1
|
Luo X, Yang J, Zheng H, Zhang Y, Mo L, Huang Q, Wu G, Zhong J, Liu Y, Yang G, Yang P. In vivo edited eosinophils reconcile antigen specific Th2 response and mitigate airway allergy. Cell Commun Signal 2024; 22:462. [PMID: 39350231 PMCID: PMC11440716 DOI: 10.1186/s12964-024-01824-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Improvement is needed in the remedies used to control Th2 polarization. Bioengineering approaches have modified immune cells that have immunosuppressive functions. This study aims to generate modified eosinophils (Meos) in vivo and use Meos to balance Th2 polarization and reduce airway allergy. METHODS A cell editor was constructed. The editor contained a peptide carrier, an anti-siglec F antibody, MHC II, ovalbumin, and LgDNA (DNA extracted from a probiotic, Lactobacillus rhamnosus GG). Which was designated as Cedit. Meos are eosinophils modified using Cedits. An airway Th2 polarization mouse model was established used to test the effect of Meos on suppressing airway allergy. RESULTS The Cedits remained physically and chemically stable in solution (pH7.2) for at least 96 h. Cedits specifically bound to eosinophils, which are designated as Meos. Meos produced programmed death ligand-1 (PD-L1); the latter induced antigen specific CD4+ T cell apoptosis. Administration of Cedits through nasal instillations generated Meos in vivo, which significantly reduced the frequency of antigen specific CD4+ T cells in the airways, and mitigated airway Th2 polarization. CONCLUSIONS We constructed Cedit, which could edit eosinophils into Meos in vivo. Meos could induce antigen specific CD4+ T cell apoptosis, and reconcile airway Th2 polarization.
Collapse
Affiliation(s)
- Xiangqian Luo
- Department of Pediatric Otolaryngology, Shenzhen Hospital, and The Third School of Clinical Medicine, Southern Medical University, Shenzhen, China.
| | - Jinna Yang
- Department of Pediatric Otolaryngology, Shenzhen Hospital, and The Third School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Haoyue Zheng
- Department of Otolaryngology, Longgang Central Hospital, Guangdong University of Chinese Traditional Medicine Shenzhen Clinical College, Room A7-509 at Lihu Campus, Shenzhen, 518055, China
| | - Yuanyi Zhang
- Department of Immunology & Key Laboratory of Tropical Translational Medicine of Ministry of Education & Department of Immunology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Lihua Mo
- Department of General Practice Medicine, Third affiliated Hospital of Shenzhen University, Shenzhen, China
- State Key Laboratory of Respiratory Diseases Allergy Division, Institute of Allergy & Immunology, Shenzhen University, Shenzhen University School of Medicine, Room A7-509 at Lihu Campus, Shenzhen, 518055, China
| | - Qinmiao Huang
- Department of General Practice Medicine, Third affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Gaohui Wu
- Department of General Practice Medicine, Third affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianwen Zhong
- Department of Pediatric Otolaryngology, Shenzhen Hospital, and The Third School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Yu Liu
- Department of General Practice Medicine, Third affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Gui Yang
- Department of Otolaryngology, Longgang Central Hospital, Guangdong University of Chinese Traditional Medicine Shenzhen Clinical College, Room A7-509 at Lihu Campus, Shenzhen, 518055, China.
| | - Pingchang Yang
- State Key Laboratory of Respiratory Diseases Allergy Division, Institute of Allergy & Immunology, Shenzhen University, Shenzhen University School of Medicine, Room A7-509 at Lihu Campus, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Umumararungu T, Gahamanyi N, Mukiza J, Habarurema G, Katandula J, Rugamba A, Kagisha V. Proline, a unique amino acid whose polymer, polyproline II helix, and its analogues are involved in many biological processes: a review. Amino Acids 2024; 56:50. [PMID: 39182198 PMCID: PMC11345334 DOI: 10.1007/s00726-024-03410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
Proline is a unique amino acid in that its side-chain is cyclised to the backbone, thus giving proline an exceptional rigidity and a considerably restricted conformational space. Polyproline forms two well-characterized helical structures: a left-handed polyproline helix (PPII) and a right-handed polyproline helix (PPI). Usually, sequences made only of prolyl residues are in PPII conformation, but even sequences not rich in proline but which are rich in glycine, lysine, glutamate, or aspartate have also a tendency to form PPII helices. Currently, the only way to study unambiguously PPII structure in solution is to use spectroscopies based on optical activity such as circular dichroism, vibrational circular dichroism and Raman optical activity. The importance of the PPII structure is emphasized by its ubiquitous presence in different organisms from yeast to human beings where proline-rich motifs and their binding domains are believed to be involved in vital biological processes. Some of the domains that are bound by proline-rich motifs include SH3 domains, WW domains, GYF domains and UEV domains, etc. The PPII structure has been demonstrated to be essential to biological activities such as signal transduction, transcription, cell motility, and immune response.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Industrial Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.
| | - Noël Gahamanyi
- Department of Biology, School of Science, College of Science and Technology, University of Rwanda, Kigali, Rwanda
- Rwanda Biomedical Center, Microbiology Unit, National Reference Laboratory, Kigali, Rwanda
| | - Janvier Mukiza
- Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Jonathan Katandula
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Alexis Rugamba
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Vedaste Kagisha
- Department of Pharmaceuticals and Biomolecules Analysis, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
3
|
Engelhardt PM, Strippel J, Albat D, Chiha S, Rojas Pión J, Plein L, Kühne R, Müller M, Schmalz HG. C-Terminal Decarboxylation of Proline-Derived Building Blocks for Protein-Binding Peptides. Chemistry 2024; 30:e202401678. [PMID: 38770931 DOI: 10.1002/chem.202401678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Using a set of conformationally restricted Proline-derived Modules (ProMs), our group has recently succeeded in developing inhibitors for the enabled/vasodilator-stimulated phosphoprotein homology 1 (EVH1) domain, which is a key mediator of cell migration and plays an important role in tumor metastasis. While these (formally) pentapeptidic compounds show nanomolecular binding affinities towards EVH1, their drug-like properties and cell permeability need to be further optimized before they can be clinically tested as therapeutic agents against metastasis. In this study, we sought to improve these properties by removing the C-terminal carboxylic acid function of our peptoids, either by late-stage decarboxylation or by direct synthesis. For late-stage decarboxylation of ProM-like systems, a method for reductive halo decarboxylation was optimized and applied to several proline-derived substrates. In this way, a series of new decarboxy ProMs suitable as building blocks for decarboxy EVH1 inhibitors were obtained. In addition, we incorporated decarboxy-ProM-1 into the pentapeptide-like compound Ac[2ClF][ProM-2][Decarb-ProM-1], which showed similar affinity towards EVH1 as the methyl ester derivative (Ac[2Cl-F][ProM-2][ProM1]OMe). However, despite better calculated drug-like properties, this compound did not inhibit chemotaxis in a cellular assay.
Collapse
Affiliation(s)
- Pascal M Engelhardt
- University of Cologne, Department of Chemistry, Greinstraße 4, 50939, Cologne, Germany
| | - Julian Strippel
- University of Cologne, Department of Chemistry, Greinstraße 4, 50939, Cologne, Germany
| | - Dominik Albat
- University of Cologne, Department of Chemistry, Greinstraße 4, 50939, Cologne, Germany
- Prosion Therapeutics GmbH, Luxemburger Str. 90, 50939, Köln, Germany
| | - Slim Chiha
- Prosion Therapeutics GmbH, Luxemburger Str. 90, 50939, Köln, Germany
| | | | - Laura Plein
- University of Cologne, Department of Chemistry, Greinstraße 4, 50939, Cologne, Germany
| | - Ronald Kühne
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Matthias Müller
- Prosion Therapeutics GmbH, Luxemburger Str. 90, 50939, Köln, Germany
| | - Hans-Günther Schmalz
- University of Cologne, Department of Chemistry, Greinstraße 4, 50939, Cologne, Germany
| |
Collapse
|
4
|
Guo Y, Wu H, Wiesmüller L, Chen M. Canonical and non-canonical functions of p53 isoforms: potentiating the complexity of tumor development and therapy resistance. Cell Death Dis 2024; 15:412. [PMID: 38866752 PMCID: PMC11169513 DOI: 10.1038/s41419-024-06783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Full-length p53 (p53α) plays a pivotal role in maintaining genomic integrity and preventing tumor development. Over the years, p53 was found to exist in various isoforms, which are generated through alternative splicing, alternative initiation of translation, and internal ribosome entry site. p53 isoforms, either C-terminally altered or N-terminally truncated, exhibit distinct biological roles compared to p53α, and have significant implications for tumor development and therapy resistance. Due to a lack of part and/or complete C- or N-terminal domains, ectopic expression of some p53 isoforms failed to induce expression of canonical transcriptional targets of p53α like CDKN1A or MDM2, even though they may bind their promoters. Yet, p53 isoforms like Δ40p53α still activate subsets of targets including MDM2 and BAX. Furthermore, certain p53 isoforms transactivate even novel targets compared to p53α. More recently, non-canonical functions of p53α in DNA repair and of different isoforms in DNA replication unrelated to transcriptional activities were discovered, amplifying the potential of p53 as a master regulator of physiological and tumor suppressor functions in human cells. Both regarding canonical and non-canonical functions, alternative p53 isoforms frequently exert dominant negative effects on p53α and its partners, which is modified by the relative isoform levels. Underlying mechanisms include hetero-oligomerization, changes in subcellular localization, and aggregation. These processes ultimately influence the net activities of p53α and give rise to diverse cellular outcomes. Biological roles of p53 isoforms have implications for tumor development and cancer therapy resistance. Dysregulated expression of isoforms has been observed in various cancer types and is associated with different clinical outcomes. In conclusion, p53 isoforms have expanded our understanding of the complex regulatory network involving p53 in tumors. Unraveling the mechanisms underlying the biological roles of p53 isoforms provides new avenues for studies aiming at a better understanding of tumor development and developing therapeutic interventions to overcome resistance.
Collapse
Affiliation(s)
- Yitian Guo
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China.
| | - Hang Wu
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Ming Chen
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China.
| |
Collapse
|
5
|
Zhang L, Yang J, Ji Z, Zhang J, Yang S. PRR14 acts a novel oncogene activating the PI3K signal pathway in human cutaneous squamous cell carcinoma. J Cancer 2023; 14:1531-1540. [PMID: 37325059 PMCID: PMC10266252 DOI: 10.7150/jca.83695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Proline rich protein 14 (PRR14) is considered as a new component of the nuclear fiber layer, it may be a key molecule in mediating nuclear morphological changes and functional changes in tumorigenesis. But, it's still unclear in human cutaneous squamous cell carcinoma (cSCC). In the study, the expression profiles of PRR14 in patients with cSCC were investigated by immunohistochemistry (IHC), also the PRR14 expression in cSCC tissues were detected using the methods of real-time quantitative PCR (RT-qPCR) and Western blot; cell counting kit-8 (CCK-8) assay, wound healing assay, matrigel-based transwell assay and Annexin V-FITC and PI double-staining with flow cytometry assay were used to investigate the biological functions of PRR14 in A431 and HSC-1 cSCC cells. Overexpression of PRR14 in cSCC patients was reported firstly in this study and its high expression was related to differentiation, thickness and tumor node metastasis (TNM) stage of cSCC. PRR14 inhibition with RNA interfering (RNAi) method resulted in the suppression of cell proliferation, migration and invasion but promotion the apoptosis of cSCC cells, and upregulation of the protein phosphorylation levels of mammalian target of rapamycin (mTOR), phosphoinositide 3-kinase (PI3K) and Akt. The study shows PRR14 maybe an activator of cSCC carcinogenesis through PI3K/Akt/mTOR signal pathway, and it also maybe a prognostic factor and new therapeutical target for cSCC treatment.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jie Yang
- Department of Dermatology, Tongzhou District Home Textile City Hospital, Nantong, Jiangsu, China
| | - Zhoujing Ji
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jie Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
6
|
Shi J, Cho JH, Hwang W. Heterogeneous and Allosteric Role of Surface Hydration for Protein-Ligand Binding. J Chem Theory Comput 2023; 19:1875-1887. [PMID: 36820489 PMCID: PMC10848206 DOI: 10.1021/acs.jctc.2c00776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 02/24/2023]
Abstract
Atomistic-level understanding of surface hydration mediating protein-protein interactions and ligand binding has been a challenge due to the dynamic nature of water molecules near the surface. We develop a computational method to evaluate the solvation free energy based on the density map of the first hydration shell constructed from all-atom molecular dynamics simulation and use it to examine the binding of two intrinsically disordered ligands to their target protein domain. One ligand is from the human protein, and the other is from the 1918 Spanish flu virus. We find that the viral ligand incurs a 6.9 kcal/mol lower desolvation penalty upon binding to the target, which is consistent with its stronger binding affinity. The difference arises from the spatially fragmented and nonuniform water density profiles of the first hydration shell. In particular, residues that are distal from the ligand-binding site contribute to a varying extent to the desolvation penalty, among which the "entropy hotspot" residues contribute significantly. Thus, ligand binding alters hydration on remote sites in addition to affecting the binding interface. The nonlocal effect disappears when the conformational motion of the protein is suppressed. The present results elucidate the interplay between protein conformational dynamics and surface hydration. Our approach of measuring the solvation free energy based on the water density of the first hydration shell is tolerant of the conformational fluctuation of protein, and we expect it to be applicable to investigating a broad range of biomolecular interfaces.
Collapse
Affiliation(s)
- Jie Shi
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 777843, United States
| | - Jae-Hyun Cho
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
| | - Wonmuk Hwang
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
- Department
of Physics and Astronomy, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
7
|
Klein MT, Krause BM, Neudörfl JM, Kühne R, Schmalz HG. Design and synthesis of a tetracyclic tripeptide mimetic frozen in a polyproline type II (PP2) helix conformation. Org Biomol Chem 2022; 20:9368-9377. [PMID: 36385673 DOI: 10.1039/d2ob01857h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A synthesis of the new tetracyclic scaffold ProM-19, which represents a XPP tripeptide unit frozen in a PPII helix conformation, was developed. As a key building block, N-Boc-protected ethyl (1S,3S,4R)-2-azabicyclo[2.2.1]hept-5-ene-2-carboxylate was prepared through a diastereoselective aza-Diels-Alder reaction and subsequent hydrogenolytic removal of the chiral N-1-phenylethyl substituent under temporary protection of the double bond through dihydroxylation and reconstitution by Corey-Winter olefination. The target compound Boc-[ProM-19]-OMe was then prepared via subsequent peptide coupling and Ru-catalyzed ring-closing metathesis steps employing (S)-N-Boc-allylgylcine and cis-5-vinyl-proline methyl ester as additional building blocks. In addition, Ac-[2-Cl-Phe]-[Pro]-[ProM-19]-OMe was prepared by solution phase peptide synthesis as a potential ligand for the ena-VASP EVH1 domain.
Collapse
Affiliation(s)
- Marco T Klein
- University of Cologne, Department of Chemistry, Greinstrasse 4, 50939 Köln, Germany.
| | - Bernhard M Krause
- University of Cologne, Department of Chemistry, Greinstrasse 4, 50939 Köln, Germany.
| | - Jörg-Martin Neudörfl
- University of Cologne, Department of Chemistry, Greinstrasse 4, 50939 Köln, Germany.
| | - Ronald Kühne
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Hans-Günther Schmalz
- University of Cologne, Department of Chemistry, Greinstrasse 4, 50939 Köln, Germany.
| |
Collapse
|
8
|
Rayala S, Sivagnanam U, Gummadi SN. Biophysical characterization of the DNA binding motif of human phospholipid scramblase 1. EUROPEAN BIOPHYSICS JOURNAL 2022; 51:579-593. [DOI: 10.1007/s00249-022-01621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
9
|
Visweshwaran SP, Nayab H, Hoffmann L, Gil M, Liu F, Kühne R, Maritzen T. Ena/VASP proteins at the crossroads of actin nucleation pathways in dendritic cell migration. Front Cell Dev Biol 2022; 10:1008898. [PMID: 36274843 PMCID: PMC9581539 DOI: 10.3389/fcell.2022.1008898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
As sentinels of our immune system dendritic cells (DCs) rely on efficient cell migration for patrolling peripheral tissues and delivering sampled antigens to secondary lymphoid organs for the activation of T-cells. Dynamic actin polymerization is key to their macropinocytic and migratory properties. Both major actin nucleation machineries, formins and the Arp2/3 complex, are critical for different aspects of DC functionality, by driving the generation of linear and branched actin filaments, respectively. However, the importance of a third group of actin nucleators, the Ena/VASP family, has not been addressed yet. Here, we show that the two family members Evl and VASP are expressed in murine DCs and that their loss negatively affects DC macropinocytosis, spreading, and migration. Our interactome analysis reveals Ena/VASP proteins to be ideally positioned for orchestrating the different actin nucleation pathways by binding to the formin mDia1 as well as to the WAVE regulatory complex, a stimulator of Arp2/3. In fact, Evl/VASP deficient murine DCs are more vulnerable to inhibition of Arp2/3 demonstrating that Ena/VASP proteins contribute to the robustness and efficiency of DC migration.
Collapse
Affiliation(s)
| | - Hafiza Nayab
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Lennart Hoffmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Marine Gil
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Ronald Kühne
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Department of Nanophysiology, Technische Universität Kaiserslautern, Kaiserslautern, Germany
- *Correspondence: Tanja Maritzen,
| |
Collapse
|
10
|
Engelhardt PM, Florez‐Rueda S, Drexelius M, Neudörfl J, Lauster D, Hackenberger CPR, Kühne R, Neundorf I, Schmalz H. Synthetic α-Helical Peptides as Potential Inhibitors of the ACE2 SARS-CoV-2 Interaction. Chembiochem 2022; 23:e202200372. [PMID: 35785462 PMCID: PMC9350387 DOI: 10.1002/cbic.202200372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/04/2022] [Indexed: 11/11/2022]
Abstract
During viral cell entry, the spike protein of SARS-CoV-2 binds to the α1-helix motif of human angiotensin-converting enzyme 2 (ACE2). Thus, alpha-helical peptides mimicking this motif may serve as inhibitors of viral cell entry. For this purpose, we employed the rigidified diproline-derived module ProM-5 to induce α-helicity in short peptide sequences inspired by the ACE2 α1-helix. Starting with Ac-QAKTFLDKFNHEAEDLFYQ-NH2 as a relevant section of α1, a series of peptides, N-capped with either Ac-βHAsp-[ProM-5] or Ac-βHAsp-PP, were prepared and their α-helicities were investigated. While ProM-5 clearly showed a pronounced effect, an even increased degree of helicity (up to 63 %) was observed in sequences in which non-binding amino acids were replaced by alanine. The binding affinities of the peptides towards the spike protein, as determined by means of microscale thermophoresis (MST), revealed only a subtle influence of the α-helical content and, noteworthy, led to the identification of an Ac-βHAsp-PP-capped peptide displaying a very strong binding affinity (KD =62 nM).
Collapse
Affiliation(s)
| | - Sebastián Florez‐Rueda
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Marco Drexelius
- Department of ChemistryUniversity of CologneZülpicher Straße 47a50674CologneGermany
| | | | - Daniel Lauster
- Freie Universität BerlinInstitut für Biochemie und ChemieArnimallee 2214195BerlinGermany
| | | | - Ronald Kühne
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Ines Neundorf
- Department of ChemistryUniversity of CologneZülpicher Straße 47a50674CologneGermany
| | | |
Collapse
|
11
|
Garsi JB, Komjáti B, Cullia G, Fejes I, Sipos M, Sipos Z, Fördős E, Markacz P, Balázs B, Lancelot N, Berger S, Raimbaud E, Brown D, Vuillard LM, Haberkorn L, Cukier C, Szlávik Z, Hanessian S. Targeting NOX2 via p47/phox-p22/phox Inhibition with Novel Triproline Mimetics. ACS Med Chem Lett 2022; 13:949-954. [DOI: 10.1021/acsmedchemlett.2c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Jean-Baptiste Garsi
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H2V 0B3, Canada
| | - Balázs Komjáti
- Servier Research Institute of Medicinal Chemistry, 1031 Záhony utca 7 Mb, Budapest 1031, Hungary
| | - Gregorio Cullia
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H2V 0B3, Canada
| | - Imre Fejes
- Servier Research Institute of Medicinal Chemistry, 1031 Záhony utca 7 Mb, Budapest 1031, Hungary
| | - Melinda Sipos
- Servier Research Institute of Medicinal Chemistry, 1031 Záhony utca 7 Mb, Budapest 1031, Hungary
| | - Zoltán Sipos
- Servier Research Institute of Medicinal Chemistry, 1031 Záhony utca 7 Mb, Budapest 1031, Hungary
| | - Eszter Fördős
- Servier Research Institute of Medicinal Chemistry, 1031 Záhony utca 7 Mb, Budapest 1031, Hungary
| | - Piroska Markacz
- Servier Research Institute of Medicinal Chemistry, 1031 Záhony utca 7 Mb, Budapest 1031, Hungary
| | - Barbara Balázs
- Servier Research Institute of Medicinal Chemistry, 1031 Záhony utca 7 Mb, Budapest 1031, Hungary
| | - Nathalie Lancelot
- Institut de Recherche Servier, 125 Chemin de la Ronde, 78290 Croissy, France
| | - Sylvie Berger
- Institut de Recherche Servier, 125 Chemin de la Ronde, 78290 Croissy, France
| | - Eric Raimbaud
- Institut de Recherche Servier, 125 Chemin de la Ronde, 78290 Croissy, France
| | - David Brown
- Institut de Recherche Servier, 125 Chemin de la Ronde, 78290 Croissy, France
| | | | - Laure Haberkorn
- Institut de Recherche Servier, 125 Chemin de la Ronde, 78290 Croissy, France
| | - Cyprian Cukier
- Selvita S.A., ul. Bobrzyńskiego 14, 30-348 Kraków, Poland
| | - Zoltán Szlávik
- Servier Research Institute of Medicinal Chemistry, 1031 Záhony utca 7 Mb, Budapest 1031, Hungary
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H2V 0B3, Canada
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92617, USA
| |
Collapse
|
12
|
Martinez JC, Castillo F, Ruiz-Sanz J, Murciano-Calles J, Camara-Artigas A, Luque I. Understanding binding affinity and specificity of modular protein domains: A focus in ligand design for the polyproline-binding families. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:161-188. [PMID: 35534107 DOI: 10.1016/bs.apcsb.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Within the modular protein domains there are five families that recognize proline-rich sequences: SH3, WW, EVH1, GYF and UEV domains. This chapter reviews the main strategies developed for the design of ligands for these families, including peptides, peptidomimetics and drugs. We also describe some studies aimed to understand the molecular reasons responsible for the intrinsic affinity and specificity of these domains.
Collapse
Affiliation(s)
- Jose C Martinez
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain.
| | - Francisco Castillo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Javier Ruiz-Sanz
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Javier Murciano-Calles
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Ana Camara-Artigas
- Departamento de Química Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario ceiA3 y CIAMBITAL, Almeria, Spain
| | - Irene Luque
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
13
|
Albat D, Reiher M, Neudörfl J, Schmalz H. Improved Synthesis of MediPhos Ligands and Their Use in the Pd‐Catalyzed Enantioselective N‐Allylation of Glycine Esters. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Dominik Albat
- Department of Chemistry University of Cologne Greinstrasse 4 50939 Koeln Germany
| | - Martin Reiher
- Department of Chemistry University of Cologne Greinstrasse 4 50939 Koeln Germany
| | - Jörg‐Martin Neudörfl
- Department of Chemistry University of Cologne Greinstrasse 4 50939 Koeln Germany
| | - Hans‐Günther Schmalz
- Department of Chemistry University of Cologne Greinstrasse 4 50939 Koeln Germany
| |
Collapse
|
14
|
Vincenzi M, Mercurio FA, Leone M. Protein Interaction Domains: Structural Features and Drug Discovery Applications (Part 2). Curr Med Chem 2021; 28:854-892. [PMID: 31942846 DOI: 10.2174/0929867327666200114114142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Proteins present a modular organization made up of several domains. Apart from the domains playing catalytic functions, many others are crucial to recruit interactors. The latter domains can be defined as "PIDs" (Protein Interaction Domains) and are responsible for pivotal outcomes in signal transduction and a certain array of normal physiological and disease-related pathways. Targeting such PIDs with small molecules and peptides able to modulate their interaction networks, may represent a valuable route to discover novel therapeutics. OBJECTIVE This work represents a continuation of a very recent review describing PIDs able to recognize post-translationally modified peptide segments. On the contrary, the second part concerns with PIDs that interact with simple peptide sequences provided with standard amino acids. METHODS Crucial structural information on different domain subfamilies and their interactomes was gained by a wide search in different online available databases (including the PDB (Protein Data Bank), the Pfam (Protein family), and the SMART (Simple Modular Architecture Research Tool)). Pubmed was also searched to explore the most recent literature related to the topic. RESULTS AND CONCLUSION PIDs are multifaceted: they have all diverse structural features and can recognize several consensus sequences. PIDs can be linked to different diseases onset and progression, like cancer or viral infections and find applications in the personalized medicine field. Many efforts have been centered on peptide/peptidomimetic inhibitors of PIDs mediated interactions but much more work needs to be conducted to improve drug-likeness and interaction affinities of identified compounds.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
15
|
D'Andréa ÉD, Retel JS, Diehl A, Schmieder P, Oschkinat H, Pires JR. NMR structure and dynamics of Q4DY78, a conserved kinetoplasid-specific protein from Trypanosoma cruzi. J Struct Biol 2021; 213:107715. [PMID: 33705979 DOI: 10.1016/j.jsb.2021.107715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The 106-residue protein Q4DY78 (UniProt accession number) from Trypanosoma cruzi is highly conserved in the related kinetoplastid pathogens Trypanosoma brucei and Leishmania major. Given the essentiality of its orthologue in T. brucei, the high sequence conservation with other trypanosomatid proteins, and the low sequence similarity with mammalian proteins, Q4DY78 is an attractive protein for structural characterization. Here, we solved the structure of Q4DY78 by solution NMR and evaluated its backbone dynamics. Q4DY78 is composed of five α -helices and a small, two-stranded antiparallel β-sheet. The backbone RMSD is 0.22 ± 0.05 Å for the representative ensemble of the 20 lowest-energy structures. Q4DY78 is overall rigid, except for N-terminal residues (V8 to I10), residues at loop 4 (K57 to G65) and residues at the C-terminus (F89 to F112). Q4DY78 has a short motif FPCAP that could potentially mediate interactions with the host cytoskeleton via interaction with EVH1 (Drosophila Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) homology 1) domains. Albeit Q4DY78 lacks calcium-binding motifs, its fold resembles that of eukaryotic calcium-binding proteins such as calcitracin, calmodulin, and polcacin Bet V4. We characterized this novel protein with a calcium binding fold without the capacity to bind calcium.
Collapse
Affiliation(s)
- Éverton Dias D'Andréa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Bloco E, sala 32, Rio de Janeiro, RJ 21941-902, Brazil
| | - Joren Sebastian Retel
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Anne Diehl
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany; Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, Berlin 14195, Germany
| | - José Ricardo Pires
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Bloco E, sala 32, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
16
|
Designed nanomolar small-molecule inhibitors of Ena/VASP EVH1 interaction impair invasion and extravasation of breast cancer cells. Proc Natl Acad Sci U S A 2020; 117:29684-29690. [PMID: 33184177 PMCID: PMC7703624 DOI: 10.1073/pnas.2007213117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein–protein interactions mediated by proline-rich motifs are involved in regulation of many important signaling cascades. These motifs belong to the most abundant recognition motifs in the eukaryotic genome and preferentially adopt a left-handed polyproline helix II, a secondary structure element that has been notoriously difficult to mimic with small molecules. Here, we present a structure-guided design effort yielding a toolkit of chemical entities that enables rational construction of selective small molecule inhibitors for these protein domains. We succeeded in developing an inhibitor for the Ena/VASP protein family that is active in vivo and reduces extravasation of invasive breast cancer cells in a zebrafish model. Battling metastasis through inhibition of cell motility is considered a promising approach to support cancer therapies. In this context, Ena/VASP-depending signaling pathways, in particular interactions with their EVH1 domains, are promising targets for pharmaceutical intervention. However, protein–protein interactions involving proline-rich segments are notoriously difficult to address by small molecules. Hence, structure-based design efforts in combination with the chemical synthesis of additional molecular entities are required. Building on a previously developed nonpeptidic micromolar inhibitor, we determined 22 crystal structures of ENAH EVH1 in complex with inhibitors and rationally extended our library of conformationally defined proline-derived modules (ProMs) to succeed in developing a nanomolar inhibitor (Kd=120 nM,MW=734 Da). In contrast to the previous inhibitor, the optimized compounds reduced extravasation of invasive breast cancer cells in a zebrafish model. This study represents an example of successful, structure-guided development of low molecular weight inhibitors specifically and selectively addressing a proline-rich sequence-recognizing domain that is characterized by a shallow epitope lacking defined binding pockets. The evolved high-affinity inhibitor may now serve as a tool in validating the basic therapeutic concept, i.e., the suppression of cancer metastasis by inhibiting a crucial protein–protein interaction involved in actin filament processing and cell migration.
Collapse
|
17
|
Mantsyzov AB, Sokolov MN, Ivantcova PM, Bräse S, Polshakov VI, Kudryavtsev KV. Interplay of Pyrrolidine Units with Homo/Hetero Chirality and CF 3-Aryl Substituents on Secondary Structures of β-Proline Tripeptides in Solution. J Org Chem 2020; 85:8865-8871. [PMID: 32526142 DOI: 10.1021/acs.joc.0c00598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All possible variants of β-proline functionalized tripeptides consisting of homo/hetero chiral monomeric all-cis 5-arylpyrrolidine-2,4-dicarboxylate units were synthesized for the first time by a nonpeptidic coupling method based on 1,3-dipolar cycloaddition chemistry of azomethine ylides. Secondary structures of β-proline tripeptides in solution were determined using the NMR spectroscopy data. o-(Trifluoromethyl)phenyl substituent contributes to stereoselectivity of 1,3-dipolar cycloaddition and structural features of β-proline tripeptides. A β-proline CF3-tripeptide with alternating absolute chirality between adjacent pyrrolidine units mimics natural PPII helix secondary structure.
Collapse
Affiliation(s)
- Alexey B Mantsyzov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Lomonosovsky Ave 31/5, Moscow, 119992, Russian Federation
| | - Mikhail N Sokolov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation
| | - Polina M Ivantcova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany.,Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany
| | - Vladimir I Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Lomonosovsky Ave 31/5, Moscow, 119992, Russian Federation
| | - Konstantin V Kudryavtsev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation.,Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997, Moscow, Russian Federation
| |
Collapse
|
18
|
Maaßen A, Gebauer JM, Theres Abraham E, Grimm I, Neudörfl J, Kühne R, Neundorf I, Baumann U, Schmalz H. Triple‐Helix‐Stabilizing Effects in Collagen Model Peptides Containing PPII‐Helix‐Preorganized Diproline Modules. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andreas Maaßen
- University of Cologne Department of Chemistry Greinstraße 4 50939 Cologne Germany
| | - Jan M. Gebauer
- University of Cologne Department of Chemistry Zülpicher Straße 47a 50674 Cologne Germany
| | - Elena Theres Abraham
- University of Cologne Department of Chemistry Zülpicher Straße 47a 50674 Cologne Germany
| | - Isabelle Grimm
- University of Cologne Department of Chemistry Greinstraße 4 50939 Cologne Germany
| | - Jörg‐Martin Neudörfl
- University of Cologne Department of Chemistry Greinstraße 4 50939 Cologne Germany
| | - Ronald Kühne
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Ines Neundorf
- University of Cologne Department of Chemistry Zülpicher Straße 47a 50674 Cologne Germany
| | - Ulrich Baumann
- University of Cologne Department of Chemistry Zülpicher Straße 47a 50674 Cologne Germany
| | - Hans‐Günther Schmalz
- University of Cologne Department of Chemistry Greinstraße 4 50939 Cologne Germany
| |
Collapse
|
19
|
Maaßen A, Gebauer JM, Theres Abraham E, Grimm I, Neudörfl J, Kühne R, Neundorf I, Baumann U, Schmalz H. Triple-Helix-Stabilizing Effects in Collagen Model Peptides Containing PPII-Helix-Preorganized Diproline Modules. Angew Chem Int Ed Engl 2020; 59:5747-5755. [PMID: 31944532 PMCID: PMC7154665 DOI: 10.1002/anie.201914101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 02/02/2023]
Abstract
Collagen model peptides (CMPs) serve as tools for understanding stability and function of the collagen triple helix and have a potential for biomedical applications. In the past, interstrand cross-linking or conformational preconditioning of proline units through stereoelectronic effects have been utilized in the design of stabilized CMPs. To further study the effects determining collagen triple helix stability we investigated a series of CMPs containing synthetic diproline-mimicking modules (ProMs), which were preorganized in a PPII-helix-type conformation by a functionalizable intrastrand C2 bridge. Results of CD-based denaturation studies were correlated with calculated (DFT) conformational preferences of the ProM units, revealing that the relative helix stability is mainly governed by an interplay of main-chain preorganization, ring-flip preference, adaptability, and steric effects. Triple helix integrity was proven by crystal structure analysis and binding to HSP47.
Collapse
Affiliation(s)
- Andreas Maaßen
- University of CologneDepartment of ChemistryGreinstraße 450939CologneGermany
| | - Jan M. Gebauer
- University of CologneDepartment of ChemistryZülpicher Straße 47a50674CologneGermany
| | - Elena Theres Abraham
- University of CologneDepartment of ChemistryZülpicher Straße 47a50674CologneGermany
| | - Isabelle Grimm
- University of CologneDepartment of ChemistryGreinstraße 450939CologneGermany
| | | | - Ronald Kühne
- Leibniz-Institut für Molekulare Pharmakologie (FMP)Campus Berlin-BuchRobert-Rössle-Straße 1013125BerlinGermany
| | - Ines Neundorf
- University of CologneDepartment of ChemistryZülpicher Straße 47a50674CologneGermany
| | - Ulrich Baumann
- University of CologneDepartment of ChemistryZülpicher Straße 47a50674CologneGermany
| | | |
Collapse
|
20
|
Dohmen S, Reiher M, Albat D, Akyol S, Barone M, Neudörfl J, Kühne R, Schmalz H. Pd-Catalyzed Asymmetric N-Allylation of Amino Acid Esters with Exceptional Levels of Catalyst Control: Stereo-Divergent Synthesis of ProM-15 and Related Bicyclic Dipeptide Mimetics. Chemistry 2020; 26:3049-3053. [PMID: 31961029 PMCID: PMC7078984 DOI: 10.1002/chem.202000307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Indexed: 01/09/2023]
Abstract
A general and powerful method for the stereo‐controlled Pd‐catalyzed N‐allylation of amino acid esters is reported, as a previously largely unsolved synthetic challenge. Employing a new class of tartaric acid‐derived C2‐symmetric chiral diphosphane ligands the developed asymmetric amination protocol allows the conversion of various amino acid esters to the N‐allylated products with highest levels of enantio‐ or diastereoselectivity in a fully catalyst‐controlled fashion and predictable configuration. Remarkably, the in situ generated catalysts also exhibit outstanding levels of activity (ligand acceleration). The usefulness of the method was demonstrated in the stereo‐divergent synthesis of a set of new conformationally defined dipeptide mimetics, which represent new modular building blocks for the development of peptide‐inspired bioactive compounds.
Collapse
Affiliation(s)
- Stephan Dohmen
- Department of ChemistryUniversity of CologneGreinstrasse 450939KölnGermany
| | - Martin Reiher
- Department of ChemistryUniversity of CologneGreinstrasse 450939KölnGermany
| | - Dominik Albat
- Department of ChemistryUniversity of CologneGreinstrasse 450939KölnGermany
| | - Sema Akyol
- Department of ChemistryUniversity of CologneGreinstrasse 450939KölnGermany
| | - Matthias Barone
- Leibniz-Institut für Molekulare Pharmakologie (FMP)13125BerlinGermany
| | | | - Ronald Kühne
- Leibniz-Institut für Molekulare Pharmakologie (FMP)13125BerlinGermany
| | | |
Collapse
|
21
|
Lin YM, Lin CW, Lu JW, Yeh KT, Lin SH, Yang SF. Decreased Cytoplasmic Expression of ADAMTS14 Is Correlated with Reduced Survival Rates in Oral Squamous Cell Carcinoma Patients. Diagnostics (Basel) 2020; 10:diagnostics10020122. [PMID: 32102222 PMCID: PMC7168220 DOI: 10.3390/diagnostics10020122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
A disintegrin and metalloproteinase with thrombospondin motif 14 (ADAMTS14) is a member of the zinc-dependent protease family that is implicated in the occurrence and progression of tumors. Oral cancer (OC) is a common cancer worldwide, but it is particularly prevalent in Taiwan. However, whether the expression of ADAMTS14 is correlated with the carcinogenesis and progression of oral squamous cell carcinoma (OSCC) has not yet been investigated. In this study, we used immunohistochemistry (IHC) to examine 250 OSCC specimens in order to identify correlations between the cytoplasmic expression of ADAMTS14 and (1) clinicopathological features of OSCC as well as (2) clinical outcomes of OSCC. Our results indicate that cytoplasmic expression of ADAMTS14 was lower in OSCC tissues than in normal tissues. In analyzing correlations between ADAMTS14 expression and clinicopathological features, we found that negative cytoplasmic expression of ADAMTS14 was significantly associated with higher frequencies of lymph node metastasis and more advanced AJCC stages (III/IV). Kaplan-Meier survival analysis revealed that negative cytoplasmic expression of ADAMTS14 was also associated with significantly worse OSCC survival. Univariate and multivariate analyses confirmed that cytoplasmic expression of ADAMTS14 was associated with lymph node metastasis, tumor stage, and tumor grade and also indicated that cytoplasmic ADAMTS14 expression may be an independent prognostic factor for OSCC. This is the first study to report that the cytoplasmic expression level of ADAMTS14 is associated with OSCC prognosis and tumor progression. Our data indicate that ADAMTS14 can serve as a prognostic marker and a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan; (Y.-M.L.); (K.-T.Y.)
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan; (Y.-M.L.); (K.-T.Y.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Shu-Hui Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan; (Y.-M.L.); (K.-T.Y.)
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
- Correspondence: (S.-H.L.); (S.-F.Y.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (S.-H.L.); (S.-F.Y.)
| |
Collapse
|
22
|
The Emerging Landscape of p53 Isoforms in Physiology, Cancer and Degenerative Diseases. Int J Mol Sci 2019; 20:ijms20246257. [PMID: 31835844 PMCID: PMC6941119 DOI: 10.3390/ijms20246257] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
p53, first described four decades ago, is now established as a master regulator of cellular stress response, the “guardian of the genome”. p53 contributes to biological robustness by behaving in a cellular-context dependent manner, influenced by several factors (e.g., cell type, active signalling pathways, the type, extent and intensity of cellular damage, cell cycle stage, nutrient availability, immune function). The p53 isoforms regulate gene transcription and protein expression in response to the stimuli so that the cell response is precisely tuned to the cell signals and cell context. Twelve isoforms of p53 have been described in humans. In this review, we explore the interactions between p53 isoforms and other proteins contributing to their established cellular functions, which can be both tumour-suppressive and oncogenic in nature. Evidence of p53 isoform in human cancers is largely based on RT-qPCR expression studies, usually investigating a particular type of isoform. Beyond p53 isoform functions in cancer, it is implicated in neurodegeneration, embryological development, progeroid phenotype, inflammatory pathology, infections and tissue regeneration, which are described in this review.
Collapse
|
23
|
Murthy AV, Sulu R, Koski MK, Tu H, Anantharajan J, Sah-Teli SK, Myllyharju J, Wierenga RK. Structural enzymology binding studies of the peptide-substrate-binding domain of human collagen prolyl 4-hydroxylase (type-II): High affinity peptides have a PxGP sequence motif. Protein Sci 2019; 27:1692-1703. [PMID: 30168208 DOI: 10.1002/pro.3450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 11/11/2022]
Abstract
The peptide-substrate-binding (PSB) domain of collagen prolyl 4-hydroxylase (C-P4H, an α2 β2 tetramer) binds proline-rich procollagen peptides. This helical domain (the middle domain of the α subunit) has an important role concerning the substrate binding properties of C-P4H, although it is not known how the PSB domain influences the hydroxylation properties of the catalytic domain (the C-terminal domain of the α subunit). The crystal structures of the PSB domain of the human C-P4H isoform II (PSB-II) complexed with and without various short proline-rich peptides are described. The comparison with the previously determined PSB-I peptide complex structures shows that the C-P4H-I substrate peptide (PPG)3 , has at most very weak affinity for PSB-II, although it binds with high affinity to PSB-I. The replacement of the middle PPG triplet of (PPG)3 to the nonhydroxylatable PAG, PRG, or PEG triplet, increases greatly the affinity of PSB-II for these peptides, leading to a deeper mode of binding, as compared to the previously determined PSB-I peptide complexes. In these PSB-II complexes, the two peptidyl prolines of its central P(A/R/E)GP region bind in the Pro5 and Pro8 binding pockets of the PSB peptide-binding groove, and direct hydrogen bonds are formed between the peptide and the side chains of the highly conserved residues Tyr158, Arg223, and Asn227, replacing water mediated interactions in the corresponding PSB-I complex. These results suggest that PxGP (where x is not a proline) is the common motif of proline-rich peptide sequences that bind with high affinity to PSB-II.
Collapse
Affiliation(s)
- Abhinandan V Murthy
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ramita Sulu
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - M Kristian Koski
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Hongmin Tu
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jothi Anantharajan
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Shiv K Sah-Teli
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Rik K Wierenga
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
24
|
Möller C, Dovell S, Melaun C, Marí F. Definition of the R-superfamily of conotoxins: Structural convergence of helix-loop-helix peptidic scaffolds. Peptides 2018; 107:75-82. [PMID: 30040981 DOI: 10.1016/j.peptides.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
Abstract
The F14 conotoxins define a four-cysteine, three-loop conotoxin scaffold that produce tightly folded structures held together by two disulfide bonds with a CCCC arrangement (conotoxin framework 14). Here we describe the precursors of the F14 conotoxins from the venom of Conus anabathrum and Conus villepinii. Using transcriptomic and cDNA cloning analysis, the full-length of the precursors of flf14a and flf14b from the transcriptome of C. anabathrum revealed a unique signal sequence that defines the new conotoxin R-superfamily. Using the signal sequence as a primer, we cloned seven additional previously undescribed toxins of the R-superfamily from C. villepinii. The propeptide regions of the R-conotoxins are unusually long and with prevalent proline residues in repeating pentads which qualifies them as Pro-rich motifs (PRMs), which can be critical for protein-protein interactions or they can be cleaved to release short linear peptides that may be part of the envenomation mélange. Additionally, we determined the three-dimensional structure of vil14a by solution 1H-NMR and found that the structure of this conotoxin displays a cysteine-stabilized α-helix-loop-helix (Cs α/α) fold. The structure is well-defined over the helical regions (backbone RMSD for residues 2-13 and 17-26 is 0.63 ± 0.14 Å), with conformational flexibility in the triple Gly region of the second loop as well as the N- and C- termini. Structurally, the F14 conotoxins overlap with the Cs α/α scorpion toxins and other peptidic natural products, and in spite of their different exogenomic origins, there is convergence into this scaffold from several classes of living organisms that express these peptides.
Collapse
Affiliation(s)
- Carolina Möller
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | - Sanaz Dovell
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | - Christian Melaun
- Justus Liebig Universität Giessen, Institut für Allg. Zoologie und Entwicklungsbiologie, Giessen, Germany
| | - Frank Marí
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA; Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA.
| |
Collapse
|
25
|
Shen Q, Bhatt VS, Krieger I, Sacchettini JC, Cho JH. Structure-guided design of a potent peptide inhibitor targeting the interaction between CRK and ABL kinase. MEDCHEMCOMM 2018; 9:519-524. [PMID: 30108942 DOI: 10.1039/c7md00619e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/26/2018] [Indexed: 11/21/2022]
Abstract
CT-10 regulator of kinase (CRK) proteins play important roles in human cancer metastasis and invasion. Moreover, CRK proteins are the major phosphorylation substrates of ABL kinase and its oncogenic mutant BCR-ABL kinase. The interaction between CRK and BCR-ABL plays important roles in chronic myeloid leukemia. Hence, inhibiting the interaction of CRK with BCR-ABL is an attractive way to attenuate cancer metastasis. Herein, we report the development of a peptide inhibitor, PRM-3, targeting the interaction between CRK-II and ABL kinase. PRM-3 binds to the N-terminal SH3 (nSH3) domain in CRK-II with a 10 nM affinity and prevents the interaction between CRK-II and ABL kinase. An in vitro biochemical assay demonstrated that PRM-3 inhibits the ABL-dependent phosphorylation of CRK-II more effectively than imatinib. Remarkably, PRM-3 also inhibited the CRK phosphorylation by T315I-ABL kinase, which is resistant to all first- and second-generation tyrosine kinase inhibitors. Our study provides a promising alternative approach to overcome the drug resistance of ABL kinase.
Collapse
Affiliation(s)
- Qingliang Shen
- Department of Biochemistry and Biophysics , Texas A&M University , College Station , Texas , USA .
| | - Veer S Bhatt
- Department of Biochemistry and Biophysics , Texas A&M University , College Station , Texas , USA .
| | - Inna Krieger
- Department of Biochemistry and Biophysics , Texas A&M University , College Station , Texas , USA .
| | - James C Sacchettini
- Department of Biochemistry and Biophysics , Texas A&M University , College Station , Texas , USA .
| | - Jae-Hyun Cho
- Department of Biochemistry and Biophysics , Texas A&M University , College Station , Texas , USA .
| |
Collapse
|
26
|
Chiha S, Soicke A, Barone M, Müller M, Bruns J, Opitz R, Neudörfl JM, Kühne R, Schmalz HG. Design and Synthesis of Building Blocks for PPII-Helix Secondary-Structure Mimetics: A Stereoselective Entry to 4-Substituted 5-Vinylprolines. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Slim Chiha
- Department of Chemistry; University of Cologne; Greinstrasse 4 50939 Cologne Germany
| | - Arne Soicke
- Department of Chemistry; University of Cologne; Greinstrasse 4 50939 Cologne Germany
| | - Matthias Barone
- Campus BerlinBuch; Leibniz-Institut für Molekulare Pharmakologie (FMP); 13125 Berlin Germany
| | - Matthias Müller
- Campus BerlinBuch; Leibniz-Institut für Molekulare Pharmakologie (FMP); 13125 Berlin Germany
| | - Judith Bruns
- Department of Chemistry; University of Cologne; Greinstrasse 4 50939 Cologne Germany
| | - Robert Opitz
- Campus BerlinBuch; Leibniz-Institut für Molekulare Pharmakologie (FMP); 13125 Berlin Germany
| | - Jörg-Martin Neudörfl
- Department of Chemistry; University of Cologne; Greinstrasse 4 50939 Cologne Germany
| | - Ronald Kühne
- Campus BerlinBuch; Leibniz-Institut für Molekulare Pharmakologie (FMP); 13125 Berlin Germany
| | - Hans-Günther Schmalz
- Department of Chemistry; University of Cologne; Greinstrasse 4 50939 Cologne Germany
| |
Collapse
|
27
|
Marshall GR, Ballante F. Limiting Assumptions in the Design of Peptidomimetics. Drug Dev Res 2017; 78:245-267. [DOI: 10.1002/ddr.21406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Garland R. Marshall
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| | - Flavio Ballante
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| |
Collapse
|
28
|
Sheu MJ, Hsieh MJ, Chou YE, Wang PH, Yeh CB, Yang SF, Lee HL, Liu YF. Effects of ADAMTS14 genetic polymorphism and cigarette smoking on the clinicopathologic development of hepatocellular carcinoma. PLoS One 2017; 12:e0172506. [PMID: 28231306 PMCID: PMC5322915 DOI: 10.1371/journal.pone.0172506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/05/2017] [Indexed: 01/12/2023] Open
Abstract
Background ADAMTS14 is a member of the ADAMTS (adisintegrin and metalloproteinase with thrombospondin motifs), which are proteolytic enzymes with a variety of further ancillary domain in the C-terminal region for substrate specificity and enzyme localization via extracellular matrix association. However, whether ADAMTS14 genetic variants play a role in hepatocellular carcinoma (HCC) susceptibility remains unknown. Methodology/Principal findings Four non-synonymous single-nucleotide polymorphisms (nsSNPs) of the ADAMTS14 gene were examined from 680 controls and 340 patients with HCC. Among 141 HCC patients with smoking behaviour, we found significant associations of the rs12774070 (CC+AA vs CC) and rs61573157 (CT+TT vs CC) variants with a clinical stage of HCC (OR: 2.500 and 2.767; 95% CI: 1.148–5.446 and 1.096–6.483; P = 0.019 and 0.026, respectively) and tumour size (OR: 2.387 and 2.659; 95% CI: 1.098–5.188 and 1.055–6.704; P = 0.026 and 0.034, respectively), but not with lymph node metastasis or other clinical statuses. Moreover, an additional integrated in silico analysis proposed that rs12774070 and rs61573157 affected essential post-translation O-glycosylation site within the 3rd thrombospondin type 1 repeat and a novel proline-rich region embedded within the C-terminal extension, respectively. Conclusions Taken together, our results suggest an involvement of ADAMTS14 SNP rs12774070 and rs61573157 in the liver tumorigenesis and implicate the ADAMTS14 gene polymorphism as a predict factor during the progression of HCC.
Collapse
Affiliation(s)
- Ming-Jen Sheu
- Department of Gastroenterology and Hepatology, Chi Mei Medical Center, Tainan, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Ying-Erh Chou
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chao-Bin Yeh
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsiang-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Deptartment of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Fan Liu
- Department of Biomedical Sciences, College of Medicine Sciences and Technology, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Department of Pediatrics, Chung-Shan Medical University Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Johnson SC, Gonzalez B, Zhang Q, Milholland B, Zhang Z, Suh Y. Network analysis of mitonuclear GWAS reveals functional networks and tissue expression profiles of disease-associated genes. Hum Genet 2017; 136:55-65. [PMID: 27704213 PMCID: PMC5214989 DOI: 10.1007/s00439-016-1736-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/28/2016] [Indexed: 11/02/2022]
Abstract
While mitochondria have been linked to many human diseases through genetic association and functional studies, the precise role of mitochondria in specific pathologies, such as cardiovascular, neurodegenerative, and metabolic diseases, is often unclear. Here, we take advantage of the catalog of human genome-wide associations, whole-genome tissue expression and expression quantitative trait loci datasets, and annotated mitochondrial proteome databases to examine the role of common genetic variation in mitonuclear genes in human disease. Through pathway-based analysis we identified distinct functional pathways and tissue expression profiles associated with each of the major human diseases. Among our most striking findings, we observe that mitonuclear genes associated with cancer are broadly expressed among human tissues and largely represent one functional process, intrinsic apoptosis, while mitonuclear genes associated with other diseases, such as neurodegenerative and metabolic diseases, show tissue-specific expression profiles and are associated with unique functional pathways. These results provide new insight into human diseases using unbiased genome-wide approaches.
Collapse
Affiliation(s)
- Simon C Johnson
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Brenda Gonzalez
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Quanwei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Brandon Milholland
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zhengdong Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Endocrinology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
30
|
Jami-Alahmadi Y, Linford BD, Fridgen TD. Distinguishing Isomeric Peptides: The Unimolecular Reactivity and Structures of (LeuPro)M+ and (ProLeu)M+ (M = Alkali Metal). J Phys Chem B 2016; 120:13039-13046. [DOI: 10.1021/acs.jpcb.6b09588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yasaman Jami-Alahmadi
- Department of Chemistry, Memorial University, St. John’s, Newfoundland A1N 4T8, Canada
| | - Bryan D. Linford
- Department of Chemistry, Memorial University, St. John’s, Newfoundland A1N 4T8, Canada
| | - Travis D. Fridgen
- Department of Chemistry, Memorial University, St. John’s, Newfoundland A1N 4T8, Canada
| |
Collapse
|
31
|
Kudryavtsev KV, Mantsyzov AB, Ivantcova PM, Sokolov MN, Churakov AV, Bräse S, Zefirov NS, Polshakov VI. Control of Azomethine Cycloaddition Stereochemistry by CF3 Group: Structural Diversity of Fluorinated β-Proline Dimers. Org Lett 2016; 18:4698-701. [PMID: 27574905 DOI: 10.1021/acs.orglett.6b02327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
β-Proline-functionalized dimers consisting of homochiral monomeric units were synthesized by a non-peptidic coupling method for the first time. The applied synthetic methodology is based on 1,3-dipolar cycloaddition chemistry of azomethine ylides and provides absolute control over the β-proline backbone stereogenic centers. An o-(trifluoromethyl)phenyl substituent contributes to appropriate stabilization of the definite acrylamide chiral cis conformation and to achieve the dipole reactivity that is not observed for aryl groups lacking strong electronegative character.
Collapse
Affiliation(s)
- Konstantin V Kudryavtsev
- Department of Chemistry, Lomonosov Moscow State University , Leninskie Gory 1/3, Moscow 119991, Russian Federation.,Institute of Physiologically Active Compounds, Russian Academy of Sciences , Chernogolovka, Moscow Region 142432, Russian Federation
| | - Alexey B Mantsyzov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University , Lomonosovsky Ave 31/5, Moscow 119992, Russian Federation
| | - Polina M Ivantcova
- Department of Chemistry, Lomonosov Moscow State University , Leninskie Gory 1/3, Moscow 119991, Russian Federation
| | - Mikhail N Sokolov
- Department of Chemistry, Lomonosov Moscow State University , Leninskie Gory 1/3, Moscow 119991, Russian Federation
| | - Andrei V Churakov
- Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninskii prosp. 31, Moscow 119991, Russian Federation
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology , Fritz-Haber-Weg 6, Karlsruhe 76131, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Nikolay S Zefirov
- Department of Chemistry, Lomonosov Moscow State University , Leninskie Gory 1/3, Moscow 119991, Russian Federation.,Institute of Physiologically Active Compounds, Russian Academy of Sciences , Chernogolovka, Moscow Region 142432, Russian Federation
| | - Vladimir I Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University , Lomonosovsky Ave 31/5, Moscow 119992, Russian Federation.,NMR Laboratory, Institute of Physics, Kazan Federal University , Kremlevskaya 18, Kazan 420008, Russian Federation
| |
Collapse
|
32
|
Abstract
The complexity of cell-matrix adhesion convolves its roles in the development and functioning of multicellular organisms and their evolutionary tinkering. Cell-matrix adhesion is mediated by sites along the plasma membrane that anchor the actin cytoskeleton to the matrix via a large number of proteins, collectively called the integrin adhesome. Fundamental challenges for understanding how cell-matrix adhesion sites assemble and function arise from their multi-functionality, rapid dynamics, large number of components and molecular diversity. Systems biology faces these challenges in its strive to understand how the integrin adhesome gives rise to functional adhesion sites. Synthetic biology enables engineering intracellular modules and circuits with properties of interest. In this review I discuss some of the fundamental questions in systems biology of cell-matrix adhesion and how synthetic biology can help addressing them.
Collapse
Affiliation(s)
- Eli Zamir
- a Department of Systemic Cell Biology , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| |
Collapse
|
33
|
Craven TW, Bonneau R, Kirshenbaum K. PPII Helical Peptidomimetics Templated by Cation-π Interactions. Chembiochem 2016; 17:1824-1828. [PMID: 27539882 DOI: 10.1002/cbic.201600248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Indexed: 11/06/2022]
Abstract
Poly-proline type II (PPII) helical PXXP motifs are the recognition elements for a variety of protein-protein interactions that are critical for cellular signaling. Despite development of protocols for locking peptides into α-helical and β-strand conformations, there remains a lack of analogous methods for generating mimics of PPII helical structures. We describe herein a strategy to enforce PPII helical secondary structure in the 19-residue TrpPlexus miniature protein. Through sequence variation, we showed that a network of cation-π interactions could drive the formation of PPII helical conformations for both peptide and N-substituted glycine peptoid residues. The achievement of chemically diverse PPII helical scaffolds provides a new route towards discovering peptidomimetic inhibitors of protein-protein interactions mediated by PXXP motifs.
Collapse
Affiliation(s)
- Timothy W Craven
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.,Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Pl., New York, NY, 10003, USA
| | - Richard Bonneau
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Pl., New York, NY, 10003, USA.,Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY, 10003, USA.,Simons Center for Data Analysis, 160 5th Ave., New York, NY, 10010, USA
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| |
Collapse
|
34
|
Mignani S, Huber S, Tomás H, Rodrigues J, Majoral JP. Compound high-quality criteria: a new vision to guide the development of drugs, current situation. Drug Discov Today 2016; 21:573-584. [PMID: 26802700 DOI: 10.1016/j.drudis.2016.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 02/08/2023]
Abstract
For several decades, the pharmaceutical industry has suffered due to major issues such as reductions of the number of FDA approved drugs and biologics. Several analyses have been highlighted that the 'druglikeness' is one of the strategies to improve succeed rates of screening such as, for instance, high-throughput screening (HTS), and then hits (as starting point), leads and clinical candidates. It is clear that the improvement of compound quality accelerates the drug discovery projects. The monitoring of several indices to avoid 'molecular obesity' (ADMET problems) of final drugs from good-quality 'low-fat' starting points represents today a powerful strategy of optimization process. The development of the new guides to find drugs highlighting attempts at improving the attrition rate from hits to final medicines by focusing on how to improve the druggability of hits, leads and drugs during the drug discovery process represents a key approach to design next better generation of medicines.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Pères, 75006 Paris, France.
| | - Scot Huber
- SCYNEXIS, Inc., P.O. Box 12878, Research Triangle Park, NC 27709, USA
| | - Helena Tomás
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9000-390 Funchal, Portugal
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9000-390 Funchal, Portugal.
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France.
| |
Collapse
|
35
|
Corbi-Verge C, Kim PM. Motif mediated protein-protein interactions as drug targets. Cell Commun Signal 2016; 14:8. [PMID: 26936767 PMCID: PMC4776425 DOI: 10.1186/s12964-016-0131-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/25/2016] [Indexed: 12/17/2022] Open
Abstract
Protein-protein interactions (PPI) are involved in virtually every cellular process and thus represent an attractive target for therapeutic interventions. A significant number of protein interactions are frequently formed between globular domains and short linear peptide motifs (DMI). Targeting these DMIs has proven challenging and classical approaches to inhibiting such interactions with small molecules have had limited success. However, recent new approaches have led to the discovery of potent inhibitors, some of them, such as Obatoclax, ABT-199, AEG-40826 and SAH-p53-8 are likely to become approved drugs. These novel inhibitors belong to a wide range of different molecule classes, ranging from small molecules to peptidomimetics and biologicals. This article reviews the main reasons for limited success in targeting PPIs, discusses how successful approaches overcome these obstacles to discovery promising inhibitors for human protein double minute 2 (HDM2), B-cell lymphoma 2 (Bcl-2), X-linked inhibitor of apoptosis protein (XIAP), and provides a summary of the promising approaches currently in development that indicate the future potential of PPI inhibitors in drug discovery.
Collapse
Affiliation(s)
- Carles Corbi-Verge
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| | - Philip M Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
36
|
|
37
|
Hashimoto C, Eichler J. Turning Peptide Ligands into Small-Molecule Inhibitors of Protein-Protein Interactions. Chembiochem 2015; 16:1855-1856. [PMID: 26147884 DOI: 10.1002/cbic.201500298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Indexed: 11/07/2022]
Abstract
Proline makeover: Truncation and extensive chemical modification of a peptide ligand yielded a biologically active, cell-permeable, peptidomimetic, small-molecule inhibitor of a protein-protein interaction. A key step in this transformation was the replacement of a tetraproline motif by two conformationally constrained diproline units that retain the molecule's PPII helix.
Collapse
Affiliation(s)
- Chie Hashimoto
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Chemie und Pharmazie, Schuhstrasse 19, 91052 Erlangen (Germany)
| | - Jutta Eichler
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Chemie und Pharmazie, Schuhstrasse 19, 91052 Erlangen (Germany)
| |
Collapse
|
38
|
Feil S. Strukturmotiv von Proteinen verhindert Migration von Krebszellen. CHEM UNSERER ZEIT 2015. [DOI: 10.1002/ciuz.201580026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|