the pairing stage. Pseudo-tetraploid cells are exceedingly rare in early meiotic prophase, but they are the only cells that progress into diplotene. Despite the widespread failure to increase ploidy prior to entering meiosis, the fecundity of parthenogenetic A. neomexicana is similar to that of A. inornata, one of its bisexual ancestors.
Collapse
Affiliation(s)
- Aracely A Newton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sarah S Munday
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Diana P Baumann
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - William B Neaves
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Peter Baumann
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA .,Howard Hughes Medical Institute, Kansas City, MO 64110, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
18
|
Abstract
Comparisons among a variety of eukaryotes have revealed considerable variability in the structures and processes involved in their meiosis. Nevertheless, conventional forms of meiosis occur in all major groups of eukaryotes, including early-branching protists. This finding confirms that meiosis originated in the common ancestor of all eukaryotes and suggests that primordial meiosis may have had many characteristics in common with conventional extant meiosis. However, it is possible that the synaptonemal complex and the delicate crossover control related to its presence were later acquisitions. Later still, modifications to meiotic processes occurred within different groups of eukaryotes. Better knowledge on the spectrum of derived and uncommon forms of meiosis will improve our understanding of many still mysterious aspects of the meiotic process and help to explain the evolutionary basis of functional adaptations to the meiotic program.
Collapse
Affiliation(s)
- Josef Loidl
- Department of Chromosome Biology and Vienna Biocenter, University of Vienna, A-1030 Vienna, Austria;
| |
Collapse
|
19
|
Lei K, Thi-Kim Vu H, Mohan RD, McKinney SA, Seidel CW, Alexander R, Gotting K, Workman JL, Sánchez Alvarado A. Egf Signaling Directs Neoblast Repopulation by Regulating Asymmetric Cell Division in Planarians. Dev Cell 2016; 38:413-29. [PMID: 27523733 DOI: 10.1016/j.devcel.2016.07.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/01/2016] [Accepted: 07/15/2016] [Indexed: 12/27/2022]
Abstract
A large population of proliferative stem cells (neoblasts) is required for physiological tissue homeostasis and post-injury regeneration in planarians. Recent studies indicate that survival of a few neoblasts after sublethal irradiation results in the clonal expansion of the surviving stem cells and the eventual restoration of tissue homeostasis and regenerative capacity. However, the precise mechanisms regulating the population dynamics of neoblasts remain largely unknown. Here, we uncovered a central role for epidermal growth factor (EGF) signaling during in vivo neoblast expansion mediated by Smed-egfr-3 (egfr-3) and its putative ligand Smed-neuregulin-7 (nrg-7). Furthermore, the EGF receptor-3 protein localizes asymmetrically on the cytoplasmic membrane of neoblasts, and the ratio of asymmetric to symmetric cell divisions decreases significantly in egfr-3(RNAi) worms. Our results not only provide the first molecular evidence of asymmetric stem cell divisions in planarians, but also demonstrate that EGF signaling likely functions as an essential regulator of neoblast clonal expansion.
Collapse
Affiliation(s)
- Kai Lei
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | - Hanh Thi-Kim Vu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ryan D Mohan
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Sean A McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Chris W Seidel
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Kirsten Gotting
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| |
Collapse
|
20
|
Peiris TH, Ramirez D, Barghouth PG, Ofoha U, Davidian D, Weckerle F, Oviedo NJ. Regional signals in the planarian body guide stem cell fate in the presence of genomic instability. Development 2016; 143:1697-709. [PMID: 27013241 DOI: 10.1242/dev.131318] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 03/10/2016] [Indexed: 12/28/2022]
Abstract
Cellular fate decisions are influenced by their topographical location in the adult body. For instance, tissue repair and neoplastic growth are greater in anterior than in posterior regions of adult animals. However, the molecular underpinnings of these regional differences are unknown. We identified a regional switch in the adult planarian body upon systemic disruption of homologous recombination with RNA-interference of Rad51 Rad51 knockdown increases DNA double-strand breaks (DSBs) throughout the body, but stem cells react differently depending on their location along the anteroposterior axis. In the presence of extensive DSBs, cells in the anterior part of the body resist death, whereas cells in the posterior region undergo apoptosis. Furthermore, we found that proliferation of cells with DNA damage is induced in the presence of brain tissue and that the retinoblastoma pathway enables overproliferation of cells with DSBs while attending to the demands of tissue growth and repair. Our results implicate both autonomous and non-autonomous mechanisms as key mediators of regional cell behavior and cellular transformation in the adult body.
Collapse
Affiliation(s)
- T Harshani Peiris
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Daniel Ramirez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Paul G Barghouth
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Udokanma Ofoha
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Devon Davidian
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Frank Weckerle
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Néstor J Oviedo
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| |
Collapse
|
21
|
Lake CM, Hawley RS. Becoming a crossover-competent DSB. Semin Cell Dev Biol 2016; 54:117-25. [PMID: 26806636 DOI: 10.1016/j.semcdb.2016.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/06/2016] [Indexed: 12/16/2022]
Abstract
The proper execution of meiotic recombination (or crossing over) is essential for chromosome segregation during the first meiotic division, and thus this process is regulated by multiple, and often elaborate, mechanisms. Meiotic recombination begins with the programmed induction of DNA double-strand breaks (DSBs), of which only a subset are selected to be repaired into crossovers. This crossover selection process is carried out by a number of pro-crossover proteins that regulate the fashion in which DSBs are repaired. Here, we highlight recent studies regarding the process of DSB fate selection by a family of pro-crossover proteins known as the Zip-3 homologs.
Collapse
Affiliation(s)
- Cathleen M Lake
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - R Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
22
|
Brandl H, Moon H, Vila-Farré M, Liu SY, Henry I, Rink JC. PlanMine--a mineable resource of planarian biology and biodiversity. Nucleic Acids Res 2015; 44:D764-73. [PMID: 26578570 PMCID: PMC4702831 DOI: 10.1093/nar/gkv1148] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/19/2015] [Indexed: 11/13/2022] Open
Abstract
Planarian flatworms are in the midst of a renaissance as a model system for regeneration and stem cells. Besides two well-studied model species, hundreds of species exist worldwide that present a fascinating diversity of regenerative abilities, tissue turnover rates, reproductive strategies and other life history traits. PlanMine (http://planmine.mpi-cbg.de/) aims to accomplish two primary missions: First, to provide an easily accessible platform for sharing, comparing and value-added mining of planarian sequence data. Second, to catalyze the comparative analysis of the phenotypic diversity amongst planarian species. Currently, PlanMine houses transcriptomes independently assembled by our lab and community contributors. Detailed assembly/annotation statistics, a custom-developed BLAST viewer and easy export options enable comparisons at the contig and assembly level. Consistent annotation of all transcriptomes by an automated pipeline, the integration of published gene expression information and inter-relational query tools provide opportunities for mining planarian gene sequences and functions. For inter-species comparisons, we include transcriptomes of, so far, six planarian species, along with images, expert-curated information on their biology and pre-calculated cross-species sequence homologies. PlanMine is based on the popular InterMine system in order to make the rich biology of planarians accessible to the general life sciences research community.
Collapse
Affiliation(s)
- Holger Brandl
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - HongKee Moon
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Miquel Vila-Farré
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Shang-Yun Liu
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Ian Henry
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
23
|
Abstract
Production of gametes of halved ploidy for sexual reproduction requires a specialized cell division called meiosis. The fusion of two gametes restores the original ploidy in the new generation, and meiosis thus stabilizes ploidy across generations. To ensure balanced distribution of chromosomes, pairs of homologous chromosomes (homologs) must recognize each other and pair in the first meiotic division. Recombination plays a key role in this in most studied species, but it is not the only actor and particular chromosomal regions are known to facilitate the meiotic pairing of homologs. In this review, we focus on the roles of centromeres and in particular on the clustering and pairwise associations of nonhomologous centromeres that precede stable pairing between homologs. Although details vary from species to species, it is becoming increasingly clear that these associations play active roles in the meiotic chromosome pairing process, analogous to those of the telomere bouquet.
Collapse
Affiliation(s)
- Olivier Da Ines
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, Aubière, France; ,
| | - Charles I White
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, Aubière, France; ,
| |
Collapse
|
24
|
Robb SMC, Gotting K, Ross E, Sánchez Alvarado A. SmedGD 2.0: The Schmidtea mediterranea genome database. Genesis 2015; 53:535-46. [PMID: 26138588 DOI: 10.1002/dvg.22872] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 12/13/2022]
Abstract
Planarians have emerged as excellent models for the study of key biological processes such as stem cell function and regulation, axial polarity specification, regeneration, and tissue homeostasis among others. The most widely used organism for these studies is the free-living flatworm Schmidtea mediterranea. In 2007, the Schmidtea mediterranea Genome Database (SmedGD) was first released to provide a much needed resource for the small, but growing planarian community. SmedGD 1.0 has been a depository for genome sequence, a draft assembly, and related experimental data (e.g., RNAi phenotypes, in situ hybridization images, and differential gene expression results). We report here a comprehensive update to SmedGD (SmedGD 2.0) that aims to expand its role as an interactive community resource. The new database includes more recent, and up-to-date transcription data, provides tools that enhance interconnectivity between different genome assemblies and transcriptomes, including next-generation assemblies for both the sexual and asexual biotypes of S. mediterranea. SmedGD 2.0 (http://smedgd.stowers.org) not only provides significantly improved gene annotations, but also tools for data sharing, attributes that will help both the planarian and biomedical communities to more efficiently mine the genomics and transcriptomics of S. mediterranea.
Collapse
Affiliation(s)
- Sofia M C Robb
- Stowers Institute for Medical Research, Howard Hughes Medical Institute, Kansas City, Missouri, 64110
| | - Kirsten Gotting
- Stowers Institute for Medical Research, Howard Hughes Medical Institute, Kansas City, Missouri, 64110
| | - Eric Ross
- Stowers Institute for Medical Research, Howard Hughes Medical Institute, Kansas City, Missouri, 64110
| | | |
Collapse
|