1
|
Weng F, Jin X, Ragunathan S, Huang S, Kane T, Stoeckel M, Wang Y. Prenylation-dependent membrane localization of a deubiquitinating enzyme and its role in regulating G protein-mediated signaling in yeast. J Biol Chem 2025; 301:108180. [PMID: 39798877 PMCID: PMC11847538 DOI: 10.1016/j.jbc.2025.108180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
Miy1 is a highly conserved deubiquitinating enzyme in yeast with MINDY1 as its human homolog. Miy1 is known to act on K48-linked polyubiquitin chain, but its biological function is unknown. Miy1 has a putative prenylation site, suggesting it as a membrane-associated protein that may contribute to the regulation of cell signaling. Here, we demonstrate that Miy1 is localized in the plasma membrane and nuclear periphery. Mutating the putative prenylation site in Miy1 or disrupting the farnesyltransferase activity impairs its localization. Consistent with a role of Miy1 in regulating the ubiquitination status of membrane proteins, the miy1Δ mutants exhibit a higher level of ubiquitinated conjugates at the plasma membrane. To examine a role of Miy1 in regulating cell signaling across plasma membrane, we focused on the pheromone response, as both Ste2, the receptor for mating pheromone, and Gpa1, the cognate Gα protein of Ste2, are well known to be regulated by ubiquitination. We find that Miy1 interacts with Gpa1, regulates its level of ubiquitination and abundance. Pheromone-induced MAP kinase Fus3 activation is also altered in the MIY1-disrupted mutants. The findings demonstrate that Miy1 is a membrane-associated deubiquitinating enzyme and a regulator of G protein-mediated signaling.
Collapse
Affiliation(s)
- Fangli Weng
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Xin Jin
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Sindhu Ragunathan
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Shan Huang
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Thomas Kane
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Matthew Stoeckel
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Yuqi Wang
- Department of Biology, Saint Louis University, St Louis, Missouri, USA.
| |
Collapse
|
2
|
Biswal N, Harish R, Roshan M, Samudrala S, Jiao X, Pestell RG, Ashton AW. Role of GPCR Signaling in Anthracycline-Induced Cardiotoxicity. Cells 2025; 14:169. [PMID: 39936961 PMCID: PMC11817789 DOI: 10.3390/cells14030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 02/13/2025] Open
Abstract
Anthracyclines are a class of chemotherapeutics commonly used to treat a range of cancers. Despite success in improving cancer survival rates, anthracyclines have dose-limiting cardiotoxicity that prevents more widespread clinical utility. Currently, the therapeutic options for these patients are limited to the iron-chelating agent dexrazoxane, the only FDA-approved drug for anthracycline cardiotoxicity. However, the clinical use of dexrazoxane has failed to replicate expectations from preclinical studies. A limited list of GPCRs have been identified as pathogenic in anthracycline-induced cardiotoxicity, including receptors (frizzled, adrenoreceptors, angiotensin II receptors) previously implicated in cardiac remodeling in other pathologies. The RNA sequencing of iPSC-derived cardiac myocytes from patients has increased our understanding of the pathogenic mechanisms driving cardiotoxicity. These data identified changes in the expression of novel GPCRs, heterotrimeric G proteins, and the regulatory pathways that govern downstream signaling. This review will capitalize on insights from these experiments to explain aspects of disease pathogenesis and cardiac remodeling. These data provide a cornucopia of possible unexplored potential pathways by which we can reduce the cardiotoxic side effects, without compromising the anti-cancer effects, of doxorubicin and provide new therapeutic options to improve the recovery and quality of life for patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Nimish Biswal
- School of Medicine, Xavier University at Aruba, Oranjestad, Aruba (X.J.); (R.G.P.)
| | - Ritika Harish
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA;
| | - Minahil Roshan
- School of Medicine, Xavier University at Aruba, Oranjestad, Aruba (X.J.); (R.G.P.)
| | - Sathvik Samudrala
- School of Medicine, Xavier University at Aruba, Oranjestad, Aruba (X.J.); (R.G.P.)
| | - Xuanmao Jiao
- School of Medicine, Xavier University at Aruba, Oranjestad, Aruba (X.J.); (R.G.P.)
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA;
| | - Richard G. Pestell
- School of Medicine, Xavier University at Aruba, Oranjestad, Aruba (X.J.); (R.G.P.)
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA;
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Anthony W. Ashton
- School of Medicine, Xavier University at Aruba, Oranjestad, Aruba (X.J.); (R.G.P.)
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA;
- Division of Perinatal Research, Kolling Institute of Medical Research, University of Sydney, St Leonards, NSW 2065, Australia
- Division of Cardiovascular Medicine, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| |
Collapse
|
3
|
Vacher J. OSTM1 pleiotropic roles from osteopetrosis to neurodegeneration. Bone 2022; 163:116505. [PMID: 35902071 DOI: 10.1016/j.bone.2022.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
Autosomal recessive osteopetroses (ARO) are rare genetic skeletal disorders of high clinical and molecular heterogeneity with an estimated frequency of 1:250,000 worldwide. The manifestations are diverse and although individually rare, the various forms contribute to the prevalence of a significant number of affected individuals with considerable morbidity and mortality. Among the ARO classification, the most severe form is the autosomal recessive-5 (OPTB5) osteopetrosis (OMIM 259720) that results from homozygous mutation in the OSTM1 gene (607649). OSTM1 mutations account for approximately 5 % of instances of autosomal recessive osteopetrosis and lead to a highly debilitating form of the disease in infancy and death within the first few years of life (Sobacchi et al., 2013) [1].
Collapse
Affiliation(s)
- Jean Vacher
- Institut de Recherches Cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada; Département de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
4
|
Liu Y, Lou W, Chen G, Ding B, Kuang J, Zhang Y, Wang C, Duan S, Deng Y, Lu X. Genome-wide screening for the G-protein-coupled receptor (GPCR) pathway-related therapeutic gene RGS19 (regulator of G protein signaling 19) in bladder cancer. Bioengineered 2021; 12:5892-5903. [PMID: 34482807 PMCID: PMC8806424 DOI: 10.1080/21655979.2021.1971035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer is one of the most severe genitourinary cancers, causing high morbidity worldwide. However, the underlying molecular mechanism is not clear, and it is urgent to find target genes for treatment. G-protein-coupled receptors are currently a target of high interest for drug design. Thus, we aimed to identify a target gene-related to G-protein-coupled receptors for therapy. We used The Cancer Genome Atlas (TCGA) and DepMap databases to obtain the expression and clinical data of RGS19. The results showed that RGS19 was overexpressed in a wide range of tumor, especially bladder cancer. We also explored its effect on various types of cancer. High expression of RGS19 was also shown to be significantly associated with poor prognosis. Cell models were constructed for cell cycle detection. shRGS19 can halt the cell cycle at a polyploid point. RGS19 is a G-protein-coupled receptor signaling pathway-related gene with a significant effect on survival. We chose RGS19 as a therapeutic target gene in bladder cancer. The drug GSK1070916 was found to inhibit the effect of RGS19 via cell rescue experiments in vitro.
Collapse
Affiliation(s)
- Yue Liu
- Queen Mary School, Medical Collage of Nanchang University, Nanchang, China
| | - Weiming Lou
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Guang Chen
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bing Ding
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jin Kuang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yize Zhang
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi Province, China
| | - Cong Wang
- The First Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi Province, China
| | - Sainan Duan
- The First Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi Province, China
| | - Ying Deng
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi Province, China
| | - Xiongbing Lu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Schrecker M, Korobenko J, Hite RK. Cryo-EM structure of the lysosomal chloride-proton exchanger CLC-7 in complex with OSTM1. eLife 2020; 9:e59555. [PMID: 32749217 PMCID: PMC7440919 DOI: 10.7554/elife.59555] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/29/2020] [Indexed: 01/21/2023] Open
Abstract
The chloride-proton exchanger CLC-7 plays critical roles in lysosomal homeostasis and bone regeneration and its mutation can lead to osteopetrosis, lysosomal storage disease and neurological disorders. In lysosomes and the ruffled border of osteoclasts, CLC-7 requires a β-subunit, OSTM1, for stability and activity. Here, we present electron cryomicroscopy structures of CLC-7 in occluded states by itself and in complex with OSTM1, determined at resolutions up to 2.8 Å. In the complex, the luminal surface of CLC-7 is entirely covered by a dimer of the heavily glycosylated and disulfide-bonded OSTM1, which serves to protect CLC-7 from the degradative environment of the lysosomal lumen. OSTM1 binding does not induce large-scale rearrangements of CLC-7, but does have minor effects on the conformation of the ion-conduction pathway, potentially contributing to its regulatory role. These studies provide insights into the role of OSTM1 and serve as a foundation for understanding the mechanisms of CLC-7 regulation.
Collapse
Affiliation(s)
- Marina Schrecker
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Julia Korobenko
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
6
|
Osteopetrosis-Associated Transmembrane Protein 1 Recruits RNA Exosome To Restrict Hepatitis B Virus Replication. J Virol 2020; 94:JVI.01800-19. [PMID: 32188736 DOI: 10.1128/jvi.01800-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) chronically infects approximately 350 million people worldwide, and 600,000 deaths are caused by HBV-related hepatic failure, liver cirrhosis, and hepatocellular carcinoma annually. It is important to reveal the mechanism underlying the regulation of HBV replication. This study demonstrated that osteopetrosis-associated transmembrane protein 1 (Ostm1) plays an inhibitory role in HBV replication. Ostm1 represses the levels of HBeAg and HBsAg proteins, HBV 3.5-kb and 2.4/2.1-kb RNAs, and core-associated DNA in HepG2, Huh7, and NTCP-HepG2 cells. Notably, Ostm1 has no direct effect on the activity of HBV promoters or the transcription of HBV RNAs; instead, Ostm1 binds to HBV RNA to facilitate RNA decay. Detailed studies further demonstrated that Ostm1 binds to and recruits the RNA exosome complex to promote the degradation of HBV RNAs, and knockdown of the RNA exosome component exonuclease 3 (Exosc3) leads to the elimination of Ostm1-mediated repression of HBV replication. Mutant analyses revealed that the N-terminal domain, the transmembrane domain, and the C-terminal domain are responsible for the repression of HBV replication, and the C-terminal domain is required for interaction with the RNA exosome complex. Moreover, Ostm1 production is not regulated by interferon-α (IFN-α) or IFN-γ, and the expression of IFN signaling components is not affected by Ostm1, suggesting that Ostm1 anti-HBV activity is independent of the IFN signaling pathway. In conclusion, this study revealed a distinct mechanism underlying the repression of HBV replication, in which Ostm1 binds to HBV RNA and recruits RNA exosomes to degrade viral RNA, thereby restricting HBV replication.IMPORTANCE Hepatitis B virus (HBV) is a human pathogen infecting the liver to cause a variety of diseases ranging from acute hepatitis to advanced liver diseases, fulminate hepatitis, liver cirrhosis, and hepatocellular carcinoma, thereby causing a major health problem worldwide. In this study, we demonstrated that Ostm1 plays an inhibitory role in HBV protein production, RNA expression, and DNA replication. However, Ostm1 has no effect on the activities of the four HBV promoters; instead, it binds to HBV RNA and recruits RNA exosomes to promote HBV RNA degradation. We further demonstrated that the anti-HBV activity of Ostm1 is independent of the interferon signaling pathway. In conclusion, this study reveals a distinct mechanism underlying the repression of HBV replication and suggests that Ostm1 is a potential therapeutic agent for HBV infection.
Collapse
|
7
|
Carretero-Ortega J, Chhangawala Z, Hunt S, Narvaez C, Menéndez-González J, Gay CM, Zygmunt T, Li X, Torres-Vázquez J. GIPC proteins negatively modulate Plexind1 signaling during vascular development. eLife 2019; 8:e30454. [PMID: 31050647 PMCID: PMC6499541 DOI: 10.7554/elife.30454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Semaphorins (SEMAs) and their Plexin (PLXN) receptors are central regulators of metazoan cellular communication. SEMA-PLXND1 signaling plays important roles in cardiovascular, nervous, and immune system development, and cancer biology. However, little is known about the molecular mechanisms that modulate SEMA-PLXND1 signaling. As PLXND1 associates with GIPC family endocytic adaptors, we evaluated the requirement for the molecular determinants of their association and PLXND1's vascular role. Zebrafish that endogenously express a Plxnd1 receptor with a predicted impairment in GIPC binding exhibit low penetrance angiogenesis deficits and antiangiogenic drug hypersensitivity. Moreover, gipc mutant fish show angiogenic impairments that are ameliorated by reducing Plxnd1 signaling. Finally, GIPC depletion potentiates SEMA-PLXND1 signaling in cultured endothelial cells. These findings expand the vascular roles of GIPCs beyond those of the Vascular Endothelial Growth Factor (VEGF)-dependent, proangiogenic GIPC1-Neuropilin 1 complex, recasting GIPCs as negative modulators of antiangiogenic PLXND1 signaling and suggest that PLXND1 trafficking shapes vascular development.
Collapse
Affiliation(s)
- Jorge Carretero-Ortega
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Zinal Chhangawala
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Shane Hunt
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Carlos Narvaez
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Javier Menéndez-González
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Carl M Gay
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Tomasz Zygmunt
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Xiaochun Li
- Department of Population HealthNew York University School of MedicineNew YorkUnited States
| | - Jesús Torres-Vázquez
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| |
Collapse
|
8
|
Penna S, Capo V, Palagano E, Sobacchi C, Villa A. One Disease, Many Genes: Implications for the Treatment of Osteopetroses. Front Endocrinol (Lausanne) 2019; 10:85. [PMID: 30837952 PMCID: PMC6389615 DOI: 10.3389/fendo.2019.00085] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/31/2019] [Indexed: 11/23/2022] Open
Abstract
Osteopetrosis is a condition characterized by increased bone mass due to defects in osteoclast function or formation. In the last decades, the molecular dissection of osteopetrosis has unveiled a plethora of molecular players responsible for different forms of the disease, some of which present also primary neurodegeneration that severely limits the therapy. Hematopoietic stem cell transplantation can cure the majority of them when performed in the first months of life, highlighting the relevance of an early molecular diagnosis. However, clinical management of these patients is constrained by the severity of the disease and lack of a bone marrow niche that may delay immune reconstitution. Based on osteopetrosis genetic heterogeneity and disease severity, personalized therapies are required for patients that are not candidate to bone marrow transplantation. This review briefly describes the genetics of osteopetrosis, its clinical heterogeneity, current therapy and innovative approaches undergoing preclinical evaluation.
Collapse
Affiliation(s)
- Sara Penna
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Hospital, Milan, Italy
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Hospital, Milan, Italy
| | - Eleonora Palagano
- The National Research Council (CNR) Institute for Genetic and Biomedical Research (IRGB)- CNR-IRGB, Milan Unit, Milan, Italy
- Humanitas Research Hospital, Rozzano, Italy
| | - Cristina Sobacchi
- The National Research Council (CNR) Institute for Genetic and Biomedical Research (IRGB)- CNR-IRGB, Milan Unit, Milan, Italy
- Humanitas Research Hospital, Rozzano, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Hospital, Milan, Italy
- The National Research Council (CNR) Institute for Genetic and Biomedical Research (IRGB)- CNR-IRGB, Milan Unit, Milan, Italy
- *Correspondence: Anna Villa
| |
Collapse
|
9
|
Maziarz M, Leyme A, Marivin A, Luebbers A, Patel PP, Chen Z, Sprang SR, Garcia-Marcos M. Atypical activation of the G protein Gα q by the oncogenic mutation Q209P. J Biol Chem 2018; 293:19586-19599. [PMID: 30352874 DOI: 10.1074/jbc.ra118.005291] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/15/2018] [Indexed: 12/22/2022] Open
Abstract
The causative role of G protein-coupled receptor (GPCR) pathway mutations in uveal melanoma (UM) has been well-established. Nearly all UMs bear an activating mutation in a GPCR pathway mediated by G proteins of the Gq/11 family, driving tumor initiation and possibly metastatic progression. Thus, targeting this pathway holds therapeutic promise for managing UM. However, direct targeting of oncogenic Gαq/11 mutants, present in ∼90% of UMs, is complicated by the belief that these mutants structurally resemble active Gαq/11 WT. This notion is solidly founded on previous studies characterizing Gα mutants in which a conserved catalytic glutamine (Gln-209 in Gαq) is replaced by leucine, which leads to GTPase function deficiency and constitutive activation. Whereas Q209L accounts for approximately half of GNAQ mutations in UM, Q209P is as frequent as Q209L and also promotes oncogenesis, but has not been characterized at the molecular level. Here, we characterized the biochemical and signaling properties of Gαq Q209P and found that it is also GTPase-deficient and activates downstream signaling as efficiently as Gαq Q209L. However, Gαq Q209P had distinct molecular and functional features, including in the switch II region of Gαq Q209P, which adopted a conformation different from that of Gαq Q209L or active WT Gαq, resulting in altered binding to effectors, Gβγ, and regulators of G-protein signaling (RGS) proteins. Our findings reveal that the molecular properties of Gαq Q209P are fundamentally different from those in other active Gαq proteins and could be leveraged as a specific vulnerability for the ∼20% of UMs bearing this mutation.
Collapse
Affiliation(s)
- Marcin Maziarz
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Anthony Leyme
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Arthur Marivin
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Alex Luebbers
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Prachi P Patel
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Zhe Chen
- the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Stephen R Sprang
- the Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812
| | - Mikel Garcia-Marcos
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
10
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The term osteopetrosis refers to a group of rare skeletal diseases sharing the hallmark of a generalized increase in bone density owing to a defect in bone resorption. Osteopetrosis is clinically and genetically heterogeneous, and a precise molecular classification is relevant for prognosis and treatment. Here, we review recent data on the pathogenesis of this disorder. RECENT FINDINGS Novel mutations in known genes as well as defects in new genes have been recently reported, further expanding the spectrum of molecular defects leading to osteopetrosis. Exploitation of next-generation sequencing tools is ever spreading, facilitating differential diagnosis. Some complex phenotypes in which osteopetrosis is accompanied by additional clinical features have received a molecular classification, also involving new genes. Moreover, novel types of mutations have been recognized, which for their nature or genomic location are at high risk being neglected. Yet, the causative mutation is unknown in some patients, indicating that the genetics of osteopetrosis still deserves intense research efforts.
Collapse
Affiliation(s)
- Eleonora Palagano
- Humanitas Clinical and Research Institute, via Manzoni 113, 20089, Rozzano, MI, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Ciro Menale
- Humanitas Clinical and Research Institute, via Manzoni 113, 20089, Rozzano, MI, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
| | - Cristina Sobacchi
- Humanitas Clinical and Research Institute, via Manzoni 113, 20089, Rozzano, MI, Italy.
- Milan Unit, CNR-IRGB, Milan, Italy.
| | - Anna Villa
- Humanitas Clinical and Research Institute, via Manzoni 113, 20089, Rozzano, MI, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
| |
Collapse
|
12
|
Specific inhibition of GPCR-independent G protein signaling by a rationally engineered protein. Proc Natl Acad Sci U S A 2017; 114:E10319-E10328. [PMID: 29133411 DOI: 10.1073/pnas.1707992114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of heterotrimeric G proteins by cytoplasmic nonreceptor proteins is an alternative to the classical mechanism via G protein-coupled receptors (GPCRs). A subset of nonreceptor G protein activators is characterized by a conserved sequence named the Gα-binding and activating (GBA) motif, which confers guanine nucleotide exchange factor (GEF) activity in vitro and promotes G protein-dependent signaling in cells. GBA proteins have important roles in physiology and disease but remain greatly understudied. This is due, in part, to the lack of efficient tools that specifically disrupt GBA motif function in the context of the large multifunctional proteins in which they are embedded. This hindrance to the study of alternative mechanisms of G protein activation contrasts with the wealth of convenient chemical and genetic tools to manipulate GPCR-dependent activation. Here, we describe the rational design and implementation of a genetically encoded protein that specifically inhibits GBA motifs: GBA inhibitor (GBAi). GBAi was engineered by introducing modifications in Gαi that preclude coupling to every known major binding partner [GPCRs, Gβγ, effectors, guanine nucleotide dissociation inhibitors (GDIs), GTPase-activating proteins (GAPs), or the chaperone/GEF Ric-8A], while favoring high-affinity binding to all known GBA motifs. We demonstrate that GBAi does not interfere with canonical GPCR-G protein signaling but blocks GBA-dependent signaling in cancer cells. Furthermore, by implementing GBAi in vivo, we show that GBA-dependent signaling modulates phenotypes during Xenopus laevis embryonic development. In summary, GBAi is a selective, efficient, and convenient tool to dissect the biological processes controlled by a GPCR-independent mechanism of G protein activation mediated by cytoplasmic factors.
Collapse
|
13
|
Wattiez AS, Walder RY, Sande CM, White SR, Hammond DL. Peripheral inflammatory injury alters the relative abundance of Gα subunits in the dorsal horn of the spinal cord and in the rostral ventromedial medulla of male rats. Mol Pain 2017; 13:1744806917715210. [PMID: 28604220 PMCID: PMC5486491 DOI: 10.1177/1744806917715210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abstract A diverse array of G protein-coupled receptors (GPCRs) is implicated in the modulation of nociception. The efficacy and potency of several GPCR agonists change as a consequence of peripheral inflammatory injury. Whether these changes reflect alterations in expression of the G proteins themselves is not known. This study examined the expression of transcripts and proteins for the α subunits of three classes of heteromeric G proteins in the dorsal horn of the spinal cord and the rostral ventromedial medulla (RVM) of male rats four days and two weeks after intraplantar injection of complete Freund’s adjuvant (CFA) or saline. Levels of Gα transcript in the dorsal horn or RVM were unchanged by CFA treatment. However, in the dorsal horn, Gαi protein decreased in cytosolic and membrane fractions four days after CFA treatment. Levels of Gαz protein decreased in the membrane fraction. Levels of the other Gα subunits did not differ. Levels of the Gα subunits were unchanged two weeks after CFA treatment. In the RVM, Gαz protein levels decreased in the cytosolic fraction four days after CFA treatment. No other differences were observed. Two weeks after CFA, the levels for all Gα subunits trended higher in the RVM. These data indicate that peripheral inflammatory injury induces subtle changes in the abundance of Gα subunits that is specific with respect to class, subcellular compartment, tissue, and time after injury. These changes have the potential to alter the balance of the different subcellular signaling pathways through which GPCR agonists act to modulate nociception.
Collapse
|
14
|
Vriend J, Liu W, Reiter RJ. The pineal gland: A model for adrenergic modulation of ubiquitin ligases. PLoS One 2017; 12:e0172441. [PMID: 28212404 PMCID: PMC5315301 DOI: 10.1371/journal.pone.0172441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/04/2017] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION A recent study of the pineal gland of the rat found that the expression of more than 3000 genes showed significant day/night variations (The Hartley dataset). The investigators of this report made available a supplemental table in which they tabulated the expression of many genes that they did not discuss, including those coding for components of the ubiquitin proteasome system. Herein we identify the genes of the ubiquitin proteasome system whose expression were significantly influenced by environmental lighting in the Hartley dataset, those that were stimulated by DBcAMP in pineal glands in culture, and those that were stimulated by norepinephrine. PURPOSE Using the Ubiquitin and Ubiquitin-like Conjugation Database (UUCA) we identified ubiquitin ligases and conjugases, and deubiquitinases in the Hartley dataset for the purpose of determining whether expression of genes of the ubiquitin proteasome pathway were significantly influenced by day/night variations and if these variations were regulated by autonomic innervation of the pineal gland from the superior cervical ganglia. METHODS In the Hartley experiments pineal glands groups of rats sacrificed during the day and groups sacrificed during the night were examined for gene expression. Additional groups of rats had their superior cervical ganglia removed surgically or surgically decentralized and the pineal glands likewise examined for gene expression. RESULTS The genes with at least a 2-fold day/night significant difference in expression included genes for 5 ubiquitin conjugating enzymes, genes for 58 ubiquitin E3 ligases and genes for 6 deubiquitinases. A 35-fold day/night difference was noted in the expression of the gene Sik1, which codes for a protein containing both an ubiquitin binding domain (UBD) and an ubiquitin-associated (UBA) domain. Most of the significant differences in these genes were prevented by surgical removal, or disconnection, of the superior cervical ganglia, and most were responsive, in vitro, to treatment with a cyclic AMP analog, and norepinephrine. All previously described 24-hour rhythms in the pineal require an intact sympathetic input from the superior cervical ganglia. CONCLUSIONS The Hartley dataset thus provides evidence that the pineal gland is a highly useful model for studying adrenergically dependent mechanisms regulating variations in ubiquitin ligases, ubiquitin conjugases, and deubiquitinases, mechanisms that may be physiologically relevant not only in the pineal gland, but in all adrenergically innervated tissue.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Wenjun Liu
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, United States of America
| |
Collapse
|
15
|
Yang L, Lee MMK, Leung MMH, Wong YH. Regulator of G protein signaling 20 enhances cancer cell aggregation, migration, invasion and adhesion. Cell Signal 2016; 28:1663-72. [PMID: 27495875 DOI: 10.1016/j.cellsig.2016.07.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/08/2016] [Accepted: 07/31/2016] [Indexed: 12/12/2022]
Abstract
Several RGS (regulator of G protein signaling) proteins are known to be upregulated in a variety of tumors but their roles in modulating tumorigenesis remain undefined. Since the expression of RGS20 is elevated in metastatic melanoma and breast tumors, we examined the effects of RGS20 overexpression and knockdown on the cell mobility and adhesive properties of different human cancer cell lines, including cervical cancer HeLa, breast adenocarcinoma MDA-MB-231, and non-small cell lung carcinoma H1299 and A549 cells. Expression of RGS20 enhanced cell aggregation, migration, invasion and adhesion as determined by hanging drop aggregation, wound healing, transwell chamber migration and invasion assays. Conversely, shRNA-mediated knockdown of endogenous RGS20 impaired these responses. In addition, RGS20 elevated the expression of vimentin (a mesenchymal cell marker) but down-regulated the expression of E-cadherin, two indicators commonly associated with metastasis. These results suggest that the expression of RGS20 may promote metastasis of tumor cells.
Collapse
Affiliation(s)
- Lei Yang
- Division of Life Science, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Maggie M K Lee
- Division of Life Science, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Manton M H Leung
- Division of Life Science, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yung H Wong
- Division of Life Science, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
16
|
Barrallo-Gimeno A, Gradogna A, Zanardi I, Pusch M, Estévez R. Regulatory-auxiliary subunits of CLC chloride channel-transport proteins. J Physiol 2016; 593:4111-27. [PMID: 25762128 DOI: 10.1113/jp270057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/15/2015] [Indexed: 02/06/2023] Open
Abstract
The CLC family of chloride channels and transporters is composed by nine members, but only three of them, ClC-Ka/b, ClC-7 and ClC-2, have been found so far associated with auxiliary subunits. These CLC regulatory subunits are small proteins that present few common characteristics among them, both structurally and functionally, and their effects on the corresponding CLC protein are different. Barttin, a protein with two transmembrane domains, is essential for the membrane localization of ClC-K proteins and their activity in the kidney and inner ear. Ostm1 is a protein with a single transmembrane domain and a highly glycosylated N-terminus. Unlike the other two CLC auxiliary subunits, Ostm1 shows a reciprocal relationship with ClC-7 for their stability. The subcellular localization of Ostm1 depends on ClC-7 and not the other way around. ClC-2 is active on its own, but GlialCAM, a transmembrane cell adhesion molecule with two extracellular immunoglobulin (Ig)-like domains, regulates its subcellular localization and activity in glial cells. The common theme for these three proteins is their requirement for a proper homeostasis, since their malfunction leads to distinct diseases. We will review here their properties and their role in normal chloride physiology and the pathological consequences of their improper function.
Collapse
Affiliation(s)
- Alejandro Barrallo-Gimeno
- Sección de Fisiología, Departamento de Ciencias Fisiológicas II, University of Barcelona, Barcelona, Spain.,U-750, Centro de investigación en red de enfermedades raras (CIBERER), ISCIII, Barcelona, Spain
| | | | - Ilaria Zanardi
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genoa, Italy
| | - Michael Pusch
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genoa, Italy
| | - Raúl Estévez
- Sección de Fisiología, Departamento de Ciencias Fisiológicas II, University of Barcelona, Barcelona, Spain.,U-750, Centro de investigación en red de enfermedades raras (CIBERER), ISCIII, Barcelona, Spain
| |
Collapse
|
17
|
Hayes MP, Roman DL. Regulator of G Protein Signaling 17 as a Negative Modulator of GPCR Signaling in Multiple Human Cancers. AAPS JOURNAL 2016; 18:550-9. [PMID: 26928451 DOI: 10.1208/s12248-016-9894-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/15/2016] [Indexed: 02/08/2023]
Abstract
Regulators of G protein signaling (RGS) proteins modulate G protein-coupled receptor (GPCR) signaling networks by terminating signals produced by active Gα subunits. RGS17, a member of the RZ subfamily of RGS proteins, is typically only expressed in appreciable amounts in the human central nervous system, but previous works have shown that RGS17 expression is selectively upregulated in a number of malignancies, including lung, breast, prostate, and hepatocellular carcinoma. In addition, this upregulation of RGS17 is associated with a more aggressive cancer phenotype, as increased proliferation, migration, and invasion are observed. Conversely, decreased RGS17 expression diminishes the response of ovarian cancer cells to agents commonly used during chemotherapy. These somewhat contradictory roles of RGS17 in cancer highlight the need for selective, high-affinity inhibitors of RGS17 to use as chemical probes to further the understanding of RGS17 biology. Based on current evidence, these compounds could potentially have clinical utility as novel chemotherapeutics in the treatment of lung, prostate, breast, and liver cancers. Recent advances in screening technologies to identify potential inhibitors coupled with increasing knowledge of the structural requirements of RGS-Gα protein-protein interaction inhibitors make the future of drug discovery efforts targeting RGS17 promising. This review highlights recent findings related to RGS17 as both a canonical and atypical RGS protein, its role in various human disease states, and offers insights on small molecule inhibition of RGS17.
Collapse
Affiliation(s)
- Michael P Hayes
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa, USA
| | - David L Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa, USA. .,Cancer Signaling and Experimental Therapeutics Program, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA. .,, 115 S. Grand Avenue, S327 PHAR, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
18
|
Torres M. Chapter Two - Heterotrimeric G Protein Ubiquitination as a Regulator of G Protein Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:57-83. [PMID: 27378755 DOI: 10.1016/bs.pmbts.2016.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ubiquitin-mediated regulation of G proteins has been known for over 20 years as a result of discoveries made independently in yeast and vertebrate model systems for pheromone and photoreception, respectively. Since that time, several details underlying the cause and effect of G protein ubiquitination have been determined-including the initiating signals, responsible enzymes, trafficking pathways, and their effects on protein structure, function, interactions, and cell signaling. The collective body of evidence suggests that Gα subunits are the primary targets of ubiquitination. However, longstanding and recent results suggest that Gβ and Gγ subunits are also ubiquitinated, in some cases impacting cell polarization-a process essential for chemotaxis and polarized cell growth. More recently, evidence from mass spectrometry (MS)-based proteomics coupled with advances in PTM bioinformatics have revealed that protein families representing G protein subunits contain several structural hotspots for ubiquitination-most of which have not been investigated for a functional role in signal transduction. Taken together, our knowledge and understanding of heterotrimeric G protein ubiquitination as a regulator of G protein signaling-despite 20 years of research-is still emerging.
Collapse
Affiliation(s)
- M Torres
- Georgia Institute of Technology, School of Biology, Atlanta, GA, United States.
| |
Collapse
|
19
|
Role of Ostm1 Cytosolic Complex with Kinesin 5B in Intracellular Dispersion and Trafficking. Mol Cell Biol 2015; 36:507-21. [PMID: 26598607 DOI: 10.1128/mcb.00656-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/17/2015] [Indexed: 01/05/2023] Open
Abstract
In humans and in mice, mutations in the Ostm1 gene cause the most severe form of osteopetrosis, a major bone disease, and neuronal degeneration, both of which are associated with early death. To gain insight into Ostm1 function, we first investigated by sequence and biochemical analysis an immature 34-kDa type I transmembrane Ostm1 protein with a unique cytosolic tail. Mature Ostm1 is posttranslationally processed and highly N-glycosylated and has an apparent mass of ∼60 kDa. Analysis the subcellular localization of Ostm1 showed that it is within the endoplasmic reticulum, trans-Golgi network, and endosomes/lysosomes. By a wide protein screen under physiologic conditions, several novel cytosolic Ostm1 partners were identified and validated, for which a direct interaction with the kinesin 5B heavy chains was demonstrated. These results determined that Ostm1 is part of a cytosolic scaffolding multiprotein complex, imparting an adaptor function to Ostm1. Moreover, we uncovered a role for the Ostm1/KIF5B complex in intracellular trafficking and dispersion of cargos from the endoplasmic reticulum to late endosomal/lysosomal subcellular compartments. These Ostm1 molecular and cellular functions could elucidate all of the pathophysiologic mechanisms underlying the wide phenotypic spectrum of Ostm1-deficient mice.
Collapse
|
20
|
Gαi1 and Gαi3 regulate macrophage polarization by forming a complex containing CD14 and Gab1. Proc Natl Acad Sci U S A 2015; 112:4731-6. [PMID: 25825741 DOI: 10.1073/pnas.1503779112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins have been implicated in Toll-like receptor 4 (TLR4) signaling in macrophages and endothelial cells. However, whether guanine nucleotide-binding protein G(i) subunit alpha-1 and alpha-3 (Gαi1/3) are required for LPS responses remains unclear, and if so, the underlying mechanisms need to be studied. In this study, we demonstrated that, in response to LPS, Gαi1/3 form complexes containing the pattern recognition receptor (PRR) CD14 and growth factor receptor binding 2 (Grb2)-associated binding protein (Gab1), which are required for activation of PI3K-Akt signaling. Gαi1/3 deficiency decreased LPS-induced TLR4 endocytosis, which was associated with decreased phosphorylation of IFN regulatory factor 3 (IRF3). Gαi1/3 knockdown in bone marrow-derived macrophage cells (Gαi1/3 KD BMDMs) exhibited an M2-like phenotype with significantly suppressed production of TNF-α, IL-6, IL-12, and NO in response to LPS. The altered polarization coincided with decreased Akt activation. Further, Gαi1/3 deficiency caused LPS tolerance in mice. In vitro studies revealed that, in LPS-tolerant macrophages, Gαi1/3 were down-regulated partially by the proteasome pathway. Collectively, the present findings demonstrated that Gαi1/3 can interact with CD14/Gab1, which modulates macrophage polarization in vitro and in vivo.
Collapse
|
21
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
22
|
Shin B, Yu J, Park ES, Choi S, Yu J, Hwang JM, Yun H, Chung YH, Hong KS, Choi JS, Takami M, Rho J. Secretion of a truncated osteopetrosis-associated transmembrane protein 1 (OSTM1) mutant inhibits osteoclastogenesis through down-regulation of the B lymphocyte-induced maturation protein 1 (BLIMP1)-nuclear factor of activated T cells c1 (NFATc1) axis. J Biol Chem 2014; 289:35868-81. [PMID: 25359771 DOI: 10.1074/jbc.m114.589614] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genetic mutations in osteoclastogenic genes are closely associated with osteopetrotic bone diseases. Genetic defects in OSTM1 (osteopetrosis-associated transmembrane protein 1) cause autosomal recessive osteopetrosis in humans. In particular, OSTM1 mutations that exclude the transmembrane domain might lead to the production of a secreted form of truncated OSTM1. However, the precise role of the secreted form of truncated OSTM1 remains unknown. In this study, we analyzed the functional role of truncated OSTM1 in osteoclastogenesis. Here, we showed that a secreted form of truncated OSTM1 binds to the cell surface of osteoclast (OC) precursors and inhibits the formation of multinucleated OCs through the reduction of cell fusion and survival. Truncated OSTM1 significantly inhibited the expression of OC marker genes through the down-regulation of the BLIMP1 (B lymphocyte-induced maturation protein 1)-NFATc1 (nuclear factor of activated T cells c1) axis. Finally, we demonstrated that truncated OSTM1 reduces lipopolysaccharide-induced bone destruction in vivo. Thus, these findings suggest that autosomal recessive osteopetrosis patients with an OSTM1 gene mutation lacking the transmembrane domain produce a secreted form of truncated OSTM1 that inhibits osteoclastogenesis.
Collapse
Affiliation(s)
- Bongjin Shin
- From the Department of Microbiology and Molecular Biology and
| | - Jungeun Yu
- From the Department of Microbiology and Molecular Biology and
| | - Eui-Soon Park
- From the Department of Microbiology and Molecular Biology and
| | - Seunga Choi
- From the Department of Microbiology and Molecular Biology and
| | - Jiyeon Yu
- From the Department of Microbiology and Molecular Biology and
| | - Jung Me Hwang
- From the Department of Microbiology and Molecular Biology and
| | - Hyeongseok Yun
- From the Department of Microbiology and Molecular Biology and
| | - Young-Ho Chung
- the Division of Life Science, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Korea, and
| | - Kwan Soo Hong
- the Division of Life Science, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Korea, and the Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Jong-Soon Choi
- the Division of Life Science, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Korea, and the Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Masamichi Takami
- the Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawaku 142-8555, Japan
| | - Jaerang Rho
- From the Department of Microbiology and Molecular Biology and the Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea,
| |
Collapse
|
23
|
Stauber T, Weinert S, Jentsch TJ. Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2013; 2:1701-44. [PMID: 23723021 DOI: 10.1002/cphy.c110038] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins of the CLC gene family assemble to homo- or sometimes heterodimers and either function as Cl(-) channels or as Cl(-)/H(+)-exchangers. CLC proteins are present in all phyla. Detailed structural information is available from crystal structures of bacterial and algal CLCs. Mammals express nine CLC genes, four of which encode Cl(-) channels and five 2Cl(-)/H(+)-exchangers. Two accessory β-subunits are known: (1) barttin and (2) Ostm1. ClC-Ka and ClC-Kb Cl(-) channels need barttin, whereas Ostm1 is required for the function of the lysosomal ClC-7 2Cl(-)/H(+)-exchanger. ClC-1, -2, -Ka and -Kb Cl(-) channels reside in the plasma membrane and function in the control of electrical excitability of muscles or neurons, in extra- and intracellular ion homeostasis, and in transepithelial transport. The mainly endosomal/lysosomal Cl(-)/H(+)-exchangers ClC-3 to ClC-7 may facilitate vesicular acidification by shunting currents of proton pumps and increase vesicular Cl(-) concentration. ClC-3 is also present on synaptic vesicles, whereas ClC-4 and -5 can reach the plasma membrane to some extent. ClC-7/Ostm1 is coinserted with the vesicular H(+)-ATPase into the acid-secreting ruffled border membrane of osteoclasts. Mice or humans lacking ClC-7 or Ostm1 display osteopetrosis and lysosomal storage disease. Disruption of the endosomal ClC-5 Cl(-)/H(+)-exchanger leads to proteinuria and Dent's disease. Mouse models in which ClC-5 or ClC-7 is converted to uncoupled Cl(-) conductors suggest an important role of vesicular Cl(-) accumulation in these pathologies. The important functions of CLC Cl(-) channels were also revealed by human diseases and mouse models, with phenotypes including myotonia, renal loss of salt and water, deafness, blindness, leukodystrophy, and male infertility.
Collapse
Affiliation(s)
- Tobias Stauber
- Leibniz-Institut für Molekulare Pharmakologie FMP and Max-Delbrück-Centrum für Molekulare Medizin MDC, Berlin, Germany
| | | | | |
Collapse
|
24
|
Chishiki K, Kamakura S, Yuzawa S, Hayase J, Sumimoto H. Ubiquitination of the heterotrimeric G protein α subunits Gαi2 and Gαq is prevented by the guanine nucleotide exchange factor Ric-8A. Biochem Biophys Res Commun 2013; 435:414-9. [DOI: 10.1016/j.bbrc.2013.04.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 01/01/2023]
|
25
|
Alonso V, Friedman PA. Minireview: ubiquitination-regulated G protein-coupled receptor signaling and trafficking. Mol Endocrinol 2013; 27:558-72. [PMID: 23471539 DOI: 10.1210/me.2012-1404] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest and most diverse superfamily of membrane proteins and mediate most cellular responses to hormones and neurotransmitters. Posttranslational modifications are considered the main regulators of all GPCRs. In addition to phosphorylation, glycosylation, and palmitoylation, increasing evidence as reviewed here reveals that ubiquitination also regulates the magnitude and temporospatial aspects of GPCR signaling. Posttranslational protein modification by ubiquitin is a key molecular mechanism governing proteins degradation. Ubiquitination mediates the covalent conjugation of ubiquitin, a highly conserved polypeptide of 76 amino acids, to protein substrates. This process is catalyzed by 3 enzymes acting in tandem: an E1, ubiquitin-activating enzyme; an E2, ubiquitin-carrying enzyme; and an E3, ubiquitin ligase. Ubiquitination is counteracted by deubiquitinating enzymes that deconjugate ubiquitin-modified proteins and rescue the substrate from proteasomal degradation. Although ubiquitination is known to target many GPCRs for lysosomal or proteasomal degradation, emerging findings define novel roles for the basal status of ubiquitination and for rapid deubiquitination and transubiquitination controlling cell surface expression and cellular responsiveness of some GPCRs. In this review, we highlight the classical and novel roles of ubiquitin in the regulation of GPCR function, signaling, and trafficking.
Collapse
Affiliation(s)
- Verónica Alonso
- Institute of Applied Molecular Medicine, San Pablo-CEU University School of Medicine, Madrid, 28668, Spain
| | | |
Collapse
|
26
|
RGS19 inhibits Ras signaling through Nm23H1/2-mediated phosphorylation of the kinase suppressor of Ras. Cell Signal 2013; 25:1064-74. [PMID: 23416464 DOI: 10.1016/j.cellsig.2013.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/09/2013] [Indexed: 12/31/2022]
Abstract
Besides serving as signal terminators for G protein pathways, several regulators of G protein signaling (RGS) can also modulate cell proliferation. RGS19 has previously been shown to enhance Akt signaling despite impaired Ras signaling. The present study examines the mechanism by which RGS19 inhibits Ras signaling. In HEK293 cells stably expressing RGS19, serum-induced Ras activation and phosphorylations of Raf/MEK/ERK were significantly inhibited, while cells expressing RGS2, 4, 7, 8, 10, or 20 did not exhibit this inhibitory phenotype. Conversely, siRNA-mediated knockdown of RGS19 enabled partial recovery of serum-induced ERK phosphorylation. Interestingly, two isoforms of the tumor metastasis suppressor Nm23 (H1 and H2) were upregulated in 293/RGS19 cells. As a nucleoside diphosphate kinase, Nm23H1 can phosphorylate the kinase suppressor of Ras (KSR). Elevated levels of phosphorylated KSR were indeed detected in the nuclear fractions of 293/RGS19 cells. Co-immunoprecipitation assays revealed that Nm23H1/2 can form complexes with RGS19, Ras, or KSR. siRNA-mediated knockdown of Nm23H1/2 allowed 293/RGS19 cells to partially recover their ERK responses to serum treatment, while overexpression of Nm23H1/2 in HEK293 cells suppressed the serum-induced ERK response. This study demonstrates that expression of RGS19 can suppress Ras-mediated signaling via upregulation of Nm23.
Collapse
|
27
|
Liu Y, Zhang ZC, Qian SW, Zhang YY, Huang HY, Tang Y, Guo L, Li X, Tang QQ. MicroRNA-140 promotes adipocyte lineage commitment of C3H10T1/2 pluripotent stem cells via targeting osteopetrosis-associated transmembrane protein 1. J Biol Chem 2013; 288:8222-8230. [PMID: 23389033 DOI: 10.1074/jbc.m112.426163] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BMP4 has been shown to induce C3H10T1/2 pluripotent stem cells to commit to adipocyte lineage. In addition to several proteins identified, microRNAs also play a critical role in the process. In this study, we identified microRNA-140 (miR-140) as a direct downstream component of the BMP4 signaling pathway during the commitment of C3H10T1/2 cells to adipocyte lineage. Overexpression of miR-140 in C3H10T1/2 cells promoted commitment, whereas knockdown of its expression led to impairment. Additional studies indicated that Ostm1 is a bona fide target of miR-140, which is significantly decreased during commitment, and Ostm1 was also demonstrated to function as an anti-adipogenic factor.
Collapse
Affiliation(s)
- Yuan Liu
- Key Laboratory of Molecular Medicine, Ministry of Education, and the Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China; Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhi-Chun Zhang
- Key Laboratory of Molecular Medicine, Ministry of Education, and the Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Shu-Wen Qian
- Key Laboratory of Molecular Medicine, Ministry of Education, and the Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China; Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - You-You Zhang
- Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hai-Yan Huang
- Key Laboratory of Molecular Medicine, Ministry of Education, and the Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China; Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Tang
- Key Laboratory of Molecular Medicine, Ministry of Education, and the Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Liang Guo
- Key Laboratory of Molecular Medicine, Ministry of Education, and the Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xi Li
- Key Laboratory of Molecular Medicine, Ministry of Education, and the Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China; Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Qi-Qun Tang
- Key Laboratory of Molecular Medicine, Ministry of Education, and the Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China; Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
28
|
Wang Q, Traynor JR. Modulation of μ-opioid receptor signaling by RGS19 in SH-SY5Y cells. Mol Pharmacol 2013; 83:512-20. [PMID: 23197645 PMCID: PMC3558815 DOI: 10.1124/mol.112.081992] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/29/2012] [Indexed: 02/03/2023] Open
Abstract
Regulator of G-protein signaling protein 19 (RGS19), also known as Gα-interacting protein (GAIP), acts as a GTPase accelerating protein for Gαz as well as Gαi/o subunits. Interactions with GAIP-interacting protein N-terminus and GAIP-interacting protein C-terminus (GIPC) link RGS19 to a variety of intracellular proteins. Here we show that RGS19 is abundantly expressed in human neuroblastoma SH-SY5Y cells that also express µ- and δ- opioid receptors (MORs and DORs, respectively) and nociceptin receptors (NOPRs). Lentiviral delivery of short hairpin RNA specifically targeted to RGS19 reduced RGS19 protein levels by 69%, with a similar reduction in GIPC. In RGS19-depleted cells, there was an increase in the ability of MOR (morphine) but not of DOR [(4-[(R)-[(2S,5R)-4-allyl-2,5-dimethylpiperazin-1-yl](3-methoxyphenyl)methyl]-N,N-diethylbenzamide (SNC80)] or NOPR (nociceptin) agonists to inhibit forskolin-stimulated adenylyl cyclase and increase mitogen-activated protein kinase (MAPK) activity. Overnight treatment with either MOR [D-Ala, N-Me-Phe, Gly-ol(5)-enkephalin (DAMGO) or morphine] or DOR (D-Pen(5)-enkephalin or SNC80) agonists increased RGS19 and GIPC protein levels in a time- and concentration-dependent manner. The MOR-induced increase in RGS19 protein was prevented by pretreatment with pertussis toxin or the opioid antagonist naloxone. Protein kinase C (PKC) activation alone increased the level of RGS19 and inhibitors of PKC 5,6,7,13-tetrahydro-13-methyl-5-oxo-12H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-12-propanenitrile and mitogen-activated protein kinase kinase 1 2-(2-amino-3-methoxyphenyl)-4H-chromen-4-one, but not protein kinase A (H89), completely blocked DAMGO-induced RGS19 protein accumulation. The findings show that RGS19 and GIPC are jointly regulated, that RGS19 is a GTPase accelerating protein for MOR with selectivity over DOR and NOPR, and that chronic MOR or DOR agonist treatment increases RGS19 levels by a PKC and the MAPK pathway-dependent mechanism.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Animals
- Benzamides/pharmacology
- Colforsin/pharmacology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- HEK293 Cells
- Humans
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Morphine/pharmacology
- Opioid Peptides/pharmacology
- PC12 Cells
- Piperazines/pharmacology
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- RGS Proteins/genetics
- RGS Proteins/metabolism
- Rats
- Receptors, Opioid/genetics
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- Nociceptin Receptor
- Nociceptin
Collapse
Affiliation(s)
- Qin Wang
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-5632, USA
| | | |
Collapse
|
29
|
Chandrasekaran P, Buckley M, Moore V, Wang LQ, Kehrl JH, Venkatesan S. HIV-1 Nef impairs heterotrimeric G-protein signaling by targeting Gα(i2) for degradation through ubiquitination. J Biol Chem 2012; 287:41481-98. [PMID: 23071112 DOI: 10.1074/jbc.m112.361782] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HIV Nef protein is an important pathogenic factor that modulates cell surface receptor trafficking and impairs cell motility, presumably by interfering at multiple steps with chemotactic receptor signaling. Here, we report that a dominant effect of Nef is to trigger AIP4 E3 ligase-mediated Gα(i2) ubiquitination, which leads to Gα(i2) endolysosomal sequestration and destruction. The loss of the Gα(i2) subunit was demonstrable in many cell types in the context of gene transfection, HIV infection, or Nef protein transduction. Nef directly interacts with Gα(i2) and ternary complexes containing AIP4, Nef, and Gα(i2) form. A substantial reversal of Gα(i2) loss and a partial recovery of impaired chemotaxis occurred following siRNA knockdown of AIP4 or NEDD4 or by inhibiting dynamin. The N-terminal myristoyl group, (62)EEEE(65) motif, and (72)PXXP(75) motif of Nef are critical for this effect to occur. Nef expression does not affect a Gq(i5) chimera where the five C-terminal residues of Gq are replaced with those of Gα(i2). Lysine at position 296 of Gα(i2) was identified as the critical determinant of Nef-induced degradation. By specifically degrading Gα(i2), Nef directly subverts leukocyte migration and homing. Impaired trafficking and homing of HIV Nef-expressing lymphocytes probably contributes to early immune dysfunction following HIV infection.
Collapse
Affiliation(s)
- Prabha Chandrasekaran
- Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
30
|
Garzón J, Rodríguez-Muñoz M, Vicente-Sánchez A, García-López MÁ, Martínez-Murillo R, Fischer T, Sánchez-Blázquez P. SUMO-SIM interactions regulate the activity of RGSZ2 proteins. PLoS One 2011; 6:e28557. [PMID: 22163035 PMCID: PMC3232247 DOI: 10.1371/journal.pone.0028557] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/10/2011] [Indexed: 11/18/2022] Open
Abstract
The RGSZ2 gene, a regulator of G protein signaling, has been implicated in cognition, Alzheimer's disease, panic disorder, schizophrenia and several human cancers. This 210 amino acid protein is a GTPase accelerating protein (GAP) on Gαi/o/z subunits, binds to the N terminal of neural nitric oxide synthase (nNOS) negatively regulating the production of nitric oxide, and binds to the histidine triad nucleotide-binding protein 1 at the C terminus of different G protein-coupled receptors (GPCRs). We now describe a novel regulatory mechanism of RGS GAP function through the covalent incorporation of Small Ubiquitin-like MOdifiers (SUMO) into RGSZ2 RGS box (RH) and the SUMO non covalent binding with SUMO-interacting motifs (SIM): one upstream of the RH and a second within this region. The covalent attachment of SUMO does not affect RGSZ2 binding to GPCR-activated GαGTP subunits but abolishes its GAP activity. By contrast, non-covalent binding of SUMO with RH SIM impedes RGSZ2 from interacting with GαGTP subunits. Binding of SUMO to the RGSZ2 SIM that lies outside the RH does not affect GαGTP binding or GAP activity, but it could lead to regulatory interactions with sumoylated proteins. Thus, sumoylation and SUMO-SIM interactions constitute a new regulatory mechanism of RGS GAP function and therefore of GPCR cell signaling as well.
Collapse
Affiliation(s)
- Javier Garzón
- Cajal Institute, CSIC, Madrid, Spain
- CIBER of Mental Health, ISCIII, Madrid, Spain
| | | | - Ana Vicente-Sánchez
- Cajal Institute, CSIC, Madrid, Spain
- CIBER of Mental Health, ISCIII, Madrid, Spain
| | | | | | - Thierry Fischer
- Department of Immunology and Oncology, National Centre of Biotechnology, CSIC, Madrid, Spain
| | - Pilar Sánchez-Blázquez
- Cajal Institute, CSIC, Madrid, Spain
- CIBER of Mental Health, ISCIII, Madrid, Spain
- * E-mail:
| |
Collapse
|
31
|
RGS19 stimulates cell proliferation by deregulating cell cycle control and enhancing Akt signaling. Cancer Lett 2011; 309:199-208. [DOI: 10.1016/j.canlet.2011.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/09/2011] [Accepted: 06/01/2011] [Indexed: 11/13/2022]
|
32
|
RGS19 enhances cell proliferation through its C-terminal PDZ motif. Cell Signal 2010; 22:1700-7. [PMID: 20599498 DOI: 10.1016/j.cellsig.2010.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 06/24/2010] [Indexed: 01/18/2023]
Abstract
Regulator of G protein signaling 19 (RGS19), also known as Galpha-interacting protein (GAIP), is a GTPase activating protein (GAP) for Galpha(i) subunits. Apart from its GAP function, RGS19 has been implicated in growth factor signaling through binding to GAIP-interacting protein C-terminus (GIPC) via its C-terminal PDZ-binding motif. To gain additional insight on its function, we have stably expressed RGS19 in a number of mammalian cell lines and examined its effect on cell proliferation. Interestingly, overexpression of RGS19 stimulated the growth of HEK293, PC12, Caco2, and NIH3T3 cells. This growth promoting effect was not shared by other RGS proteins including RGS4, RGS10 and RGS20. Despite its ability to stimulate cell proliferation, RGS19 failed to induce neoplastic transformation in NIH3T3 cells as determined by focus formation and soft-agar assays, and it did not induce tumor growth in athymic nude mice. Deletion mutants of RGS19 lacking the PDZ-binding motif failed to complex with GIPC and did not exhibit any growth promoting effect. Overexpression of GIPC alone in HEK293 cells stimulated cell proliferation whereas its knockdown in H1299 non-small cell lung carcinomas suppressed cell proliferation. This study demonstrates that RGS19, in addition to acting as a GAP, is able to stimulate cell proliferation in a GIPC-dependent manner.
Collapse
|
33
|
Nagai Y, Nishimura A, Tago K, Mizuno N, Itoh H. Ric-8B stabilizes the alpha subunit of stimulatory G protein by inhibiting its ubiquitination. J Biol Chem 2010; 285:11114-20. [PMID: 20133939 DOI: 10.1074/jbc.m109.063313] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha subunit of stimulatory G protein (G alpha(s)) activates adenylyl cyclase, which catalyzes cAMP production, and regulates many physiological aspects, such as cardiac regulation and endocrine systems. Ric-8B (resistance to inhibitors of cholinesterase 8B) has been identified as the G alpha(s)-binding protein; however, its role in G(s) signaling remains obscure. In this study, we present evidence that Ric-8B specifically and positively regulates G(s) signaling by stabilizing the G alpha(s) protein. An in vitro biochemical study suggested that Ric-8B does not possess guanine nucleotide exchange factor activity. However, knockdown of Ric-8B attenuated beta-adrenergic agonist-induced cAMP accumulation, indicating that Ric-8B positively regulates G(s) signaling. Interestingly, overexpression and knockdown of Ric-8B resulted in an increase and a decrease in the G alpha(s) protein, respectively, without affecting the G alpha(s) mRNA level. We found that the G alpha(s) protein is ubiquitinated and that this ubiquitination is inhibited by Ric-8B. This Ric-8B-mediated inhibition of G alpha(s) ubiquitination requires interaction between Ric-8B and G alpha(s) because Ric-8B splicing variants, which are defective for G alpha(s) binding, failed to inhibit the ubiquitination. Taken together, these results suggest that Ric-8B plays a critical and specific role in the control of G alpha(s) protein levels by modulating G alpha(s) ubiquitination and positively regulates G(s) signaling.
Collapse
Affiliation(s)
- Yusuke Nagai
- Department of Cell Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|
34
|
Terzi D, Stergiou E, King SL, Zachariou V. Regulators of G protein signaling in neuropsychiatric disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:299-333. [PMID: 20374720 DOI: 10.1016/s1877-1173(09)86010-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regulators of G protein signaling (RGS) comprise a diverse group of about 40 proteins which determine signaling amplitude and duration via modulation of receptor/G protein or receptor/effector coupling. Several members of the RGS family are expressed in the brain, where they have precise roles in regulation of important physiological processes. The unique functions of each RGS can be attributed to its structure, distinct pattern of expression, and regulation, and its preferential interactions with receptors, Galpha subunits and other signaling proteins. Evidence suggests dysfunction of RGS proteins is related to several neuropathological conditions. Moreover, clinical and preclinical work reveals that the efficacy and/or side effects of treatments are highly influenced by RGS activity. This article summarizes findings on RGS proteins in vulnerability to several neuropsychiatric disorders, the mechanism via which RGS proteins control neuronal responses and their potential use as drug targets.
Collapse
Affiliation(s)
- Dimitra Terzi
- Department of Pharmacology, Faculty of Medicine, University of Crete, Heraklion 71003, Crete, Greece
| | | | | | | |
Collapse
|
35
|
Inhibition of dynamin prevents CCL2-mediated endocytosis of CCR2 and activation of ERK1/2. Cell Signal 2009; 21:1748-57. [PMID: 19643177 DOI: 10.1016/j.cellsig.2009.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/16/2009] [Accepted: 07/21/2009] [Indexed: 11/20/2022]
Abstract
The magnitude and duration of G protein-coupled receptor (GPCR) signals are regulated through desensitization mechanisms. In leukocytes, ligand binding to chemokine receptors leads to Ca2+ mobilization and ERK activation through pertussis toxin-sensitive G proteins, as well as to phosphorylation of the GPCR. After interaction with the endocytic machinery (clathrin, adaptin), the adaptor beta-arrestin recognizes the phosphorylated GPCR tail and quenches signaling to receptors. The molecular mechanisms that lead to receptor endocytosis are not universal amongst the GPCR, however, and the precise spatial and temporal events in the internalization of the CCR2 chemokine receptor remain unknown. Here we show that after ligand binding, CCR2 internalizes rapidly and reaches early endosomes, and later, lysosomes. Knockdown of clathrin by RNA interference impairs CCR2 internalization, as does treatment with the dynamin inhibitor, dynasore. Our results show that CCR2 internalization uses a combination of clathrin-dependent and -independent pathways, as observed for other chemokine receptors. Moreover, the use of dynasore allowed us to confirm the existence of a dynamin-sensitive element that regulates ERK1/2 activation. Our results indicate additional complexity in the link between receptor internalization and cell signaling.
Collapse
|
36
|
Torres MP, Lee MJ, Ding F, Purbeck C, Kuhlman B, Dokholyan NV, Dohlman HG. G Protein Mono-ubiquitination by the Rsp5 Ubiquitin Ligase. J Biol Chem 2009; 284:8940-50. [PMID: 19176477 DOI: 10.1074/jbc.m809058200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence suggests that ubiquitination serves as a protein trafficking signal in addition to its well characterized role in promoting protein degradation. The yeast G protein alpha subunit Gpa1 represents a rare example of a protein that undergoes both mono- and poly-ubiquitination. Whereas mono-ubiquitinated Gpa1 is targeted to the vacuole, poly-ubiquitinated Gpa1 is directed instead to the proteasome. Here we investigate the structural requirements for mono- and poly-ubiquitination of Gpa1. We find that variants of Gpa1 engineered to be unstable are more likely to be poly-ubiquitinated and less likely to be mono-ubiquitinated. In addition, mutants that cannot be myristoylated are no longer mono-ubiquitinated but are still polyubiquitinated. Finally, we show that the ubiquitin ligase Rsp5 is necessary for Gpa1 mono-ubiquitination in vivo and that the purified enzyme is sufficient to catalyze Gpa1 mono-ubiquitination in vitro. Taken together, these data indicate that mono- and poly-ubiquitination have distinct enzyme and substrate recognition requirements; whereas poly-ubiquitination targets misfolded protein for degradation, a distinct ubiquitination apparatus targets the fully mature, fully myristoylated G protein for mono-ubiquitination and delivery to the vacuole.
Collapse
Affiliation(s)
- Matthew P Torres
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Hum Genet 2008; 124:561-77. [DOI: 10.1007/s00439-008-0583-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/28/2008] [Indexed: 02/05/2023]
|
38
|
Jentsch TJ. CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol 2008; 43:3-36. [PMID: 18307107 DOI: 10.1080/10409230701829110] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CLC genes are expressed in species from bacteria to human and encode Cl(-)-channels or Cl(-)/H(+)-exchangers. CLC proteins assemble to dimers, with each monomer containing an ion translocation pathway. Some mammalian isoforms need essential beta -subunits (barttin and Ostm1). Crystal structures of bacterial CLC Cl(-)/H(+)-exchangers, combined with transport analysis of mammalian and bacterial CLCs, yielded surprising insights into their structure and function. The large cytosolic carboxy-termini of eukaryotic CLCs contain CBS domains, which may modulate transport activity. Some of these have been crystallized. Mammals express nine CLC isoforms that differ in tissue distribution and subcellular localization. Some of these are plasma membrane Cl(-) channels, which play important roles in transepithelial transport and in dampening muscle excitability. Other CLC proteins localize mainly to the endosomal-lysosomal system where they may facilitate luminal acidification or regulate luminal chloride concentration. All vesicular CLCs may be Cl(-)/H(+)-exchangers, as shown for the endosomal ClC-4 and -5 proteins. Human diseases and knockout mouse models have yielded important insights into their physiology and pathology. Phenotypes and diseases include myotonia, renal salt wasting, kidney stones, deafness, blindness, male infertility, leukodystrophy, osteopetrosis, lysosomal storage disease and defective endocytosis, demonstrating the broad physiological role of CLC-mediated anion transport.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany.
| |
Collapse
|
39
|
Feigin ME, Malbon CC. OSTM1 regulates beta-catenin/Lef1 interaction and is required for Wnt/beta-catenin signaling. Cell Signal 2008; 20:949-57. [PMID: 18296023 DOI: 10.1016/j.cellsig.2008.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/14/2008] [Accepted: 01/15/2008] [Indexed: 11/26/2022]
Abstract
The Wnt/beta-catenin signaling pathway controls key aspects of embryonic development and adult tissue homeostasis, including the formation and maintenance of bone. Recently, mutations in the OSTM1 gene were found to be the cause of severe autosomal recessive osteopetrosis in both the mouse and humans. This disorder is characterized by increased bone mass resulting from a defect in osteoclast maturation. The possible role of OSTM1 in signaling of the Wnt/beta-catenin "canonical" pathway was investigated in totipotent mouse F9 embryonal teratocarcinoma cells. Overexpression of OSTM1 in F9 cells increased Wnt3a-responsive beta-catenin accumulation and Lef/Tcf-sensitive transcription. Similarly, knockdown of endogenous OSTM1 attenuated the ability of Wnt3a to stimulate the canonical signaling pathway. An OSTM1 mutant (detected in humans with osteopetrosis) was expressed in F9 cells and found to inhibit Wnt-stimulated beta-catenin stabilization, gene transcription, and primitive endoderm formation. Expression of this OSTM1 C-terminal deletion mutant attenuated Lef/Tcf-sensitive gene transcription, even when transcription was activated by expression of a constitutively-active form of beta-catenin. However, expression of this OSTM1 C-terminal deletion mutant was unable to alter Lef/Tcf-sensitive gene transcription when transcription was activated by expression of a beta-catenin/Lef chimeric protein. From the standpoint of protein-protein interactions, expression of wild-type OSTM1 stimulated whereas mutant OSTM1 inhibited, the Wnt-dependent association of beta-catenin and Lef1. On the foundation of these experiments, we propose that the human mutations in OSTM1 such as the C-terminal deletion mutant studied herein provoke dysregulation of the canonical Wnt/beta-catenin signaling pathway, providing a molecular basis for severe autosomal recessive osteopetrosis.
Collapse
Affiliation(s)
- Michael E Feigin
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, United States.
| | | |
Collapse
|
40
|
Parker SL, Parker MS, Sah R, Balasubramaniam A, Sallee FR. Pertussis toxin induces parallel loss of neuropeptide Y Y1 receptor dimers and Gi alpha subunit function in CHO cells. Eur J Pharmacol 2007; 579:13-25. [PMID: 17967449 DOI: 10.1016/j.ejphar.2007.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 08/04/2007] [Accepted: 10/05/2007] [Indexed: 12/20/2022]
Abstract
Treatment with pertussis toxin in addition to a stable inhibition of G(i)alpha subunits of G-proteins also strongly reduced human neuropeptide Y Y(1) receptors expressed in Chinese hamster ovary (CHO) cells. This was reflected in abolition of the inhibition by Y(1) agonists of forskolin-stimulated adenylyl cyclase in intact cells, and of Y(1) agonist stimulation of GTPgammaS binding to particulates from disrupted cells. The loss of both receptor and G(i)alpha subunit function was attenuated by ammonium chloride, an inhibitor of acid proteinases, pointing to a chaperoning co-protection of active pertussis toxin-sensitive Galpha subunits and Y(1) receptors. The surface complement of the Y(1) receptor was changed a little in conditions of approximately 85% decrease of the Y(1) population, but the rate of the Y(1) receptor-linked internalization of agonist peptides was reduced about 70%. The preserved receptor fraction consisted of monomers significantly coupled to G(q)alpha subunits. The persistent pertussis toxin-insensitive internalization of agonists with the Y(1) receptor may reflect a rescue or alternative switching that could be important for cell functioning in neuropeptide Y-rich environments. The results are compatible with a loss, due to G(i)alpha subunit inactivation by the toxin, of a large Y(1) receptor reserve constituted of oligomers associating with heterotrimeric G-proteins.
Collapse
Affiliation(s)
- Steven L Parker
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
41
|
Go L, Mitchell J. Degradation of the non-palmitoylated invertebrate visual guanine-nucleotide binding protein, iGq alpha(C3,4A), by the ubiquitin-proteasomal pathway is regulated by its activation and translocation to the cytoplasm. Vis Neurosci 2007; 24:169-75. [PMID: 17640407 DOI: 10.1017/s0952523807070216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 02/21/2007] [Indexed: 11/06/2022]
Abstract
Light-dependent translocation of invertebrate visual guanine-nucleotide binding protein, iGq alpha, from rhabdomeric membranes to the cytoplasm is one of many mechanisms that contribute to light adaptation in the invertebrate eye. We have previously cloned iGq alpha from a Loligo pealei photoreceptor cDNA library and shown that when expressed in HEK 293T cells it is palmitoylated. In this study we compared the activation, cytoplasmic translocation, and turnover of iGq alpha with that of a non-palmitoylated mutant, iGq alpha(C3,4A). In the HEK 293T cells, muscarinic M1 receptors coupled equally well to iGq alpha and iGq alpha(C3,4A) to activate phospholipase C. Activation of iGq alpha(C3,4A), but not iGq alpha, induced translocation of the alpha subunit from the membrane to cytosol with rapid degradation of the soluble protein resulting in a decreased half-life for iGq alpha(C3,4A) of 10 hours compared to 20 hours for iGq alpha. Degradation of iGq alpha(C3,4A) was inhibited by proteasomal inhibitors but not by inhibitors of lysosomal proteases or calpain. The presence of the proteasomal inhibitor led to the accumulation of polyubiquitinated species of either iGq alpha or iGq alpha(C3,4A). Our results suggest that palmitoylation of iGq alpha is required to maintain membrane association of the protein in its active conformation, and whereas membrane-bound and soluble iGq alpha can be polyubiquitinated, membrane association protects the protein from rapid degradation by the proteasomal pathway.
Collapse
Affiliation(s)
- Lynle Go
- Department of Pharmacology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
42
|
Abstract
Regulation of protein function by posttranslational modification plays an important role in many biological pathways. The most well known among such modifications is protein phosphorylation performed by highly specific protein kinases. In the past decade, however, covalent linkage of the low-molecular-weight protein ubiquitin to substrate proteins (protein ubiquitination) has proven to be yet another widely used mechanism of protein regulation playing a crucial role in virtually all aspects of cellular functions. This review highlights some of the recently discovered and provocative roles for ubiquitination in the regulation of the life cycle and signal transduction properties of 7-transmembrane receptors that serve to integrate many biological functions and play fundamental roles in cardiovascular homeostasis.
Collapse
Affiliation(s)
- Sudha K Shenoy
- Duke University Medical Center, Departments of Medicine and Cell Biology, Durham, NC 27710, USA.
| |
Collapse
|
43
|
Wang Y, Dohlman HG. Regulation of G protein and mitogen-activated protein kinase signaling by ubiquitination: insights from model organisms. Circ Res 2007; 99:1305-14. [PMID: 17158346 DOI: 10.1161/01.res.0000251641.57410.81] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Guanine nucleotide binding proteins (G proteins) and mitogen-activated protein kinases are highly conserved signaling molecules engaged in a wide variety of cellular processes. The strength and duration of signaling mediated by G proteins and mitogen-activated protein kinases are well known to be regulated via phosphorylation of pathway components. Over the past few years, it has become evident that many of the same signaling proteins also undergo ubiquitination, a posttranslational modification that typically leads to protein degradation. Consequently the strength and duration of signaling can also be modulated by regulating the abundance of signaling proteins. This article describes G protein- and mitogen-activated protein kinase-mediated signaling pathways that are known to be regulated by ubiquitination. The focus is on studies performed in the budding yeast Saccharomyces cerevisiae, as many principles governing this new regulatory mechanism were initially discovered in this model organism. Similar mechanisms uncovered in other model systems are also briefly discussed to illustrate the importance and universality of signaling regulation by ubiquitination.
Collapse
Affiliation(s)
- Yuqi Wang
- Department of Biology, Saint Louis University, 128 Macelwane Hall, 3507 Laclede Ave, St Louis, MO 63103, USA.
| | | |
Collapse
|
44
|
Xie GX, Palmer PP. How regulators of G protein signaling achieve selective regulation. J Mol Biol 2006; 366:349-65. [PMID: 17173929 PMCID: PMC1805491 DOI: 10.1016/j.jmb.2006.11.045] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 11/02/2006] [Accepted: 11/10/2006] [Indexed: 11/30/2022]
Abstract
The regulators of G protein signaling (RGS) are a family of cellular proteins that play an essential regulatory role in G protein-mediated signal transduction. There are multiple RGS subfamilies consisting of over 20 different RGS proteins. They are basically the guanosine triphosphatase (GTPase)-accelerating proteins that specifically interact with G protein alpha subunits. RGS proteins display remarkable selectivity and specificity in their regulation of receptors, ion channels, and other G protein-mediated physiological events. The molecular and cellular mechanisms underlying such selectivity are complex and cooperate at many different levels. Recent research data have provided strong evidence that the spatiotemporal-specific expression of RGS proteins and their target components, as well as the specific protein-protein recognition and interaction through their characteristic structural domains and functional motifs, are determinants for RGS selectivity and specificity. Other molecular mechanisms, such as alternative splicing and scaffold proteins, also significantly contribute to RGS selectivity. To pursue a thorough understanding of the mechanisms of RGS selective regulation will be of great significance for the advancement of our knowledge of molecular and cellular signal transduction.
Collapse
Affiliation(s)
| | - Pamela Pierce Palmer
- *Corresponding author: Pamela Pierce Palmer, M.D., Ph.D., University of California, San Francisco, Department of Anesthesia and Perioperative Care, 513 Parnassus Avenue, Box 0464, Room S-455, San Francisco, California 94143, USA, Telephone: (415)476-6783, FAX: (415)502-5375, E-mail:
| |
Collapse
|
45
|
Ajit SK, Ramineni S, Edris W, Hunt RA, Hum WT, Hepler JR, Young KH. RGSZ1 interacts with protein kinase C interacting protein PKCI-1 and modulates mu opioid receptor signaling. Cell Signal 2006; 19:723-30. [PMID: 17126529 DOI: 10.1016/j.cellsig.2006.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/15/2006] [Accepted: 09/15/2006] [Indexed: 11/26/2022]
Abstract
Protein kinase C interacting protein (PKCI-1) was identified among the potential interactors from a yeast two hybrid screen of human brain library using N terminal of RGSZ1 as a bait. The cysteine string region, unique to the RZ subfamily, contributes to the observed interaction because PKCI-1 interacted with N-terminus of RGS17 and GAIP, but not with that of RGS2 or RGS7 where cysteine string motif is absent. The interaction between RGSZ1 and PKCI-1 was confirmed by coimmunoprecipitation and immunofluorescence. PKCI-1 and RGSZ1 could be detected by coimmunoprecipitation using 14-3-3 antibody in cells transfected with PKCI-1 or RGSZ1 respectively, but when transfected with PKCI-1 and RGSZ1 together, only RGSZ1 could be detected. Phosphorylation of Galphaz by protein kinase C (PKC) reduces the ability of the RGS to effectively function as GTPase accelerating protein for Galphaz, and interferes with ability of Galphaz to interact with betagamma complex. We investigated the roles of 14-3-3 and PKCI-1 in phosphorylation of Galphaz. Phosphorylation of Galphaz by PKC was inhibited by 14-3-3 and the presence of PKCI-1 did not provide any further inhibition. PKCI-1 interacts with mu opioid receptor and suppresses receptor desensitization and PKC related mu opioid receptor phosphorylation [W. Guang, H. Wang, T. Su, I.B. Weinstein, J.B. Wang, Mol. Pharmacol. 66 (2004) 1285.]. Previous studies have also shown that mu opioid receptor co-precipitates with RGSZ1 and influence mu receptor signaling by acting as effector antagonists [J. Garzon, M. Rodriguez-Munoz, P. Sanchez-Blazquez, Neuropharmacology 48 (2005) 853., J. Garzon, M. Rodriguez-Munoz, A. Lopez-Fando, P. Sanchez-Blazquez Neuropsychopharmacology 30 (2005) 1632.]. Inhibition of cAMP by mu opioid receptor was significantly reduced by RGSZ1 and this effect was enhanced in combination with PKCI-1. Our studies thus provide a link between the previous observations mentioned above and indicate that the major function of PKCI-1 is to modulate mu opioid receptor signaling pathway along with RGSZ1, rather than directly mediating the Galphaz RGSZ1 interaction.
Collapse
Affiliation(s)
- Seena K Ajit
- Neuroscience Discovery, Wyeth Research CN 8000, Princeton NJ 08543, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Pangrazio A, Poliani PL, Megarbane A, Lefranc G, Lanino E, Di Rocco M, Rucci F, Lucchini F, Ravanini M, Facchetti F, Abinun M, Vezzoni P, Villa A, Frattini A. Mutations in OSTM1 (grey lethal) define a particularly severe form of autosomal recessive osteopetrosis with neural involvement. J Bone Miner Res 2006; 21:1098-105. [PMID: 16813530 DOI: 10.1359/jbmr.060403] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
UNLABELLED We report three novel osteopetrosis patients with OSTM1 mutations and review two that have been previously described. Our analysis suggests that OSTM1 defines a new subset of patients with severe central nervous system involvement. This defect is also present in the gl mouse, which could represent a good model to study the role of the gene in the pathogenesis of this disease. INTRODUCTION Autosomal recessive osteopetrosis (ARO) is a severe hereditary bone disease whose cellular basis is in the osteoclast, but with heterogeneous molecular defects. In addition to the TCIRG1 and the ClCN7 genes, whose mutations account for approximately 55% and 10% of cases, respectively, the OSTM1 gene has been described thus far in only two ARO patients. materials and methods: We report here three novel ARO patients presenting with severe primary central nervous system involvement in addition to the classical stigmata of severe bone sclerosis, growth failure, anemia, thrombocytopenia, and visual impairment with optic atrophy. In addition we analyzed the brain morphology and histology of the grey lethal mutant mouse. RESULTS The analysis of the OSTM1 gene in two patients, both from Kuwait, showed homozygous two nucleotide deletion in exon 2, leading to a frameshift and premature termination. The third (Lebanese) patient showed a single point mutation in exon 1, leading to a nonsense mutation. The clinical neurological evaluation of the two Kuwaiti patients by CT and MRI scans showed a defect in the white matter, with a specific diagnosis of severe cerebral atrophy. The gl brain showed a diffuse translucent appearance with loss of the normal demarcation between the white and the grey matter, features consistent with myelin loss or hypomyelination. Histological and myelin staining analysis evidenced an atrophy of the corpus callosum with loss of myelin fibers, and in cortical areas, loss of the normal lamination consistent with multiple foci of cortical dysplasia. CONCLUSIONS These findings suggest that OSTM1-dependent ARO defines a new subset of patients with severe central nervous system involvement leading to a very poor prognosis. The fact that central nervous system involvement is also present in the gl mouse mutant suggests that this mouse is a good model to test possible therapies.
Collapse
|
47
|
Abstract
Regulators of G-protein signalling (RGS) proteins are a large and diverse family initially identified as GTPase activating proteins (GAPs) of heterotrimeric G-protein Galpha-subunits. At least some can also influence Galpha activity through either effector antagonism or by acting as guanine nucleotide dissociation inhibitors (GDIs). As our understanding of RGS protein structure and function has developed, so has the realisation that they play roles beyond G-protein regulation. Such diversity of function is enabled by the variety of RGS protein structure and their ability to interact with other cellular molecules including phospholipids, receptors, effectors and scaffolds. The activity, sub-cellular distribution and expression levels of RGS proteins are dynamically regulated, providing a layer of complexity that has yet to be fully elucidated.
Collapse
Affiliation(s)
- Gary B Willars
- Department of Cell Physiology and Pharmacology, University of Leicester, University Road, Leicester LE1 9HN, UK.
| |
Collapse
|
48
|
Nunn C, Mao H, Chidiac P, Albert PR. RGS17/RGSZ2 and the RZ/A family of regulators of G-protein signaling. Semin Cell Dev Biol 2006; 17:390-9. [PMID: 16765607 DOI: 10.1016/j.semcdb.2006.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Regulators of G-protein signaling (RGS proteins) comprise over 20 different proteins that have been classified into subfamilies on the basis of structural homology. The RZ/A family includes RGSZ2/RGS17 (the most recently discovered member of this family), GAIP/RGS19, RGSZ1/RGS20, and the RGSZ1 variant Ret-RGS. The RGS proteins are GTPase activating proteins (GAPs) that turn off G-proteins and thus negatively regulate the signaling of G-protein coupled receptors (GPCRs). In addition, some RZ/A family RGS proteins are able to modify signaling through interactions with adapter proteins (such as GIPC and GIPN). The RZ/A proteins have a simple structure that includes a conserved amino-terminal cysteine string motif, RGS box and short carboxyl-terminal, which confer GAP activity (RGS box) and the ability to undergo covalent modification and interact with other proteins (amino-terminal). This review focuses on RGS17 and its RZ/A sibling proteins and discusses the similarities and differences among these proteins in terms of their palmitoylation, phosphorylation, intracellular localization and interactions with GPCRs and adapter proteins. The specificity of these RGS protein for different Galpha proteins and receptors, and the consequences for signaling are discussed. The tissue and brain distribution, and the evolving understanding of the roles of this family of RGS proteins in receptor signaling and brain function are highlighted.
Collapse
Affiliation(s)
- Caroline Nunn
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ont., Canada, N6A 5C1
| | | | | | | |
Collapse
|
49
|
Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature 2006; 440:220-3. [PMID: 16525474 DOI: 10.1038/nature04535] [Citation(s) in RCA: 256] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 12/16/2005] [Indexed: 01/28/2023]
Abstract
Mutations in ClC-7, a late endosomal/lysosomal member of the CLC family of chloride channels and transporters, cause osteopetrosis and lysosomal storage disease in humans and mice. Severe osteopetrosis is also observed with mutations in the OSTM1 gene, which encodes a membrane protein of unknown function. Here we show that both ClC-7 and Ostm1 proteins co-localize in late endosomes and lysosomes of various tissues, as well as in the ruffled border of bone-resorbing osteoclasts. Co-immunoprecipitations show that ClC-7 and Ostm1 form a molecular complex and suggest that Ostm1 is a beta-subunit of ClC-7. ClC-7 is required for Ostm1 to reach lysosomes, where the highly glycosylated Ostm1 luminal domain is cleaved. Protein but not RNA levels of ClC-7 are greatly reduced in grey-lethal mice, which lack Ostm1, suggesting that the ClC-7-Ostm1 interaction is important for protein stability. As ClC-7 protein levels in Ostm1-deficient tissues and cells, including osteoclasts, are decreased below 10% of normal levels, Ostm1 mutations probably cause osteopetrosis by impairing the acidification of the osteoclast resorption lacuna, which depends on ClC-7 (ref. 3). The finding that grey-lethal mice, just like ClC-7-deficient mice, show lysosomal storage and neurodegeneration in addition to osteopetrosis implies a more general importance for ClC-7-Ostm1 complexes.
Collapse
Affiliation(s)
- Philipp F Lange
- Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universität Hamburg, Falkenried 94, D-20246 Hamburg, Germany
| | | | | | | |
Collapse
|
50
|
Johansson BB, Minsaas L, Aragay AM. Proteasome involvement in the degradation of the G(q) family of Galpha subunits. FEBS J 2005; 272:5365-77. [PMID: 16218966 DOI: 10.1111/j.1742-4658.2005.04934.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabolically unstable proteins are involved in a multitude of regulatory networks, including those that control cell signaling, the cell cycle and in many responses to physiological stress. In the present study, we have determined the stability and characterized the degradation process of some members of the G(q) class of heterotrimeric G proteins. Pulse-chase experiments in HEK293 cells indicated a rapid turnover of endogenously expressed Galpha(q) and overexpressed Galpha(q) and Galpha(16) subunits. Pretreatment with proteasome inhibitors attenuated the degradation of both G alpha subunits. In contrast, pretreatment of cells with inhibitors of lysosomal proteases and nonproteasomal cysteine proteases had very little effect on the stability of the proteins. Significantly, the turnover of these proteins is not affected by transient activation of their associated receptors. Fractionation studies showed that the rates of Galpha(q) and Galpha16 degradation are accelerated in the cytosol. In fact, we show that a mutant Galpha(q) which lacks its palmitoyl modification site, and which is localized almost entirely in the cytoplasm, has a marked increase in the rate of degradation. Taken together, these results suggest that the G(q) class proteins are degraded through the proteasome pathway and that cellular localization and/or other protein interactions determine their stability.
Collapse
Affiliation(s)
- Bente B Johansson
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Norway
| | | | | |
Collapse
|