1
|
Poudel SB, Kim MH, Bhattarai G, So HS, Kook SH, Lee JC. n-acetyl-l-cysteine stimulates bone healing by recovering the age-associated degenerative complications relative to osteoblastic Wntless ablation. Biomed Pharmacother 2025; 182:117761. [PMID: 39700869 DOI: 10.1016/j.biopha.2024.117761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Dysregulated Wnt signaling causes age-related characteristics such as oxidative stress, stem cell senescence, and abnormal bone homeostasis. Here we explored whether supplemental n-acetyl-l-cysteine (NAC) recovers the age-associated complications relative to osteoblastic Wntless (Wls) ablation and examined the possible mechanisms therein. For this work, we administered Col2.3-Cre;Wlsfl/fl mutant and littermate control (Wlsfl/fl) mice (14 weeks of age) with NAC (40 mM)-supplemented or NAC-free water for four weeks. A proportion of these mice received non-critical-sized femoral defects at 16 weeks of age. Blood, bone, and bone marrow (BM) samples were collected and adjusted for in vivo, ex vivo, and in vitro analyses. Osteoblastic Wls deletion delayed bone mass accrual and the healing of bone defects, stimulated osteoclastic activation and inflammatory factor expression, and decreased antioxidant enzyme activity in the BM. Osteoblastic Wls deletion also promoted oxidative stress, apoptosis, and senescence in BM stromal cells (BMSCs) and decreased BMSC' multipotencies. Supplementation of Wlsfl/fl mice with NAC enhanced bone mass accrual and regenerative bone healing via a Wnt signal-associated osteogenic activation. However, supplemental NAC induced new bone formation in the mutant mice by inhibiting the age-related complications of BM/BMSCs, as well as by restoring endogenous antioxidant system without any alterations in Wnt ligand secretion, hematopoiesis, and expression of osteogenic and growth factors. This study indicates that supplemental NAC protects mice against Wnt deficiency-mediated and age-associated degenerative complications. Overall, this study highlights the therapeutic potency of NAC for restoring the antioxidant system, stem cell function, and regenerative bone homeostasis in osteoblastic Wls-dispensable manner.
Collapse
Affiliation(s)
- Sher Bahadur Poudel
- Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Min-Hye Kim
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, South Korea
| | - Govinda Bhattarai
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Jeonbuk National University, Jeonju 54896, South Korea
| | - Han-Sol So
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, South Korea
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, South Korea; Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, South Korea; Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Jeonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
2
|
Mizoguchi T. In vivo dynamics of hard tissue-forming cell origins: Insights from Cre/loxP-based cell lineage tracing studies. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:109-119. [PMID: 38406212 PMCID: PMC10885318 DOI: 10.1016/j.jdsr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Bone tissue provides structural support for our bodies, with the inner bone marrow (BM) acting as a hematopoietic organ. Within the BM tissue, two types of stem cells play crucial roles: mesenchymal stem cells (MSCs) (or skeletal stem cells) and hematopoietic stem cells (HSCs). These stem cells are intricately connected, where BM-MSCs give rise to bone-forming osteoblasts and serve as essential components in the BM microenvironment for sustaining HSCs. Despite the mid-20th century proposal of BM-MSCs, their in vivo identification remained elusive owing to a lack of tools for analyzing stemness, specifically self-renewal and multipotency. To address this challenge, Cre/loxP-based cell lineage tracing analyses are being employed. This technology facilitated the in vivo labeling of specific cells, enabling the tracking of their lineage, determining their stemness, and providing a deeper understanding of the in vivo dynamics governing stem cell populations responsible for maintaining hard tissues. This review delves into cell lineage tracing studies conducted using commonly employed genetically modified mice expressing Cre under the influence of LepR, Gli1, and Axin2 genes. These studies focus on research fields spanning long bones and oral/maxillofacial hard tissues, offering insights into the in vivo dynamics of stem cell populations crucial for hard tissue homeostasis.
Collapse
|
3
|
Park H, Jo S, Jang MA, Choi SH, Kim TH. Dikkopf-1 promotes matrix mineralization of osteoblasts by regulating Ca +-CAMK2A- CREB1 pathway. BMB Rep 2022; 55:627-632. [PMID: 36229414 PMCID: PMC9813425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 12/29/2022] Open
Abstract
Dickkopf-1 (DKK1) is a secreted protein that acts as an antagonist of the canonical WNT/β-catenin pathway, which regulates osteoblast differentiation. However, the role of DKK1 on osteoblast differentiation has not yet been fully clarified. Here, we investigate the functional role of DKK1 on osteoblast differentiation. Primary osteoprogenitor cells were isolated from human spinal bone tissues. To examine the role of DKK1 in osteoblast differentiation, we manipulated the expression of DKK1, and the cells were differentiated into mature osteoblasts. DKK1 overexpression in osteoprogenitor cells promoted matrix mineralization of osteoblast differentiation but did not promote matrix maturation. DKK1 increased Ca+ influx and activation of the Ca+/calmodulin-dependent protein kinase II Alpha (CAMK2A)-cAMP response element-binding protein 1 (CREB1) and increased translocation of p-CREB1 into the nucleus. In contrast, stable DKK1 knockdown in human osteosarcoma cell line SaOS2 exhibited reduced nuclear translocation of p-CREB1 and matrix mineralization. Overall, we suggest that manipulating DKK1 regulates the matrix mineralization of osteoblasts by Ca+-CAMK2A-CREB1, and DKK1 is a crucial gene for bone mineralization of osteoblasts. [BMB Reports 2022; 55(12): 627-632].
Collapse
Affiliation(s)
- Hyosun Park
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea,Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea
| | - Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Korea
| | - Sung Hoon Choi
- Department of Orthopedic Surgery, Hanyang University Seoul Hospital, Seoul 04763, Korea
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea,Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea,Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea,Corresponding author. Tel: +82-2-2290-9245; Fax: +82-2-2290-9253; E-mail:
| |
Collapse
|
4
|
Colin-Pierre C, El Baraka O, Danoux L, Bardey V, André V, Ramont L, Brézillon S. Regulation of stem cell fate by HSPGs: implication in hair follicle cycling. NPJ Regen Med 2022; 7:77. [PMID: 36577752 PMCID: PMC9797564 DOI: 10.1038/s41536-022-00267-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are part of proteoglycan family. They are composed of heparan sulfate (HS)-type glycosaminoglycan (GAG) chains covalently linked to a core protein. By interacting with growth factors and/or receptors, they regulate numerous pathways including Wnt, hedgehog (Hh), bone morphogenic protein (BMP) and fibroblast growth factor (FGF) pathways. They act as inhibitor or activator of these pathways to modulate embryonic and adult stem cell fate during organ morphogenesis, regeneration and homeostasis. This review summarizes the knowledge on HSPG structure and classification and explores several signaling pathways regulated by HSPGs in stem cell fate. A specific focus on hair follicle stem cell fate and the possibility to target HSPGs in order to tackle hair loss are discussed in more dermatological and cosmeceutical perspectives.
Collapse
Affiliation(s)
- Charlie Colin-Pierre
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.
- BASF Beauty Care Solutions France SAS, Pulnoy, France.
| | | | - Louis Danoux
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Valérie André
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
- CHU de Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| |
Collapse
|
5
|
Park H, Jo S, Jang MA, Choi SH, Kim TH. Dikkopf-1 promotes matrix mineralization of osteoblasts by regulating Ca +-CAMK2A- CREB1 pathway. BMB Rep 2022; 55:627-632. [PMID: 36229414 PMCID: PMC9813425 DOI: 10.5483/bmbrep.2022.55.12.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 10/07/2022] [Indexed: 11/03/2023] Open
Abstract
Dickkopf-1 (DKK1) is a secreted protein that acts as an antagonist of the canonical WNT/β-catenin pathway, which regulates osteoblast differentiation. However, the role of DKK1 on osteoblast differentiation has not yet been fully clarified. Here, we investigate the functional role of DKK1 on osteoblast differentiation. Primary osteoprogenitor cells were isolated from human spinal bone tissues. To examine the role of DKK1 in osteoblast differentiation, we manipulated the expression of DKK1, and the cells were differentiated into mature osteoblasts. DKK1 overexpression in osteoprogenitor cells promoted matrix mineralization of osteoblast differentiation but did not promote matrix maturation. DKK1 increased Ca+ influx and activation of the Ca+/calmodulin-dependent protein kinase II Alpha (CAMK2A)-cAMP response element-binding protein 1 (CREB1) and increased translocation of p-CREB1 into the nucleus. In contrast, stable DKK1 knockdown in human osteosarcoma cell line SaOS2 exhibited reduced nuclear translocation of p-CREB1 and matrix mineralization. Overall, we suggest that manipulating DKK1 regulates the matrix mineralization of osteoblasts by Ca+-CAMK2A-CREB1, and DKK1 is a crucial gene for bone mineralization of osteoblasts. [BMB Reports 2022; 55(12): 627-632].
Collapse
Affiliation(s)
- Hyosun Park
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea
| | - Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Korea
| | - Sung Hoon Choi
- Department of Orthopedic Surgery, Hanyang University Seoul Hospital, Seoul 04763, Korea
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| |
Collapse
|
6
|
Yu K, Jiang Z, Miao X, Yu Z, Du X, Lai K, Wang Y, Yang G. circRNA422 enhanced osteogenic differentiation of bone marrow mesenchymal stem cells during early osseointegration through the SP7/LRP5 axis. Mol Ther 2022; 30:3226-3240. [PMID: 35642253 PMCID: PMC9552913 DOI: 10.1016/j.ymthe.2022.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/27/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022] Open
Abstract
Circular RNAs (circRNAs) play an important role in biological activities, especially in regulating osteogenic differentiation of stem cells. However, no studies have reported the role of circRNAs in early osseointegration. Here we identified a new circRNA, circRNA422, from rat bone marrow mesenchymal stem cells (BMSCs) cultured on sandblasted, large-grit, acid-etched titanium surfaces. The results showed that circRNA422 significantly enhanced osteogenic differentiation of BMSCs with increased expression levels of alkaline phosphatase, the SP7 transcription factor (SP7/osterix), and lipoprotein receptor-related protein 5 (LRP5). Silencing of circRNA422 had opposite effects. There were two SP7 binding sites on the LRP5 promoter, indicating a direct regulatory relationship between SP7 and LRP5. circRNA422 could regulate early osseointegration in in vivo experiments. These findings revealed an important function of circRNA422 during early osseointegration. Therefore, circRNA422 may be a potential therapeutic target for enhancing implant osseointegration.
Collapse
Affiliation(s)
- Ke Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xiaoyan Miao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Zhou Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xue Du
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
7
|
Loss of Intraflagellar Transport 140 in Osteoblasts Cripples Bone Fracture Healing. FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
8
|
Ye J, Xiao J, Wang J, Ma Y, Zhang Y, Zhang Q, Zhang Z, Yin H. The Interaction Between Intracellular Energy Metabolism and Signaling Pathways During Osteogenesis. Front Mol Biosci 2022; 8:807487. [PMID: 35155568 PMCID: PMC8832142 DOI: 10.3389/fmolb.2021.807487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
Osteoblasts primarily mediate bone formation, maintain bone structure, and regulate bone mineralization, which plays an important role in bone remodeling. In the past decades, the roles of cytokines, signaling proteins, and transcription factors in osteoblasts have been widely studied. However, whether the energy metabolism of cells can be regulated by these factors to affect the differentiation and functioning of osteoblasts has not been explored in depth. In addition, the signaling and energy metabolism pathways are not independent but closely connected. Although energy metabolism is mediated by signaling pathways, some intermediates of energy metabolism can participate in protein post-translational modification. The content of intermediates, such as acetyl coenzyme A (acetyl CoA) and uridine diphosphate N-acetylglucosamine (UDP-N-acetylglucosamine), determines the degree of acetylation and glycosylation in terms of the availability of energy-producing substrates. The utilization of intracellular metabolic resources and cell survival, proliferation, and differentiation are all related to the integration of metabolic and signaling pathways. In this paper, the interaction between the energy metabolism pathway and osteogenic signaling pathway in osteoblasts and bone marrow mesenchymal stem cells (BMSCs) will be discussed.
Collapse
Affiliation(s)
- Jiapeng Ye
- Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Jirimutu Xiao
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot, China
| | - Jianwei Wang
- Department of Orthopedics and Traumatology, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
- *Correspondence: Jianwei Wang, ; Heng Yin,
| | - Yong Ma
- Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yafeng Zhang
- Department of Orthopedics and Traumatology, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Qiang Zhang
- Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Zongrui Zhang
- Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Heng Yin
- Department of Orthopedics and Traumatology, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
- *Correspondence: Jianwei Wang, ; Heng Yin,
| |
Collapse
|
9
|
Lawson LY, Brodt MD, Migotsky N, Chermside-Scabbo CJ, Palaniappan R, Silva MJ. Osteoblast-Specific Wnt Secretion Is Required for Skeletal Homeostasis and Loading-Induced Bone Formation in Adult Mice. J Bone Miner Res 2022; 37:108-120. [PMID: 34542191 PMCID: PMC8770559 DOI: 10.1002/jbmr.4445] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/10/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023]
Abstract
Wnt signaling is critical to many aspects of skeletal regulation, but the importance of Wnt ligands in the bone anabolic response to mechanical loading is not well established. Recent transcriptome profiling studies by our laboratory and others show that mechanical loading potently induces genes encoding Wnt ligands, including Wnt1 and Wnt7b. Based on these findings, we hypothesized that mechanical loading stimulates adult bone formation by inducing Wnt ligand expression. To test this hypothesis, we inhibited Wnt ligand secretion in adult (5 months old) mice using a systemic (drug) and a bone-targeted (conditional gene knockout) approach, and subjected them to axial tibial loading to induce lamellar bone formation. Mice treated with the Wnt secretion inhibitor WNT974 exhibited a decrease in bone formation in non-loaded bones as well as a 54% decline in the periosteal bone formation response to tibial loading. Next, osteoblast-specific Wnt secretion was inhibited by dosing 5-month-old Osx-CreERT2; WlsF/F mice with tamoxifen. Within 1 to 2 weeks of Wls deletion, skeletal homeostasis was altered with decreased bone formation and increased resorption, and the anabolic response to loading was reduced 65% compared to control (WlsF/F ). Together, these findings show that Wnt ligand secretion is required for adult bone homeostasis, and furthermore establish a role for osteoblast-derived Wnts in mediating the bone anabolic response to tibial loading. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lisa Y. Lawson
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Michael D. Brodt
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Nicole Migotsky
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Ramya Palaniappan
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Matthew J. Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| |
Collapse
|
10
|
Wu X, Qu M, Gong W, Zhou C, Lai Y, Xiao G. Kindlin-2 deletion in osteoprogenitors causes severe chondrodysplasia and low-turnover osteopenia in mice. J Orthop Translat 2022; 32:41-48. [PMID: 34934625 PMCID: PMC8639803 DOI: 10.1016/j.jot.2021.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Our recent studies demonstrate that the focal adhesion protein Kindlin-2 exerts crucial functions in the mesenchymal stem cells, mature osteoblasts and osteocytes in control of early skeletal development and bone homeostasis in mice. However, whether Kindlin-2 plays a role in osteoprogenitors remains unclear. MATERIALS AND METHODS Mice lacking Kindlin-2 expression in osterix (Osx)-expressing cells (i.e., osteoprogenitors) were generated. Micro-computerized tomography (μCT) analyses, histology, bone histomorphometry and immunohistochemistry were performed to determine the effects of Kindlin-2 deletion on skeletal development and bone mass accrual and homeostasis. Bone marrow stromal cells (BMSCs) from mutant mice (Kindlin-2 fl/fl ; Osx Cre ) and control littermates were isolated and determined for their osteoblastic differentiation capacity. RESULTS Kindlin-2 was highly expressed in osteoprogenitors during endochondral ossification. Deleting Kindlin-2 expression in osteoprogenitors impaired both intramembranous and endochondral ossifications. Mutant mice displayed multiple severe skeletal abnormalities, including unmineralized fontanel, limb shortening and growth retardation. Deletion of Kindlin-2 in osteoprogenitors impaired the growth plate development and largely delayed formation of the secondary ossification center in the long bones. Furthermore, adult mutant mice displayed a severe low-turnover osteopenia with a dramatic decrease in bone formation which exceeded that in bone resorption. Primary BMSCs isolated from mutant mice exhibited decreased osteoblastic differentiation capacity. CONCLUSIONS Our study demonstrates an essential role of Kinlind-2 expression in osteoprogenitors in regulating skeletogenesis and bone mass accrual and homeostasis in mice. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This study reveals that Kindlin-2 through its expression in osteoprogenitor cells controls chondrogenesis and bone mass. We may define a novel therapeutic target for treatment of skeletal diseases, such as chondrodysplasia and osteoporosis.
Collapse
Affiliation(s)
- Xiaohao Wu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghao Qu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weiyuan Gong
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunlei Zhou
- Department of Medical Laboratory, Tianjin First Center Hospital, Tianjin Medical, 17 University, Tianjin, 300192, China
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
11
|
Ko FC, Kobelski MM, Zhang W, Grenga GM, Martins JS, Demay MB. Phosphate restriction impairs mTORC1 signaling leading to increased bone marrow adipose tissue and decreased bone in growing mice. J Bone Miner Res 2021; 36:1510-1520. [PMID: 33900666 DOI: 10.1002/jbmr.4312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Bone marrow stromal cells (BMSCs) are multipotent cells that differentiate into cells of the osteogenic and adipogenic lineage. A striking inverse relationship between bone marrow adipose tissue (BMAT) and bone volume is seen in several conditions, suggesting that differentiation of BMSCs into bone marrow adipocytes diverts cells from the osteogenic lineage, thereby compromising the structural and mechanical properties of bone. Phosphate restriction of growing mice acutely decreases bone formation, blocks osteoblast differentiation and increases BMAT. Studies performed to evaluate the cellular and molecular basis for the effects of acute phosphate restriction demonstrate that it acutely increases 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and inhibits mammalian target of rapamycin complex 1 (mTORC1) signaling in osteoblasts. This is accompanied by decreased expression of Wnt10b in BMSCs. Phosphate restriction also promotes expression of the key adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer binding protein α (CEBPα), in CXCL12 abundant reticular (CAR) cells, which represent undifferentiated BMSCs and are the main source of BMAT and osteoblasts in the adult murine skeleton. Consistent with this, lineage tracing studies reveal that the BMAT observed in phosphate-restricted mice is of CAR cell origin. To determine whether circumventing the decrease in mTORC1 signaling in maturing osteoblasts attenuates the osteoblast and BMAT phenotype, phosphate-restricted mice with OSX-CreERT2 -mediated haploinsufficiency of the mTORC1 inhibitor, TSC2, were generated. TSC2 haploinsufficiency in preosteoblasts/osteoblasts normalized bone volume and osteoblast number in phosphate-restricted mice and attenuated the increase in BMAT observed. Thus, acute phosphate restriction leads to decreased bone and increases BMAT by impairing mTORC1 signaling in osterix-expressing cells. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Frank C Ko
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | | | - Wanlin Zhang
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gina M Grenga
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Janaina S Martins
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Marie B Demay
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Mizoguchi T, Ono N. The diverse origin of bone-forming osteoblasts. J Bone Miner Res 2021; 36:1432-1447. [PMID: 34213032 PMCID: PMC8338797 DOI: 10.1002/jbmr.4410] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Osteoblasts are the only cells that can give rise to bones in vertebrates. Thus, one of the most important functions of these metabolically active cells is mineralized matrix production. Because osteoblasts have a limited lifespan, they must be constantly replenished by preosteoblasts, their immediate precursors. Because disruption of the regulation of bone-forming osteoblasts results in a variety of bone diseases, a better understanding of the origin of these cells by defining the mechanisms of bone development, remodeling, and regeneration is central to the development of novel therapeutic approaches. In recent years, substantial new insights into the origin of osteoblasts-largely owing to rapid technological advances in murine lineage-tracing approaches and other single-cell technologies-have been obtained. Collectively, these findings indicate that osteoblasts involved in bone formation under various physiological, pathological, and therapeutic conditions can be obtained from numerous sources. The origins of osteoblasts include, but are not limited to, chondrocytes in the growth plate, stromal cells in the bone marrow, quiescent bone-lining cells on the bone surface, and specialized fibroblasts in the craniofacial structures, such as sutures and periodontal ligaments. Because osteoblasts can be generated from local cellular sources, bones can flexibly respond to regenerative and anabolic cues. However, whether osteoblasts derived from different cellular sources have distinct functions remains to be investigated. Currently, we are at the initial stage to aptly unravel the incredible diversity of the origins of bone-forming osteoblasts. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| |
Collapse
|
13
|
Hétu-Arbour R, Tlili M, Bandeira Ferreira FL, Abidin BM, Kwarteng EO, Heinonen KM. Cell-intrinsic Wnt4 promotes hematopoietic stem and progenitor cell self-renewal. STEM CELLS (DAYTON, OHIO) 2021; 39:1207-1220. [PMID: 33882146 DOI: 10.1002/stem.3385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 03/25/2021] [Indexed: 11/05/2022]
Abstract
Although intracellular Wnt signaling pathways need to be tightly regulated to promote hematopoietic stem cell self-renewal, the source and identity of important Wnt ligands in the bone marrow is still largely unknown. The noncanonical ligand Wnt4 is expressed in the bone marrow as well as in the stroma, and its overexpression in fetal liver cells facilitates thymic recovery; however, its impact on adult hematopoietic stem cell function remains unclear. Here, we report that the deletion of Wnt4 from hematopoietic cells in mice (Wnt4Δ/Δ ) resulted in decreased lymphopoiesis at steady state. This was likely at least in part due to the increased proinflammatory environment present in the bone marrow of Wnt4Δ/Δ mice. Wnt4Δ/Δ hematopoietic stem cells displayed reduced reconstitution capacity in serial transplants, thus demonstrating defective self-renewal, and they expanded poorly in response to lipopolysaccharide stimulation. This appeared to be the result of the absence of Wnt4 in stem/progenitor cells, as myeloid-restricted Wnt4 deletion had no notable effect. Finally, we observed that Wnt4Δ/Δ stem/progenitor cells were more quiescent, presenting enhanced levels of stress-associated JNK phosphorylation and p16INK4a expression, likely contributing to the reduced expansion observed in transplants. In conclusion, our results identify a new, largely autocrine role for Wnt4 in hematopoietic stem cell self-renewal, suggesting that regulation of Wnt signaling in hematopoiesis may not need Wnt secretion and could be independent of morphogen gradients.
Collapse
Affiliation(s)
- Roxann Hétu-Arbour
- Institut national de la recherche scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Mouna Tlili
- Institut national de la recherche scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Fabio Luiz Bandeira Ferreira
- Institut national de la recherche scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Belma Melda Abidin
- Institut national de la recherche scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Edward O Kwarteng
- Institut national de la recherche scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Krista M Heinonen
- Institut national de la recherche scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| |
Collapse
|
14
|
Yang L, Li Q, Zhang J, Li P, An P, Wang C, Hu P, Zou X, Dou X, Zhu L. Wnt7a promotes the osteogenic differentiation of human mesenchymal stem cells. Int J Mol Med 2021; 47:94. [PMID: 33846764 PMCID: PMC8041482 DOI: 10.3892/ijmm.2021.4927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have the ability of differentiating into osteoblasts. Elucidating the molecular mechanisms of MSC differentiation into osteoblasts may provide novel therapeutic strategies for bone‑related diseases. Increasing evidence has confirmed that Wnt signaling plays the key role in osteoblast differentiation; however, the role of individual Wnt proteins in osteogenesis needs to be investigated. The present study thus aimed to explore the role of Wnt7a in bone formation. For this purpose, human bone‑derived MSCs were identified by flow cytometry and the cell differentiation potential, including osteogenic and adipogenic differentiation was examined. In order to explore the role of Wnt7a in MSC osteogenic differentiation, Wnt7a expression was measured at the mRNA and protein level following treatment with the osteogenic inducer, bone morphogenetic protein (BMP)4/7, and following the induction of osteogenic or adipogenic differentiation. The ectopic expression of Wnt7a in MSCs was confirmed and its influence on MSC osteogenic differentiation was detected using osteocyte markers and by Alizarin Red S staining. Mechanistically, the influence of Wnt7a on Runt‑related transcription factor 2 (RUNX2) expression was examined at the mRNA and protein level. The regulatory effects of Wnt7a on RUNX2 promoter activities were examined by promoter reporter assay, and by examining the binding of TCF1, a downstream target of Wnt, to the RUNX2 promoter by ChIP assay. The results revealed that the knockdown of Wnt7a in MSCs decreased the expression of osteocyte markers and inhibited osteogenic differentiation. In accordance, the overexpression of Wnt7a in MSCs increased the expression of osteocyte markers and promoted osteogenic differentiation. Mechanistically, the knockdown of Wnt7a in MSCs reduced RUNX2 expression and the overexpression of Wnt7a in MSCs promoted RUNX2 expression. Furthermore, it was confirmed that Wnt7a regulated RUNX2 promoter activities by promoter report assay, and by examining the binding of TCF1 to the RUNX2 promoter by ChIP assay. On the whole, the present study demonstrates that Wnt7a plays a key role in MSC differentiation into osteoblasts and the findings presented herein may provide a promising therapy target for bone‑related diseases.
Collapse
Affiliation(s)
- Leiluo Yang
- Department of Spinal Surgery, Orthopaedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Qing Li
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Junhong Zhang
- Department of Pathology, Hebei Eye Hospital, Xingtai, Hebei 054000, P.R. China
| | - Pengcheng Li
- Department of Burns and Plastic Surgery, The 8th Medical Center of Chinese PLA General Hospital, Beijing 100091, P.R. China
| | - Pingjiang An
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Chunqing Wang
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Pingsheng Hu
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Xue Zou
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Xiaowei Dou
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopaedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
15
|
Abstract
The Cre-LoxP technology permits gene ablation in specific cell lineages, at chosen differentiation stages of this lineage and in an inducible manner. It has allowed tremendous advances in our understanding of skeleton biology and related pathophysiological mechanisms, through the generation of loss/gain of function or cell tracing experiments based on the creation of an expanding toolbox of transgenic mice expressing the Cre recombinase in skeletal stem cells, chondrocytes, osteoblasts, or osteoclasts. In this chapter, we provide an overview of the different Cre-LoxP systems and Cre mouse lines used in the bone field, we discuss their advantages, limitations, and we outline best practices to interpret results obtained from the use of Cre mice.
Collapse
Affiliation(s)
- Florent Elefteriou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA.
| | - Greig Couasnay
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Poudel SB, So HS, Sim HJ, Cho JS, Cho ES, Jeon YM, Kook SH, Lee JC. Osteoblastic Wntless deletion differentially regulates the fate and functions of bone marrow-derived stem cells in relation to age. Stem Cells 2020; 39:103-114. [PMID: 33038284 DOI: 10.1002/stem.3289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/22/2020] [Indexed: 11/10/2022]
Abstract
Although functional association between Wnt signaling and bone homeostasis has been well described through genetic ablation of Wntless (Wls), the mechanisms of how osteoblastic Wls regulates the fate of bone marrow stromal cells (BMSCs) and hematopoietic stem cells (HSCs) in relation to age are not yet understood. Here, we generated Col2.3-Cre;Wlsfl/fl mice that were free from premature lethality and investigated age-related impacts of osteoblastic Wls deficiency on hematopoiesis, BM microenvironment, and maintenance of BMSCs (also known as BM-derived mesenchymal stem/stromal cells) and HSCs. Ablation of osteoblastic Wls deteriorated BM microenvironment and bone mass accrual along with age-independent effects on functions of BMSCs. Osteoblastic Wls deletion impaired HSC repopulation and progeny with skewing toward myeloid lineage cells only at old stage. As proven by hallmarks of stem cell senescence, osteoblastic Wls ablation differentially induced senescence of BMSCs and HSCs in relation to age without alteration in their BM frequency. Our findings support that deletion of Wls in Col2.3-expressing cells induces senescence of BMSCs and impairs BM microenvironment in age-independent manner. Overall, long-term deterioration in BM microenvironment contributes to age-related HSC senescence with impaired progeny and hematopoiesis, which also suggests possible roles of osteoblastic Wls on the maintenance of BM HSCs.
Collapse
Affiliation(s)
- Sher Bahadur Poudel
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Han-Sol So
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, South Korea
| | - Hyun-Jaung Sim
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, South Korea
| | - Joon-Seok Cho
- Department of Medicine-Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, California, USA
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences (BK21 Program) and School of Dentistry, Jeonbuk National University, Jeonju, South Korea
| | - Young-Mi Jeon
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences (BK21 Program) and School of Dentistry, Jeonbuk National University, Jeonju, South Korea
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, South Korea
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, South Korea.,Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences (BK21 Program) and School of Dentistry, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
17
|
Oichi T, Otsuru S, Usami Y, Enomoto-Iwamoto M, Iwamoto M. Wnt signaling in chondroprogenitors during long bone development and growth. Bone 2020; 137:115368. [PMID: 32380258 PMCID: PMC7354209 DOI: 10.1016/j.bone.2020.115368] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023]
Abstract
Wnt signaling together with other signaling pathways governs cartilage development and the growth plate function during long bone formation and growth. β-catenin-dependent Wnt signaling is a specific lineage determinant of skeletal mesenchymal cells toward chondrogenic or osteogenic direction. Once cartilage forms and the growth plate organize, Wnt signaling continues to regulate proliferation and differentiation of the growth plate chondrocytes. Although chondrocytes in the growth plate have a high capacity to proliferate, new cells must be supplied to the growth plate from chondroprogenitor population. Advances in in vivo cell tracking techniques have demonstrated the importance of Wnt signaling in driving tissue renewal. The Wnt-responsive cells, genetically marked by the Wnt-reporter system, are found as stem cells in various tissues. Similarly, Wnt-responsive cells are found in the periphery of the growth plate and expanded to constitute entire column structure, indicating that Wnt signaling participates in the regulation of chondroprogenitors in the growth plate. This review will discuss advancements in research of progenitors in the growth plate, specifically focusing on Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Takeshi Oichi
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Satoru Otsuru
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Yu Usami
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Masahiro Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
18
|
Du JH, Lin SX, Wu XL, Yang SM, Cao LY, Zheng A, Wu JN, Jiang XQ. The Function of Wnt Ligands on Osteocyte and Bone Remodeling. J Dent Res 2020; 98:930-938. [PMID: 31282847 DOI: 10.1177/0022034519854704] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone homeostasis is continually maintained by the process of bone remodeling throughout life. Recent studies have demonstrated that Wnt signaling pathways play a fundamental role in the process of bone homeostasis and remodeling. Intracellular Wnt signaling cascades are initially triggered by a Wnt ligand-receptor complex formation. In previous studies, the blocking of Wnt ligands from different osteoblastic differentiation stages could cause defective bone development at an early stage. Osteocytes, the most abundant and long-lived type of bone cell, are a crucial orchestrator of bone remodeling. However, the role of Wnt ligands on osteocyte and bone remodeling remains unclear. In our present study, we found that, besides osteoblasts, osteocytes also express multiple Wnt ligands in the bone environment. Then, we used a Dmp1-Cre mouse line, in which there is expression in a subset of osteoblasts but mainly osteocytes, to study the function of Wnt ligands on osteocyte and bone remodeling in vivo. Furthermore, we explored the role of Wnt ligands on osteocytic mineralization ability, as well as the regulatory function of osteocytes on the process of osteoblastic differentiation and osteoclastic migration and maturity in vitro. We concluded that Wnt proteins play an important regulatory role in 1) the process of perilacunar/canalicular remodeling, as mediated by osteocytes, and 2) the balance of osteogenesis and bone resorption at the bone surface, as mediated by osteoblasts and osteoclasts, at least partly through the canonical Wnt/β-catenin signaling pathway and the OPG/RANKL signaling pathway.
Collapse
Affiliation(s)
- J H Du
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - S X Lin
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,5 Department of Prosthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - X L Wu
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - S M Yang
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - L Y Cao
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - A Zheng
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - J N Wu
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - X Q Jiang
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
19
|
Hughes R, Chen X, Hunter KD, Hobbs JK, Holen I, Brown NJ. Bone marrow osteoprogenitors are depleted whereas osteoblasts are expanded independent of the osteogenic vasculature in response to zoledronic acid. FASEB J 2019; 33:12768-12779. [PMID: 31490705 PMCID: PMC6902700 DOI: 10.1096/fj.201900553rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022]
Abstract
Zoledronic acid (ZOL) is an antiresorptive drug used to prevent bone loss in a variety of conditions, acting mainly through suppression of osteoclast activity. There is growing evidence that ZOL can also affect cells of the mesenchymal lineage in bone. We present novel data revealing significant changes in the abundance of perivascular mesenchymal stromal cells (MSCs)/osteoprogenitors and osteoblasts following the injection of ZOL, in vivo. In young mice with high bone turnover and an abundance of perivascular osteoprogenitors, ZOL significantly (P < 0.0001) increased new bone formation. This was accompanied by a decline in osterix-positive osteoprogenitors and a corresponding increase in osteoblasts. However, these effects were not observed in mature mice with low bone turnover. Interestingly, the ZOL-induced changes in cells of the mesenchymal lineage occurred independently of effects on the osteogenic vasculature. Thus, we demonstrate that a single, clinically relevant dose of ZOL can induce new bone formation in microenvironments enriched for perivascular MSC/osteoprogenitors and high osteogenic potential. This arises from the differentiation of perivascular osterix-positive MSC/osteoprogenitors into osteoblasts at sites that are innately osteogenic. Collectively, our data demonstrate that ZOL affects multiple cell types in bone and has differential effects depending on the level of bone turnover.-Hughes, R., Chen, X., Hunter, K. D., Hobbs, J. K., Holen, I., Brown, N. J. Bone marrow osteoprogenitors are depleted whereas osteoblasts are expanded independent of the osteogenic vasculature in response to zoledronic acid.
Collapse
Affiliation(s)
- Russell Hughes
- Department of Oncology and Metabolism, Experimental Cancer Medicine Centre, University of Sheffield, Sheffield, United Kingdom
| | - Xinyue Chen
- Department of Oncology and Metabolism, Experimental Cancer Medicine Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Keith D. Hunter
- School of Clinical Dentistry, University of Sheffield, United Kingdom
| | - Jamie K. Hobbs
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Ingunn Holen
- Department of Oncology and Metabolism, Experimental Cancer Medicine Centre, University of Sheffield, Sheffield, United Kingdom
| | - Nicola J. Brown
- Department of Oncology and Metabolism, Experimental Cancer Medicine Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
20
|
Usami Y, Gunawardena AT, Francois NB, Otsuru S, Takano H, Hirose K, Matsuoka M, Suzuki A, Huang J, Qin L, Iwamoto M, Yang W, Toyosawa S, Enomoto-Iwamoto M. Possible Contribution of Wnt-Responsive Chondroprogenitors to the Postnatal Murine Growth Plate. J Bone Miner Res 2019; 34:964-974. [PMID: 30602070 PMCID: PMC6536347 DOI: 10.1002/jbmr.3658] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
Abstract
Active cell proliferation and turnover in the growth plate is essential for embryonic and postnatal bone growth. We performed a lineage tracing of Wnt/β-catenin signaling responsive cells (Wnt-responsive cells) using Axin2CreERT2 ;Rosa26ZsGreen mice and found a novel cell population that resides in the outermost layer of the growth plate facing the Ranvier's groove (RG; the perichondrium adjacent to growth plate). These Wnt-responsive cells rapidly expanded and contributed to formation of the outer growth plate from the neonatal to the growing stage but stopped expanding at the young adult stage when bone longitudinal growth ceases. In addition, a second Wnt-responsive sporadic cell population was localized within the resting zone of the central part of the growth plate during the postnatal growth phase. While it induced ectopic chondrogenesis in the RG, ablation of β-catenin in the Wnt-responsive cells strongly inhibited expansion of their descendants toward the growth plate. These findings indicate that the Wnt-responsive cell population in the outermost layer of the growth plate is a unique cell source of chondroprogenitors involving lateral growth of the growth plate and suggest that Wnt/β-catenin signaling regulates function of skeletal progenitors in a site- and stage-specific manner. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yu Usami
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan.,Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aruni T Gunawardena
- Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Noelle B Francois
- Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Satoru Otsuru
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Orthopaedics, University of Maryland, Baltimore School of Medicine, Baltimore, MD, USA
| | - Hajime Takano
- Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katsutoshi Hirose
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masatake Matsuoka
- Department of Orthopaedics, University of Maryland, Baltimore School of Medicine, Baltimore, MD, USA
| | - Akiko Suzuki
- Department of Orthopaedics, University of Maryland, Baltimore School of Medicine, Baltimore, MD, USA
| | - Jiahui Huang
- Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| | - Ling Qin
- Mckay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Masahiro Iwamoto
- Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Orthopaedics, University of Maryland, Baltimore School of Medicine, Baltimore, MD, USA
| | - Wentian Yang
- Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| | - Satoru Toyosawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Motomi Enomoto-Iwamoto
- Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Orthopaedics, University of Maryland, Baltimore School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Tan Y, Liu L. Prediction of pivotal pathways and hub genes associated with osteoporosis by Gibbs sampling. Exp Ther Med 2019; 17:2107-2112. [PMID: 30867698 PMCID: PMC6395965 DOI: 10.3892/etm.2019.7180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/03/2019] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis (OP) is a common metabolic bone disease with high incidence, and is recognized as a major public health problem worldwide. It is essential to clarify the pathogenesis of the disease for improving the diagnosis, prevention and treatment of OP. The aim of this study was to clarify the pivotal pathways and hub genes in OP using Gibbs sampling. The gene expression profile datasets were obtained from Gene Expression Omnibus (GEO) database. The pathways were enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) with genes intersection ≥5 based on gene expression profile data. Then, the acquired pathways were converted into Markov chains (MC). Gibbs sampling was conducted to obtain a new MC. In addition, the average probabilities of each pathway in two states containing human mesenchymal stem cells (hMSC) _middle-aged and hMSC_elderly were calculated through Markov chain Monte Carlo (MCMC) algorithm. Moreover, gene expression variation was taken into account to adjust the probability. Pivotal pathways were identified under adjusted posterior value >0.8. Then, Gibbs sampling was implemented to find hub genes from pathways. There were 280 pathways determined by the gene intersection ≥5. Gibbs sampling identified two disturbed pathways (pathways in cancer and influenza A) and two hub genes (cyclin A1 and WNT2) under the adjusted probability >0.8. Gene expression analysis showed that all the disturbed pathways and hub genes had increased expression levels in hMSC_middle-aged samples compared with hMSC_elderly samples. We identified two pivotal pathways and two hub genes in OP using Gibbs sampling. The results contribute to the understanding of underlying pathogenesis and could be considered as potential biomarkers for the therapy of OP.
Collapse
Affiliation(s)
- Yiyun Tan
- Department of Spinal Surgery, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan 410000, P.R. China
| | - Lei Liu
- Department of Pain, Qianfo Shan Hospital, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
22
|
|
23
|
Moorer MC, Riddle RC. Regulation of Osteoblast Metabolism by Wnt Signaling. Endocrinol Metab (Seoul) 2018; 33:318-330. [PMID: 30112869 PMCID: PMC6145954 DOI: 10.3803/enm.2018.33.3.318] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/01/2018] [Accepted: 07/08/2018] [Indexed: 12/13/2022] Open
Abstract
Wnt/β-catenin signaling plays a critical role in the achievement of peak bone mass, affecting the commitment of mesenchymal progenitors to the osteoblast lineage and the anabolic capacity of osteoblasts depositing bone matrix. Recent studies suggest that this evolutionarily-conserved, developmental pathway exerts its anabolic effects in part by coordinating osteoblast activity with intermediary metabolism. These findings are compatible with the cloning of the gene encoding the low-density lipoprotein related receptor-5 (LRP5) Wnt co-receptor from a diabetes-susceptibility locus and the now well-established linkage between Wnt signaling and metabolism. In this article, we provide an overview of the role of Wnt signaling in whole-body metabolism and review the literature regarding the impact of Wnt signaling on the osteoblast's utilization of three different energy sources: fatty acids, glucose, and glutamine. Special attention is devoted to the net effect of nutrient utilization and the mode of regulation by Wnt signaling. Mechanistic studies indicate that the utilization of each substrate is governed by a unique mechanism of control with β-catenin-dependent signaling regulating fatty acid β-oxidation, while glucose and glutamine utilization are β-catenin-independent and downstream of mammalian target of rapamycin complex 2 (mTORC2) and mammalian target of rapamycin complex 1 (mTORC1) activation, respectively. The emergence of these data has provided a new context for the mechanisms by which Wnt signaling influences bone development.
Collapse
Affiliation(s)
- Megan C Moorer
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Administration Medical Center, Baltimore, MD, USA.
| |
Collapse
|
24
|
Li C, Li Z, Zhang Y, Fathy AH, Zhou M. The role of the Wnt/β-catenin signaling pathway in the proliferation of gold nanoparticle-treated human periodontal ligament stem cells. Stem Cell Res Ther 2018; 9:214. [PMID: 30092818 PMCID: PMC6085621 DOI: 10.1186/s13287-018-0954-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 02/24/2023] Open
Abstract
Background Several studies have confirmed that gold nanoparticles (AuNPs) of specific concentration and size exert a boosting effect on cell proliferation; however, the mechanism through which this effect occurs remains unknown. This study explores the canonical Wnt signaling pathway in AuNP promotion of human periodontal ligament stem cell (hPDLSC) proliferation. Methods MTS was employed to evaluate hPDLSC proliferation. The interference of LRP5 and β-catenin was steered by shRNA plasmids and siRNA, respectively, at which point the expression of MYC, CCND1, AXIN2, and POU5F1 had been estimated via real-time PCR. The expressions of LRP5 and β-catenin were detected via western blot assay. Results The proliferation of hPDLSCs treated with 60 nm AuNPs at 56 μM was clearly elevated. In contrast, β-catenin siRNA significantly decreased cell viability. The LRP5 shRNA plasmid did not consistently impact cells. The expressions of these four genes downstream of the Wnt/β-catenin signaling pathway were not significantly overexpressed in response to the interference of shRNA plasmid/siRNA with the treatment of AuNPs. Conclusions These results suggest that the Wnt/β-catenin signaling pathway plays a significant role in the process of AuNP promotion of hPDLSC proliferation.
Collapse
Affiliation(s)
- Chen Li
- Department of Endodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Zhuoquan Li
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yan Zhang
- Department of Basic Science, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | | | - Min Zhou
- Department of Periodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China.
| |
Collapse
|
25
|
Frey JL, Kim SP, Li Z, Wolfgang MJ, Riddle RC. β-Catenin Directs Long-Chain Fatty Acid Catabolism in the Osteoblasts of Male Mice. Endocrinology 2018; 159:272-284. [PMID: 29077850 PMCID: PMC5761587 DOI: 10.1210/en.2017-00850] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/20/2017] [Indexed: 11/19/2022]
Abstract
Wnt-initiated signaling through a frizzled receptor and the low-density lipoprotein-related receptor-5 coreceptor instructs key anabolic events during skeletal development, homeostasis, and repair. Recent studies indicate that Wnt signaling also regulates the intermediary metabolism of osteoblastic cells, inducing glucose consumption in osteoprogenitors and fatty acid utilization in mature osteoblasts. In this study, we examined the role of the canonical Wnt-signaling target, β-catenin, in the control of osteoblast metabolism. In vitro, Wnt ligands and agonists that stimulated β-catenin activation in osteoblasts enhanced fatty acid catabolism, whereas genetic ablation of β-catenin dramatically reduced oleate oxidation concomitant with reduced osteoblast maturation and increased glycolytic metabolism. Temporal ablation of β-catenin expression in osteoblasts in vivo produced the expected low-bone-mass phenotype and also led to an increase in white adipose tissue mass, dyslipidemia, and impaired insulin sensitivity. Because the expression levels of enzymatic mediators of fatty acid β-oxidation are reduced in the skeleton of β-catenin mutants, these results further confirm the role of the osteoblast in lipid metabolism and indicate that the influence of Wnt signaling on fatty acid utilization proceeds via its canonical signaling pathway.
Collapse
MESH Headings
- Adipose Tissue, White/cytology
- Adipose Tissue, White/metabolism
- Adiposity
- Animals
- Animals, Newborn
- Caloric Restriction
- Cells, Cultured
- Crosses, Genetic
- Fatty Acids, Nonesterified/metabolism
- Gene Expression Regulation, Developmental
- Ligands
- Lipid Metabolism
- Male
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- Mutation
- Osteoblasts/cytology
- Osteoblasts/metabolism
- Random Allocation
- Skull/cytology
- Skull/metabolism
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Wnt Signaling Pathway
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Julie L. Frey
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Soohyun P. Kim
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Zhu Li
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Michael J. Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Veterans Administration Medical Center, Baltimore, Maryland 21201
| |
Collapse
|
26
|
Identification of stiffness-induced signalling mechanisms in cells from patent and fused sutures associated with craniosynostosis. Sci Rep 2017; 7:11494. [PMID: 28904366 PMCID: PMC5597583 DOI: 10.1038/s41598-017-11801-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/30/2017] [Indexed: 11/08/2022] Open
Abstract
Craniosynostosis is a bone developmental disease where premature ossification of the cranial sutures occurs leading to fused sutures. While biomechanical forces have been implicated in craniosynostosis, evidence of the effect of microenvironmental stiffness changes in the osteogenic commitment of cells from the sutures is lacking. Our aim was to identify the differential genetic expression and osteogenic capability between cells from patent and fused sutures of children with craniosynostosis and whether these differences are driven by changes in the stiffness of the microenvironment. Cells from both sutures demonstrated enhanced mineralisation with increasing substrate stiffness showing that stiffness is a stimulus capable of triggering the accelerated osteogenic commitment of the cells from patent to fused stages. The differences in the mechanoresponse of these cells were further investigated with a PCR array showing stiffness-dependent upregulation of genes mediating growth and bone development (TSHZ2, IGF1), involved in the breakdown of extracellular matrix (MMP9), mediating the activation of inflammation (IL1β) and controlling osteogenic differentiation (WIF1, BMP6, NOX1) in cells from fused sutures. In summary, this study indicates that stiffer substrates lead to greater osteogenic commitment and accelerated bone formation, suggesting that stiffening of the extracellular environment may trigger the premature ossification of the sutures.
Collapse
|
27
|
Mills KM, Szczerkowski JLA, Habib SJ. Wnt ligand presentation and reception: from the stem cell niche to tissue engineering. Open Biol 2017; 7:rsob.170140. [PMID: 28814649 PMCID: PMC5577451 DOI: 10.1098/rsob.170140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
Stem cells reside in niches where spatially restricted signals maintain a delicate balance between stem cell self-renewal and differentiation. Wnt family proteins are particularly suited for this role as they are modified by lipids, which constrain and spatially regulate their signalling range. In recent years, Wnt/β-catenin signalling has been shown to be essential for the self-renewal of a variety of mammalian stem cells. In this review, we discuss Wnt-responsive stem cells in their niche, and mechanisms by which Wnt ligands are presented to responsive cells. We also highlight recent progress in molecular visualization that has allowed for the monitoring of Wnt signalling within the stem cell compartment and new approaches to recapitulate this niche signalling in vitro Indeed, new technologies that present Wnt in a localized manner and mimic the three-dimensional microenvironment of stem cells will advance our understanding of Wnt signalling in the stem cell niche. These advances will expand current horizons to exploit Wnt ligands in the rapidly evolving fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Kate M Mills
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - James L A Szczerkowski
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| |
Collapse
|
28
|
Wilk K, Yeh SCA, Mortensen LJ, Ghaffarigarakani S, Lombardo CM, Bassir SH, Aldawood ZA, Lin CP, Intini G. Postnatal Calvarial Skeletal Stem Cells Expressing PRX1 Reside Exclusively in the Calvarial Sutures and Are Required for Bone Regeneration. Stem Cell Reports 2017; 8:933-946. [PMID: 28366454 PMCID: PMC5390237 DOI: 10.1016/j.stemcr.2017.03.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 11/08/2022] Open
Abstract
Post-natal skeletal stem cells expressing PRX1 (pnPRX1+) have been identified in the calvaria and in the axial skeleton. Here we characterize the location and functional capacity of the calvarial pnPRX1+ cells. We found that pnPRX1+ reside exclusively in the calvarial suture niche and decrease in number with age. They are distinct from preosteoblasts and osteoblasts of the sutures, respond to WNT signaling in vitro and in vivo by differentiating into osteoblasts, and, upon heterotopic transplantation, are able to regenerate bone. Diphtheria toxin A (DTA)-mediated lineage ablation of pnPRX1+ cells and suturectomy perturb regeneration of calvarial bone defects and confirm that pnPRX1+ cells of the sutures are required for bone regeneration. Orthotopic transplantation of sutures with traceable pnPRX1+ cells into wild-type animals shows that pnPRX1+ cells of the suture contribute to calvarial bone defect regeneration. DTA-mediated lineage ablation of pnPRX1+ does not, however, interfere with calvarial development. The suture is the exclusive niche of the calvarial PRX1-expressing cells Postnatal PRX1-expressing cells of the calvaria are required for bone regeneration Postnatal Prx1-expressing cells of the calvaria are dispensable for development
Collapse
Affiliation(s)
- Katarzyna Wilk
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Shu-Chi A Yeh
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA; Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Luke J Mortensen
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA; Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Regenerative Bioscience Center, Rhodes Center for ADS, and College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Sasan Ghaffarigarakani
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Courtney M Lombardo
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA; University of Florida College of Dentistry, Gainesville, FL 32608, USA
| | - Seyed Hossein Bassir
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Zahra A Aldawood
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Charles P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Giuseppe Intini
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
29
|
Alvarez-Urena P, Davis E, Sonnet C, Henslee G, Gugala Z, Strecker EV, Linscheid LJ, Cuchiara M, West J, Davis A, Olmsted-Davis E. Encapsulation of Adenovirus BMP2-Transduced Cells with PEGDA Hydrogels Allows Bone Formation in the Presence of Immune Response. Tissue Eng Part A 2017; 23:177-184. [PMID: 27967655 DOI: 10.1089/ten.tea.2016.0277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gene therapy approaches have been difficult to implement due to pre-existing immunity against the virus used for delivery. To circumvent this problem, a cell-based approach was developed that avoided the use of free virus within the animal. However, even cells transduced in vitro with E1- to E3-deleted adenovirus encoding bone morphogenetic protein 2 (AdBMP2) resulted in the production of virus-neutralizing antibodies in mice. Furthermore, when mice received an intramuscular injection of nonencoding adenovirus (AdEmpty)-transduced cells, AdBMP2-transduced cells were unable to launch bone formation when an intramuscular injection of these BMP2-producing cells was delivered 1 week later. This phenomenon was not observed in NOD/SCID mice, and could be overcome in C57BL/6 mice by encapsulating the adenovirus-transduced cells in a nondegradable hydrogel poly(ethylene glycol) diacrylate (PEGDA). Data collectively suggest that PEGDA hydrogel encapsulation of AdBMP2-transduced cells prevents pre-existing immunity from suppressing BMP2-induced bone formation.
Collapse
Affiliation(s)
- Pedro Alvarez-Urena
- 1 Center for Cell and Gene Therapy , Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Eleanor Davis
- 1 Center for Cell and Gene Therapy , Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Corinne Sonnet
- 1 Center for Cell and Gene Therapy , Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Gabrielle Henslee
- 1 Center for Cell and Gene Therapy , Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Zbigniew Gugala
- 2 Department of Orthopedic Surgery and Rehabilitation, The University of Texas Medical Branch at Galveston , Galveston, Texas
| | - Edward V Strecker
- 2 Department of Orthopedic Surgery and Rehabilitation, The University of Texas Medical Branch at Galveston , Galveston, Texas
| | - Laura J Linscheid
- 2 Department of Orthopedic Surgery and Rehabilitation, The University of Texas Medical Branch at Galveston , Galveston, Texas
| | - Maude Cuchiara
- 3 Department of Biomedical Engineering, Duke University , Durham, North Carolina
| | - Jennifer West
- 3 Department of Biomedical Engineering, Duke University , Durham, North Carolina
| | - Alan Davis
- 1 Center for Cell and Gene Therapy , Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas.,4 Department of Pediatrics-Section Hematology/Oncology, Baylor College of Medicine , Houston, Texas.,5 Department of Orthopedic Surgery, Baylor College of Medicine , Houston, Texas
| | - Elizabeth Olmsted-Davis
- 1 Center for Cell and Gene Therapy , Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas.,4 Department of Pediatrics-Section Hematology/Oncology, Baylor College of Medicine , Houston, Texas.,5 Department of Orthopedic Surgery, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
30
|
Baskan O, Mese G, Ozcivici E. Low-intensity vibrations normalize adipogenesis-induced morphological and molecular changes of adult mesenchymal stem cells. Proc Inst Mech Eng H 2017; 231:160-168. [PMID: 28068880 DOI: 10.1177/0954411916687338] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone marrow mesenchymal stem cells that are committed to adipogenesis were exposed daily to high-frequency low-intensity mechanical vibrations to understand molecular, morphological and ultrastructural adaptations to mechanical signals during adipogenesis. D1-ORL-UVA mouse bone marrow mesenchymal stem cells were cultured with either growth or adipogenic medium for 1 week. Low-intensity vibration signals (15 min/day, 90 Hz, 0.1 g) were applied to one group of adipogenic cells, while the other adipogenic group served as a sham control. Cellular viability, lipid accumulation, ultrastructure and morphology were determined with MTT, Oil-Red-O staining, phalloidin staining and atomic force microscopy. Semiquantitative reverse transcription polymerase chain reaction showed expression profile of the genes responsible for adipogenesis and ultrastructure of cells. Low-intensity vibration signals increased viability of the cells in adipogenic culture that was reduced significantly compared to quiescent controls. Low-intensity vibration signals also normalized the effects of adipogenic condition on cell morphology, including area, perimeter, circularization and actin cytoskeleton. Furthermore, low-intensity vibration signals reduced the expression of some adipogenic markers significantly. Mesenchymal stem cells are sensitive and responsive to mechanical loads, but debilitating conditions such as aging or obesity may steer mesenchymal stem cells toward adipogenesis. Here, daily application of low-intensity vibration signals partially neutralized the effects of adipogenic induction on mesenchymal stem cells, suggesting that these signals may provide an alternative and/or complementary option to reduce fat deposition.
Collapse
Affiliation(s)
- Oznur Baskan
- 1 Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Gulistan Mese
- 2 Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Engin Ozcivici
- 1 Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
31
|
Liu Y, Su D, Song T. Programmed cell death 4 inhibits proliferation and differentiation and induces apoptosis of human mesenchymal stem cells through suppressing the Wnt/β-catenin pathway. RSC Adv 2017. [DOI: 10.1039/c7ra02000g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PDCD4 was closely related to the proliferation and the apoptosis of OP-hMSCs in osteoporosis.
Collapse
Affiliation(s)
- Yang Liu
- Department of Endocrinology
- Huaihe Hospital of Henan University
- Kaifeng
- China
| | - Dongyue Su
- Department of Endocrinology
- Huaihe Hospital of Henan University
- Kaifeng
- China
| | - Tao Song
- Department of Orthopaedics
- The People's Liberation Army 155 Hospital
- Kaifeng
- China
| |
Collapse
|
32
|
A Comparative Perspective on Wnt/β-Catenin Signalling in Cell Fate Determination. Results Probl Cell Differ 2017; 61:323-350. [PMID: 28409312 DOI: 10.1007/978-3-319-53150-2_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Wnt/β-catenin pathway is an ancient and highly conserved signalling pathway that plays fundamental roles in the regulation of embryonic development and adult homeostasis. This pathway has been implicated in numerous cellular processes, including cell proliferation, differentiation, migration, morphological changes and apoptosis. In this chapter, we aim to illustrate with specific examples the involvement of Wnt/β-catenin signalling in cell fate determination. We discuss the roles of the Wnt/β-catenin pathway in specifying cell fate throughout evolution, how its function in patterning during development is often reactivated during regeneration and how perturbation of this pathway has negative consequences for the control of cell fate.The origin of all life was a single cell that had the capacity to respond to cues from the environment. With evolution, multicellular organisms emerged, and as a result, subsets of cells arose to form tissues able to respond to specific instructive signals and perform specialised functions. This complexity and specialisation required two types of messages to direct cell fate: intra- and intercellular. A fundamental question in developmental biology is to understand the underlying mechanisms of cell fate choice. Amongst the numerous external cues involved in the generation of cellular diversity, a prominent pathway is the Wnt signalling pathway in all its forms.
Collapse
|
33
|
Holguin N, Brodt MD, Silva MJ. Activation of Wnt Signaling by Mechanical Loading Is Impaired in the Bone of Old Mice. J Bone Miner Res 2016; 31:2215-2226. [PMID: 27357062 PMCID: PMC5397287 DOI: 10.1002/jbmr.2900] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 01/18/2023]
Abstract
Aging diminishes bone formation engendered by mechanical loads, but the mechanism for this impairment remains unclear. Because Wnt signaling is required for optimal loading-induced bone formation, we hypothesized that aging impairs the load-induced activation of Wnt signaling. We analyzed dynamic histomorphometry of 5-month-old, 12-month-old, and 22-month-old C57Bl/6JN mice subjected to multiple days of tibial compression and corroborated an age-related decline in the periosteal loading response on day 5. Similarly, 1 day of loading increased periosteal and endocortical bone formation in young-adult (5-month-old) mice, but old (22-month-old) mice were unresponsive. These findings corroborated mRNA expression of genes related to bone formation and the Wnt pathway in tibias after loading. Multiple bouts (3 to 5 days) of loading upregulated bone formation-related genes, e.g., Osx and Col1a1, but older mice were significantly less responsive. Expression of Wnt negative regulators, Sost and Dkk1, was suppressed with a single day of loading in all mice, but suppression was sustained only in young-adult mice. Moreover, multiple days of loading repeatedly suppressed Sost and Dkk1 in young-adult, but not in old tibias. The age-dependent response to loading was further assessed by osteocyte staining for Sclerostin and LacZ in tibia of TOPGAL mice. After 1 day of loading, fewer osteocytes were Sclerostin-positive and, corroboratively, more osteocytes were LacZ-positive (Wnt active) in both 5-month-old and 12-month-old mice. However, although these changes were sustained after multiple days of loading in 5-month-old mice, they were not sustained in 12-month-old mice. Last, Wnt1 and Wnt7b were the most load-responsive of the 19 Wnt ligands. However, 4 hours after a single bout of loading, although their expression was upregulated threefold to 10-fold in young-adult mice, it was not altered in old mice. In conclusion, the reduced bone formation response of aged mice to loading may be due to failure to sustain Wnt activity with repeated loading. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nilsson Holguin
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, USA
| | - Michael D Brodt
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, USA
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
34
|
Sun C, Yuan H, Wang L, Wei X, Williams L, Krebsbach PH, Guan JL, Liu F. FAK Promotes Osteoblast Progenitor Cell Proliferation and Differentiation by Enhancing Wnt Signaling. J Bone Miner Res 2016; 31:2227-2238. [PMID: 27391080 PMCID: PMC5642940 DOI: 10.1002/jbmr.2908] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/03/2023]
Abstract
Decreased bone formation is often associated with increased bone marrow adiposity. The molecular mechanisms that are accountable for the negative correlation between bone mass and bone marrow adiposity are incompletely understood. Focal adhesion kinase (FAK) has critical functions in proliferation and differentiation of many cell types; however, its roles in osteoblast lineage cells are largely unknown. We show herein that mice lacking FAK in Osterix-expressing cells exhibited decreased osteoblast number and low bone mass as well as increased bone marrow adiposity. The decreased bone mass in FAK-deficient mice was accounted for by decreased proliferation, compromised osteogenic differentiation, and increased adipogenic differentiation of bone marrow Osterix-expressing cells resulting from downregulation of Wnt/β-catenin signaling due to the reduced expression of canonical Wnt ligands. In contrast, FAK loss in calvarial preosteoblasts had no adverse effect on their proliferation and osteogenic differentiation and these cells had intact Wnt/β-catenin signaling. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chunhui Sun
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Hebao Yuan
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Li Wang
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Xiaoxi Wei
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Orthodontics, Jilin University School and Hospital of Stomatology, Changchun, Jilin, China
| | - Linford Williams
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Paul H Krebsbach
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fei Liu
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Ransom RC, Hunter DJ, Hyman S, Singh G, Ransom SC, Shen EZ, Perez KC, Gillette M, Li J, Liu B, Brunski JB, Helms JA. Axin2-expressing cells execute regeneration after skeletal injury. Sci Rep 2016; 6:36524. [PMID: 27853243 PMCID: PMC5113299 DOI: 10.1038/srep36524] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 10/18/2016] [Indexed: 01/20/2023] Open
Abstract
The mammalian skeleton performs a diverse range of vital functions, requiring mechanisms of regeneration that restore functional skeletal cell populations after injury. We hypothesized that the Wnt pathway specifies distinct functional subsets of skeletal cell types, and that lineage tracing of Wnt-responding cells (WRCs) using the Axin2 gene in mice identifies a population of long-lived skeletal cells on the periosteum of long bone. Ablation of these WRCs disrupts healing after injury, and three-dimensional finite element modeling of the regenerate delineates their essential role in functional bone regeneration. These progenitor cells in the periosteum are activated upon injury and give rise to both cartilage and bone. Indeed, our findings suggest that WRCs may serve as a therapeutic target in the setting of impaired skeletal regeneration.
Collapse
Affiliation(s)
- R C Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - D J Hunter
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - S Hyman
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - G Singh
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - S C Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - E Z Shen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - K C Perez
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - M Gillette
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - J Li
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - B Liu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - J B Brunski
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - J A Helms
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| |
Collapse
|
36
|
Papaioannou G, Mirzamohammadi F, Kobayashi T. Ras signaling regulates osteoprogenitor cell proliferation and bone formation. Cell Death Dis 2016; 7:e2405. [PMID: 27735946 PMCID: PMC5133981 DOI: 10.1038/cddis.2016.314] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 01/23/2023]
Abstract
During endochondral bone development, osteoblasts are continuously differentiated from locally residing progenitor cells. However, the regulation of such endogenous osteoprogenitor cells is still poorly understood mainly due to the difficulty in identifying such cells in vivo. In this paper, we genetically labeled different cell populations of the osteoblast linage using stage-specific, tamoxifen-inducible Cre transgenic mice to investigate their responses to a proliferative stimulus. We have found that overactivation of Kras signaling in type II collagen-positive, immature osteoprogenitor cells, but not in mature osteoblasts, substantially increases the number of their descendant stromal cells and mature osteoblasts, and subsequently increases bone mass. This effect was mediated by both, the extracellular signal-regulated kinase (ERK) and phosphoinositide 3 kinase (PI3K), pathways. Thus we demonstrate that Ras signaling stimulates proliferation of immature osteoprogenitor cells to increase the number of their osteoblastic descendants in a cell-autonomous fashion.
Collapse
Affiliation(s)
| | | | - Tatsuya Kobayashi
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Moon YJ, Yun CY, Lee JC, Kim JR, Park BH, Cho ES. Maturation of cortical bone suppresses periosteal osteoprogenitor proliferation in a paracrine manner. J Mol Histol 2016; 47:445-53. [PMID: 27394426 DOI: 10.1007/s10735-016-9686-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
Abstract
Periosteum contains enriched pools of osteogenic progenitors and is highly proliferative, thus giving this tissue a pivotal role in maintaining the diameter of the diaphyseal cortex and in recovery from fractures. Although periosteal proliferation has not been detected in normal bone, intense periosteal proliferation has been observed in pathologic states such as fracture, inflammation, and bone tumors. However, the mechanism by which periosteal osteoprogenitor proliferation is regulated remains poorly understood. To investigate this regulation mechanism, osteoblast/osteocyte-specific conditional knockout mice were developed lacking Smad4 and Osx, two factors that are essential for osteoblast differentiation and matrix mineralization. In Smad4 (Col) and Osx (Col) mice, osteocalcin, Dmp-1, and sclerostin expression were significantly decreased in the cortical bone. Interestingly, although Cre activity was not observed in the periosteum, the proliferation of periosteal osteoprogenitors was enhanced in Smad4 (Col) and Osx (Col) mice, as assessed by 5'-bromo-2'deoxyuridine incorporation and proliferating cell nuclear antigen localization. Since Wnt signaling is a major factor affecting periosteal proliferation, we evaluated Wnt signaling in the periosteum. The expression levels of β-catenin and Lef-1 were increased in the periosteal osteoprogenitors. Moreover, the mRNA levels of β-catenin, cyclin D1, Lef-1, and Axin2, all of which are Wnt target genes, were significantly increased in the periosteum of both Smad4 (Col) and Osx (Col) mice. These results indicated that extracellular proteins secreted by mature osteoblasts and osteocytes suppress the proliferation of periosteal osteoprogenitors by blocking Wnt signaling in a paracrine manner. Our data suggest a new concept of periosteal bone healing and periosteal bone formation.
Collapse
Affiliation(s)
- Young Jae Moon
- Department of Biochemistry, Chonbuk National University Medical School, 567 Baekje-Daero Deokjin-Gu, Jeonju, Jeonbuk, 54896, Republic of Korea.,Cluster for Craniofacial Development and Regeneration Research and Institute of Oral Biosciences, Chonbuk National University School of Dentistry, 567 Baekje-Daero Deokjin-Gu, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Chi-Young Yun
- Cluster for Craniofacial Development and Regeneration Research and Institute of Oral Biosciences, Chonbuk National University School of Dentistry, 567 Baekje-Daero Deokjin-Gu, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Jeong-Chae Lee
- Cluster for Craniofacial Development and Regeneration Research and Institute of Oral Biosciences, Chonbuk National University School of Dentistry, 567 Baekje-Daero Deokjin-Gu, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Jung Ryul Kim
- Department of Orthopaedic Surgery, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, 567 Baekje-Daero Deokjin-Gu, Jeonju, Jeonbuk, 54896, Republic of Korea.
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research and Institute of Oral Biosciences, Chonbuk National University School of Dentistry, 567 Baekje-Daero Deokjin-Gu, Jeonju, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
38
|
Stechschulte LA, Czernik PJ, Rotter ZC, Tausif FN, Corzo CA, Marciano DP, Asteian A, Zheng J, Bruning JB, Kamenecka TM, Rosen CJ, Griffin PR, Lecka-Czernik B. PPARG Post-translational Modifications Regulate Bone Formation and Bone Resorption. EBioMedicine 2016; 10:174-84. [PMID: 27422345 PMCID: PMC5006645 DOI: 10.1016/j.ebiom.2016.06.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 11/24/2022] Open
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ) regulates osteoblast and osteoclast differentiation, and is the molecular target of thiazolidinediones (TZDs), insulin sensitizers that enhance glucose utilization and adipocyte differentiation. However, clinical use of TZDs has been limited by side effects including a higher risk of fractures and bone loss. Here we demonstrate that the same post-translational modifications at S112 and S273, which influence PPARγ pro-adipocytic and insulin sensitizing activities, also determine PPARγ osteoblastic (pS112) and osteoclastic (pS273) activities. Treatment of either hyperglycemic or normoglycemic animals with SR10171, an inverse agonist that blocks pS273 but not pS112, increased trabecular and cortical bone while normalizing metabolic parameters. Additionally, SR10171 treatment modulated osteocyte, osteoblast, and osteoclast activities, and decreased marrow adiposity. These data demonstrate that regulation of bone mass and energy metabolism shares similar mechanisms suggesting that one pharmacologic agent could be developed to treat both diabetes and metabolic bone disease. PPARγ S273 regulates osteoclast differentiation and insulin sensitivity PPARγ S112 regulates osteoblast and adipocyte differentiation PPARγ and PPARα regulate osteocyte activities of bone formation and turnover SR10171, a PPARγ inverse agonist and PPARα weak agonist, is anabolic for bone
Diabetes is a condition with compromised energy balance and is associated with bone fractures. Some treatment options for diabetes sensitize the patient to insulin via targeting the transcription factor PPARγ. PPARγ is also key regulator of bone formation and bone resorption. Anti-diabetic drugs TZDs target PPARγ protein and this leads to bone loss and increase in fractures in postmenopausal women. Bone mass and energy metabolism share similar regulating pathways, and here we demonstrate a new class of insulin sensitizers that is a selective modulator of PPARγ activity; resulting in a pharmacologic agent that can be beneficial for both diabetes and metabolic bone disease.
Collapse
Affiliation(s)
- L A Stechschulte
- Dept. Orthopaedic Surgery, University of Toledo Health Science Campus, Toledo, OH 43614, United States; Center for Diabetes and Endocrine Research, University of Toledo Health Science Campus, Toledo, OH 43614, United States
| | - P J Czernik
- Dept. Orthopaedic Surgery, University of Toledo Health Science Campus, Toledo, OH 43614, United States
| | - Z C Rotter
- Dept. Orthopaedic Surgery, University of Toledo Health Science Campus, Toledo, OH 43614, United States
| | - F N Tausif
- Dept. Orthopaedic Surgery, University of Toledo Health Science Campus, Toledo, OH 43614, United States
| | - C A Corzo
- Dept. Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, United States
| | - D P Marciano
- Dept. Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, United States
| | - A Asteian
- Dept. Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, United States
| | - J Zheng
- Dept. Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, United States
| | - J B Bruning
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - T M Kamenecka
- Dept. Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, United States
| | - C J Rosen
- Maine Medical Center Research Institute, Scarborough, ME 04074, United States
| | - P R Griffin
- Dept. Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, United States.
| | - B Lecka-Czernik
- Dept. Orthopaedic Surgery, University of Toledo Health Science Campus, Toledo, OH 43614, United States; Center for Diabetes and Endocrine Research, University of Toledo Health Science Campus, Toledo, OH 43614, United States; Dept. Physiology and Pharmacology, University of Toledo Health Science Campus, Toledo, OH 43614, United States.
| |
Collapse
|
39
|
sFRP4-dependent Wnt signal modulation is critical for bone remodeling during postnatal development and age-related bone loss. Sci Rep 2016; 6:25198. [PMID: 27117872 PMCID: PMC4846872 DOI: 10.1038/srep25198] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 04/13/2016] [Indexed: 01/24/2023] Open
Abstract
sFRP4 is an extracellular Wnt antagonist that fine-tunes its signal activity by direct binding to Wnts. Bone fragility under oxidative stress by diabetes and aging is partly related to the suppression of the Wnt signal through upregulated sFRP4. Here, to explore the functions of sFRP4 as a balancer molecule in bone development and remodeling, we analyzed the sFRP4 knock-in mouse strain. X-gal and immunohistochemically stained signals in sFRP4-LacZ heterozygous mice were detectable in restricted areas, mostly in osteoblasts and osteoclasts, of the femoral diaphysis after neonatal and postnatal stages. Histological and μCT analyses showed increased trabecular bone mass with alteration of the Wnt signal and osteogenic activity in sFRP4 mutants; this augmented the effect of the buildup of trabecular bone during the ageing period. Our results indicate that sFRP4 plays a critical role in bone development and remodeling by regulating osteoblasts and osteoclasts, and that its functional loss prevents age-related bone loss in the trabecular bone area. These findings imply that sFRP4 functions as a key potential endogenous balancer of the Wnt signaling pathway by efficiently having direct influence on both bone formation and bone absorption during skeletal bone development and maintenance through remodeling.
Collapse
|
40
|
Paracrine Wnt/β-catenin signaling mediates proliferation of undifferentiated spermatogonia in the adult mouse testis. Proc Natl Acad Sci U S A 2016; 113:E1489-97. [PMID: 26929341 DOI: 10.1073/pnas.1601461113] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spermatogonial stem cells (SSCs) fuel the production of male germ cells but the mechanisms behind SSC self-renewal, proliferation, and differentiation are still poorly understood. Using the Wnt target gene Axin2 and genetic lineage-tracing experiments, we found that undifferentiated spermatogonia, comprising SSCs and transit amplifying progenitor cells, respond to Wnt/β-catenin signals. Genetic elimination of β-catenin indicates that Wnt/β-catenin signaling promotes the proliferation of these cells. Signaling is likely initiated by Wnt6, which is uniquely expressed by neighboring Sertoli cells, the only somatic cells in the seminiferous tubule that support germ cells and act as a niche for SSCs. Therefore, unlike other stem cell systems where Wnt/β-catenin signaling is implicated in self-renewal, the Wnt pathway in the testis specifically contributes to the proliferation of SSCs and progenitor cells.
Collapse
|
41
|
Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Nat Commun 2016; 7:10526. [PMID: 26830436 PMCID: PMC4740445 DOI: 10.1038/ncomms10526] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/22/2015] [Indexed: 12/17/2022] Open
Abstract
The suture mesenchyme serves as a growth centre for calvarial morphogenesis and has been postulated to act as the niche for skeletal stem cells. Aberrant gene regulation causes suture dysmorphogenesis resulting in craniosynostosis, one of the most common craniofacial deformities. Owing to various limitations, especially the lack of suture stem cell isolation, reconstruction of large craniofacial bone defects remains highly challenging. Here we provide the first evidence for an Axin2-expressing stem cell population with long-term self-renewing, clonal expanding and differentiating abilities during calvarial development and homeostastic maintenance. These cells, which reside in the suture midline, contribute directly to injury repair and skeletal regeneration in a cell autonomous fashion. Our findings demonstrate their true identity as skeletal stem cells with innate capacities to replace the damaged skeleton in cell-based therapy, and permit further elucidation of the stem cell-mediated craniofacial skeletogenesis, leading to revealing the complex nature of congenital disease and regenerative medicine.
Collapse
|
42
|
Felber K, Elks PM, Lecca M, Roehl HH. Expression of osterix Is Regulated by FGF and Wnt/β-Catenin Signalling during Osteoblast Differentiation. PLoS One 2015; 10:e0144982. [PMID: 26689368 PMCID: PMC4686927 DOI: 10.1371/journal.pone.0144982] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/26/2015] [Indexed: 01/24/2023] Open
Abstract
Osteoblast differentiation from mesenchymal cells is regulated by multiple signalling pathways. Here we have analysed the roles of Fibroblast Growth Factor (FGF) and canonical Wingless-type MMTV integration site (Wnt/β-Catenin) signalling pathways on zebrafish osteogenesis. We have used transgenic and chemical interference approaches to manipulate these pathways and have found that both pathways are required for osteoblast differentiation in vivo. Our analysis of bone markers suggests that these pathways act at the same stage of differentiation to initiate expression of the osteoblast master regulatory gene osterix (osx). We use two independent approaches that suggest that osx is a direct target of these pathways. Firstly, we manipulate signalling and show that osx gene expression responds with similar kinetics to that of known transcriptional targets of the FGF and Wnt pathways. Secondly, we have performed ChIP with transcription factors for both pathways and our data suggest that a genomic region in the first intron of osx mediates transcriptional activation. Based upon these data, we propose that FGF and Wnt/β-Catenin pathways act in part by directing transcription of osx to promote osteoblast differentiation at sites of bone formation.
Collapse
Affiliation(s)
- Katharina Felber
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Philip M. Elks
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Maria Lecca
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Henry H. Roehl
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Lawson MA, McDonald MM, Kovacic N, Hua Khoo W, Terry RL, Down J, Kaplan W, Paton-Hough J, Fellows C, Pettitt JA, Neil Dear T, Van Valckenborgh E, Baldock PA, Rogers MJ, Eaton CL, Vanderkerken K, Pettit AR, Quinn JMW, Zannettino ACW, Phan TG, Croucher PI. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun 2015; 6:8983. [PMID: 26632274 PMCID: PMC4686867 DOI: 10.1038/ncomms9983] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/23/2015] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma is largely incurable, despite development of therapies that target myeloma cell-intrinsic pathways. Disease relapse is thought to originate from dormant myeloma cells, localized in specialized niches, which resist therapy and repopulate the tumour. However, little is known about the niche, and how it exerts cell-extrinsic control over myeloma cell dormancy and reactivation. In this study, we track individual myeloma cells by intravital imaging as they colonize the endosteal niche, enter a dormant state and subsequently become activated to form colonies. We demonstrate that dormancy is a reversible state that is switched ‘on' by engagement with bone-lining cells or osteoblasts, and switched ‘off' by osteoclasts remodelling the endosteal niche. Dormant myeloma cells are resistant to chemotherapy that targets dividing cells. The demonstration that the endosteal niche is pivotal in controlling myeloma cell dormancy highlights the potential for targeting cell-extrinsic mechanisms to overcome cell-intrinsic drug resistance and prevent disease relapse. Therapy resistant dormant myeloma cells contribute to disease relapse. Here, the authors use intravital microscopy to track the location of these cells and demonstrate that they hone to the endosteal niche within the bone.
Collapse
Affiliation(s)
- Michelle A Lawson
- Department of Oncology, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield, South Yorkshire S10 2RX, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield, South Yorkshire S10 2RX, UK
| | - Michelle M McDonald
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2010, Australia
| | - Natasa Kovacic
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
| | - Weng Hua Khoo
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia.,School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, New South Wales 2010, Australia
| | - Rachael L Terry
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2010, Australia
| | - Jenny Down
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
| | - Warren Kaplan
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2010, Australia
| | - Julia Paton-Hough
- Department of Oncology, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield, South Yorkshire S10 2RX, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield, South Yorkshire S10 2RX, UK
| | - Clair Fellows
- Department of Oncology, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield, South Yorkshire S10 2RX, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield, South Yorkshire S10 2RX, UK
| | - Jessica A Pettitt
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
| | - T Neil Dear
- South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Paul A Baldock
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2010, Australia
| | - Michael J Rogers
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2010, Australia
| | - Colby L Eaton
- Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield, South Yorkshire S10 2RX, UK.,Department of Human Metabolism and Clinical Biochemistry, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield, South Yorkshire S10 2RX, UK
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Allison R Pettit
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Julian M W Quinn
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
| | - Andrew C W Zannettino
- South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia.,School of Medical Sciences, University of Adelaide, Frome Road, Adelaide, South Australia 5000, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2010, Australia
| | - Peter I Croucher
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2010, Australia
| |
Collapse
|
44
|
Janeczek AA, Tare RS, Scarpa E, Moreno-Jimenez I, Rowland CA, Jenner D, Newman TA, Oreffo ROC, Evans ND. Transient Canonical Wnt Stimulation Enriches Human Bone Marrow Mononuclear Cell Isolates for Osteoprogenitors. Stem Cells 2015; 34:418-30. [PMID: 26573091 PMCID: PMC4981914 DOI: 10.1002/stem.2241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/01/2015] [Indexed: 12/27/2022]
Abstract
Activation of the canonical Wnt signaling pathway is an attractive anabolic therapeutic strategy for bone. Emerging data suggest that activation of the Wnt signaling pathway promotes bone mineral accrual in osteoporotic patients. The effect of Wnt stimulation in fracture healing is less clear as Wnt signaling has both stimulatory and inhibitory effects on osteogenesis. Here, we tested the hypothesis that transient Wnt stimulation promotes the expansion and osteogenesis of a Wnt‐responsive stem cell population present in human bone marrow. Bone marrow mononuclear cells (BMMNCs) were isolated from patients undergoing hip arthroplasty and exposed to Wnt3A protein. The effect of Wnt pathway stimulation was determined by measuring the frequency of stem cells within the BMMNC populations by fluorescence‐activated cell sorting and colony forming unit fibroblast (CFU‐F) assays, before determining their osteogenic capacity in in vitro differentiation experiments. We found that putative skeletal stem cells in BMMNC isolates exhibited elevated Wnt pathway activity compared with the population as whole. Wnt stimulation resulted in an increase in the frequency of skeletal stem cells marked by the STRO‐1bright/Glycophorin A− phenotype. Osteogenesis was elevated in stromal cell populations arising from BMMNCs transiently stimulated by Wnt3A protein, but sustained stimulation inhibited osteogenesis in a concentration‐dependent manner. These results demonstrate that Wnt stimulation could be used as a therapeutic approach by transient targeting of stem cell populations during early fracture healing, but that inappropriate stimulation may prevent osteogenesis. Stem Cells2016;34:418–430
Collapse
Affiliation(s)
- Agnieszka A Janeczek
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Rahul S Tare
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Edoardo Scarpa
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ines Moreno-Jimenez
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Caroline A Rowland
- Microbiology group, Chemical, Biological and Radiological Division, Salisbury, United Kingdom
| | - Dominic Jenner
- Microbiology group, Chemical, Biological and Radiological Division, Salisbury, United Kingdom
| | - Tracey A Newman
- Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Nicholas D Evans
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
45
|
Wang L, Hsiao EC, Lieu S, Scott M, O'Carroll D, Urrutia A, Conklin BR, Colnot C, Nissenson RA. Loss of Gi G-Protein-Coupled Receptor Signaling in Osteoblasts Accelerates Bone Fracture Healing. J Bone Miner Res 2015; 30:1896-904. [PMID: 25917236 DOI: 10.1002/jbmr.2540] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/08/2015] [Accepted: 04/21/2015] [Indexed: 12/24/2022]
Abstract
G-protein-coupled receptors (GPCRs) are key regulators of skeletal homeostasis and are likely important in fracture healing. Because GPCRs can activate multiple signaling pathways simultaneously, we used targeted disruption of G(i) -GPCR or activation of G(s) -GPCR pathways to test how each pathway functions in the skeleton. We previously demonstrated that blockade of G(i) signaling by pertussis toxin (PTX) transgene expression in maturing osteoblastic cells enhanced cortical and trabecular bone formation and prevented age-related bone loss in female mice. In addition, activation of G(s) signaling by expressing the G(s) -coupled engineered receptor Rs1 in maturing osteoblastic cells induced massive trabecular bone formation but cortical bone loss. Here, we test our hypothesis that the G(i) and G(s) pathways also have distinct functions in fracture repair. We applied closed, nonstabilized tibial fractures to mice in which endogenous G(i) signaling was inhibited by PTX, or to mice with activated G(s) signaling mediated by Rs1. Blockade of endogenous G(i) resulted in a smaller callus but increased bone formation in both young and old mice. PTX treatment decreased expression of Dkk1 and increased Lef1 mRNAs during fracture healing, suggesting a role for endogenous G(i) signaling in maintaining Dkk1 expression and suppressing Wnt signaling. In contrast, adult mice with activated Gs signaling showed a slight increase in the initial callus size with increased callus bone formation. These results show that G(i) blockade and G(s) activation of the same osteoblastic lineage cell can induce different biological responses during fracture healing. Our findings also show that manipulating the GPCR/cAMP signaling pathway by selective timing of G(s) and G(i) -GPCR activation may be important for optimizing fracture repair.
Collapse
Affiliation(s)
- Liping Wang
- Endocrine Research Unit, VA Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA
| | - Edward C Hsiao
- Department of Medicine, the Program in Craniofacial Biology, and the Institute for Human Genetics, University of California, San Francisco, CA
| | - Shirley Lieu
- Department of Orthopedic Surgery, University of California, San Francisco General Hospital, Orthopaedic Trauma Institute, San Francisco, CA
| | - Mark Scott
- Department of Orthopedic Surgery, University of California, San Francisco General Hospital, Orthopaedic Trauma Institute, San Francisco, CA
| | - Dylan O'Carroll
- Endocrine Research Unit, VA Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA
| | - Ashley Urrutia
- Department of Medicine, the Program in Craniofacial Biology, and the Institute for Human Genetics, University of California, San Francisco, CA
| | - Bruce R Conklin
- Department of Medicine, the Program in Craniofacial Biology, and the Institute for Human Genetics, University of California, San Francisco, CA.,Gladstone Institute of Cardiovascular Disease, San Francisco, CA.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA
| | - Celine Colnot
- Department of Orthopedic Surgery, University of California, San Francisco General Hospital, Orthopaedic Trauma Institute, San Francisco, CA.,Institut National de la Santé et de la Recherche Médicale (INSERM; National Institute of Health and Medical Research), Unités Mixtes de Recherche (UMR) 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Robert A Nissenson
- Endocrine Research Unit, VA Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA
| |
Collapse
|
46
|
My Journey as a Surgeon-Scientist Ten Years after Receiving the Inaugural Jacobson Promising Investigator Award. J Am Coll Surg 2015; 221:880-2. [PMID: 26304185 DOI: 10.1016/j.jamcollsurg.2015.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/19/2015] [Indexed: 01/22/2023]
Abstract
The First Joan L and Julius H Jacobson Promising Investigator Awardee, Michael T Longaker MD, FACS In 2005, the research committee of the American College of Surgeons was tasked with selecting the recipient of a newly established award, "The Joan L and Julius H Jacobson Promising Investigator Award." According to the Jacobsons, the $30,000 award funded by Dr Jacobson should be given at least once every 2 years to a surgeon investigator at "the tipping point," who can demonstrate that his/her research shows the promise of leading to a significant contribution to the practice of surgery and patient safety. Every year, the research committee receives many excellent nominations and has the difficult task of selecting 1 awardee. In 2005, the awardee was a young promising investigator, Michael T Longaker, MD, FACS. Ten years later, Dr Longaker, a prominent researcher in the field of "scar formation," presents his journey in research and the impact of the Jacobson award on his career. Dr Longaker is now a national and international figure in the field of wound healing, tissue regeneration, and stem cell research. Kamal MF Itani, MD, FACS and Gail Besner, MD, FACS, on behalf of the Research Committee of the American College of Surgeons.
Collapse
|
47
|
Li D, Jiao J, Zhou YM, Wang XX. Epigenetic regulation of traf2- and Nck-interacting kinase (TNIK) in polycystic ovary syndrome. Am J Transl Res 2015; 7:1152-1160. [PMID: 26279758 PMCID: PMC4532747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/13/2015] [Indexed: 06/04/2023]
Abstract
Emerging evidence has led to considerable interest in the role of Traf2- and Nck-interacting kinase (TNIK) in polycystic ovary syndrome (PCOS) development. However, the epigenetic mechanism regulating TNIK transcription remains largely unknown. Here, we show that (i) TNIK mRNA expression is significantly increased in PCOS ovarian tissues, compared to normal ovarian tissues; (ii) PCOS ovarian tissues exhibit a hypermethylation pattern at the cg10180092 site, (iii) and cg10180092 is the critical site for the transcriptional regulation of TNIK. Mechanistically, hypermethylated cg10180092 site-mediated loss of holocarboxylase synthetase (HLCS)-related H3K9me enrichment activated TNIK transcription in PCOS ovarian tissues. Notably, a substantial body of evidence indicates that DNA hypermethylation is an alternative mechanism for gene inactivation, and a new role for DNA hypermethylationmediated TNIK activating was observed in this study. This may improve our understanding of divergent transcriptional regulation in the initiation and progression of TNIK-related PCOS.
Collapse
Affiliation(s)
- Da Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical UniversityShenyang 110004, China
| | - Jiao Jiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical UniversityShenyang 110004, China
| | - Yi-Ming Zhou
- Department of Medicine, Brigham and Women’s Hospital, Harvard Institutes of Medicine, Harvard Medical SchoolBoston, MA 02115, USA
| | - Xiu-Xia Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical UniversityShenyang 110004, China
| |
Collapse
|
48
|
Janeczek AA, Scarpa E, A. Newman T, Oreffo ROC, S. Tare R, Evans ND. Skeletal Stem Cell Niche of the Bone Marrow. TISSUE-SPECIFIC STEM CELL NICHE 2015. [DOI: 10.1007/978-3-319-21705-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|