1
|
Chaparro-Pedraza PC, Roth G, Melián CJ. Ecological diversification in sexual and asexual lineages. Sci Rep 2024; 14:30369. [PMID: 39638813 PMCID: PMC11621406 DOI: 10.1038/s41598-024-81770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
The presence or absence of sex can have a strong influence on the processes whereby species arise. Yet, the mechanistic underpinnings of this influence are poorly understood. To gain insights into the mechanisms whereby the reproductive mode may influence ecological diversification, we investigate how natural selection, genetic mixing, and the reproductive mode interact and how this interaction affects the evolutionary dynamics of diversifying lineages. To do so, we analyze models of ecological diversification for sexual and asexual lineages, in which diversification is driven by intraspecific resource competition. We find that the reproductive mode strongly influences the diversification rate and, thus, the ensuing diversity of a lineage. Our results reveal that ecologically-based selection is stronger in asexual lineages because asexual organisms have a higher reproductive potential than sexual ones. This promotes faster diversification in asexual lineages. However, a small amount of genetic mixing accelerates the trait expansion process in sexual lineages, overturning the effect of ecologically-based selection alone and enabling a faster niche occupancy than asexual lineages. As a consequence, sexual lineages can occupy more ecological niches, eventually resulting in higher diversity. This suggests that sexual reproduction may be widespread among species because it increases the rate of diversification.
Collapse
Affiliation(s)
- P Catalina Chaparro-Pedraza
- Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland.
- Department Systems Analysis, Integrated Assessment and Modelling, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf, Switzerland.
- Inst. of Ecology and Evolution, University of Bern, Bern, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Carlos J Melián
- Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
- Inst. of Ecology and Evolution, University of Bern, Bern, Switzerland
- Inst. de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Palma de Mallorca, Spain
| |
Collapse
|
2
|
Zhu F, Lu J, Sun K, Deng C, Xu Y. Polyploidization of Indotyphlops braminus: evidence from isoform-sequencing. BMC Genom Data 2024; 25:23. [PMID: 38408920 PMCID: PMC10895795 DOI: 10.1186/s12863-024-01208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Indotyphlops braminus, the only known triploid parthenogenetic snake, is a compelling species for revealing the mechanism of polyploid emergence in vertebrates. METHODS In this study, we applied PacBio isoform sequencing technology to generate the first full-length transcriptome of I. braminus, aiming to improve the understanding of the molecular characteristics of this species. RESULTS A total of 51,849 nonredundant full-length transcript assemblies (with an N50 length of 2980 bp) from I. braminus were generated and fully annotated using various gene function databases. Our analysis provides preliminary evidence supporting a recent genome duplication event in I. braminus. Phylogenetic analysis indicated that the divergence of I. braminus subgenomes occurred approximately 11.5 ~ 15 million years ago (Mya). The full-length transcript resource generated as part of this research will facilitate transcriptome analysis and genomic evolution studies in the future.
Collapse
Affiliation(s)
- Fei Zhu
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, Guizhou, China.
| | - Jing Lu
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, Guizhou, China
| | - Ke Sun
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, Guizhou, China
| | - Cao Deng
- Department of Bioinformatics, DNA Stories Bioinformatics Center, 610000, Chengdu, China
| | - Yu Xu
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Martel SI, Zamora CA, Ricote N, Sepúlveda DA, Mahéo F, Simon JC, Figueroa CC, Rezende EL, Bozinovic F. Rapid turnover of a pea aphid superclone mediated by thermal endurance in central Chile. Proc Biol Sci 2024; 291:20232462. [PMID: 38320609 PMCID: PMC10846945 DOI: 10.1098/rspb.2023.2462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Global change drivers are imposing novel conditions on Earth's ecosystems at an unprecedented rate. Among them, biological invasions and climate change are of critical concern. It is generally thought that strictly asexual populations will be more susceptible to rapid environmental alterations due to their lack of genetic variability and, thus, of adaptive responses. In this study, we evaluated the persistence of a widely distributed asexual lineage of the alfalfa race of the pea aphid, Acyrthosiphon pisum, along a latitudinal transect of approximately 600 km in central Chile after facing environmental change for a decade. Based on microsatellite markers, we found an almost total replacement of the original aphid superclone by a new variant. Considering the unprecedented warming that this region has experienced in recent years, we experimentally evaluated the reproductive performance of these two A. pisum lineages at different thermal regimes. The new variant exhibits higher rates of population increase at warmer temperatures, and computer simulations employing a representative temperature dataset suggest that it might competitively displace the original superclone. These results support the idea of a superclone turnover mediated by differential reproductive performance under changing temperatures.
Collapse
Affiliation(s)
- Sebastián I. Martel
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago & Viña del Mar, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago de Chile, Chile
| | - Cristián A. Zamora
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Natalia Ricote
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago & Viña del Mar, Chile
| | - Daniela A. Sepúlveda
- Center for Molecular and Functional Ecology in Agroecosystems (CEMF), Instituto de Ciencias Biológicas, Universidad de Talca, Av. Lircay s/n, Talca, Chile
| | - Frédérique Mahéo
- INRAE, UMR IGEPP, Institut Agro, Université de Rennes, Le Rheu, France
| | | | - Christian C. Figueroa
- Center for Molecular and Functional Ecology in Agroecosystems (CEMF), Instituto de Ciencias Biológicas, Universidad de Talca, Av. Lircay s/n, Talca, Chile
| | - Enrico L. Rezende
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Francisco Bozinovic
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| |
Collapse
|
4
|
Huang ZY, Xi YL, Wang Q, Li ZA, Shi BC, Ge YL. Evolution Under Dietary Restriction Increases Reproduction at the Cost of Decreased Somatic Growth. J Gerontol A Biol Sci Med Sci 2023; 78:1135-1142. [PMID: 37061823 DOI: 10.1093/gerona/glad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 04/17/2023] Open
Abstract
Dietary restriction (DR) is cited as the most reliable means of extending life span in a wide range of taxa, yet the evolutionary basis of the DR effect on life span remains unclear. The resource reallocation hypothesis proposes that the longevity-extending response of DR is adaptive and stems from the reallocation of resources from reproduction to somatic maintenance under food-limited conditions. However, if DR continues for multiple generations, such a response becomes maladaptive, and genotypes with higher fecundity should be selectively favored over genotypes with longer longevity. To test this prediction, we exposed replicate populations of the rotifer Brachionus dorcas, a model organism for aging and experimental evolution studies, to DR and ad-libitum (AL) diets for 100 days. During the selection experiment, AL-selected populations showed higher growth rates and mictic ratios than DR-selected populations. After approximately 27 asexual generations of selection, populations with a DR selection history had a higher net reproductive rate but lower body volume and ingestion rate in the absence of survival costs than populations with an AL selection history when they were assayed on an AL diet. Our results are inconsistent with the prediction that evolution on sustained DR increases reproduction and reduces life span, and show for the first time that sustained DR selects for clones with higher energy investment in reproduction but lower investment in somatic growth.
Collapse
Affiliation(s)
- Zhi-Yu Huang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-funded by Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China
| | - Yi-Long Xi
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-funded by Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China
| | - Qiao Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-funded by Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China
| | - Zi-Ai Li
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-funded by Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China
| | - Bao-Chun Shi
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-funded by Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China
| | - Ya-Li Ge
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-funded by Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
5
|
Martel SI, Zamora CA, Behrens CA, Rezende EL, Bozinovic F. Phenotypic specialization of the pea aphid in its southern limit of distribution. Comp Biochem Physiol A Mol Integr Physiol 2023; 279:111388. [PMID: 36746224 DOI: 10.1016/j.cbpa.2023.111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
The success of biological invasions ultimately relies on phenotypic traits of the invasive species. Aphids, which include many important pests worldwide, may have been successful invading new environments partly because they can maximize reproductive output by becoming parthenogenetic and losing the sexual phase of their reproductive cycle. However, invasive populations of aphids invading wide ranges can face contrasting environmental conditions and requiring different phenotypic strategies. Besides transitions in their reproductive cycle, it is only partially known which phenotypic traits might be associated to the invasion success of aphid populations in extended novel ranges. Here, we used four genotypes of the pea aphid Acyrthosiphon pisum from two localities in Chile to test for phenotypic specialization that might explain their establishment and spread in habitats exhibiting contrasting environmental conditions. We show that lineages living at a higher latitude with low temperatures show, in addition to facultative sexual reproduction, smaller body sizes, lower metabolic rates and a higher tolerance to the cold than the obligate asexual lineages living in a mild weather, at the expense of fecundity. Conversely, at higher temperatures only asexual lineages were found, which exhibit larger body sizes, higher reproductive outputs and consequently enhanced demographic ability. As a result, in conjunction with the reproductive mode, lineage specialization in physiological and life-history traits could be taken into account as an important strategy for populations of pea aphid to effectively invade extended novel ranges comprising different climatic conditions.
Collapse
Affiliation(s)
- Sebastián I Martel
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile; Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile.
| | - Cristián A Zamora
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Camilo A Behrens
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Enrico L Rezende
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Francisco Bozinovic
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| |
Collapse
|
6
|
MacPherson B, Scott R, Gras R. Using individual-based modelling to investigate a pluralistic explanation for the prevalence of sexual reproduction in animal species. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Pierre JS, Stoeckel S, Wajnberg E. The advantage of sex: Reinserting fluctuating selection in the pluralist approach. PLoS One 2022; 17:e0272134. [PMID: 35917359 PMCID: PMC9345338 DOI: 10.1371/journal.pone.0272134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
The advantage of sex, and its fixation in some clades and species all over the eukaryote tree of life, is considered an evolutionary enigma, especially regarding its assumed two-fold cost. Several likely hypotheses have been proposed such as (1) a better response to the negative frequency-dependent selection imposed by the “Red Queen” hypothesis; (2) the competition between siblings induced by the Tangled Bank hypothesis; (3) the existence of genetic and of (4) ecological factors that can diminish the cost of sex to less than the standard assumed two-fold; and (5) a better maintenance of genetic diversity and its resulting phenotypic variation, providing a selective advantage in randomly fluctuating environments. While these hypotheses have mostly been studied separately, they can also act simultaneously. This was advocated by several studies which presented a pluralist point of view. Only three among the five causes cited above were considered yet in such a framework: the Red Queen hypothesis, the Tangled Bank and the genetic factors lowering the cost of sex. We thus simulated the evolution of a finite mutating population undergoing negative frequency-dependent selection on phenotypes and a two-fold (or less) cost of sexuality, experiencing randomly fluctuating selection along generations. The individuals inherited their reproductive modes, either clonal or sexual. We found that exclusive sexuality begins to fix in populations exposed to environmental variation that exceeds the width of one ecological niche (twice the standard deviation of a Gaussian response to environment). This threshold was lowered by increasing negative frequency-dependent selection and when reducing the two-fold cost of sex. It contributes advocating that the different processes involved in a short-term advantage of sex and recombination can act in combination to favor the fixation of sexual reproduction in populations.
Collapse
Affiliation(s)
- Jean-Sébastien Pierre
- UMR 6553 Ecologie Biodiversité Evolution, CNRS INEE, Université de Rennes 1, OSUR, Campus de Beaulieu, Rennes Cedex, France
- * E-mail:
| | - Solenn Stoeckel
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, France
| | - Eric Wajnberg
- INRAE, Sophia Antipolis Cedex, France
- Projet Hephaistos, INRIA, Sophia Antipolis Cedex, France
| |
Collapse
|
8
|
Khan Z, Khan MS, Bawazeer S, Bawazeer N, Suleman, Irfan M, Rauf A, Su XH, Xing LX. A comprehensive review on the documented characteristics of four Reticulitermes termites (Rhinotermitidae, Blattodea) of China. BRAZ J BIOL 2022; 84:e256354. [PMID: 35319619 DOI: 10.1590/1519-6984.256354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 11/22/2022] Open
Abstract
Termites are known as social insects worldwide. Presently in China 473 species, 44 genera and 4 families of termites have been reported. Of them, 111 Reticulitermes species are widely spread in different zones of China. The dispersion flight season of these Chinese Reticulitermes species are usually started from February to June, but in some regions different species are distributed, sharing their boundaries and having overlapping flight seasons. These reasons become important sources of hybridization between two different heterospecific populations of termites. It was confirmed that the fertilized eggs and unfertilized eggs of some Reticulitermes termites have the capacity of cleavage. While the unfertilized eggs of R. aculabialis, R. chinensis and R. labralis cleaved normally and the only R. aculabialis unfertilized eggs develop in embryos. While, the R. flaviceps and R. chinensis were observed with their abnormal embryonic development, and not hatching of eggs parthenogenetically. They were reported more threatening to Chinese resources as they propagate with parthenogenesis, hybridization and sexual reproduction. Eggshell and macrophiles of eggs play important roles in species identification and control. Although, they are severe pests and cause a wide range of damages to wooden structures and products in homes, buildings, building materials, trees, crops, and forests in China's Mainland.
Collapse
Affiliation(s)
- Z Khan
- Northwest University, College of Life Sciences, Xi'an, China.,University of Swabi, Zoology Department, Khyber Pakhtunkhwa, Pakistan
| | - M S Khan
- University of Swabi, Zoology Department, Khyber Pakhtunkhwa, Pakistan
| | - S Bawazeer
- Umm Al-Qura University, Faculty of Pharmacy, Department of Pharmacognosy, Makkah, Kingdom of Saudi Arabia
| | - N Bawazeer
- Minister of Interior General Directorate of Prison's Health, Pharmacy Department, Kingdom of Saudi Arabia
| | - Suleman
- University of Swabi, Zoology Department, Khyber Pakhtunkhwa, Pakistan
| | - M Irfan
- Abdul Wali Khan University, Department of Botany, Mardan, Pakistan.,University of Swabi, Department of Botany, Swabi, Pakistan.,Missouri Botanical Garden, St. Louis, MO, U.S.A
| | - A Rauf
- University of Swabi, Department of Chemistry, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - X-H Su
- Northwest University, College of Life Sciences, Xi'an, China.,Northwest University, Shaanxi Key Laboratory for Animal Conservation, Xi'an, China.,Northwest University, Key Laboratory of Resource Biology and Biotechnology, Xi'an, China
| | - L-X Xing
- Northwest University, College of Life Sciences, Xi'an, China.,Northwest University, Shaanxi Key Laboratory for Animal Conservation, Xi'an, China.,Northwest University, Key Laboratory of Resource Biology and Biotechnology, Xi'an, China
| |
Collapse
|
9
|
Li W, Niu C, Bian S. Sex ratio in the mother's environment affects offspring population dynamics: maternal effects on population regulation. Proc Biol Sci 2022; 289:20212530. [PMID: 35232242 PMCID: PMC8889200 DOI: 10.1098/rspb.2021.2530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Classic population regulation theories usually concern the influence of immediate factors on current populations, but studies investigating the effect of parental environment factors on their offspring populations are scarce. The maternal environments can affect offspring life-history traits across generations, which may affect population dynamics and be a mechanism of population regulation. In cyclical parthenogens, sexual reproduction is typically linked with dormancy, thereby providing a negative feedback to population growth. In this study, we manipulated population sex ratios in the mother's environment to investigate whether this factor affected future population dynamics by regulating offspring sexual reproduction in the rotifer Brachionus calyciflorus. Compared with females in male-biased environments, those in female-biased environments produced fewer mictic (sexual) offspring, and their amictic (asexual) offspring also produced a lower proportion of mictic females at a gradient of population densities. Moreover, populations that were manipulated under male-biased conditions showed significantly smaller population sizes than those under female-biased conditions. Our results indicated that in cyclical parthenogens, mothers could adjust the sexual reproduction of their offspring in response to the current population sex ratio, thus providing fine-scale regulation of population dynamics in addition to population density.
Collapse
Affiliation(s)
- Wenjie Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Cuijuan Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Shijun Bian
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
10
|
Yashiro T, Tea YK, Van Der Wal C, Nozaki T, Mizumoto N, Hellemans S, Matsuura K, Lo N. Enhanced heterozygosity from male meiotic chromosome chains is superseded by hybrid female asexuality in termites. Proc Natl Acad Sci U S A 2021; 118:e2009533118. [PMID: 34903643 PMCID: PMC8713478 DOI: 10.1073/pnas.2009533118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Although males are a ubiquitous feature of animals, they have been lost repeatedly in diverse lineages. The tendency for obligate asexuality to evolve is thought to be reduced in animals whose males play a critical role beyond the contribution of gametes, for example, via care of offspring or provision of nuptial gifts. To our knowledge, the evolution of obligate asexuality in such species is unknown. In some species that undergo frequent inbreeding, males are hypothesized to play a key role in maintaining genetic heterozygosity through the possession of neo-sex chromosomes, although empirical evidence for this is lacking. Because inbreeding is a key feature of the life cycle of termites, we investigated the potential role of males in promoting heterozygosity within populations through karyotyping and genome-wide single-nucleotide polymorphism analyses of the drywood termite Glyptotermes nakajimai We showed that males possess up to 15 out of 17 of their chromosomes as sex-linked (sex and neo-sex) chromosomes and that they maintain significantly higher levels of heterozygosity than do females. Furthermore, we showed that two obligately asexual lineages of this species-representing the only known all-female termite populations-arose independently via intraspecific hybridization between sexual lineages with differing diploid chromosome numbers. Importantly, these asexual females have markedly higher heterozygosity than their conspecific males and appear to have replaced the sexual lineages in some populations. Our results indicate that asexuality has enabled females to supplant a key role of males.
Collapse
Affiliation(s)
- Toshihisa Yashiro
- School of Life and Environmental Sciences, University of Sydney, Sydney NSW 2006, Australia;
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yi-Kai Tea
- School of Life and Environmental Sciences, University of Sydney, Sydney NSW 2006, Australia
- Ichthyology, Australian Museum Research Institute, Sydney, NSW 2010, Australia
| | - Cara Van Der Wal
- School of Life and Environmental Sciences, University of Sydney, Sydney NSW 2006, Australia
| | - Tomonari Nozaki
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Nobuaki Mizumoto
- Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son 904-0495, Japan
| | - Simon Hellemans
- Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son 904-0495, Japan
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney NSW 2006, Australia;
| |
Collapse
|
11
|
MacPherson B, Scott R, Gras R. Sex and recombination purge the genome of deleterious alleles: An Individual Based Modeling Approach. ECOLOGICAL COMPLEXITY 2021. [DOI: 10.1016/j.ecocom.2021.100910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Martel SI, Ossa CG, Simon J, Figueroa CC, Bozinovic F. Latitudinal trend in the reproductive mode of the pea aphid Acyrthosiphon pisum invading a wide climatic range. Ecol Evol 2020; 10:8289-8298. [PMID: 32788979 PMCID: PMC7417215 DOI: 10.1002/ece3.6536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/15/2020] [Accepted: 06/08/2020] [Indexed: 11/12/2022] Open
Abstract
The maintenance of sexuality is a puzzling phenomenon in evolutionary biology. Many universal hypotheses have been proposed to explain the prevalence of sex despite its costs, but it has been hypothesized that sex could be also retained by lineage-specific mechanisms that would confer some short-term advantage. Aphids are good models to study the maintenance of sex because they exhibit coexistence of both sexual and asexual populations within the same species and because they invade a large variety of ecosystems. Sex in aphids is thought to be maintained because only sexually produced eggs can persist in cold climates, but whether sex is obligate or facultative depending on climatic conditions remains to be elucidated. In this study, we have inferred the reproductive mode of introduced populations of the pea aphid Acyrthosiphon pisum in Chile along a climatic gradient using phenotypic assays and genetic-based criteria to test the ecological short-term advantage of sex in cold environments. Our results showed a latitudinal trend in the reproductive mode of Chilean pea aphid population from obligate parthenogenesis in the north to an intermediate life cycle producing both parthenogenetic and sexual progeny in the southernmost locality, where harsh winters are usual. These findings are congruent with the hypothesis of the ecological short-term advantage of sex in aphids.
Collapse
Affiliation(s)
- Sebastián I. Martel
- Departamento de EcologíaFacultad de Ciencias BiológicasCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiago de ChileChile
| | - Carmen G. Ossa
- Instituto de BiologíaFacultad de CienciasUniversidad de ValparaísoValparaísoChile
| | | | - Christian C. Figueroa
- Instituto de Ciencias BiológicasCenter for Molecular and Functional Ecology in Agroecosystems (CEMF)Universidad de TalcaTalcaChile
| | - Francisco Bozinovic
- Departamento de EcologíaFacultad de Ciencias BiológicasCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiago de ChileChile
| |
Collapse
|
13
|
Kiefer M, Nauerth BH, Volkert C, Ibberson D, Loreth A, Schmidt A. Gene Function Rather than Reproductive Mode Drives the Evolution of RNA Helicases in Sexual and Apomictic Boechera. Genome Biol Evol 2020; 12:656-673. [PMID: 32302391 PMCID: PMC7250504 DOI: 10.1093/gbe/evaa078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2020] [Indexed: 12/20/2022] Open
Abstract
In higher plants, sexual and asexual reproductions through seeds (apomixis) have evolved as alternative strategies. Evolutionary advantages leading to coexistence of both reproductive modes are currently not well understood. It is expected that accumulation of deleterious mutations leads to a rapid elimination of apomictic lineages from populations. In this line, apomixis originated repeatedly, likely from deregulation of the sexual pathway, leading to alterations in the development of reproductive lineages (germlines) in apomicts as compared with sexual plants. This potentially involves mutations in genes controlling reproduction. Increasing evidence suggests that RNA helicases are crucial regulators of germline development. To gain insights into the evolution of 58 members of this diverse gene family in sexual and apomictic plants, we applied target enrichment combined with next-generation sequencing to identify allelic variants from 24 accessions of the genus Boechera, comprising sexual, facultative, and obligate apomicts. Interestingly, allelic variants from apomicts did not show consistently increased mutation frequency. Either sequences were highly conserved in any accession, or allelic variants preferentially harbored mutations in evolutionary less conserved C- and N-terminal domains, or presented high mutation load independent of the reproductive mode. Only for a few genes allelic variants harboring deleterious mutations were only identified in apomicts. To test if high sequence conservation correlates with roles in fundamental cellular or developmental processes, we analyzed Arabidopsis thaliana mutant lines in VASA-LIKE (VASL), and identified pleiotropic defects during ovule and reproductive development. This indicates that also in apomicts mechanisms of selection are in place based on gene function.
Collapse
Affiliation(s)
- Markus Kiefer
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Berit H Nauerth
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Christopher Volkert
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, Heidelberg, Germany
| | - Anna Loreth
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Anja Schmidt
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
14
|
Bogart JP. A family study to examine clonal diversity in unisexual salamanders (genus Ambystoma). Genome 2019; 62:549-561. [DOI: 10.1139/gen-2019-0034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unisexual Ambystoma are the oldest known unisexual vertebrates and comprise a lineage of eastern North American all female salamanders that reproduce by stealing sperm from as many as five normally bisexual congeneric species. The sperm may be used to only stimulate egg development by gynogenesis but can be incorporated in the zygote to elevate the ploidy level or to replace one of the female’s haploid genomes. This flexible and unique reproductive system, termed kleptogenesis, is investigated using a microsatellite examination of 988 offspring from 14 unisexual mothers. All mothers produced clonal and ploidy-elevated offspring. Genome replacement and multiple paternity are confirmed for the first time in unisexual Ambystoma. Microsatellite mutations were found in all five microsatellite loci and the estimated microsatellite mutation rate varied by locus and by genome. Clonal variation is attributed to the inclusion of sperm donors’ haploid genomes for ploidy elevation, genome replacement, mutations, and natural selection.
Collapse
Affiliation(s)
- James P. Bogart
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
15
|
Pizarro D, Dal Grande F, Leavitt SD, Dyer PS, Schmitt I, Crespo A, Thorsten Lumbsch H, Divakar PK. Whole-Genome Sequence Data Uncover Widespread Heterothallism in the Largest Group of Lichen-Forming Fungi. Genome Biol Evol 2019; 11:721-730. [PMID: 30715356 PMCID: PMC6414310 DOI: 10.1093/gbe/evz027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
Fungal reproduction is regulated by the mating-type (MAT1) locus, which typically comprises two idiomorphic genes. The presence of one or both allelic variants at the locus determines the reproductive strategy in fungi—homothallism versus heterothallism. It has been hypothesized that self-fertility via homothallism is widespread in lichen-forming fungi. To test this hypothesis, we characterized the MAT1 locus of 41 genomes of lichen-forming fungi representing a wide range of growth forms and reproductive strategies in the class Lecanoromycetes, the largest group of lichen-forming fungi. Our results show the complete lack of genetic homothallism suggesting that lichens evolved from a heterothallic ancestor. We argue that this may be related to the symbiotic lifestyle of these fungi, and may be a key innovation that has contributed to the accelerated diversification rates in this fungal group.
Collapse
Affiliation(s)
- David Pizarro
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Francesco Dal Grande
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe Universität and Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Steven Don Leavitt
- Department of Biology and M.L. Bean Life Science Museum, Brigham Young University, Provo, Utah
| | | | - Imke Schmitt
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe Universität and Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Ana Crespo
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | | | - Pradeep Kumar Divakar
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| |
Collapse
|
16
|
Scheuerl T, Stelzer C. Asexual reproduction changes predator population dynamics in a life predator-prey system. POPUL ECOL 2019; 61:210-216. [PMID: 33149722 PMCID: PMC7594307 DOI: 10.1002/1438-390x.1017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/14/2018] [Accepted: 09/24/2018] [Indexed: 11/24/2022]
Abstract
Many organisms display oscillations in population size. Theory predicts that these fluctuations can be generated by predator-prey interactions, and empirical studies using life model systems, such as a rotifer-algae community consisting of Brachionus calyciflorus as predator and Chlorella vulgaris as prey, have been successfully used for studying such dynamics. B. calyciflorus is a cyclical parthenogen (CP) and clones often differ in their sexual propensity, that is, the degree to which they engage into sexual or asexual (clonal) reproduction. Since sexual propensities can affect growth rates and population sizes, we hypothesized that this might also affect population oscillations. Here, we studied the dynamical behaviour of B. calyciflorus clones representing either CPs (regularly inducing sex) or obligate parthenogens (OPs). We found that the amplitudes of population cycles to be increased in OPs at low nutrient levels. Several other population dynamic parameters seemed unaffected. This suggests that reproductive mode might be an important additional variable to be considered in future studies of population oscillations.
Collapse
Affiliation(s)
- Thomas Scheuerl
- Research Institute for Limnology, University of InnsbruckMondseeAustria
| | | |
Collapse
|
17
|
Hite JL, Penczykowski RM, Shocket MS, Griebel KA, Strauss AT, Duffy MA, Cáceres CE, Hall SR. Allocation, not male resistance, increases male frequency during epidemics: a case study in facultatively sexual hosts. Ecology 2017; 98:2773-2783. [PMID: 28766698 DOI: 10.1002/ecy.1976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/23/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022]
Abstract
Why do natural populations vary in the frequency of sexual reproduction? Virulent parasites may help explain why sex is favored during disease epidemics. To illustrate, we show a higher frequency of males and sexually produced offspring in natural populations of a facultative parthenogenetic host during fungal epidemics. In a multi-year survey of 32 lakes, the frequency of males (an index of sex) was higher in populations of zooplankton hosts with larger epidemics. A lake mesocosm experiment established causality: experimental epidemics produced a higher frequency of males relative to disease-free controls. One common explanation for such a pattern involves Red Queen (RQ) dynamics. However, this particular system lacks key genetic specificity mechanisms required for the RQ, so we evaluated two other hypotheses. First, individual females, when stressed by infection, could increase production of male offspring vs. female offspring (a tenant of the "Abandon Ship" theory). Data from a life table experiment supports this mechanism. Second, higher male frequency during epidemics could reflect a purely demographic process (illustrated with a demographic model): males could resist infection more than females (via size-based differences in resistance and mortality). However, we found no support for this resistance mechanism. A size-based model of resistance, parameterized with data, revealed why: higher male susceptibility negated the lower exposure (a size-based advantage) of males. These results suggest that parasite-mediated increases in allocation to sex by individual females, rather than male resistance, increased the frequency of sex during larger disease epidemics.
Collapse
Affiliation(s)
- Jessica L Hite
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | | | - Marta S Shocket
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | | | | | - Meghan A Duffy
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Carla E Cáceres
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| |
Collapse
|
18
|
Amat I, van Alphen JJ, Kacelnik A, Desouhant E, Bernstein C. Adaptations to different habitats in sexual and asexual populations of parasitoid wasps: a meta-analysis. PeerJ 2017; 5:e3699. [PMID: 28924495 PMCID: PMC5600175 DOI: 10.7717/peerj.3699] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/26/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Coexistence of sexual and asexual populations remains a key question in evolutionary ecology. We address the question how an asexual and a sexual form of the parasitoid Venturia canescens can coexist in southern Europe. We test the hypothesis that both forms are adapted to different habitats within their area of distribution. Sexuals inhabit natural environments that are highly unpredictable, and where density of wasps and their hosts is low and patchily distributed. Asexuals instead are common in anthropic environments (e.g., grain stores) where host outbreaks offer periods when egg-load is the main constraint on reproductive output. METHODS We present a meta-analysis of known adaptations to these habitats. Differences in behavior, physiology and life-history traits between sexual and asexual wasps were standardized in term of effect size (Cohen's d value; Cohen, 1988). RESULTS Seeking consilience from the differences between multiple traits, we found that sexuals invest more in longevity at the expense of egg-load, are more mobile, and display higher plasticity in response to thermal variability than asexual counterparts. DISCUSSION Thus, each form has consistent multiple adaptations to the ecological circumstances in the contrasting environments.
Collapse
Affiliation(s)
- Isabelle Amat
- UMR CNRS 5558 Biométrie et Biologie Evolutive, Univ Lyon; Université Claude Bernard (Lyon I), Villeurbanne, France
| | | | - Alex Kacelnik
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Emmanuel Desouhant
- UMR CNRS 5558 Biométrie et Biologie Evolutive, Univ Lyon; Université Claude Bernard (Lyon I), Villeurbanne, France
| | - Carlos Bernstein
- UMR CNRS 5558 Biométrie et Biologie Evolutive, Univ Lyon; Université Claude Bernard (Lyon I), Villeurbanne, France
| |
Collapse
|
19
|
Why Sex? A Pluralist Approach Revisited. Trends Ecol Evol 2017; 32:589-600. [DOI: 10.1016/j.tree.2017.05.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 01/08/2023]
|
20
|
Tilquin A, Kokko H. What does the geography of parthenogenesis teach us about sex? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150538. [PMID: 27619701 PMCID: PMC5031622 DOI: 10.1098/rstb.2015.0538] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2016] [Indexed: 11/12/2022] Open
Abstract
Theory predicts that sexual reproduction is difficult to maintain if asexuality is an option, yet sex is very common. To understand why, it is important to pay attention to repeatably occurring conditions that favour transitions to, or persistence of, asexuality. Geographic parthenogenesis is a term that has been applied to describe a large variety of patterns where sexual and related asexual forms differ in their geographic distribution. Often asexuality is stated to occur in a habitat that is, in some sense, marginal, but the interpretation differs across studies: parthenogens might not only predominate near the margin of the sexuals' distribution, but might also extend far beyond the sexual range; they may be disproportionately found in newly colonizable areas (e.g. areas previously glaciated), or in habitats where abiotic selection pressures are relatively stronger than biotic ones (e.g. cold, dry). Here, we review the various patterns proposed in the literature, the hypotheses put forward to explain them, and the assumptions they rely on. Surprisingly, few mathematical models consider geographic parthenogenesis as their focal question, but all models for the evolution of sex could be evaluated in this framework if the (often ecological) causal factors vary predictably with geography. We also recommend broadening the taxa studied beyond the traditional favourites.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Anaïs Tilquin
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland Centre of Excellence in Biological Interactions, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland Centre of Excellence in Biological Interactions, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
21
|
Lehtonen J, Kokko H, Parker GA. What do isogamous organisms teach us about sex and the two sexes? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150532. [PMID: 27619696 PMCID: PMC5031617 DOI: 10.1098/rstb.2015.0532] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 11/12/2022] Open
Abstract
Isogamy is a reproductive system where all gametes are morphologically similar, especially in terms of size. Its importance goes beyond specific cases: to this day non-anisogamous systems are common outside of multicellular animals and plants, they can be found in all eukaryotic super-groups, and anisogamous organisms appear to have isogamous ancestors. Furthermore, because maleness is synonymous with the production of small gametes, an explanation for the initial origin of males and females is synonymous with understanding the transition from isogamy to anisogamy. As we show here, this transition may also be crucial for understanding why sex itself remains common even in taxa with high costs of male production (the twofold cost of sex). The transition to anisogamy implies the origin of male and female sexes, kickstarts the subsequent evolution of sex roles, and has a major impact on the costliness of sexual reproduction. Finally, we combine some of the consequences of isogamy and anisogamy in a thought experiment on the maintenance of sexual reproduction. We ask what happens if there is a less than twofold benefit to sex (not an unlikely scenario as large short-term benefits have proved difficult to find), and argue that this could lead to a situation where lineages that evolve anisogamy-and thus the highest costs of sex-end up being associated with constraints that make invasion by asexual reproduction unlikely (the 'anisogamy gateway' hypothesis).This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Jussi Lehtonen
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Geoff A Parker
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
22
|
Stelzer CP, Lehtonen J. Diapause and maintenance of facultative sexual reproductive strategies. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150536. [PMID: 27619700 PMCID: PMC5031621 DOI: 10.1098/rstb.2015.0536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2016] [Indexed: 11/12/2022] Open
Abstract
Facultative sex combines sexual and asexual reproduction in the same individual (or clone) and allows for a large diversity of life-history patterns regarding the timing, frequency and intensity of sexual episodes. In addition, other life-history traits such as a diapause stage may become linked to sex. Here, we develop a matrix modelling framework for addressing the cost of sex in facultative sexuals, in constant, periodic and stochastically fluctuating environments. The model is parametrized using life-history data from Brachionus calyciflorus, a facultative sexual rotifer in which sex and diapause are linked. Sexual propensity was an important driver of costs in constant environments, in which high costs (always > onefold, and sometimes > twofold) indicated that asexuals should outcompete facultative sexuals. By contrast, stochastic environments with high temporal autocorrelation favoured facultative sex over obligate asex, in particular, if the penalty to fecundity in 'bad' environments was large. In such environments, obligate asexuals were constrained by their life cycle length (i.e. time from birth to last reproductive adult age class), which determined an upper limit to the number of consecutive bad periods they could tolerate. Nevertheless, when facultative asexuals with different sexual propensities competed simultaneously against each other and asex, the lowest sex propensity was the most successful in stochastic environments with positive autocorrelation. Our results suggest that a highly specific mechanism (i.e. diapause linked to sex) can alone stabilize facultative sex in these animals, and protect it from invasion of both asexual and pure sexual strategies.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Claus-Peter Stelzer
- Research Institute for Limnology, University of Innsbruck, 5310 Mondsee, Austria
| | - Jussi Lehtonen
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
23
|
|
24
|
|