1
|
Arreola J, Pérez-Cornejo P, Segura-Covarrubias G, Corral-Fernández N, León-Aparicio D, Guzmán-Hernández ML. Function and Regulation of the Calcium-Activated Chloride Channel Anoctamin 1 (TMEM16A). Handb Exp Pharmacol 2024; 283:101-151. [PMID: 35768554 DOI: 10.1007/164_2022_592] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various human tissues express the calcium-activated chloride channel Anoctamin 1 (ANO1), also known as TMEM16A. ANO1 allows the passive chloride flux that controls different physiological functions ranging from muscle contraction, fluid and hormone secretion, gastrointestinal motility, and electrical excitability. Overexpression of ANO1 is associated with pathological conditions such as hypertension and cancer. The molecular cloning of ANO1 has led to a surge in structural, functional, and physiological studies of the channel in several tissues. ANO1 is a homodimer channel harboring two pores - one in each monomer - that work independently. Each pore is activated by voltage-dependent binding of two intracellular calcium ions to a high-affinity-binding site. In addition, the binding of phosphatidylinositol 4,5-bisphosphate to sites scattered throughout the cytosolic side of the protein aids the calcium activation process. Furthermore, many pharmacological studies have established ANO1 as a target of promising compounds that could treat several illnesses. This chapter describes our current understanding of the physiological roles of ANO1 and its regulation under physiological conditions as well as new pharmacological compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Nancy Corral-Fernández
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Daniel León-Aparicio
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
2
|
Wray S, Prendergast C, Arrowsmith S. Calcium-Activated Chloride Channels in Myometrial and Vascular Smooth Muscle. Front Physiol 2021; 12:751008. [PMID: 34867456 PMCID: PMC8637852 DOI: 10.3389/fphys.2021.751008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
In smooth muscle tissues, calcium-activated chloride channels (CaCC) provide the major anionic channel. Opening of these channels leads to chloride efflux and depolarization of the myocyte membrane. In this way, activation of the channels by a rise of intracellular [Ca2+], from a variety of sources, produces increased excitability and can initiate action potentials and contraction or increased tone. We now have a good mechanistic understanding of how the channels are activated and regulated, due to identification of TMEM16A (ANO1) as the molecular entity of the channel, but key questions remain. In reviewing these channels and comparing two distinct smooth muscles, myometrial and vascular, we expose the differences that occur in their activation mechanisms, properties, and control. We find that the myometrium only expresses “classical,” Ca2+-activated, and voltage sensitive channels, whereas both tonic and phasic blood vessels express classical, and non-classical, cGMP-regulated CaCC, which are voltage insensitive. This translates to more complex activation and regulation in vascular smooth muscles, irrespective of whether they are tonic or phasic. We therefore tentatively conclude that although these channels are expressed and functionally important in all smooth muscles, they are probably not part of the mechanisms governing phasic activity. Recent knockdown studies have produced unexpected functional results, e.g. no effects on labour and delivery, and tone increasing in some but decreasing in other vascular beds, strongly suggesting that there is still much to be explored concerning CaCC in smooth muscle.
Collapse
Affiliation(s)
- Susan Wray
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Clodagh Prendergast
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sarah Arrowsmith
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
3
|
Hawn MB, Akin E, Hartzell H, Greenwood IA, Leblanc N. Molecular mechanisms of activation and regulation of ANO1-Encoded Ca 2+-Activated Cl - channels. Channels (Austin) 2021; 15:569-603. [PMID: 34488544 PMCID: PMC8480199 DOI: 10.1080/19336950.2021.1975411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 01/13/2023] Open
Abstract
Ca2+-activated Cl- channels (CaCCs) perform a multitude of functions including the control of cell excitability, regulation of cell volume and ionic homeostasis, exocrine and endocrine secretion, fertilization, amplification of olfactory sensory function, and control of smooth muscle cell contractility. CaCCs are the translated products of two members (ANO1 and ANO2, also known as TMEM16A and TMEM16B) of the Anoctamin family of genes comprising ten paralogs. This review focuses on recent progress in understanding the molecular mechanisms involved in the regulation of ANO1 by cytoplasmic Ca2+, post-translational modifications, and how the channel protein interacts with membrane lipids and protein partners. After first reviewing the basic properties of native CaCCs, we then present a brief historical perspective highlighting controversies about their molecular identity in native cells. This is followed by a summary of the fundamental biophysical and structural properties of ANO1. We specifically address whether the channel is directly activated by internal Ca2+ or indirectly through the intervention of the Ca2+-binding protein Calmodulin (CaM), and the structural domains responsible for Ca2+- and voltage-dependent gating. We then review the regulation of ANO1 by internal ATP, Calmodulin-dependent protein kinase II-(CaMKII)-mediated phosphorylation and phosphatase activity, membrane lipids such as the phospholipid phosphatidyl-(4,5)-bisphosphate (PIP2), free fatty acids and cholesterol, and the cytoskeleton. The article ends with a survey of physical and functional interactions of ANO1 with other membrane proteins such as CLCA1/2, inositol trisphosphate and ryanodine receptors in the endoplasmic reticulum, several members of the TRP channel family, and the ancillary Κ+ channel β subunits KCNE1/5.
Collapse
Affiliation(s)
- M. B. Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - E. Akin
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - H.C. Hartzell
- Department of Cell Biology, Emory University School of Medicine, USA
| | - I. A. Greenwood
- Department of Vascular Pharmacology, St. George’s University of London, UK
| | - N. Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| |
Collapse
|
4
|
Calmodulin-Dependent Regulation of Overexpressed but Not Endogenous TMEM16A Expressed in Airway Epithelial Cells. MEMBRANES 2021; 11:membranes11090723. [PMID: 34564540 PMCID: PMC8471323 DOI: 10.3390/membranes11090723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
Regulation of the Ca2+-activated Cl− channel TMEM16A by Ca2+/calmodulin (CAM) is discussed controversially. In the present study, we compared regulation of TMEM16A by Ca2+/calmodulin (holo-CAM), CAM-dependent kinase (CAMKII), and CAM-dependent phosphatase calcineurin in TMEM16A-overexpressing HEK293 cells and TMEM16A expressed endogenously in airway and colonic epithelial cells. The activator of the Ca2+/CAM-regulated K+ channel KCNN4, 1-EBIO, activated TMEM16A in overexpressing cells, but not in cells with endogenous expression of TMEM16A. Evidence is provided that CAM-interaction with TMEM16A modulates the Ca2+ sensitivity of the Cl− channel. Enhanced Ca2+ sensitivity of overexpressed TMEM16A explains its activity at basal (non-elevated) intracellular Ca2+ levels. The present results correspond well to a recent report that demonstrates a Ca2+-unbound form of CAM (apo-CAM) that is pre-associated with TMEM16A and mediates a Ca2+-dependent sensitization of activation (and inactivation). However, when using activators or inhibitors for holo-CAM, CAMKII, or calcineurin, we were unable to detect a significant impact of CAM, and limit evidence for regulation by CAM-dependent regulatory proteins on receptor-mediated activation of endogenous TMEM16A in airway or colonic epithelial cells. We propose that regulatory properties of TMEM16A and and other members of the TMEM16 family as detected in overexpression studies, should be validated for endogenous TMEM16A and physiological stimuli such as activation of phospholipase C (PLC)-coupled receptors.
Collapse
|
5
|
Ravichandran G, Raju SV, Sarkar P, N. T. S, Al Olayan EM, Aloufi AS, Elokaby MA, Arshad A, Mala K, Arockiaraj J. Bestrophin‐derived peptide, WP17, elicits cell wall disruption‐mediated bactericidal activity against Micrococcus luteus and anti‐neoplastic effect against murine melanoma cells. Pept Sci (Hoboken) 2021; 113. [DOI: 10.1002/pep2.24220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/06/2021] [Indexed: 01/10/2023]
Abstract
AbstractThe cDNa sequence of Bestrophin‐1 (BEST‐1) was identified from a previously constructed transcriptome data set of freshwater prawn Macrobrachium rosenbergii (Mr). Basal and temporal gene expression analysis of MrBEST‐1 showed its antimicrobial immune effectiveness during viral and bacterial infections. The protein sequence encoded by cDNA of MrBEST‐1 was examined and a short antimicrobial molecule, named WP17 was identified using a bioinformatics tool. Further, the antibacterial ability of the identified WP17 peptide was evaluated against a number of bacterial strains, in which the peptide showed potential bactericidal activity against Micrococcus luteus (MTCC 6164), Staphylococcus aureus (ATCC 9144), Escherichia coli (ATCC 9637), Klebsiella pneumonia (CI 7376) and Bacillus subtilis (ATCC 6051). Based on the results, further assays focused on M. luteus MTCC 6164. The mode of action of MrWP17 on M. luteus MTCC 6164 was analyzed using FACS and FESEM. Toxicity analysis suggested that WP17 impaired the viability of cells in murine melanoma cells (B16F10); however, no cytotoxicity was observed against kidney embryonic cells (HEK293), even at higher concentrations. Similarly, the gene expression analysis of WP17 peptide treated murine cells elicited an extrinsic apoptotic pathway. In the present study, we have demonstrated the involvement of MrBEST‐1 in immune mechanisms through its short peptide molecule that has potential antimicrobial activity.
Collapse
Affiliation(s)
- Gayathri Ravichandran
- SRM Research Institute, SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Stefi V. Raju
- SRM Research Institute, SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Purabi Sarkar
- SRM Research Institute, SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Saraswathi N. T.
- Molecular Biophysics Lab School of Chemical and Biotechnology, SASTRA Deemed to be University Thanjavur Tamil Nadu India
| | - Ebtesam M. Al Olayan
- Department of Zoology College of Science, King Saud University Riyadh Saudi Arabia
| | - Abeer S. Aloufi
- Department of Zoology College of Science, King Saud University Riyadh Saudi Arabia
| | - Mohamed A. Elokaby
- Aquaculture Division National Institute of Oceanography and Fisheries (NIOF) Alexandria Egypt
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Port Dickson Negeri Sembilan Malaysia
- Department of Aquaculture, Faculty of Agriculture University Putra Malaysia Serdang Selangor Malaysia
| | - Kanchana Mala
- Department of Medical Research Medical College Hospital & Research Centre, SRM Institute of Science & Technology Chennai Tamil Nadu India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology Chennai Tamil Nadu India
| |
Collapse
|
6
|
Zhao Q, Kong Y, Kittredge A, Li Y, Shen Y, Zhang Y, Tsang SH, Yang T. Distinct expression requirements and rescue strategies for BEST1 loss- and gain-of-function mutations. eLife 2021; 10:67622. [PMID: 34061021 PMCID: PMC8169119 DOI: 10.7554/elife.67622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/10/2021] [Indexed: 01/23/2023] Open
Abstract
Genetic mutation of the human BEST1 gene, which encodes a Ca2+-activated Cl- channel (BEST1) predominantly expressed in retinal pigment epithelium (RPE), causes a spectrum of retinal degenerative disorders commonly known as bestrophinopathies. Previously, we showed that BEST1 plays an indispensable role in generating Ca2+-dependent Cl- currents in human RPE cells, and the deficiency of BEST1 function in patient-derived RPE is rescuable by gene augmentation (Li et al., 2017). Here, we report that BEST1 patient-derived loss-of-function and gain-of-function mutations require different mutant to wild-type (WT) molecule ratios for phenotypic manifestation, underlying their distinct epigenetic requirements in bestrophinopathy development, and suggesting that some of the previously classified autosomal dominant mutations actually behave in a dominant-negative manner. Importantly, the strong dominant effect of BEST1 gain-of-function mutations prohibits the restoration of BEST1-dependent Cl- currents in RPE cells by gene augmentation, in contrast to the efficient rescue of loss-of-function mutations via the same approach. Moreover, we demonstrate that gain-of-function mutations are rescuable by a combination of gene augmentation with CRISPR/Cas9-mediated knockdown of endogenous BEST1 expression, providing a universal treatment strategy for all bestrophinopathy patients regardless of their mutation types.
Collapse
Affiliation(s)
- Qingqing Zhao
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, United States
| | - Yang Kong
- Department of Ophthalmology, Vagelos College of Physicians & Surgeons, Columbia University, New York, United States
| | - Alec Kittredge
- Department of Pharmacology, Columbia University, New York, United States
| | - Yao Li
- Department of Ophthalmology, Vagelos College of Physicians & Surgeons, Columbia University, New York, United States
| | - Yin Shen
- Eye Center, Medical Research Institute, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yu Zhang
- Department of Ophthalmology, Vagelos College of Physicians & Surgeons, Columbia University, New York, United States
| | - Stephen H Tsang
- Jonas Children's Vision Care, Departments of Ophthalmology and Pathology & Cell Biology, Edward S. Harkness Eye Institute, Institute of Human Nutrition and Columbia Stem Cell Initiative, New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, United States
| | - Tingting Yang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, United States.,Department of Ophthalmology, Vagelos College of Physicians & Surgeons, Columbia University, New York, United States
| |
Collapse
|
7
|
Abbas F, Vinberg F. Transduction and Adaptation Mechanisms in the Cilium or Microvilli of Photoreceptors and Olfactory Receptors From Insects to Humans. Front Cell Neurosci 2021; 15:662453. [PMID: 33867944 PMCID: PMC8046925 DOI: 10.3389/fncel.2021.662453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Sensing changes in the environment is crucial for survival. Animals from invertebrates to vertebrates use both visual and olfactory stimuli to direct survival behaviors including identification of food sources, finding mates, and predator avoidance. In primary sensory neurons there are signal transduction mechanisms that convert chemical or light signals into an electrical response through ligand binding or photoactivation of a receptor, that can be propagated to the olfactory and visual centers of the brain to create a perception of the odor and visual landscapes surrounding us. The fundamental principles of olfactory and phototransduction pathways within vertebrates are somewhat analogous. Signal transduction in both systems takes place in the ciliary sub-compartments of the sensory cells and relies upon the activation of G protein-coupled receptors (GPCRs) to close cyclic nucleotide-gated (CNG) cation channels in photoreceptors to produce a hyperpolarization of the cell, or in olfactory sensory neurons open CNG channels to produce a depolarization. However, while invertebrate phototransduction also involves GPCRs, invertebrate photoreceptors can be either ciliary and/or microvillar with hyperpolarizing and depolarizing responses to light, respectively. Moreover, olfactory transduction in invertebrates may be a mixture of metabotropic G protein and ionotropic signaling pathways. This review will highlight differences of the visual and olfactory transduction mechanisms between vertebrates and invertebrates, focusing on the implications to the gain of the transduction processes, and how they are modulated to allow detection of small changes in odor concentration and light intensity over a wide range of background stimulus levels.
Collapse
Affiliation(s)
- Fatima Abbas
- Vinberg Lab, Department of Ophthalmology and Visual Science, John A. Moran Center, University of Utah, Salt Lake City, UT, United States
| | - Frans Vinberg
- Vinberg Lab, Department of Ophthalmology and Visual Science, John A. Moran Center, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
8
|
Auer F, Franco Taveras E, Klein U, Kesenheimer C, Fleischhauer D, Möhrlen F, Frings S. Anoctamin 2-chloride channels reduce simple spike activity and mediate inhibition at elevated calcium concentration in cerebellar Purkinje cells. PLoS One 2021; 16:e0247801. [PMID: 33651839 PMCID: PMC7924762 DOI: 10.1371/journal.pone.0247801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/12/2021] [Indexed: 11/19/2022] Open
Abstract
Modulation of neuronal excitability is a prominent way of shaping the activity of neuronal networks. Recent studies highlight the role of calcium-activated chloride currents in this context, as they can both increase or decrease excitability. The calcium-activated chloride channel Anoctamin 2 (ANO2 alias TMEM16B) has been described in several regions of the mouse brain, including the olivo-cerebellar system. In inferior olivary neurons, ANO2 was proposed to increase excitability by facilitating the generation of high-threshold calcium spikes. An expression of ANO2 in cerebellar Purkinje cells was suggested, but its role in these neurons remains unclear. In the present study, we confirmed the expression of Ano2 mRNA in Purkinje cells and performed electrophysiological recordings to examine the influence of ANO2-chloride channels on the excitability of Purkinje cells by comparing wildtype mice to mice lacking ANO2. Recordings were performed in acute cerebellar slices of adult mice, which provided the possibility to study the role of ANO2 within the cerebellar cortex. Purkinje cells were uncoupled from climbing fiber input to assess specifically the effect of ANO2 channels on Purkinje cell activity. We identified an attenuating effect of ANO2-mediated chloride currents on the instantaneous simple spike activity both during strong current injections and during current injections close to the simple spike threshold. Moreover, we report a reduction of inhibitory currents from GABAergic interneurons upon depolarization, lasting for several seconds. Together with the role of ANO2-chloride channels in inferior olivary neurons, our data extend the evidence for a role of chloride-dependent modulation in the olivo-cerebellar system that might be important for proper cerebellum-dependent motor coordination and learning.
Collapse
Affiliation(s)
- Friederike Auer
- Department of Animal Physiology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Eliana Franco Taveras
- Department of Animal Physiology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Uli Klein
- Department of Animal Physiology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Céline Kesenheimer
- Department of Animal Physiology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Dana Fleischhauer
- Department of Animal Physiology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Frank Möhrlen
- Department of Animal Physiology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Stephan Frings
- Department of Animal Physiology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
9
|
Grigoriev VV. [Calcium-activated chloride channels: structure, properties, role in physiological and pathological processes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:17-33. [PMID: 33645519 DOI: 10.18097/pbmc20216701017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ca2+-activated chloride channels (CaCC) are a class of intracellular calcium activated chloride channels that mediate numerous physiological functions. In 2008, the molecular structure of CaCC was determined. CaCC are formed by the protein known as anoctamine 1 (ANO1 or TMEM16A). CaCC mediates the secretion of Cl- in secretory epithelia, such as the airways, salivary glands, intestines, renal tubules, and sweat glands. The presence of CaCC has also been recognized in the vascular muscles, smooth muscles of the respiratory tract, which control vascular tone and hypersensitivity of the respiratory tract. TMEM16A is activated in many cancers; it is believed that TMEM16A is involved in carcinogenesis. TMEM16A is also involved in cancer cells proliferation. The role of TMEM16A in the mechanisms of hypertension, asthma, cystic fibrosis, nociception, and dysfunction of the gastrointestinal tract has been determined. In addition to TMEM16A, its isoforms are involved in other physiological and pathophysiological processes. TMEM16B (or ANO2) is involved in the sense of smell, while ANO6 works like scramblase, and its mutation causes a rare bleeding disorder, known as Scott syndrome. ANO5 is associated with muscle and bone diseases. TMEM16A interacts with various cellular signaling pathways including: epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPK), calmodulin (CaM) kinases, transforming growth factor TGF-β. The review summarizes existing information on known natural and synthetic compounds that can block/modulate CaCC currents and their effect on some pathologies in which CaCC is involved.
Collapse
Affiliation(s)
- V V Grigoriev
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Roh JW, Hwang GE, Kim WK, Nam JH. Ca 2+ Sensitivity of Anoctamin 6/TMEM16F Is Regulated by the Putative Ca 2+-Binding Reservoir at the N-Terminal Domain. Mol Cells 2021; 44:88-100. [PMID: 33658434 PMCID: PMC7941003 DOI: 10.14348/molcells.2021.2203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/05/2021] [Accepted: 01/26/2021] [Indexed: 11/27/2022] Open
Abstract
Anoctamin 6/TMEM16F (ANO6) is a dual-function protein with Ca2+-activated ion channel and Ca2+-activated phospholipid scramblase activities, requiring a high intracellular Ca2+ concentration (e.g., half-maximal effective Ca2+ concentration [EC50] of [Ca2+]i > 10 μM), and strong and sustained depolarization above 0 mV. Structural comparison with Anoctamin 1/TMEM16A (ANO1), a canonical Ca2+- activated chloride channel exhibiting higher Ca2+ sensitivity (EC50 of 1 μM) than ANO6, suggested that a homologous Ca2+-transferring site in the N-terminal domain (Nt) might be responsible for the differential Ca2+ sensitivity and kinetics of activation between ANO6 and ANO1. To elucidate the role of the putative Ca2+-transferring reservoir in the Nt (Nt-CaRes), we constructed an ANO6-1-6 chimera in which Nt-CaRes was replaced with the corresponding domain of ANO1. ANO6- 1-6 showed higher sensitivity to Ca2+ than ANO6. However, neither the speed of activation nor the voltage-dependence differed between ANO6 and ANO6-1-6. Molecular dynamics simulation revealed a reduced Ca2+ interaction with Nt- CaRes in ANO6 than ANO6-1-6. Moreover, mutations on potentially Ca2+-interacting acidic amino acids in ANO6 Nt- CaRes resulted in reduced Ca2+ sensitivity, implying direct interactions of Ca2+ with these residues. Based on these results, we cautiously suggest that the net charge of Nt- CaRes is responsible for the difference in Ca2+ sensitivity between ANO1 and ANO6.
Collapse
Affiliation(s)
- Jae Won Roh
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Ga Eun Hwang
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Woo Kyung Kim
- Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| |
Collapse
|
11
|
Boccaccio A, Menini A, Pifferi S. The cyclic AMP signaling pathway in the rodent main olfactory system. Cell Tissue Res 2021; 383:429-443. [PMID: 33447881 DOI: 10.1007/s00441-020-03391-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 01/15/2023]
Abstract
Odor perception begins with the detection of odorant molecules by the main olfactory epithelium located in the nasal cavity. Odorant molecules bind to and activate a large family of G-protein-coupled odorant receptors and trigger a cAMP-mediated transduction cascade that converts the chemical stimulus into an electrical signal transmitted to the brain. Morever, odorant receptors and cAMP signaling plays a relevant role in olfactory sensory neuron development and axonal targeting to the olfactory bulb. This review will first explore the physiological response of olfactory sensory neurons to odorants and then analyze the different components of cAMP signaling and their different roles in odorant detection and olfactory sensory neuron development.
Collapse
Affiliation(s)
- Anna Boccaccio
- Institute of Biophysics, National Research Council (CNR), Genova, Italy.
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy.,Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
12
|
Ko W, Jung SR, Kim KW, Yeon JH, Park CG, Nam JH, Hille B, Suh BC. Allosteric modulation of alternatively spliced Ca 2+-activated Cl - channels TMEM16A by PI(4,5)P 2 and CaMKII. Proc Natl Acad Sci U S A 2020; 117:30787-30798. [PMID: 33199590 PMCID: PMC7720229 DOI: 10.1073/pnas.2014520117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transmembrane 16A (TMEM16A, anoctamin1), 1 of 10 TMEM16 family proteins, is a Cl- channel activated by intracellular Ca2+ and membrane voltage. This channel is also regulated by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. We find that two splice variants of TMEM16A show different sensitivity to endogenous PI(4,5)P2 degradation, where TMEM16A(ac) displays higher channel activity and more current inhibition by PI(4,5)P2 depletion than TMEM16A(a). These two channel isoforms differ in the alternative splicing of the c-segment (exon 13). The current amplitude and PI(4,5)P2 sensitivity of both TMEM16A(ac) and (a) are significantly strengthened by decreased free cytosolic ATP and by conditions that decrease phosphorylation by Ca2+/calmodulin-dependent protein kinase II (CaMKII). Noise analysis suggests that the augmentation of currents is due to a rise of single-channel current (i), but not of channel number (N) or open probability (PO). Mutagenesis points to arginine 486 in the first intracellular loop as a putative binding site for PI(4,5)P2, and to serine 673 in the third intracellular loop as a site for regulatory channel phosphorylation that modulates the action of PI(4,5)P2 In silico simulation suggests how phosphorylation of S673 allosterically and differently changes the structure of the distant PI(4,5)P2-binding site between channel splice variants with and without the c-segment exon. In sum, our study reveals the following: differential regulation of alternatively spliced TMEM16A(ac) and (a) by plasma membrane PI(4,5)P2, modification of these effects by channel phosphorylation, identification of the molecular sites, and mechanistic explanation by in silico simulation.
Collapse
Affiliation(s)
- Woori Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Seung-Ryoung Jung
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Kwon-Woo Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Jun-Hee Yeon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Cheon-Gyu Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
- Ion Channel Disease Research Center, College of Medicine, Dongguk University, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Byung-Chang Suh
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea;
| |
Collapse
|
13
|
Colecraft HM. Designer genetically encoded voltage-dependent calcium channel inhibitors inspired by RGK GTPases. J Physiol 2020; 598:1683-1693. [PMID: 32104913 PMCID: PMC7195252 DOI: 10.1113/jp276544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/07/2020] [Indexed: 12/28/2022] Open
Abstract
High‐voltage‐activated calcium (CaV1/CaV2) channels translate action potentials into Ca2+ influx in excitable cells to control essential biological processes that include; muscle contraction, synaptic transmission, hormone secretion and activity‐dependent regulation of gene expression. Modulation of CaV1/CaV2 channel activity is a powerful mechanism to regulate physiology, and there are a host of intracellular signalling molecules that tune different aspects of CaV channel trafficking and gating for this purpose. Beyond normal physiological regulation, the diverse CaV channel modulatory mechanisms may potentially be co‐opted or interfered with for therapeutic benefits. CaV1/CaV2 channels are potently inhibited by a four‐member sub‐family of Ras‐like GTPases known as RGK (Rad, Rem, Rem2, Gem/Kir) proteins. Understanding the mechanisms by which RGK proteins inhibit CaV1/CaV2 channels has led to the development of novel genetically encoded CaV channel blockers with unique properties; including, chemo‐ and optogenetic control of channel activity, and blocking channels either on the basis of their subcellular localization or by targeting an auxiliary subunit. These genetically encoded CaV channel inhibitors have outstanding utility as enabling research tools and potential therapeutics.
![]()
Collapse
Affiliation(s)
- Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Department of Pharmacology and Molecular Signaling, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
14
|
Liu CZ, Li FY, Lv XF, Ma MM, Li XY, Lin CX, Wang GL, Guan YY. Endophilin A2 regulates calcium-activated chloride channel activity via selective autophagy-mediated TMEM16A degradation. Acta Pharmacol Sin 2020; 41:208-217. [PMID: 31484993 PMCID: PMC7470808 DOI: 10.1038/s41401-019-0298-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/06/2019] [Indexed: 02/05/2023]
Abstract
TMEM16A Ca2+-activated chloride channel (CaCC) plays an essential role in vascular homeostasis. In this study we investigated the molecular mechanisms underlying downregulation of TMEM16A CaCC activity during hypertension. In cultured basilar artery smooth muscle cells (BASMCs) isolated from 2k2c renohypertesive rats, treatment with angiotensin II (0.125-1 μM) dose-dependently increased endophilin A2 levels and decreased TMEM16A expression. Similar phenomenon was observed in basilar artery isolated from 2k2c rats. We then used whole-cell recording to examine whether endophilin A2 could regulate TMEM16A CaCC activity in BASMCs and found that knockdown of endophilin A2 significantly enhanced CaCC activity, whereas overexpression of endophilin A2 produced the opposite effect. Overexpression of endophilin A2 did not affect the TMEM16A mRNA level, but markedly decreased TMEM16A protein level in BASMCs by inducing ubiquitination and autophagy of TMEM16A. Ubiquitin-binding receptor p62 (SQSTM1) could bind to ubiquitinated TMEM16A and resulted in a process of TMEM16A proteolysis in autophagosome/lysosome. These data provide new insights into the regulation of TMEM16A CaCC activity by endophilin A2 in BASMCs, which partly explains the mechanism of angiotensin-II-induced TMEM16A inhibition during hypertension-induced vascular remodeling.
Collapse
Affiliation(s)
- Can-Zhao Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Fei-Ya Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xiao-Fei Lv
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ming-Ming Ma
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiang-Yu Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Cai-Xia Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guan-Lei Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yong-Yuan Guan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
15
|
Ji C, Li Y, Kittredge A, Hopiavuori A, Ward N, Yao P, Fukuda Y, Zhang Y, Tsang SH, Yang T. Investigation and Restoration of BEST1 Activity in Patient-derived RPEs with Dominant Mutations. Sci Rep 2019; 9:19026. [PMID: 31836750 PMCID: PMC6910965 DOI: 10.1038/s41598-019-54892-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
BEST1 is a Ca2+-activated Cl- channel predominantly expressed in retinal pigment epithelium (RPE), and over 250 genetic mutations in the BEST1 gene have been identified to cause retinal degenerative disorders generally known as bestrophinopathies. As most BEST1 mutations are autosomal dominant, it is of great biomedical interest to determine their disease-causing mechanisms and the therapeutic potential of gene therapy. Here, we characterized six Best vitelliform macular dystrophy (BVMD)-associated BEST1 dominant mutations by documenting the patients' phenotypes, examining the subcellular localization of endogenous BEST1 and surface Ca2+-dependent Cl- currents in patient-derived RPEs, and analyzing the functional influences of these mutations on BEST1 in HEK293 cells. We found that all six mutations are loss-of-function with different levels and types of deficiencies, and further demonstrated the restoration of Ca2+-dependent Cl- currents in patient-derived RPE cells by WT BEST1 gene supplementation. Importantly, BEST1 dominant and recessive mutations are both rescuable at a similar efficacy by gene augmentation via adeno-associated virus (AAV), providing a proof-of-concept for curing the vast majority of bestrophinopathies.
Collapse
Affiliation(s)
- Changyi Ji
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Yao Li
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA
| | - Alec Kittredge
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Austin Hopiavuori
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Nancy Ward
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, School of Medicine & Dentistry, Rochester, NY, 14586, USA
| | - Yohta Fukuda
- Division of Advance Pharmaco-Science, Graduate School of Pharmaceutical Science, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
| | - Yu Zhang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA.
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA.
| | - Stephen H Tsang
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology and Pathology & Cell Biology, Edward S. Harkness Eye Institute, Columbia Stem Cell Initiative, New York Presbyterian Hospital/Columbia University, New York, NY, 10032, USA.
| | - Tingting Yang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA.
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
16
|
Le SC, Jia Z, Chen J, Yang H. Molecular basis of PIP 2-dependent regulation of the Ca 2+-activated chloride channel TMEM16A. Nat Commun 2019; 10:3769. [PMID: 31434906 PMCID: PMC6704070 DOI: 10.1038/s41467-019-11784-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/02/2019] [Indexed: 11/20/2022] Open
Abstract
The calcium-activated chloride channel (CaCC) TMEM16A plays crucial roles in regulating neuronal excitability, smooth muscle contraction, fluid secretion and gut motility. While opening of TMEM16A requires binding of intracellular Ca2+, prolonged Ca2+-dependent activation results in channel desensitization or rundown, the mechanism of which is unclear. Here we show that phosphatidylinositol (4,5)-bisphosphate (PIP2) regulates TMEM16A channel activation and desensitization via binding to a putative binding site at the cytosolic interface of transmembrane segments (TMs) 3-5. We further demonstrate that the ion-conducting pore of TMEM16A is constituted of two functionally distinct modules: a Ca2+-binding module formed by TMs 6-8 and a PIP2-binding regulatory module formed by TMs 3-5, which mediate channel activation and desensitization, respectively. PIP2 dissociation from the regulatory module results in ion-conducting pore collapse and subsequent channel desensitization. Our findings thus provide key insights into the mechanistic understanding of TMEM16 channel gating and lipid-dependent regulation.
Collapse
Affiliation(s)
- Son C Le
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
17
|
Ji C, Kittredge A, Hopiavuori A, Ward N, Chen S, Fukuda Y, Zhang Y, Yang T. Dual Ca 2+-dependent gates in human Bestrophin1 underlie disease-causing mechanisms of gain-of-function mutations. Commun Biol 2019; 2:240. [PMID: 31263784 PMCID: PMC6591409 DOI: 10.1038/s42003-019-0433-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/17/2019] [Indexed: 01/22/2023] Open
Abstract
Mutations of human BEST1, encoding a Ca2+-activated Cl- channel (hBest1), cause macular degenerative disorders. Best1 homolog structures reveal an evolutionarily conserved channel architecture highlighted by two landmark restrictions (named the "neck" and "aperture", respectively) in the ion conducting pathway, suggesting a unique dual-switch gating mechanism, which, however, has not been characterized well. Using patch clamp and crystallography, we demonstrate that both the neck and aperture in hBest1 are Ca2+-dependent gates essential for preventing channel leakage resulting from Ca2+-independent, spontaneous gate opening. Importantly, three patient-derived mutations (D203A, I205T and Y236C) lead to Ca2+-independent leakage and elevated Ca2+-dependent anion currents due to enhanced opening of the gates. Moreover, we identify a network of residues critically involved in gate operation. Together, our results suggest an indispensable role of the neck and aperture of hBest1 for channel gating, and uncover disease-causing mechanisms of hBest1 gain-of-function mutations.
Collapse
Affiliation(s)
- Changyi Ji
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642 USA
| | - Alec Kittredge
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642 USA
| | - Austin Hopiavuori
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642 USA
| | - Nancy Ward
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642 USA
| | - Shoudeng Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Department of Experimental Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000 Zhuhai, Guangzhou China
| | - Yohta Fukuda
- Division of Advance Pharmaco-Science, Graduate School of Pharmaceutical Science, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871 Japan
| | - Yu Zhang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642 USA
| | - Tingting Yang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642 USA
| |
Collapse
|
18
|
Kittredge A, Ji C, Zhang Y, Yang T. Differentiation, Maintenance, and Analysis of Human Retinal Pigment Epithelium Cells: A Disease-in-a-dish Model for BEST1 Mutations. J Vis Exp 2018. [PMID: 30199040 DOI: 10.3791/57791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Although over 200 genetic mutations in the human BEST1 gene have been identified and linked to retinal degenerative diseases, the pathological mechanisms remain elusive mainly due to the lack of a good in vivo model for studying BEST1 and its mutations under physiological conditions. BEST1 encodes an ion channel, namely BESTROPHIN1 (BEST1), which functions in retinal pigment epithelium (RPE); however, the extremely limited accessibility to native human RPE cells represents a major challenge for scientific research. This protocol describes how to generate human RPEs bearing BEST1 disease-causing mutations by induced differentiation from human pluripotent stem cells (hPSCs). As hPSCs are self-renewable, this approach allows researchers to have a steady source of hPSC-RPEs for various experimental analyses, such as immunoblotting, immunofluorescence, and patch clamp, and thus provides a very powerful disease-in-a-dish model for BEST1-associated retinal conditions. Notably, this strategy can be applied to study RPE (patho)physiology and other genes of interest natively expressed in RPE.
Collapse
Affiliation(s)
- Alec Kittredge
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry
| | - Changyi Ji
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry
| | - Yu Zhang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry;
| | - Tingting Yang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry;
| |
Collapse
|
19
|
Zhang Y, Kittredge A, Ward N, Ji C, Chen S, Yang T. ATP activates bestrophin ion channels through direct interaction. Nat Commun 2018; 9:3126. [PMID: 30087350 PMCID: PMC6081419 DOI: 10.1038/s41467-018-05616-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/09/2018] [Indexed: 11/13/2022] Open
Abstract
Human Bestrophin1 (hBest1) is a Ca2+-activated Cl- channel in retinal pigment epithelium (RPE) essential for retina physiology, and its mutation results in retinal degenerative diseases that have no available treatments. Here, we discover that hBest1's channel activity in human RPE is significantly enhanced by adenosine triphosphate (ATP) in a dose-dependent manner. We further demonstrate a direct interaction between ATP and bestrophins, and map the ATP-binding motif on hBest1 to an intracellular loop adjacent to the channel activation gate. Importantly, a disease-causing mutation of hBest1 located within the ATP-binding motif, p.I201T, diminishes ATP-dependent activation of the channel in patient-derived RPE, while the corresponding mutants in bestrophin homologs display defective ATP binding and a conformational change in the ATP-binding motif. Taken together, our results identify ATP as a critical activator of bestrophins, and reveal the molecular mechanism of an hBest1 patient-specific mutation.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Alec Kittredge
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Nancy Ward
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Changyi Ji
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Shoudeng Chen
- Molecular Imaging Center, Department of Experimental Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangzhou, 519000, China
| | - Tingting Yang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|
20
|
Kittredge A, Ward N, Hopiavuori A, Zhang Y, Yang T. Expression and Purification of Mammalian Bestrophin Ion Channels. J Vis Exp 2018. [PMID: 30124653 DOI: 10.3791/57832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human genome encodes four bestrophin paralogs, namely BEST1, BEST2, BEST3, and BEST4. BEST1, encoded by the BEST1 gene, is a Ca2+-activated Cl- channel (CaCC) predominantly expressed in retinal pigment epithelium (RPE). The physiological and pathological significance of BEST1 is highlighted by the fact that over 200 distinct mutations in the BEST1 gene have been genetically linked to a spectrum of at least five retinal degenerative disorders, such as Best vitelliform macular dystrophy (Best disease). Therefore, understanding the biophysics of bestrophin channels at the single-molecule level holds tremendous significance. However, obtaining purified mammalian ion channels is often a challenging task. Here, we report a protocol for the expression of mammalian bestrophin proteins with the BacMam baculovirus gene transfer system and their purification by affinity and size-exclusion chromatography. The purified proteins have the potential to be utilized in subsequent functional and structural analyses, such as electrophysiological recording in lipid bilayers and crystallography. Importantly, this pipeline can be adapted to study the functions and structures of other ion channels.
Collapse
Affiliation(s)
- Alec Kittredge
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry
| | - Nancy Ward
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry
| | - Austin Hopiavuori
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry
| | - Yu Zhang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry;
| | - Tingting Yang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry;
| |
Collapse
|
21
|
Ca 2+ Regulation of TRP Ion Channels. Int J Mol Sci 2018; 19:ijms19041256. [PMID: 29690581 PMCID: PMC5979445 DOI: 10.3390/ijms19041256] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
Ca2+ signaling influences nearly every aspect of cellular life. Transient receptor potential (TRP) ion channels have emerged as cellular sensors for thermal, chemical and mechanical stimuli and are major contributors to Ca2+ signaling, playing an important role in diverse physiological and pathological processes. Notably, TRP ion channels are also one of the major downstream targets of Ca2+ signaling initiated either from TRP channels themselves or from various other sources, such as G-protein coupled receptors, giving rise to feedback regulation. TRP channels therefore function like integrators of Ca2+ signaling. A growing body of research has demonstrated different modes of Ca2+-dependent regulation of TRP ion channels and the underlying mechanisms. However, the precise actions of Ca2+ in the modulation of TRP ion channels remain elusive. Advances in Ca2+ regulation of TRP channels are critical to our understanding of the diversified functions of TRP channels and complex Ca2+ signaling.
Collapse
|
22
|
Iacobucci GJ, Popescu GK. Resident Calmodulin Primes NMDA Receptors for Ca 2+-Dependent Inactivation. Biophys J 2017; 113:2236-2248. [PMID: 28712640 PMCID: PMC5700250 DOI: 10.1016/j.bpj.2017.06.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 10/19/2022] Open
Abstract
N-methyl-d-aspartate (NMDA) receptors are glutamate- and glycine-gated channels that flux Na+ and Ca2+ into postsynaptic neurons during synaptic transmission. The resulting intracellular Ca2+ transient is essential to physiological and pathological processes related to synaptic development, plasticity, and apoptosis. It also engages calmodulin (CaM) to reduce subsequent NMDA receptor activity in a process known as Ca2+-dependent inactivation (CDI). Here, we used whole-cell electrophysiology to measure CDI and computational modeling to dissect the sequence of events that underlies it. With these approaches, we estimate that CaM senses NMDA receptor Ca2+ influx at ∼9 nm from the channel pore. Further, when we controlled the frequency of Ca2+ influx through individual channels, we found that a kinetic model where apoCaM associates with channels before their activation best predicts the measured CDI. These results provide, to our knowledge, novel functional evidence for CaM preassociation to NMDA receptors in living cells. This particular mechanism for autoinhibitory feedback reveals strategies and challenges for Ca2+ regulation in neurons during physiological synaptic activity and disease.
Collapse
Affiliation(s)
- Gary J Iacobucci
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York.
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York.
| |
Collapse
|
23
|
Li Y, Zhang Y, Xu Y, Kittredge A, Ward N, Chen S, Tsang SH, Yang T. Patient-specific mutations impair BESTROPHIN1's essential role in mediating Ca 2+-dependent Cl - currents in human RPE. eLife 2017; 6. [PMID: 29063836 PMCID: PMC5655127 DOI: 10.7554/elife.29914] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/13/2017] [Indexed: 01/06/2023] Open
Abstract
Mutations in the human BEST1 gene lead to retinal degenerative diseases displaying progressive vision loss and even blindness. BESTROPHIN1, encoded by BEST1, is predominantly expressed in retinal pigment epithelium (RPE), but its physiological role has been a mystery for the last two decades. Using a patient-specific iPSC-based disease model and interdisciplinary approaches, we comprehensively analyzed two distinct BEST1 patient mutations, and discovered mechanistic correlations between patient clinical phenotypes, electrophysiology in their RPEs, and the structure and function of BESTROPHIN1 mutant channels. Our results revealed that the disease-causing mechanism of BEST1 mutations is centered on the indispensable role of BESTROPHIN1 in mediating the long speculated Ca2+-dependent Cl- current in RPE, and demonstrate that the pathological potential of BEST1 mutations can be evaluated and predicted with our iPSC-based 'disease-in-a-dish' approach. Moreover, we demonstrated that patient RPE is rescuable with viral gene supplementation, providing a proof-of-concept for curing BEST1-associated diseases.
Collapse
Affiliation(s)
- Yao Li
- Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology and Pathology & Cell Biology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital/Columbia University, New York, United States
| | - Yu Zhang
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, United States
| | - Yu Xu
- Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology and Pathology & Cell Biology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital/Columbia University, New York, United States.,Department of Ophthalmology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alec Kittredge
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, United States
| | - Nancy Ward
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, United States
| | - Shoudeng Chen
- Molecular Imaging Center, Department of Experimental Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Stephen H Tsang
- Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology and Pathology & Cell Biology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital/Columbia University, New York, United States
| | - Tingting Yang
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, United States
| |
Collapse
|
24
|
Kamaleddin MA. Molecular, biophysical, and pharmacological properties of calcium-activated chloride channels. J Cell Physiol 2017; 233:787-798. [PMID: 28121009 DOI: 10.1002/jcp.25823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/15/2022]
Abstract
Calcium-activated chloride channels (CaCCs) are a family of anionic transmembrane ion channels. They are mainly responsible for the movement of Cl- and other anions across the biological membranes, and they are widely expressed in different tissues. Since the Cl- flow into or out of the cell plays a crucial role in hyperpolarizing or depolarizing the cells, respectively, the impact of intracellular Ca2+ concentration on these channels is attracting a lot of attentions. After summarizing the molecular, biophysical, and pharmacological properties of CaCCs, the role of CaCCs in normal cellular functions will be discussed, and I will emphasize how dysregulation of CaCCs in pathological conditions can account for different diseases. A better understanding of CaCCs and a pivotal regulatory role of Ca2+ can shed more light on the therapeutic strategies for different neurological disorders that arise from chloride dysregulation, such as asthma, cystic fibrosis, and neuropathic pain.
Collapse
Affiliation(s)
- Mohammad Amin Kamaleddin
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Hasan R, Leeson-Payne ATS, Jaggar JH, Zhang X. Calmodulin is responsible for Ca 2+-dependent regulation of TRPA1 Channels. Sci Rep 2017; 7:45098. [PMID: 28332600 PMCID: PMC5362816 DOI: 10.1038/srep45098] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/20/2017] [Indexed: 12/04/2022] Open
Abstract
TRPA1 is a Ca2+-permeable ion channel involved in many sensory disorders such as pain, itch and neuropathy. Notably, the function of TRPA1 depends on Ca2+, with low Ca2+ potentiating and high Ca2+ inactivating TRPA1. However, it remains unknown how Ca2+ exerts such contrasting effects. Here, we show that Ca2+ regulates TRPA1 through calmodulin, which binds to TRPA1 in a Ca2+-dependent manner. Calmodulin binding enhanced TRPA1 sensitivity and Ca2+-evoked potentiation of TRPA1 at low Ca2+, but inhibited TRPA1 sensitivity and promoted TRPA1 desensitization at high Ca2+. Ca2+-dependent potentiation and inactivation of TRPA1 were selectively prevented by disrupting the interaction of the carboxy-lobe of calmodulin with a calmodulin-binding domain in the C-terminus of TRPA1. Calmodulin is thus a critical Ca2+ sensor enabling TRPA1 to respond to diverse Ca2+ signals distinctly.
Collapse
Affiliation(s)
- Raquibul Hasan
- School of Medicine, Medical Sciences &Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.,Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom
| | - Alasdair T S Leeson-Payne
- School of Medicine, Medical Sciences &Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Xuming Zhang
- School of Medicine, Medical Sciences &Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.,Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom.,Schcool of Life &Health Sciences, Aston University, Aston triangle, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
26
|
Ma K, Wang H, Yu J, Wei M, Xiao Q. New Insights on the Regulation of Ca 2+ -Activated Chloride Channel TMEM16A. J Cell Physiol 2016; 232:707-716. [PMID: 27682822 DOI: 10.1002/jcp.25621] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/27/2016] [Indexed: 12/16/2022]
Abstract
TMEM16A, also known as anoctamin 1, is a recently identified Ca2+ -activated chloride channel and the first member of a 10-member TMEM16 family. TMEM16A dysfunction is implicated in many diseases such as cancer, hypertension, and cystic fibrosis. TMEM16A channels are well known to be dually regulated by voltage and Ca2+ . In addition, recent studies have revealed that TMEM16A channels are regulated by many molecules such as calmodulin, protons, cholesterol, and phosphoinositides, and a diverse range of stimuli such as thermal and mechanical stimuli. A better understanding of the regulatory mechanisms of TMEM16A is important to understand its physiological and pathological role. Recently, the crystal structure of a TMEM16 family member from the fungus Nectria haematococcaten (nhTMEM16) is discovered, and provides valuable information for studying the structure and function of TMEM16A. In this review, we discuss the structure and function of TMEM16A channels based on the crystal structure of nhTMEM16A and focus on the regulatory mechanisms of TMEM16A channels. J. Cell. Physiol. 232: 707-716, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Jiankun Yu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| |
Collapse
|
27
|
Modulating Ca²⁺ signals: a common theme for TMEM16, Ist2, and TMC. Pflugers Arch 2015; 468:475-90. [PMID: 26700940 DOI: 10.1007/s00424-015-1767-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
Abstract
Since the discovery of TMEM16A (anoctamin 1, ANO1) as Ca(2+)-activated Cl(-) channel, the protein was found to serve different physiological functions, depending on the type of tissue. Subsequent reports on other members of the anoctamin family demonstrated a broad range of yet poorly understood properties. Compromised anoctamin function is causing a wide range of diseases, such as hearing loss (ANO2), bleeding disorder (ANO6), ataxia and dystonia (ANO3, 10), persistent borrelia and mycobacteria infection (ANO10), skeletal syndromes like gnathodiaphyseal dysplasia and limb girdle muscle dystrophy (ANO5), and cancer (ANO1, 6, 7). Animal models demonstrate CF-like airway disease, asthma, and intestinal hyposecretion (ANO1). Although present data indicate that ANO1 is a Ca(2+)-activated Cl(-) channel, it remains unclear whether all anoctamins form plasma membrane-localized or intracellular chloride channels. We find Ca(2+)-activated Cl(-) currents appearing by expression of most anoctamin paralogs, including the Nectria haematococca homologue nhTMEM16 and the yeast homologue Ist2. As recent studies show a role of anoctamins, Ist2, and the related transmembrane channel-like (TMC) proteins for intracellular Ca(2+) signaling, we will discuss the role of these proteins in generating compartmentalized Ca(2+) signals, which may give a hint as to the broad range of cellular functions of anoctamins.
Collapse
|
28
|
Zhang W, Schmelzeisen S, Parthier D, Frings S, Möhrlen F. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex. PLoS One 2015; 10:e0142160. [PMID: 26558388 PMCID: PMC4641602 DOI: 10.1371/journal.pone.0142160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/19/2015] [Indexed: 01/18/2023] Open
Abstract
Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum.
Collapse
Affiliation(s)
- Weiping Zhang
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Steffen Schmelzeisen
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Daniel Parthier
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Stephan Frings
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Frank Möhrlen
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
29
|
TMEM16, LRRC8A, bestrophin: chloride channels controlled by Ca2+ and cell volume. Trends Biochem Sci 2015; 40:535-43. [DOI: 10.1016/j.tibs.2015.07.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/10/2015] [Accepted: 07/10/2015] [Indexed: 01/13/2023]
|
30
|
Yang T, Colecraft HM. Calmodulin regulation of TMEM16A and 16B Ca(2+)-activated chloride channels. Channels (Austin) 2015; 10:38-44. [PMID: 26083059 DOI: 10.1080/19336950.2015.1058455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ca(2+)-activated chloride channels encoded by TMEM16A and 16B are important for regulating epithelial mucus secretion, cardiac and neuronal excitability, smooth muscle contraction, olfactory transduction, and cell proliferation. Whether and how the ubiquitous Ca(2+) sensor calmodulin (CaM) regulates the activity of TMEM16A and 16B channels has been controversial and the subject of an ongoing debate. Recently, using a bioengineering approach termed ChIMP (Channel Inactivation induced by Membrane-tethering of an associated Protein) we argued that Ca(2+)-free CaM (apoCaM) is pre-associated with functioning TMEM16A and 16B channel complexes in live cells. Further, the pre-associated apoCaM mediates Ca(2+)-dependent sensitization of activation (CDSA) and Ca(2+)-dependent inactivation (CDI) of some TMEM16A splice variants. In this review, we discuss these findings in the context of previous and recent results relating to Ca(2+)-dependent regulation of TMEM16A/16B channels and the putative role of CaM. We further discuss potential future directions for these nascent ideas on apoCaM regulation of TMEM16A/16B channels, noting that such future efforts will benefit greatly from the pioneering work of Dr. David T. Yue and colleagues on CaM regulation of voltage-dependent calcium channels.
Collapse
Affiliation(s)
- Tingting Yang
- a Department of Physiology and Cellular Biophysics ; Columbia University; College of Physicians and Surgeons ; New York , NY USA
| | - Henry M Colecraft
- a Department of Physiology and Cellular Biophysics ; Columbia University; College of Physicians and Surgeons ; New York , NY USA
| |
Collapse
|
31
|
Gui D, Li Y, Chen X. Alterations of TMEM16a allostery in human retinal microarterioles in long-standing hypertension. IUBMB Life 2015; 67:348-54. [PMID: 25914185 DOI: 10.1002/iub.1376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/08/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Dongmei Gui
- Department of Ophthalmology; Sheng Jing Hospital of China Medical University; Shenyang China
| | - Yanfeng Li
- The Second Department of Neurosurgery; The People's Hospital of Liaoning Province; Shenyang China
| | - Xiaolong Chen
- Department of Ophthalmology; Sheng Jing Hospital of China Medical University; Shenyang China
| |
Collapse
|
32
|
Amjad A, Hernandez-Clavijo A, Pifferi S, Maurya DK, Boccaccio A, Franzot J, Rock J, Menini A. Conditional knockout of TMEM16A/anoctamin1 abolishes the calcium-activated chloride current in mouse vomeronasal sensory neurons. ACTA ACUST UNITED AC 2015; 145:285-301. [PMID: 25779870 PMCID: PMC4380210 DOI: 10.1085/jgp.201411348] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
TMEM16A is an essential component of Ca2+-activated Cl− currents in mouse vomeronasal sensory neurons. Pheromones are substances released from animals that, when detected by the vomeronasal organ of other individuals of the same species, affect their physiology and behavior. Pheromone binding to receptors on microvilli on the dendritic knobs of vomeronasal sensory neurons activates a second messenger cascade to produce an increase in intracellular Ca2+ concentration. Here, we used whole-cell and inside-out patch-clamp analysis to provide a functional characterization of currents activated by Ca2+ in isolated mouse vomeronasal sensory neurons in the absence of intracellular K+. In whole-cell recordings, the average current in 1.5 µM Ca2+ and symmetrical Cl− was −382 pA at −100 mV. Ion substitution experiments and partial blockade by commonly used Cl− channel blockers indicated that Ca2+ activates mainly anionic currents in these neurons. Recordings from inside-out patches from dendritic knobs of mouse vomeronasal sensory neurons confirmed the presence of Ca2+-activated Cl− channels in the knobs and/or microvilli. We compared the electrophysiological properties of the native currents with those mediated by heterologously expressed TMEM16A/anoctamin1 or TMEM16B/anoctamin2 Ca2+-activated Cl− channels, which are coexpressed in microvilli of mouse vomeronasal sensory neurons, and found a closer resemblance to those of TMEM16A. We used the Cre–loxP system to selectively knock out TMEM16A in cells expressing the olfactory marker protein, which is found in mature vomeronasal sensory neurons. Immunohistochemistry confirmed the specific ablation of TMEM16A in vomeronasal neurons. Ca2+-activated currents were abolished in vomeronasal sensory neurons of TMEM16A conditional knockout mice, demonstrating that TMEM16A is an essential component of Ca2+-activated Cl− currents in mouse vomeronasal sensory neurons.
Collapse
Affiliation(s)
- Asma Amjad
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Andres Hernandez-Clavijo
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Devendra Kumar Maurya
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Anna Boccaccio
- Istituto di Biofisica, National Research Council, 16149 Genova, Italy
| | - Jessica Franzot
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Jason Rock
- Department of Anatomy, University of California, San Francisco, School of Medicine, San Francisco, CA 94143
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| |
Collapse
|