1
|
Zhang T, Jin Q, Ji J. Antimicrobial Peptides and Their Mimetics: Promising Candidates of Next-Generation Therapeutic Agents Combating Multidrug-Resistant Bacteria. Adv Biol (Weinh) 2025; 9:e2400461. [PMID: 39913150 DOI: 10.1002/adbi.202400461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/05/2025] [Indexed: 02/07/2025]
Abstract
The increasing morbidity and mortality caused by multidrug-resistant bacteria alerts human beings to the fact that conventional antibiotics are no longer reliable and effective alternatives are imperatively needed. Owing to wide range of sources, diverse structures, and unique mode of action, antimicrobial peptides have been highly anticipated and extensively studied in recent years. Besides, the integration of artificial intelligence helps researchers gain access to the vast unexplored chemical space, which opens more opportunities for the optimization and design of novel structures. Moreover, Due to advances in chemistry and synthetic biology, researchers have also begun to focus on the potential of chemical mimetics of antimicrobial peptides. In this review, a comprehensive discussion about natural and synthesized antimicrobial peptides as well as their chemical mimetics is made, so as to provide a comprehensive summary of this field and inspire follow-up research.
Collapse
Affiliation(s)
- Tianyi Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, P. R. China
| |
Collapse
|
2
|
Amann V, Kissmann AK, Firacative C, Rosenau F. Biofilm-Associated Candidiasis: Pathogenesis, Prevalence, Challenges and Therapeutic Options. Pharmaceuticals (Basel) 2025; 18:460. [PMID: 40283897 PMCID: PMC12030374 DOI: 10.3390/ph18040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
The rising prevalence of fungal infections, especially those caused by Candida species, presents a major risk to global health. With approximately 1.5 million deaths annually, the urgency for effective treatment options has never been greater. Candida spp. are the leading cause of invasive infections, significantly impacting immunocompromised patients and those in healthcare settings. C. albicans, C. parapsilosis and the emerging species C. auris are categorized as highly dangerous species because of their pathogenic potential and increasing drug resistance. This review comparatively describes the formation of microbial biofilms of both bacterial and fungal origin, including major pathogens, thereby creating a novel focus. Biofilms can further complicate treatment, as these structures provide enhanced resistance to antifungal therapies. Traditional antifungal agents, including polyenes, azoles and echinocandins, have shown effectiveness, yet resistance development continues to rise, necessitating the exploration of novel therapeutic approaches. Antimicrobial peptides (AMPs) such as the anti-biofilm peptides Pom-1 and Cm-p5 originally isolated from snails represent promising candidates due to their unique mechanisms of action and neglectable cytotoxicity. This review article discusses the challenges posed by Candida infections, the characteristics of important species, the role of biofilms in virulence and the potential of new therapeutic options like AMPs.
Collapse
Affiliation(s)
- Valerie Amann
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (V.A.); (A.-K.K.)
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (V.A.); (A.-K.K.)
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota 111221, Colombia;
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (V.A.); (A.-K.K.)
| |
Collapse
|
3
|
Ma N, Yang W, Chen B, Bao M, Li Y, Wang M, Yang X, Liu J, Wang C, Qiu L. Exploration of the primary antibiofilm substance and mechanism employed by Lactobacillus salivarius ATCC 11741 to inhibit biofilm of Streptococcus mutans. Front Cell Infect Microbiol 2025; 15:1535539. [PMID: 40134782 PMCID: PMC11933110 DOI: 10.3389/fcimb.2025.1535539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/14/2025] [Indexed: 03/27/2025] Open
Abstract
Introduction Lactobacillus salivarius serves as a probiotic potentially capable of preventing dental caries both in vitro and in vivo. This study focused on understanding the key antibiofilm agents and the mechanisms of action of the Lactobacilli supernatant against Streptococcus mutans. Methods Streptococcus mutans biofilm was constructed and the cell-free supernatant of Lactobacillus salivarius was added. After the biofilm was collected, RNA-seq and qRT-PCR were then performed to get gene information. The influence of temperature, pH and other factors on the supernatant were measured and non-targeted metabolome analysis was performed to analyze the effective components. Results The findings indicated that the supernatant derived from Lactobacillus salivarius could inhibit the biofilm formation of Streptococcus mutans at different times. Through transcriptome analysis, we discovered that the cell-free supernatant reduced biofilm formation, by suppressing phosphoenolpyruvate-dependent phosphotransferase systems along with two ATP-binding cassette transporters, rather than directly affecting the genes that code for glucosyltransferases; additionally, the supernatant was observed to diminish the expression of genes linked to two-component systems, polyketides/non-ribosomal peptides, acid stress response, quorum sensing, and exopolysaccharide formation. Non-targeted LC-MS/MS analysis was employed to discover a variety of potential active compounds present in the cellular filtrate of Lactobacillus salivarius that hinder the growth of S. mutans, including phenyllactic acid, sorbitol, and honokiol. Discussion In summary, our findings support the evaluation of Lactobacillus salivarius as a promising oral probiotic aimed at hindering the formation of biofilms by cariogenic pathogens and the development of dental caries.
Collapse
Affiliation(s)
- Nan Ma
- Department of Periodontics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
| | - Wei Yang
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Pedodontics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Bairu Chen
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Prosthetics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meihua Bao
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Prosthetics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yimin Li
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Prosthetics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meng Wang
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Prosthetics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiaopeng Yang
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Pedodontics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Junyi Liu
- Jinzhou Medical University, Jinzhou, China
| | - Chengyue Wang
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Prosthetics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lihong Qiu
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
4
|
Grover V, Jain A, Bhardwaj A, Mehta M, Arora S, Algarni YA, Bavabeedu SS, Das G, Ali ABM, Ahmed N, Heboyan A. Development of Synthetic Antimicrobial Peptides Based on Genomic Analysis of Streptococcus salivarius. J Clin Lab Anal 2025; 39:e25156. [PMID: 39853814 PMCID: PMC11848166 DOI: 10.1002/jcla.25156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND In the oral environment, the production of bacteriocins or antimicrobial peptides (AMPs) plays a crucial role in maintaining ecological balance by impeding the proliferation of closely related microorganisms. This study aims to conduct in silico genome screening of Streptococcus salivarius to identify potential antimicrobial compounds existing as hypothetical peptides, with the goal of developing novel synthetic antimicrobial peptides. METHODS Draft genomes of various oral Streptococcus salivarius strains were obtained from the NCBI database and subjected to analysis using bioinformatic tools, viz. Expert Protein-Analysis System (Expasy), UniProt Knowledgebase (UniProtKB), European Molecular Biology Open Software Suite (EMBOSS), Pepwheel, and PEP-FOLD Peptide Structure Prediction Server. The antimicrobial potential of peptides was assessed through the Antimicrobial Peptide Database (AMP) and Bactibase. Two short peptides, viz. synthetic antimicrobial peptides (SAMPs), were designed based on current knowledge of hydrophobic and cationic residues, synthesized, and their efficacy against biofilm formation was evaluated with standard microbiological methods. RESULTS The synthesized short peptides reduced the growth and effectively inhibited biofilm formation by specific oral microbial strains, demonstrating their potential as antimicrobial peptides. Furthermore, the alignment of bacteriocin biosynthetic clusters among streptococcus strains revealed variations in putative bacteriocin amino acid sequences across different strains of the same organism. CONCLUSION Streptococcus salivarius emerges as a promising bioresource for the development of novel antimicrobial agents, particularly for combating biofilm-associated oral infections.
Collapse
Affiliation(s)
- Vishakha Grover
- Dr. HS Judge Institute of Dental Sciences and HospitalPanjab UniversityChandigarhIndia
| | - Ashish Jain
- Dr. HS Judge Institute of Dental Sciences and HospitalPanjab UniversityChandigarhIndia
| | | | - Manjula Mehta
- Dr. HS Judge Institute of Dental Sciences and HospitalPanjab UniversityChandigarhIndia
| | - Suraj Arora
- Department of Restorative Dental Sciences, College of DentistryKing Khalid UniversityAbhaSaudi Arabia
| | - Youssef A. Algarni
- Department of Restorative Dental Sciences, College of DentistryKing Khalid UniversityAbhaSaudi Arabia
| | - Shashit Shetty Bavabeedu
- Department of Restorative Dental Sciences, College of DentistryKing Khalid UniversityAbhaSaudi Arabia
| | - Gotam Das
- Department of Prosthodontics, College of DentistryKing Khalid UniversityAbhaSaudi Arabia
| | - Ahmed Babiker Mohamed Ali
- Department of Restorative Dental Sciences, College of DentistryKing Khalid UniversityAbhaSaudi Arabia
| | - Naseer Ahmed
- Department of ProsthodonticsAltamash Institute of Dental MedicineKarachiPakistan
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of Prosthodontics, Faculty of StomatologyYerevan State Medical University after Mkhitar HeratsiYerevanArmenia
- Department of Prosthodontics, School of DentistryTehran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Xu B, Wang L, Yang C, Yan R, Zhang P, Jin M, Du H, Wang Y. Specifically targeted antimicrobial peptides synergize with bacterial-entrapping peptide against systemic MRSA infections. J Adv Res 2025; 67:301-315. [PMID: 38266820 PMCID: PMC11725144 DOI: 10.1016/j.jare.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/03/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION The design of precision antimicrobials aims to personalize the treatment of drug-resistant bacterial infections and avoid host microbiota dysbiosis. OBJECTIVES This study aimed to propose an efficient de novo design strategy to obtain specifically targeted antimicrobial peptides (STAMPs) against methicillin-resistant Staphylococcus aureus (MRSA). METHODS We evaluated three strategies designed to increase the selectivity of antimicrobial peptides (AMPs) for MRSA and mainly adopted an advanced hybrid peptide strategy. First, we proposed a traversal design to generate sequences, and constructed machine learning models to predict the anti-S. aureus activity levels of unknown peptides. Subsequently, six peptides were predicted to have high activity, among which, a broad-spectrum AMP (P18) was selected. Finally, the two targeting peptides from phage display libraries or lysostaphin were used to confer specific anti-S. aureus activity to P18. STAMPs were further screened out from hybrid peptides based on their in vitro and in vivo activities. RESULTS An advanced hybrid peptide strategy can enhance the specific and targeted properties of broad-spectrum AMPs. Among 25 assessed peptides, 10 passed in vitro tests, and two peptides containing one bacterial-entrapping peptide (BEP) and one STAMP passed an in vivo test. The lead STAMP (P18E6) disrupted MRSA cell walls and membranes, eliminated established biofilms, and exhibited desirable biocompatibility, systemic distribution and efficacy, and immunomodulatory activity in vivo. Furthermore, a bacterial-entrapping peptide (BEP, SP5) modified from P18, self-assembled into nanonetworks and rapidly entrapped MRSA. SP5 synergized with P18E6 to enhance antibacterial activity in vitro and reduced systemic MRSA infections. CONCLUSIONS This strategy may aid in the design of STAMPs against drug-resistant strains, and BEPs can serve as powerful STAMP adjuvants.
Collapse
Affiliation(s)
- Bocheng Xu
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Lin Wang
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Chen Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Rong Yan
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Pan Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Mingliang Jin
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Huahua Du
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China.
| | - Yizhen Wang
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Ahirwar P, Kozlovskaya V, Pukkanasut P, Nikishau P, Nealy S, Harber G, Michalek SM, Antony L, Wu H, Kharlampieva E, Velu SE. Polymer vesicles for the delivery of inhibitors of cariogenic biofilm. Dent Mater 2024; 40:1937-1953. [PMID: 39317560 PMCID: PMC11580801 DOI: 10.1016/j.dental.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVES The goal of this study is to develop a novel drug delivery platform for the pH-responsive delivery of biofilm inhibitors as a potential avenue to prevent and treat dental caries. METHODS Biofilm and growth inhibition assays were performed in polystyrene microtiter 96-well plates. Docking analysis was performed using the reported GtfB + HA5 co-crystal structure (PDB code: 8fg8) in SeeSAR 13.0.1 software. Polymersome vesicles were assembled from poly(N-vinylpyrrolidone)8-block-poly(dimethylsiloxane)64-block-poly(N-vinylpyrrolidone)8 (PVPON8-PDMS64-PVPON8) triblock copolymer using a nanoprecipitation method. Microbiome analysis of biofilm inhibitors and the in vivo drug release and antivirulence activities of polymersome encapsulated inhibitors have been carried out in a S. mutans induced rat caries model. RESULTS Biofilm inhibitors for HA5 and HA6 have shown species-specific selectivity towards S. mutans and the ability to preserve the oral microbiome in a S. mutans induced dental caries model. The inhibitors were encapsulated into pH-responsive block copolymer vesicles to generate polymersome-encapsulated biofilm inhibitors, and their biofilm and growth inhibitory activities against S. mutans and representative strains of oral commensal streptococci have been assessed. A 4-week treatment of S. mutans UA159 infected gnotobiotic rats with 100 µM of polymersome-encapsulated biofilm inhibitor, PEHA5 showed significant reductions in buccal, sulcal, and proximal caries scores compared to an untreated control group. SIGNIFICANCE Taken together, our data suggests that the biofilm-selective therapy using the polymersome-encapsulated biofilm inhibitors is a viable approach for the prevention and treatment of dental caries while preserving the oral microbiome.
Collapse
Affiliation(s)
- Parmanand Ahirwar
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Piyasuda Pukkanasut
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pavel Nikishau
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sarah Nealy
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gregory Harber
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Suzanne M Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Linto Antony
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Wu
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center of Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Microbiome Center, Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Global Center for Craniofacial Oral and Dental Disorders, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
7
|
Asghari Baghkheirati A, Golmohammadi R, Sekhavati MH, Razmyar J, Abyazi MA. Recombinant Antimicrobial Peptides (rAMPs); Potential Applications in Medicine and Veterinary Medicine: A Review. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3913. [PMID: 40225299 PMCID: PMC11993234 DOI: 10.30498/ijb.2024.455700.3913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/30/2024] [Indexed: 04/15/2025]
Abstract
Antibiotic resistance has become a major public health concern worldwide. Treatment of humans and animals is becoming increasingly challenging due to antibiotic resistance. Antibiotic-resistant bacteria can be transmitted from animals to humans by several routes, including direct contact, contaminated food or water, or environmental exposure. Various factors contribute to the rising problem, such as the widespread and indiscriminate exploitation of antimicrobials in both human and animal healthcare, over-prescription, misuse of antibiotics, the role of agriculture in spreading antibiotic resistance, and poor animal husbandry practices. According to the preliminary findings, recombinant antimicrobial peptides are an interesting novel area of biotechnology and medical innovation that might be employed as a secure and effective substitute for antibiotics. In this review study, we briefly examine the factors contributing to the rise of antibiotic resistance. We then introduce and discuss recombinant antimicrobial peptides as a promising strategy to address this growing problem.
Collapse
Affiliation(s)
- Amir Asghari Baghkheirati
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Avian Health and Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Golmohammadi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Sekhavati
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jamshid Razmyar
- Department of Avian Health and Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Ali Abyazi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Girdhar M, Sen A, Nigam A, Oswalia J, Kumar S, Gupta R. Antimicrobial peptide-based strategies to overcome antimicrobial resistance. Arch Microbiol 2024; 206:411. [PMID: 39311963 DOI: 10.1007/s00203-024-04133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
Antibiotic resistance has emerged as a global threat, rendering the existing conventional treatment strategies ineffective. In view of this, antimicrobial peptides (AMPs) have proven to be potent alternative therapeutic interventions with a wide range of applications in clinical health. AMPs are small peptides produced naturally as a part of the innate immune responses against a broad range of bacterial, fungal and viral pathogens. AMPs present a myriad of advantages over traditional antibiotics, including their ability to target multiple sites, reduced susceptibility to resistance development, and high efficacy at low doses. These peptides have demonstrated notable potential in inhibiting microbes resistant to traditional antibiotics, including the notorious ESKAPE pathogens, recognized as the primary culprits behind nosocomial infections. AMPs, with their multifaceted benefits, emerge as promising candidates in the ongoing efforts to combat the escalating challenges posed by antibiotic resistance. This in-depth review provides a detailed discussion on AMPs, encompassing their classification, mechanism of action, and diverse clinical applications. Focus has been laid on combating newly emerging drug-resistant organisms, emphasizing the significance of AMPs in mitigating this pressing challenge. The review also illuminates potential future strategies that may be implemented to improve AMP efficacy, such as structural modifications and using AMPs in combination with antibiotics and matrix-inhibiting compounds.
Collapse
Affiliation(s)
| | - Aparajita Sen
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110021, India
| | - Arti Nigam
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, 110016, India
| | - Jyoti Oswalia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sachin Kumar
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Rashi Gupta
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.
| |
Collapse
|
9
|
Tian S, Ding T, Li H. Oral microbiome in human health and diseases. MLIFE 2024; 3:367-383. [PMID: 39359681 PMCID: PMC11442140 DOI: 10.1002/mlf2.12136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/13/2024] [Accepted: 05/05/2024] [Indexed: 10/04/2024]
Abstract
The oral cavity contains the second-largest microbiota in the human body. The cavity's anatomically and physiologically diverse niches facilitate a wide range of symbiotic bacteria living at distinct oral sites. Consequently, the oral microbiota exhibits site specificity, with diverse species, compositions, and structures influenced by specific aspects of their placement. Variations in oral microbiota structure caused by changes in these influencing factors can impact overall health and lead to the development of diseases-not only in the oral cavity but also in organs distal to the mouth-such as cancer, cardiovascular disease, and respiratory disease. Conversely, diseases can exacerbate the imbalance of the oral microbiota, creating a vicious cycle. Understanding the heterogeneity of both the oral microbiome and individual humans is important for investigating the causal links between the oral microbiome and diseases. Additionally, understanding the intricacies of the oral microbiome's composition and regulatory factors will help identify the potential causes of related diseases and develop interventions to prevent and treat illnesses in this domain. Therefore, turning to the extant research in this field, we systematically review the relationship between oral microbiome dynamics and human diseases.
Collapse
Affiliation(s)
- Siqi Tian
- Department of Immunology and Microbiology, Zhongshan School of Medicine Sun Yat-Sen University Guangzhou China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University) Ministry of Education Guangzhou China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine Sun Yat-Sen University Guangzhou China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University) Ministry of Education Guangzhou China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University) Ministry of Education, China Guangzhou China
| | - Hui Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine Sun Yat-Sen University Guangzhou China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University) Ministry of Education Guangzhou China
| |
Collapse
|
10
|
Bucataru C, Ciobanasu C. Antimicrobial peptides: Opportunities and challenges in overcoming resistance. Microbiol Res 2024; 286:127822. [PMID: 38986182 DOI: 10.1016/j.micres.2024.127822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Antibiotic resistance represents a global health threat, challenging the efficacy of traditional antimicrobial agents and necessitating innovative approaches to combat infectious diseases. Among these alternatives, antimicrobial peptides have emerged as promising candidates against resistant pathogens. Unlike traditional antibiotics with only one target, these peptides can use different mechanisms to destroy bacteria, with low toxicity to mammalian cells compared to many conventional antibiotics. Antimicrobial peptides (AMPs) have encouraging antibacterial properties and are currently employed in the clinical treatment of pathogen infection, cancer, wound healing, cosmetics, or biotechnology. This review summarizes the mechanisms of antimicrobial peptides against bacteria, discusses the mechanisms of drug resistance, the limitations and challenges of AMPs in peptide drug applications for combating drug-resistant bacterial infections, and strategies to enhance their capabilities.
Collapse
Affiliation(s)
- Cezara Bucataru
- Alexandru I. Cuza University, Institute of Interdisciplinary Research, Department of Exact and Natural Sciences, Bulevardul Carol I, Nr.11, Iasi 700506, Romania
| | - Corina Ciobanasu
- Alexandru I. Cuza University, Institute of Interdisciplinary Research, Department of Exact and Natural Sciences, Bulevardul Carol I, Nr.11, Iasi 700506, Romania.
| |
Collapse
|
11
|
Loeurng V, Puth S, Hong SH, Lee YS, Radhakrishnan K, Koh JT, Kook JK, Rhee JH, Lee SE. A Flagellin-Adjuvanted Trivalent Mucosal Vaccine Targeting Key Periodontopathic Bacteria. Vaccines (Basel) 2024; 12:754. [PMID: 39066392 PMCID: PMC11281409 DOI: 10.3390/vaccines12070754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Periodontal disease (PD) is caused by microbial dysbiosis and accompanying adverse inflammatory responses. Due to its high incidence and association with various systemic diseases, disease-modifying treatments that modulate dysbiosis serve as promising therapeutic approaches. In this study, to simulate the pathophysiological situation, we established a "temporary ligature plus oral infection model" that incorporates a temporary silk ligature and oral infection with a cocktail of live Tannerella forsythia (Tf), Pophyromonas gingivalis (Pg), and Fusobacterium nucleatum (Fn) in mice and tested the efficacy of a new trivalent mucosal vaccine. It has been reported that Tf, a red complex pathogen, amplifies periodontitis severity by interacting with periodontopathic bacteria such as Pg and Fn. Here, we developed a recombinant mucosal vaccine targeting a surface-associated protein, BspA, of Tf by genetically combining truncated BspA with built-in adjuvant flagellin (FlaB). To simultaneously induce Tf-, Pg-, and Fn-specific immune responses, it was formulated as a trivalent mucosal vaccine containing Tf-FlaB-tBspA (BtB), Pg-Hgp44-FlaB (HB), and Fn-FlaB-tFomA (BtA). Intranasal immunization with the trivalent mucosal vaccine (BtB + HB + BtA) prevented alveolar bone loss and gingival proinflammatory cytokine production. Vaccinated mice exhibited significant induction of Tf-tBspA-, Pg-Hgp44-, and Fn-tFomA-specific IgG and IgA responses in the serum and saliva, respectively. The anti-sera and anti-saliva efficiently inhibited epithelial cell invasion by Tf and Pg and interfered with biofilm formation by Fn. The flagellin-adjuvanted trivalent mucosal vaccine offers a novel method for modulating dysbiotic bacteria associated with periodontitis. This approach leverages the adjuvant properties of flagellin to enhance the immune response, aiming to restore a balanced microbial environment and improve periodontal health.
Collapse
Affiliation(s)
- Vandara Loeurng
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
| | - Sao Puth
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
| | - Seol Hee Hong
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yun Suhk Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | - Jeong Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection of Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
12
|
Guo X, Wang X, Shi J, Ren J, Zeng J, Li J, Li Y. A review and new perspective on oral bacteriophages: manifestations in the ecology of oral diseases. J Oral Microbiol 2024; 16:2344272. [PMID: 38698893 PMCID: PMC11064738 DOI: 10.1080/20002297.2024.2344272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Objective To explore the manifestations of bacteriophages in different oral disease ecologies, including periodontal diseases, dental caries, endodontic infections, and oral cancer, as well as to propel phage therapy for safer and more effective clinical application in the field of dentistry. Methods In this literature review, we outlined interactions between bacteriophages, bacteria and even oral cells in the oral ecosystem, especially in disease states. We also analyzed the current status and future prospects of phage therapy in the perspective of different oral diseases. Results Various oral bacteriophages targeting at periodontal pathogens as Porphyromonas gingivalis, Fusobacterium nucleatum, Treponema denticola and Aggregatibacter actinomycetemcomitans, cariogenic pathogen Streptococcus mutans, endodontic pathogen Enterococcus faecalis were predicted or isolated, providing promising options for phage therapy. In the realm of oral cancer, aside from displaying tumor antigens or participating in tumor-targeted therapies, phage-like particle vaccines demonstrated the potential to prevent oral infections caused by human papillomaviruses (HPVs) associated with head-and-neck cancers. Conclusion Due to their intricate interactions with bacteria and oral cells, bacteriophages are closely linked to the progression and regression of diverse oral diseases. And there is an urgent need for research to explore additional possibilities of bacteriophages in the management of oral diseases.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayi Ren
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Center for Archaeological Science, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Mallawarachchi S, Wang H, Mulgaonkar N, Irigoyen S, Padilla C, Mandadi K, Borneman J, Fernando S. Specifically targeting antimicrobial peptides for inhibition of Candidatus Liberibacter asiaticus. J Appl Microbiol 2024; 135:lxae061. [PMID: 38509024 DOI: 10.1093/jambio/lxae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
AIMS Huanglongbing (citrus greening) is a plant disease putatively caused by the unculturable Gram-negative bacterium Candidatus Liberibacter asiaticus (CLas), and it has caused severe damage to citrus plantations worldwide. There are no definitive treatments for this disease, and conventional disease control techniques have shown limited efficacy. This work presents an in silico evaluation of using specifically targeting anti-microbial peptides (STAMPs) consisting of a targeting segment and an antimicrobial segment to inhibit citrus greening by inhibiting the BamA protein of CLas, which is an outer membrane protein crucial for bacterial viability. METHODS AND RESULTS Initially, a set of peptides with a high affinity toward BamA protein were screened and evaluated via molecular docking and molecular dynamics simulations and were verified in vitro via bio-layer interferometry (BLI). In silico studies and BLI experiments indicated that two peptides, HASP2 and HASP3, showed stable binding to BamA. Protein structures for STAMPs were created by fusing known anti-microbial peptides (AMPs) with the selected short peptides. The binding of STAMPs to BamA was assessed using molecular docking and binding energy calculations. The attachment of high-affinity short peptides significantly reduced the free energy of binding for AMPs, suggesting that it would make it easier for the STAMPs to bind to BamA. Efficacy testing in vitro using a closely related CLas surrogate bacterium showed that STAMPs had greater inhibitory activity than AMP alone. CONCLUSIONS In silico and in vitro results indicate that the STAMPs can inhibit CLas surrogate Rhizobium grahamii more effectively compared to AMPs, suggesting that STAMPs can achieve better inhibition of CLas, potentially via enhancing the site specificity of AMPs.
Collapse
Affiliation(s)
- Samavath Mallawarachchi
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Haoqi Wang
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Nirmitee Mulgaonkar
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Sonia Irigoyen
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
| | - Carmen Padilla
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
| | - Kranthi Mandadi
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, United States
- Institute for Advancing Health through Agriculture, Texas A&M AgriLife, College Station, TX 77843, United States
| | - James Borneman
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, CA 92521, United States
| | - Sandun Fernando
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
14
|
Spatafora G, Li Y, He X, Cowan A, Tanner ACR. The Evolving Microbiome of Dental Caries. Microorganisms 2024; 12:121. [PMID: 38257948 PMCID: PMC10819217 DOI: 10.3390/microorganisms12010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Dental caries is a significant oral and public health problem worldwide, especially in low-income populations. The risk of dental caries increases with frequent intake of dietary carbohydrates, including sugars, leading to increased acidity and disruption of the symbiotic diverse and complex microbial community of health. Excess acid production leads to a dysbiotic shift in the bacterial biofilm composition, demineralization of tooth structure, and cavities. Highly acidic and acid-tolerant species associated with caries include Streptococcus mutans, Lactobacillus, Actinomyces, Bifidobacterium, and Scardovia species. The differences in microbiotas depend on tooth site, extent of carious lesions, and rate of disease progression. Metagenomics and metatranscriptomics not only reveal the structure and genetic potential of the caries-associated microbiome, but, more importantly, capture the genetic makeup of the metabolically active microbiome in lesion sites. Due to its multifactorial nature, caries has been difficult to prevent. The use of topical fluoride has had a significant impact on reducing caries in clinical settings, but the approach is costly; the results are less sustainable for high-caries-risk individuals, especially children. Developing treatment regimens that specifically target S. mutans and other acidogenic bacteria, such as using nanoparticles, show promise in altering the cariogenic microbiome, thereby combatting the disease.
Collapse
Affiliation(s)
- Grace Spatafora
- Biology and Program in Molecular Biology and Biochemistry, Middlebury College, Middlebury, VT 05753, USA
| | - Yihong Li
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY 14853, USA;
| | - Xuesong He
- ADA-Forsyth Institute, Cambridge, MA 02142, USA;
| | - Annie Cowan
- The Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | | |
Collapse
|
15
|
Dwivedi M, Parmar MD, Mukherjee D, Yadava A, Yadav H, Saini NP. Biochemistry, Mechanistic Intricacies, and Therapeutic Potential of Antimicrobial Peptides: An Alternative to Traditional Antibiotics. Curr Med Chem 2024; 31:6110-6139. [PMID: 37818561 DOI: 10.2174/0109298673268458230926105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
The emergence of drug-resistant strains of pathogens becomes a major obstacle to treating human diseases. Antibiotics and antivirals are in the application for a long time but now these drugs are not much effective anymore against disease-causing drugresistant microbes and gradually it is becoming a serious complication worldwide. The development of new antibiotics cannot be a stable solution to treat drug-resistant strains due to their evolving nature and escaping antibiotics. At this stage, antimicrobial peptides (AMPs) may provide us with novel therapeutic leads against drug-resistant pathogens. Structurally, antimicrobial peptides are mostly α-helical peptide molecules with amphiphilic properties that carry the positive charge (cationic) and belong to host defense peptides. These positively charged AMPs can interact with negatively charged bacterial cell membranes and may cause the alteration in electrochemical potential on bacterial cell membranes and consequently lead to the death of microbial cells. In the present study, we will elaborate on the implication of AMPs in the treatment of various diseases along with their specific structural and functional properties. This review will provide information which assists in the development of new synthetic peptide analogues to natural AMPs. These analogues will eliminate the limitations of natural AMPs like toxicity and severe hemolytic activities.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Meet Dineshbhai Parmar
- Department of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | | | - Anuradha Yadava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Hitendra Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Nandini Pankaj Saini
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| |
Collapse
|
16
|
Xu K, Zhao X, Tan Y, Wu J, Cai Y, Zhou J, Wang X. A systematical review on antimicrobial peptides and their food applications. BIOMATERIALS ADVANCES 2023; 155:213684. [PMID: 37976831 DOI: 10.1016/j.bioadv.2023.213684] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Food safety issues are a major concern in food processing and packaging industries. Food spoilage is caused by microbial contamination, where antimicrobial peptides (APs) provide solutions by eliminating microorganisms. APs such as nisin have been successfully and commonly used in food processing and preservation. Here, we discuss all aspects of the functionalization of APs in food applications. We briefly review the natural sources of APs and their native functions. Recombinant expression of APs in microorganisms and their yields are described. The molecular mechanisms of AP antibacterial action are explained, and this knowledge can further benefit the design of functional APs. We highlight current utilities and challenges for the application of APs in the food industry, and address rational methods for AP design that may overcome current limitations.
Collapse
Affiliation(s)
- Kangjie Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - XinYi Zhao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yameng Tan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Junheng Wu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yiqing Cai
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China..
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
17
|
Ying X, Xue G, Sun P, Gan Z, Fan Z, Liu B, Han Y, Yang J, Zhang J, Lu A. Antimicrobial Peptides Targeting Streptococcus mutans: Current Research on Design, Screening and Efficacy. Curr Microbiol 2023; 81:18. [PMID: 38007405 DOI: 10.1007/s00284-023-03540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/26/2023] [Indexed: 11/27/2023]
Abstract
Antimicrobial peptides (AMPs) are small-molecule peptides that play a vital role in the nonspecific immune defense system of organisms. They mainly kill microorganisms by physically destroying the cell membrane and causing the leakage of contents. AMPs have attracted much attention as potential alternatives to antibiotics due to their low susceptibility to resistance. Streptococcus mutans (S. mutans) is one of the main causative agents of human dental caries. The design, screening, and efficacy evaluation of AMPs targeting S. mutans offer new possibilities for the prevention and treatment of oral diseases, especially dental caries, in the future. This article reviews AMPs from different sources that have inhibitory effects on S. mutans, discusses the mechanism of action of AMPs against S. mutans biofilms, and focuses on the research progress of screening methods, design modification, and biological activity evaluation of AMPs. We hope to provide insights and reference value for the development of new biologics.
Collapse
Affiliation(s)
- Xinxin Ying
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China
| | - Guanglu Xue
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China
| | - Pengxiang Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China
| | - Ziling Gan
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China
| | - Ziqian Fan
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China
| | - Bo Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China
| | - Yaoting Han
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China
| | - Jiaqian Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China
| | - Jing Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China.
| | - Aiping Lu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China.
| |
Collapse
|
18
|
Gao Z, Chen X, Wang C, Song J, Xu J, Liu X, Qian Y, Suo H. New strategies and mechanisms for targeting Streptococcus mutans biofilm formation to prevent dental caries: A review. Microbiol Res 2023; 278:127526. [PMID: 39491258 DOI: 10.1016/j.micres.2023.127526] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/05/2024]
Abstract
Dental caries, a prevalent oral infectious disease, is intricately linked to the biofilm formation on the tooth surfaces by oral microbes. Among these, Streptococcus mutans plays a central role in the initiation and progression of caries due to its ability to produce glucosyltransferases, synthesize extracellular polysaccharides, and facilitate bacterial adhesion and aggregation. This leads to the formation of biofilms where the bacteria metabolize dietary carbohydrates to produce acids. Therefore, devising effective strategies to inhibit S. mutans biofilm formation is crucial for dental caries prevention and oral health promotion. Though preventive measures like mechanical removal and antibacterial drugs (fluoride, chlorhexidine) exist, they pose challenges such as time consumption, short-term effectiveness, antibiotic resistance, and disruption of oral flora balance. This review provides a comprehensive overview of emerging strategies such as antimicrobial peptides, probiotics, nanoparticles, and non-thermal plasma therapies for targeted inhibition of S. mutans biofilm formation. Moreover, current research insights into the regulatory mechanisms governing S. mutans biofilm formation are also elucidated. The objective is to foster the development of innovative, efficient and safe techniques for caries prevention and treatment, thereby expanding treatment options in clinical dentistry and promoting oral health.
Collapse
Affiliation(s)
- Zhen Gao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Jiahui Xu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiao Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Qian
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China.
| |
Collapse
|
19
|
Zhang OL, Niu JY, Yu OY, Yin IX, Mei ML, Chu CH. The Anti-Caries Effects of a Novel Peptide on Dentine Caries: An In Vitro Study. Int J Mol Sci 2023; 24:14076. [PMID: 37762381 PMCID: PMC10531674 DOI: 10.3390/ijms241814076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to investigate the antibiofilm and remineralising effects of peptide GAPI on artificial dentin caries. After creating artificial carious lesions, eighty dentine blocks were randomly assigned for treatment twice daily with GAPI (GAPI group) or deionised water (control group). Both groups underwent a 7-day biochemical cycle. Scanning electron microscopy (SEM) showed S. mutans with damaged structures that partially covered the dentine in the GAPI group. The dead-live ratios for the GAPI and control groups were 0.77 ± 0.13 and 0.37 ± 0.09 (p < 0.001). The log colony-forming units for the GAPI and control groups were 7.45 ± 0.32 and 8.74 ± 0.50 (p < 0.001), respectively. The lesion depths for the GAPI and control groups were 151 ± 18 µm and 214 ± 15 µm (p < 0.001), respectively. The mineral losses for the GAPI and control groups were 0.91 ± 0.07 gHAcm-3 and 1.01 ± 0.07 gHAcm-3 (p = 0.01), respectively. The hydrogen-to-amide I ratios for the GAPI and control groups were 2.92 ± 0.82 and 1.83 ± 0.73 (p = 0.014), respectively. SEM micrographs revealed fewer exposed dentine collagen fibres in the GAPI group compared to those in the control group. Furthermore, X-ray diffraction (XRD) patterns indicated that the hydroxyapatite in the GAPI group was more crystallised than that in the control group. This study demonstrated GAPI's antibiofilm and remineralising effects on artificial dentin caries.
Collapse
Affiliation(s)
- Olivia Lili Zhang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (I.X.Y.); (M.L.M.)
| | - John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (I.X.Y.); (M.L.M.)
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (I.X.Y.); (M.L.M.)
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (I.X.Y.); (M.L.M.)
| | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (I.X.Y.); (M.L.M.)
- Faculty of Dentistry, The University of Otago, Dunedin 9054, New Zealand
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (I.X.Y.); (M.L.M.)
| |
Collapse
|
20
|
Machado M, Silva S, Costa EM. Are Antimicrobial Peptides a 21st-Century Solution for Atopic Dermatitis? Int J Mol Sci 2023; 24:13460. [PMID: 37686269 PMCID: PMC10488019 DOI: 10.3390/ijms241713460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder that is the result of various environmental, bacterial and genetic stimuli, which culminate in the disruption of the skin's barrier function. Characterized by highly pruritic skin lesions, xerosis and an array of comorbidities among which skin infections are the most common, this condition results in both a significant loss of quality of life and in the need for life-long treatments (e.g., corticosteroids, monoclonal antibodies and regular antibiotic intake), all of which may have harmful secondary effects. This, in conjunction with AD's rising prevalence, made the development of alternative treatment strategies the focus of both the scientific community and the pharmaceutical industry. Given their potential to both manage the skin microbiome, fight infections and even modulate the local immune response, the use of antimicrobial peptides (AMPs) from more diverse origins has become one of the most promising alternative solutions for AD management, with some being already used with some success towards this end. However, their production and use also exhibit some limitations. The current work seeks to compile the available information and provide a better understanding of the state of the art in the understanding of AMPs' true potential in addressing AD.
Collapse
Affiliation(s)
| | - Sara Silva
- CBQF Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Eduardo M. Costa
- CBQF Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| |
Collapse
|
21
|
Cui X, Xu L, Qi K, Lan H. Effects of Tea Polyphenols and Theaflavins on Three Oral Cariogenic Bacteria. Molecules 2023; 28:6034. [PMID: 37630286 PMCID: PMC10458778 DOI: 10.3390/molecules28166034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
In order to investigate the antibacterial mechanism of tea polyphenols and theaflavins against oral cariogenic bacteria, the pH value of the culture medium, the number of bacteria adhering to the smooth glass tube wall, and the electrical conductivity value within 10 h were measured, respectively. The effects of four concentrations of tea polyphenols and theaflavins below the MIC value were studied on acid production, adhesion, and electrical conductivity of oral cariogenic bacteria. The live/dead staining method was used to observe the effects of four concentrations of tea polyphenols and theaflavins below the MIC value on the biofilm formation of oral cariogenic bacteria under a laser scanning confocal microscope. With the increase in concentrations of tea polyphenols and theaflavins, the acid production and adhesion of the cariogenic bacteria gradually decreased, and the conductivity gradually increased. However, the conductivity increase was not significant (p < 0.05). Compared with the control group, the 1/2MIC and 1/4MIC tea polyphenols and theaflavins treatments significantly reduced the biomass of the cariogenic biofilm (p < 0.05). The confocal laser scanning microscope showed that the integrated optical density of green fluorescence of the cariogenic biofilm gradually decreased with the increase in agent concentration after the action of tea polyphenols and theaflavins.
Collapse
Affiliation(s)
- Xia Cui
- College of Pharmacy, Dali University, Dali 671000, China
- College of Fundamentals and Pharmacy, Yunnan Medical Health College, Anning 650300, China
| | - Lei Xu
- College of Pharmacy, Dali University, Dali 671000, China
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, China
| | - Hai Lan
- College of Pharmacy, Dali University, Dali 671000, China
| |
Collapse
|
22
|
Zheng T, Jing M, Gong T, Yan J, Wang X, Xu M, Zhou X, Zeng J, Li Y. Regulatory mechanisms of exopolysaccharide synthesis and biofilm formation in Streptococcus mutans. J Oral Microbiol 2023; 15:2225257. [PMID: 37346997 PMCID: PMC10281425 DOI: 10.1080/20002297.2023.2225257] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Background Dental caries is a chronic, multifactorial and biofilm-mediated oral bacterial infection affecting almost every age group and every geographical region. Streptococcus mutans is considered an important pathogen responsible for the initiation and development of dental caries. It produces exopolysaccharides in situ to promote the colonization of cariogenic bacteria and coordinate dental biofilm development. Objective The understanding of the regulatory mechanism of S. mutans biofilm formation can provide a theoretical basis for the prevention and treatment of caries. Design At present, an increasing number of studies have identified many regulatory systems in S. mutans that regulate biofilm formation, including second messengers (e.g. c-di-AMP, Ap4A), transcription factors (e.g. EpsR, RcrR, StsR, AhrC, FruR), two-component systems (e.g. CovR, VicR), small RNA (including sRNA0426, srn92532, and srn133489), acetylation modifications (e.g. ActG), CRISPR-associated proteins (e.g. Cas3), PTS systems (e.g. EIIAB), quorum-sensing signaling system (e.g. LuxS), enzymes (including Dex, YidC, CopZ, EzrA, lmrB, SprV, RecA, PdxR, MurI) and small-molecule metabolites. Results This review summarizes the recent progress in the molecular regulatory mechanisms of exopolysaccharides synthesis and biofilm formation in S. mutans.
Collapse
Affiliation(s)
- Ting Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meiling Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiangchuan Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mai Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Moussa DG, Kung RW, Tse JS, Siqueira WL. Mechanistic Insights into Bioengineered Antibiofilm Enamel Pellicles. J Dent Res 2023:220345231162336. [PMID: 37082872 DOI: 10.1177/00220345231162336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Dental caries remains the most widespread chronic disease worldwide. Basically, caries originates within biofilms accumulated on dental enamel. Despite the nonrenewable nature of the enamel tissue, targeted preventive strategies are still very limited. We previously introduced customized multifunctional proteinaceous pellicles (coatings) for controlling bacterial attachment and subsequent biofilm succession. Stemmed from our whole proteome/peptidome analysis of the in vivo acquired enamel pellicle, we designed these pellicles using hybrid mixtures of the most abundant and complementary-acting antimicrobial and antifouling proteins/peptides for synergetic suppression of early biofilms. In conjugating these domains synthetically, their bioinhibitory efficacy was remarkably boosted. Herein, we sought to explore the key structure-function relationship of these potent de novo hybridized conjugates in comparison with their individual domains, solely or in physical mixtures. Specifically, we interrelated the following facets: physicochemical and 3-dimensional folding characteristics via molecular dynamics simulations, adopted secondary structure by circular dichroism, immobilization capacity on enamel through high-spatial resolution multiphoton microscopy, and biofilm suppression potency. Our data showed consistent associations among the increased preference for protein folding structures, α-helix content, and enamel-immobilization capacity; all were inversely correlated with the attached bioburden. The expressed phenotypes could be explained by the adopted strongly amphipathic helical conformation upon conjugation, mediated by the highly anionic and acidic N-terminal pentapeptide shared region/motif for enhanced immobilization on enamel. In conclusion, conjugating bioactive proteins/peptides is a novel translational approach to engineer robust antibiofilm pellicles for caries prevention. The adopted α-helical conformation is key to enhance the antibiofilm efficacy and immobilization capacity on enamel that are promoted by certain physicochemical properties of the constituent domains. These data are valuable for bioengineering versatile therapeutics to prevent/arrest dental caries, a condition that otherwise requires invasive treatments with substantial health care expenditures.
Collapse
Affiliation(s)
- D G Moussa
- College of Dentistry, University of Saskatchewan, Saskatoon, Canada
| | - R W Kung
- Department of Physics and Engineering Physics, College of Art and Science, University of Saskatchewan, Saskatoon, Canada
| | - J S Tse
- Department of Physics and Engineering Physics, College of Art and Science, University of Saskatchewan, Saskatoon, Canada
| | - W L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
24
|
Wang X, Li J, Zhang S, Zhou W, Zhang L, Huang X. pH-activated antibiofilm strategies for controlling dental caries. Front Cell Infect Microbiol 2023; 13:1130506. [PMID: 36949812 PMCID: PMC10025512 DOI: 10.3389/fcimb.2023.1130506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Dental biofilms are highly assembled microbial communities surrounded by an extracellular matrix, which protects the resident microbes. The microbes, including commensal bacteria and opportunistic pathogens, coexist with each other to maintain relative balance under healthy conditions. However, under hostile conditions such as sugar intake and poor oral care, biofilms can generate excessive acids. Prolonged low pH in biofilm increases proportions of acidogenic and aciduric microbes, which breaks the ecological equilibrium and finally causes dental caries. Given the complexity of oral microenvironment, controlling the acidic biofilms using antimicrobials that are activated at low pH could be a desirable approach to control dental caries. Therefore, recent researches have focused on designing novel kinds of pH-activated strategies, including pH-responsive antimicrobial agents and pH-sensitive drug delivery systems. These agents exert antibacterial properties only under low pH conditions, so they are able to disrupt acidic biofilms without breaking the neutral microenvironment and biodiversity in the mouth. The mechanisms of low pH activation are mainly based on protonation and deprotonation reactions, acids labile linkages, and H+-triggered reactive oxygen species production. This review summarized pH-activated antibiofilm strategies to control dental caries, concentrating on their effect, mechanisms of action, and biocompatibility, as well as the limitation of current research and the prospects for future study.
Collapse
Affiliation(s)
- Xiuqing Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jingling Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shujun Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wen Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- *Correspondence: Xiaojing Huang,
| |
Collapse
|
25
|
Abstract
The oral cavity is an unique ecosystem formed by different structures, tissues, and a complex microbial community formed by hundreds of different species of bacteria, fungi, viruses, phages, and the candidate phyla radiation (CPR) group, all living in symbiosis with healthy individuals. In an opposite state, dental caries is a biofilm-mediated dysbiosis that involves changes in the core microbiome composition and function, which leads to the demineralization of tooth tissues due to the fermentation of dietary carbohydrates, producing acid by select oral bacteria. The cariogenic biofilm is typically characterized by bacterial species with the ability of adhering to the saliva-coated tooth surface, production of exopolysaccharides-rich matrix (which will limit the diffusion of acidic products of carbohydrate fermentation), and the ability of surviving in this acidic environment. Besides years of research and dental treatment, dental caries remains the most common chronic disease in children worldwide. This article aims to bring an insightful discussion about important questions that remain unanswered in the Cariology and Oral Microbiology fields, to move Science forward, characterize the interrelationships of these communities, and understand mechanistic functions between microorganisms and the host, therefore leading to translatable knowledge that benefits the provision of care to our pediatric patients.
Collapse
Affiliation(s)
- Apoena Aguiar Ribeiro
- Division of Diagnostic Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, USA
- CONTACT Apoena Aguiar Ribeiro Division of Diagnostic Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, 150 Dental Circle, Chapel Hill, CB 7450, USA
| | - Bruce J. Paster
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, USA
| |
Collapse
|
26
|
Jiang W, Xie Z, Huang S, Huang Q, Chen L, Gao X, Lin Z. Targeting cariogenic pathogens and promoting competitiveness of commensal bacteria with a novel pH-responsive antimicrobial peptide. J Oral Microbiol 2022; 15:2159375. [PMID: 36570976 PMCID: PMC9788686 DOI: 10.1080/20002297.2022.2159375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Novel ecological antimicrobial approaches to dental caries focus on inhibiting cariogenic pathogens while enhancing the growth of health-associated commensal communities or suppressing cariogenic virulence without affecting the diversity of oral microbiota, which emphasize the crucial role of establishing a healthy microbiome in caries prevention. Considering that the acidified cariogenic microenvironment leads to the dysbiosis of microecology and demineralization of enamel, exploiting the acidic pH as a bioresponsive trigger to help materials and medications target cariogenic pathogens is a promising strategy to develop novel anticaries approaches. In this study, a pH-responsive antimicrobial peptide, LH12, was designed utilizing the pH-sensitivity of histidine, which showed higher cationicity and stronger interactions with bacterial cytomembranes at acidic pH. Streptococcus mutans was used as the in vitro caries model to evaluate the inhibitory effects of LH12 on the cariogenic properties, such as biofilm formation, biofilm morphology, acidurance, acidogenicity, and exopolysaccharides synthesis. The dual-species model of Streptococcus mutans and Streptococcus gordonii was established in vitro to evaluate the regulation effects of LH12 on the mixed species microbial community containing both cariogenic bacteria and commensal bacteria. LH12 suppressed the cariogenic properties and regulated the bacterial composition to a healthier condition through a dual-functional mechanism. Firstly, LH12-targeted cariogenic pathogens in response to the acidified microenvironment and suppressed the cariogenic virulence by inhibiting the expression of multiple virulence genes and two-component signal transduction systems. Additionally, LH12 elevated H2O2 production of the commensal bacteria and subsequently improved the ecological competitiveness of the commensals. The dual-functional mechanism made LH12 a potential bioresponsive approach to caries management.
Collapse
Affiliation(s)
- Wentao Jiang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, GuangdongChina
| | - Zhuo Xie
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, GuangdongChina
| | - Shuheng Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, GuangdongChina
| | - Qiting Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, GuangdongChina
| | - Lingling Chen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, GuangdongChina
| | - Xianling Gao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, GuangdongChina
| | - Zhengmei Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, GuangdongChina,CONTACT Zhengmei Lin Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong510055, China
| |
Collapse
|
27
|
Zhang B, Zhao M, Tian J, Lei L, Huang R. Novel antimicrobial agents targeting the Streptococcus mutans biofilms discovery through computer technology. Front Cell Infect Microbiol 2022; 12:1065235. [PMID: 36530419 PMCID: PMC9751416 DOI: 10.3389/fcimb.2022.1065235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Dental caries is one of the most prevalent and costly biofilm-associated infectious diseases worldwide. Streptococcus mutans (S. mutans) is well recognized as the major causative factor of dental caries due to its acidogenicity, aciduricity and extracellular polymeric substances (EPSs) synthesis ability. The EPSs have been considered as a virulent factor of cariogenic biofilm, which enhance biofilms resistance to antimicrobial agents and virulence compared with planktonic bacterial cells. The traditional anti-caries therapies, such as chlorhexidine and antibiotics are characterized by side-effects and drug resistance. With the development of computer technology, several novel approaches are being used to synthesize or discover antimicrobial agents. In this mini review, we summarized the novel antimicrobial agents targeting the S. mutans biofilms discovery through computer technology. Drug repurposing of small molecules expands the original medical indications and lowers drug development costs and risks. The computer-aided drug design (CADD) has been used for identifying compounds with optimal interactions with the target via silico screening and computational methods. The synthetic antimicrobial peptides (AMPs) based on the rational design, computational design or high-throughput screening have shown increased selectivity for both single- and multi-species biofilms. These methods provide potential therapeutic agents to promote targeted control of the oral microbial biofilms in the near future.
Collapse
Affiliation(s)
- Bin Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Min Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Jiangang Tian
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China,*Correspondence: Lei Lei, ; Ruizhe Huang,
| | - Ruizhe Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an, China,*Correspondence: Lei Lei, ; Ruizhe Huang,
| |
Collapse
|
28
|
Exploiting Conserved Quorum Sensing Signals in Streptococcus mutans and Streptococcus pneumoniae. Microorganisms 2022; 10:microorganisms10122386. [PMID: 36557639 PMCID: PMC9785397 DOI: 10.3390/microorganisms10122386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Bacterial species of the Streptococcus genera are considered either commensal bacteria or potential pathogens, according to their metabolic evolution and production of quorum sensing (QS)-controlled virulence factors. S. mutans, in particular, has become one of the best-studied examples of bacteria that are able to get along or cheat commensal species, even of the same genera. S. mutans and S. pneumoniae share homolog QS pathways and a competence stimulating peptide (CSP) for regulating bacteriocin production. Intriguingly, the abundance of S. pneumoniae and S. mutans alternates in complex microbial communities, thus opening the role for the fratricide communication of homolog QS systems. Since the inhibition of the QS has been proposed in treating bacterial infections, in this study, we designed and synthesized analogs of S. pneumoniae CSP with precise residual modifications. We reported that S. pneumoniae CSP analogs reduced the expression of genes involved in the QS of S. mutans and biofilm formation without affecting bacterial growth. The CSP analogs inhibited bacteriocin production in S. mutans, as reported by co-cultures with commensal bacteria of the oral cavity. The peptide CSP1AA, bearing substitutions in the residues involved in QS receptor recognition and activation, reported the most significant quorum-quenching activities. Our findings provide new insights into specific chemical drivers in the CSP sequences controlling the interconnection between S. mutans and S. pneumoniae. We think that the results reported in this study open the way for new therapeutic interventions in controlling the virulence factors in complex microbial communities such as the oral microbiota.
Collapse
|
29
|
Gonçalves S, Martins IC, Santos NC. Nanoparticle‐peptide conjugates for bacterial detection and neutralization: Potential applications in diagnostics and therapy. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1819. [DOI: 10.1002/wnan.1819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
| | - Ivo C. Martins
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
| |
Collapse
|
30
|
Luong AD, Buzid A, Luong JHT. Important Roles and Potential Uses of Natural and Synthetic Antimicrobial Peptides (AMPs) in Oral Diseases: Cavity, Periodontal Disease, and Thrush. J Funct Biomater 2022; 13:jfb13040175. [PMID: 36278644 PMCID: PMC9589978 DOI: 10.3390/jfb13040175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
Numerous epithelial cells and sometimes leukocytes release AMPs as their first line of defense. AMPs encompass cationic histatins, defensins, and cathelicidin to encounter oral pathogens with minimal resistance. However, their concentrations are significantly below the effective levels and AMPs are unstable under physiological conditions due to proteolysis, acid hydrolysis, and salt effects. In parallel to a search for more effective AMPs from natural sources, considerable efforts have focused on synthetic stable and low-cytotoxicy AMPs with significant activities against microorganisms. Using natural AMP templates, various attempts have been used to synthesize sAMPs with different charges, hydrophobicity, chain length, amino acid sequence, and amphipathicity. Thus far, sAMPs have been designed to target Streptococcus mutans and other common oral pathogens. Apart from sAMPs with antifungal activities against Candida albicans, future endeavors should focus on sAMPs with capabilities to promote remineralization and antibacterial adhesion. Delivery systems using nanomaterials and biomolecules are promising to stabilize, reduce cytotoxicity, and improve the antimicrobial activities of AMPs against oral pathogens. Nanostructured AMPs will soon become a viable alternative to antibiotics due to their antimicrobial mechanisms, broad-spectrum antimicrobial activity, low drug residue, and ease of synthesis and modification.
Collapse
Affiliation(s)
- Albert Donald Luong
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University of Buffalo, Buffalo, NY 14215, USA
| | - Alyah Buzid
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | - John H. T. Luong
- School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, College Road, T12 YN60 Cork, Ireland
- Correspondence: or
| |
Collapse
|
31
|
Xu HM, Xu WM, Zhang L. Current Status of Phage Therapy against Infectious Diseases and Potential Application beyond Infectious Diseases. Int J Clin Pract 2022; 2022:4913146. [PMID: 36263241 PMCID: PMC9550513 DOI: 10.1155/2022/4913146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Intestinal microbiota plays a key role in regulating the pathogenesis of human disease and maintaining health. Many diseases, mainly induced by bacteria, are on the rise due to the emergence of antibiotic-resistant strains. Intestinal microorganisms include organisms such as bacteria, viruses, and fungi. They play an important role in maintaining human health. Among these microorganisms, phages are the main members of intestinal viromes. In particular, the viral fraction, composed essentially of phages, affects homeostasis by exerting selective pressure on bacterial communities living in the intestinal tract. In recent years, with the widespread use and even abuse of antibacterial drugs, more and more drug-resistant bacteria have been found, and they show a trend of high drug resistance and multidrug resistance. Therefore, it has also become increasingly difficult to treat serious bacterial infections. Phages, a natural antibacterial agent with strong specificity and rapid proliferation, have come back to the field of vision of clinicians and scholars. In this study, the current state of research on intestinal phages was discussed, with an exploration of the impact of phage therapy against infectious diseases, as well as potential application beyond infectious diseases.
Collapse
Affiliation(s)
- Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Wen-Min Xu
- Department of Endoscopy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510091, China
| | - Long Zhang
- Department of Endoscopy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510091, China
| |
Collapse
|
32
|
Moussa DG, Sharma AK, Mansour TA, Witthuhn B, Perdigão J, Rudney JD, Aparicio C, Gomez A. Functional signatures of ex-vivo dental caries onset. J Oral Microbiol 2022; 14:2123624. [PMID: 36189437 PMCID: PMC9518263 DOI: 10.1080/20002297.2022.2123624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Background The etiology of dental caries remains poorly understood. With the advent of next-generation sequencing, a number of studies have focused on the microbial ecology of the disease. However, taxonomic associations with caries have not been consistent. Researchers have also pursued function-centric studies of the caries microbial communities aiming to identify consistently conserved functional pathways. A major question is whether changes in microbiome are a cause or a consequence of the disease. Thus, there is a critical need to define conserved functional signatures at the onset of dental caries. Methods Since it is unethical to induce carious lesions clinically, we developed an innovative longitudinal ex-vivo model integrated with the advanced non-invasive multiphoton second harmonic generation bioimaging to spot the very early signs of dental caries, combined with 16S rRNA short amplicon sequencing and liquid chromatography-mass spectrometry-based targeted metabolomics. Findings For the first time, we induced longitudinally monitored caries lesions validated with the scanning electron microscope. Consequently, we spotted the caries onset and, associated with it, distinguished five differentiating metabolites - Lactate, Pyruvate, Dihydroxyacetone phosphate, Glyceraldehyde 3-phosphate (upregulated) and Fumarate (downregulated). Those metabolites co-occurred with certain bacterial taxa; Streptococcus, Veillonella, Actinomyces, Porphyromonas, Fusobacterium, and Granulicatella, regardless of the abundance of other taxa. Interpretation These findings are crucial for understanding the etiology and dynamics of dental caries, and devising targeted interventions to prevent disease progression.
Collapse
Affiliation(s)
- Dina G. Moussa
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Animal Science, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St Paul, Minnesota, USA
| | - Ashok K. Sharma
- Department of Animal Science, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St Paul, Minnesota, USA
| | - Tamer A Mansour
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
- Department of Clinical Pathology, School of Medicine, Mansoura University, Mansoura, Egypt
| | - Bruce Witthuhn
- Center for Mass Spectrometry and Proteomics, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jorge Perdigão
- Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joel D. Rudney
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Conrado Aparicio
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andres Gomez
- Department of Animal Science, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St Paul, Minnesota, USA
| |
Collapse
|
33
|
Juretić D. Designed Multifunctional Peptides for Intracellular Targets. Antibiotics (Basel) 2022; 11:antibiotics11091196. [PMID: 36139975 PMCID: PMC9495127 DOI: 10.3390/antibiotics11091196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Nature’s way for bioactive peptides is to provide them with several related functions and the ability to cooperate in performing their job. Natural cell-penetrating peptides (CPP), such as penetratins, inspired the design of multifunctional constructs with CPP ability. This review focuses on known and novel peptides that can easily reach intracellular targets with little or no toxicity to mammalian cells. All peptide candidates were evaluated and ranked according to the predictions of low toxicity to mammalian cells and broad-spectrum activity. The final set of the 20 best peptide candidates contains the peptides optimized for cell-penetrating, antimicrobial, anticancer, antiviral, antifungal, and anti-inflammatory activity. Their predicted features are intrinsic disorder and the ability to acquire an amphipathic structure upon contact with membranes or nucleic acids. In conclusion, the review argues for exploring wide-spectrum multifunctionality for novel nontoxic hybrids with cell-penetrating peptides.
Collapse
Affiliation(s)
- Davor Juretić
- Mediterranean Institute for Life Sciences, 21000 Split, Croatia;
- Faculty of Science, University of Split, 21000 Split, Croatia;
| |
Collapse
|
34
|
翁 璐, 杨 德, 陈 亮. [Materials for Selective Inhibition of Streptococcus mutans and Progress in Relevant Research]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:922-928. [PMID: 36224698 PMCID: PMC10408796 DOI: 10.12182/20220960202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 06/16/2023]
Abstract
Dental caries is a disease in which chronic progressive destruction of the hard dental tissues occurs under the influence of multiple factors, among which, bacterial infection being the most important one. Dental plaque biofilm is a key factor in the pathogenesis of dental caries. Under normal circumstances, microorganisms within the biofilm maintain a dynamic balance through coordination, competition, and antagonism. However, when the environment changes, the balance in the biofilm will be disrupted, and the number of cariogenic bacteria, especially Streptococcus mutans ( S. mutans), will increase significantly, thereby causing the production of large amounts of organic acids on the tooth surface, tooth demineralization, and the formation of dental caries. Therefore, finding ways to restore the dynamic balance of oral microorganisms through selective inhibition of S. mutans is key to the prevention and treatment of dental caries. Herein, we reviewed the research progress of recent years in the development of materials with selective antibacterial effect, intending to provide references for the further development of drugs for the prevention and treatment of dental caries. Future studies should focus on the following aspects, mechanism, clinical efficacy, chemical modification, and safety, to supplement and make improvements on the existing relevant research, and to promote progress in research and development of drugs for the prevention and treatment of dental caries.
Collapse
Affiliation(s)
- 璐婷 翁
- 重庆医科大学附属口腔医院 牙体牙髓科 (重庆 401147)Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- 口腔疾病与生物医学重庆市重点实验室 (重庆 401147)Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- 重庆市高校市级口腔生物医学工程重点实验 (重庆 401147)Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - 德琴 杨
- 重庆医科大学附属口腔医院 牙体牙髓科 (重庆 401147)Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- 口腔疾病与生物医学重庆市重点实验室 (重庆 401147)Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- 重庆市高校市级口腔生物医学工程重点实验 (重庆 401147)Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - 亮 陈
- 重庆医科大学附属口腔医院 牙体牙髓科 (重庆 401147)Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- 口腔疾病与生物医学重庆市重点实验室 (重庆 401147)Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- 重庆市高校市级口腔生物医学工程重点实验 (重庆 401147)Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
35
|
Chou S, Zhang S, Guo H, Chang YF, Zhao W, Mou X. Targeted Antimicrobial Agents as Potential Tools for Modulating the Gut Microbiome. Front Microbiol 2022; 13:879207. [PMID: 35875544 PMCID: PMC9302920 DOI: 10.3389/fmicb.2022.879207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022] Open
Abstract
The gut microbiome plays a pivotal role in maintaining the health of the hosts; however, there is accumulating evidence that certain bacteria in the host, termed pathobionts, play roles in the progression of diseases. Although antibiotics can be used to eradicate unwanted bacteria, the side effects of antibiotic treatment lead to a great need for more targeted antimicrobial agents as tools to modulate the microbiome more precisely. Herein, we reviewed narrow-spectrum antibiotics naturally made by plants and microorganisms, followed by more targeted antibiotic agents including synthetic peptides, phage, and targeted drug delivery systems, from the perspective of using them as potential tools for modulating the gut microbiome for favorable effects on the health of the host. Given the emerging discoveries on pathobionts and the increasing knowledge on targeted antimicrobial agents reviewed in this article, we anticipate targeted antimicrobial agents will emerge as a new generation of a drug to treat microbiome-involved diseases.
Collapse
Affiliation(s)
- Shuli Chou
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shiqing Zhang
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Huating Guo
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yung-fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Wenjing Zhao
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiangyu Mou
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Tang Z, Xu W, Zhou Z, Qiao Y, Zheng S, Rong W. Taxonomic and functional alterations in the salivary microbiota of children with and without severe early childhood caries (S-ECC) at the age of 3. PeerJ 2022; 10:e13529. [PMID: 35669952 PMCID: PMC9165595 DOI: 10.7717/peerj.13529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/11/2022] [Indexed: 01/17/2023] Open
Abstract
Background Primary dental caries is the most prevalent oral disease among preschool children, which can cause severe damage to teeth and even affect the mental well-being of children. Various studies have demonstrated that the oral microbiome plays a pivotal role in the onset and development of dental caries. However, it remains uncertain about the key microbial markers associated with caries, owing to the limited evidence. Methods Fifteen S-ECC children and fifteen healthy controls were selected from three-year-old children in this study. Their clinical data and oral saliva samples were collected. Shotgun sequencing was conducted to investigate the microbial differences and the relevant functions between the two groups. Results We observed no apparent difference in oral microbial community diversity between the two groups. Still, at the genus/species levels, several characteristic genera/species such as Propionibacterium, Propionibacterium acidifaciens, Prevotella denticola, Streptococcus mutans and Actinomyces sp. oral taxon 448/414 increased significantly in S-ECC children, compared with the oral health group. Furthermore, we found that functional pathways involving glycolysis and acid production, such as starch and sucrose metabolism, fructose and mannose metabolism, glycolysis/gluconeogenesis, were prominently up-regulated in the high-caries group. Conclusions Our study showed that dental caries in children were associated with the alterations in the oral microbiota at the composition and functional levels, which may potentially inspire the exploration of microbial diagnosis or therapeutic treatments.
Collapse
Affiliation(s)
- Zhe Tang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wenyi Xu
- Beijing QuantiHealth Technology Co., Ltd., Beijing QuantiHealth Technology Co., Ltd., Beijing, China
| | - Zhifang Zhou
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yanchun Qiao
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wensheng Rong
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
37
|
Johnston CW, Badran AH. Natural and engineered precision antibiotics in the context of resistance. Curr Opin Chem Biol 2022; 69:102160. [PMID: 35660248 DOI: 10.1016/j.cbpa.2022.102160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
Antibiotics are essential weapons in our fight against infectious disease, yet the consequences of broad-spectrum antibiotic use on microbiome stability and pathogen resistance are prompting investigations into more selective alternatives. Echoing the advent of precision medicine in oncology, precision antibiotics with focused activities are emerging as a means of addressing infections without damaging microbiomes or incentivizing resistance. Historically, antibiotic design principles have been gleaned from Nature, and reinvestigation of overlooked antibacterials is now providing scaffolds and targets for the design of pathogen-specific drugs. In this perspective, we summarize the biosynthetic and antibacterial mechanisms used to access these activities, and discuss how such strategies may be co-opted through engineering approaches to afford precision antibiotics.
Collapse
Affiliation(s)
- Chad W Johnston
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Ahmed H Badran
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
38
|
Chen V, Burgess JL, Verpile R, Tomic-Canic M, Pastar I. Novel Diagnostic Technologies and Therapeutic Approaches Targeting Chronic Wound Biofilms and Microbiota. CURRENT DERMATOLOGY REPORTS 2022; 11:60-72. [PMID: 37007641 PMCID: PMC10065746 DOI: 10.1007/s13671-022-00354-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose of Review To provide an up-to-date overview of recent developments in diagnostic methods and therapeutic approaches for chronic wound biofilms and pathogenic microbiota. Recent Findings Biofilm infections are one of the major contributors to impaired wound healing in chronic wounds, including diabetic foot ulcers, venous leg ulcers, pressure ulcers, and nonhealing surgical wounds. As an organized microenvironment commonly including multiple microbial species, biofilms develop and persist through methods that allow evasion from host immune response and antimicrobial treatments. Suppression and reduction of biofilm infection have been demonstrated to improve wound healing outcomes. However, chronic wound biofilms are a challenge to treat due to limited methods for accurate, accessible clinical identification and the biofilm's protective properties against therapeutic agents. Here we review recent approaches towards visual markers for less invasive, enhanced biofilm detection in the clinical setting. We outline progress in wound care treatments including investigation of their antibiofilm effects, such as with hydrosurgical and ultrasound debridement, negative pressure wound therapy with instillation, antimicrobial peptides, nanoparticles and nanocarriers, electroceutical dressings, and phage therapy. Summary Current evidence for biofilm-targeted treatments has been primarily conducted in preclinical studies, with limited clinical investigation for many therapies. Improved identification, monitoring, and treatment of biofilms require expansion of point-of-care visualization methods and increased evaluation of antibiofilm therapies in robust clinical trials.
Collapse
|
39
|
Wang D, Nambu T, Tanimoto H, Iwata N, Yoshikawa K, Okinaga T, Yamamoto K. Interdental Plaque Microbial Community Changes under In Vitro Violet LED Irradiation. Antibiotics (Basel) 2021; 10:antibiotics10111348. [PMID: 34827286 PMCID: PMC8614803 DOI: 10.3390/antibiotics10111348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Oral microbiome dysbiosis has important links to human health and disease. Although photodynamic therapy influences microbiome diversity, the specific effect of violet light irradiation remains largely unknown. In this study, we analyzed the effect of violet light-emitting diode (LED) irradiation on interdental plaque microbiota. Interdental plaque was collected from 12 human subjects, exposed to violet LED irradiation, and cultured in a specialized growth medium. Next-generation sequencing of the 16S ribosomal RNA genes revealed that α-diversity decreased, whereas β-diversity exhibited a continuous change with violet LED irradiation doses. In addition, we identified several operational taxonomic units that exhibited significant shifts during violet LED irradiation. Specifically, violet LED irradiation led to a significant reduction in the relative abundance of Fusobacterium species, but a significant increase in several species of oral bacteria, such as Veillonella and Campylobacter. Our study provides an overview of oral plaque microbiota changes under violet LED irradiation, and highlights the potential of this method for adjusting the balance of the oral microbiome without inducing antibiotic resistance.
Collapse
Affiliation(s)
- Dan Wang
- Department of Operative Dentistry, Graduate School of Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan;
| | - Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
- Correspondence: (T.N.); (T.O.)
| | - Hiroaki Tanimoto
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan; (H.T.); (N.I.); (K.Y.); (K.Y.)
| | - Naohiro Iwata
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan; (H.T.); (N.I.); (K.Y.); (K.Y.)
| | - Kazushi Yoshikawa
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan; (H.T.); (N.I.); (K.Y.); (K.Y.)
| | - Toshinori Okinaga
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
- Correspondence: (T.N.); (T.O.)
| | - Kazuyo Yamamoto
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan; (H.T.); (N.I.); (K.Y.); (K.Y.)
| |
Collapse
|
40
|
Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 2021; 50:7820-7880. [PMID: 34042120 PMCID: PMC8689412 DOI: 10.1039/d0cs00729c] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Bacterial infections caused by 'superbugs' are increasing globally, and conventional antibiotics are becoming less effective against these bacteria, such that we risk entering a post-antibiotic era. In recent years, antimicrobial peptides (AMPs) have gained significant attention for their clinical potential as a new class of antibiotics to combat antimicrobial resistance. In this review, we discuss several facets of AMPs including their diversity, physicochemical properties, mechanisms of action, and effects of environmental factors on these features. This review outlines various chemical synthetic strategies that have been applied to develop novel AMPs, including chemical modifications of existing peptides, semi-synthesis, and computer-aided design. We will also highlight novel AMP structures, including hybrids, antimicrobial dendrimers and polypeptides, peptidomimetics, and AMP-drug conjugates and consider recent developments in their chemical synthesis.
Collapse
Affiliation(s)
- Bee Ha Gan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Josephine Gaynord
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Sam M Rowe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Tomas Deingruber
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
41
|
The Effects of Nonnutritive Sweeteners on the Cariogenic Potential of Oral Microbiome. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9967035. [PMID: 34258285 PMCID: PMC8253641 DOI: 10.1155/2021/9967035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 02/05/2023]
Abstract
Nonnutritive sweeteners (NNSs) are sugar substitutes widely used to reduce the negative health effects of excessive sugar consumption. Dental caries, one of the most prevalent chronic diseases globally, results from a pathogenic biofilm with microecological imbalance and frequent exposure to sugars. Some research has shown that certain NNSs possess less cariogenic potential than sucrose, indicating their putative effect on oral microbiome. To uncover the alterations of acidogenic pathogens and alkali-generating commensals, as well as the biofilm cariogenic potential under the influence of NNSs, we selected four common NNSs (acesulfame-K, aspartame, saccharin, and sucralose) and established single-, dual-, and multispecies in vitro culture model to assess their effects on Streptococcus mutans (S. mutans) and/or Streptococcus sanguinis (S. sanguinis) compared to sucrose with the same sweetness. The results showed that NNSs significantly suppressed the planktonic growth, acid production, and biofilm formation of S. mutans or S. sanguinis compared with sucrose in single-species cultures. Additionally, decreased S. mutans/S. sanguinis ratio, less EPS generation, and higher pH value were observed in dual-species and saliva-derived multispecies biofilms with supplementary NNSs. Collectively, this study demonstrates that NNSs inhibit the cariogenic potential of biofilms by maintaining microbial equilibrium, thus having a promising prospect as anticaries agents.
Collapse
|
42
|
Lei M, Jayaraman A, Van Deventer JA, Lee K. Engineering Selectively Targeting Antimicrobial Peptides. Annu Rev Biomed Eng 2021; 23:339-357. [PMID: 33852346 DOI: 10.1146/annurev-bioeng-010220-095711] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rise of antibiotic-resistant strains of bacterial pathogens has necessitated the development of new therapeutics. Antimicrobial peptides (AMPs) are a class of compounds with potentially attractive therapeutic properties, including the ability to target specific groups of bacteria. In nature, AMPs exhibit remarkable structural and functional diversity, which may be further enhanced through genetic engineering, high-throughput screening, and chemical modification strategies. In this review, we discuss the molecular mechanisms underlying AMP selectivity and highlight recent computational and experimental efforts to design selectively targeting AMPs. While there has been an extensive effort to find broadly active and highly potent AMPs, it remains challenging to design targeting peptides to discriminate between different bacteria on the basis of physicochemical properties. We also review approaches for measuring AMP activity, point out the challenges faced in assaying for selectivity, and discuss the potential for increasing AMP diversity through chemical modifications.
Collapse
Affiliation(s)
- Ming Lei
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA; , ,
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering and Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA; .,Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas Health Science Center, Texas A&M University, College Station, Texas 77843, USA
| | - James A Van Deventer
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA; , , .,Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA; , ,
| |
Collapse
|
43
|
Niu JY, Yin IX, Mei ML, Wu WKK, Li QL, Chu CH. The multifaceted roles of antimicrobial peptides in oral diseases. Mol Oral Microbiol 2021; 36:159-171. [PMID: 33721398 DOI: 10.1111/omi.12333] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides are naturally occurring protein molecules with antibacterial, antiviral and/or antifungal activity. Some antimicrobial peptides kill microorganisms through direct binding with negatively charged microbial surfaces. This action disrupts the cytoplasmic membrane and leads to the leakage of the cytoplasm. In addition, they are involved in the innate immune response. Antimicrobial peptides play an important role in oral health, as natural antimicrobial peptides are the first line of host defence in response to microbial infection. The level of natural antimicrobial peptides increases during severe disease conditions and play a role in promoting the healing of oral tissues. However, they are insufficient for eliminating pathogenic micro-organisms. The variability of the oral environment can markedly reduce the effect of natural antimicrobial peptides. Thus, researchers are developing synthetic antimicrobial peptides with promising stability and biocompatibility. Synthetic antimicrobial peptides are a potential alternative to traditional antimicrobial therapy. Pertinent to oral diseases, the deregulation of antimicrobial peptides is involved in the pathogenesis of dental caries, periodontal disease, mucosal disease and oral cancer, where they can kill pathogenic microorganisms, promote tissue healing, serve as biomarkers and inhibit tumor cells. This narrative review provides an overview of the multifaceted roles of antimicrobial peptides in oral diseases.
Collapse
Affiliation(s)
- John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - William Ka Kei Wu
- Department of Anaesthesia & Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Quan-Li Li
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
44
|
Chen J, Zhang A, Xiang Z, Lu M, Huang P, Gong T, Pan Y, Lin Y, Zhou X, Li Y. EpsR Negatively Regulates Streptococcus mutans Exopolysaccharide Synthesis. J Dent Res 2021; 100:968-976. [PMID: 33749354 DOI: 10.1177/00220345211000668] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Streptococcus mutans is considered the primary etiological agent of human dental caries. Glucosyltransferases (Gtfs) from S. mutans play important roles in the formation of biofilm matrix and the development of cariogenic oral biofilm. Therefore, Gtfs are considered an important target to prevent the development of dental caries. However, the role of transcription factors in regulating gtf expression is not yet clear. Here, we identify a MarR (multiple antibiotic resistance regulator) family transcription factor named EpsR (exopolysaccharide synthesis regulator), which negatively regulates gtfB expression and exopolysaccharide (EPS) production in S. mutans. The epsR in-frame deletion strain grew slowly, aggregated more easily in the presence of dextran, and displayed different colony morphology and biofilm structure. Notably, epsR deletion resulted in altered 3-dimensional biofilm architecture, increased water-insoluble EPS production, and upregulated GtfB protein content and activity. In addition, global gene expression profiling revealed differences in the expression levels of 69 genes in which gtfB was markedly upregulated. The conserved DNA motif for EpsR binding was determined by electrophoretic mobility shift assay and DNase I footprinting assays. Moreover, analysis of β-galactosidase activity suggested that EpsR acted as a repressor and inhibited gtfB expression. Taken together, our findings indicate that EpsR is an important transcription factor that regulates gtfB expression and EPS production in S. mutans. These results add new aspects to the complexity of regulating the expression of genes involved in the cariogenicity of S. mutans, which might lead to novel strategies to prevent the formation of cariogenic biofilm that may favor diseases.
Collapse
Affiliation(s)
- J Chen
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - A Zhang
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Z Xiang
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - M Lu
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - P Huang
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - T Gong
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Pan
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Lin
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Zhou
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Li
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Abusleme L, Hoare A, Hong BY, Diaz PI. Microbial signatures of health, gingivitis, and periodontitis. Periodontol 2000 2021; 86:57-78. [PMID: 33690899 DOI: 10.1111/prd.12362] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The subgingival crevice harbors diverse microbial communities. Shifts in the composition of these communities occur with the development of gingivitis and periodontitis, which are considered as successive stages of periodontal health deterioration. It is not clear, however, to what extent health- and gingivitis-associated microbiota are protective, or whether these communities facilitate the successive growth of periodontitis-associated taxa. To further our understanding of the dynamics of the microbial stimuli that trigger disruptions in periodontal homeostasis, we reviewed the available literature with the aim of defining specific microbial signatures associated with different stages of periodontal dysbiosis. Although several studies have evaluated the subgingival communities present in different periodontal conditions, we found limited evidence for the direct comparison of communities in health, gingivitis, and periodontitis. Therefore, we aimed to better define subgingival microbiome shifts by merging and reanalyzing, using unified bioinformatic processing strategies, publicly available 16S ribosomal RNA gene amplicon datasets of periodontal health, gingivitis, and periodontitis. Despite inherent methodological differences across studies, distinct community structures were found for health, gingivitis, and periodontitis, demonstrating the specific associations between gingival tissue status and the subgingival microbiome. Consistent with the concept that periodontal dysbiosis is the result of a process of microbial succession without replacement, more species were detected in disease than in health. However, gingivitis-associated communities were more diverse than those from subjects with periodontitis, suggesting that certain species ultimately become dominant as dysbiosis progresses. We identified the bacterial species associated with each periodontal condition and prevalent species that do not change in abundance from one state to another (core species), and we also outlined species co-occurrence patterns via network analysis. Most periodontitis-associated species were rarely detected in health but were frequently detected, albeit in low abundance, in gingivitis, which suggests that gingivitis and periodontitis are a continuum. Overall, we provide a framework of subgingival microbiome shifts, which can be used to generate hypotheses with respect to community assembly processes and the emergence of periodontal dysbiosis.
Collapse
Affiliation(s)
- Loreto Abusleme
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago, Chile.,Laboratory for Craniofacial Translational Research, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Anilei Hoare
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Bo-Young Hong
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Patricia I Diaz
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.,UB Microbiome Center, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
46
|
Abstract
Oral bacteriophages (or phages), especially periodontal ones, constitute a growing area of interest, but research on oral phages is still in its infancy. Phages are bacterial viruses that may persist as intracellular parasitic deoxyribonucleic acid (DNA) or use bacterial metabolism to replicate and cause bacterial lysis. The microbiomes of saliva, oral mucosa, and dental plaque contain active phage virions, bacterial lysogens (ie, carrying dormant prophages), and bacterial strains containing short fragments of phage DNA. In excess of 2000 oral phages have been confirmed or predicted to infect species of the phyla Actinobacteria (>300 phages), Bacteroidetes (>300 phages), Firmicutes (>1000 phages), Fusobacteria (>200 phages), and Proteobacteria (>700 phages) and three additional phyla (few phages only). This article assesses the current knowledge of the diversity of the oral phage population and the mechanisms by which phages may impact the ecology of oral biofilms. The potential use of phage-based therapy to control major periodontal pathogens is also discussed.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, California, USA
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
47
|
Zhang M, Yu W, Zhou S, Zhang B, Lo ECM, Xu X, Zhang D. In vitro Antibacterial Activity of an FDA-Approved H +-ATPase Inhibitor, Bedaquiline, Against Streptococcus mutans in Acidic Milieus. Front Microbiol 2021; 12:647611. [PMID: 33717046 PMCID: PMC7947916 DOI: 10.3389/fmicb.2021.647611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background Dental caries is an acid-related disease. Current anti-caries agents mainly focus on the bacteriostatic effect in a neutral environment and do not target acid-resistant microorganisms related to caries in acidic milieus. Objectives To assess the in vitro antibacterial activities of bedaquiline against oral pathogens in acidic milieus. Methods Streptococcus mutans, Streptococcus sanguinis, and Streptococcus salivarius were used to prepare the mono-/multiple suspension and biofilm. The MIC and IC50 of bedaquiline against S. mutans were determined by the broth microdilution method. Bedaquiline was compared regarding (i) the inhibitory activity in pH 4–7 and at different time points against planktonic and biofilm; (ii) the effect on the production of lactic acid, extracellular polysaccharide, and pH of S. mutans biofilm; (iii) the cytotoxicity effects; and (iv) the activity on H+-ATPase enzyme of S. mutans. Results In pH 5 BHI, 2.5 mg/L (IC50) and 4 mg/L (MIC) of bedaquiline inhibited the proliferation and biofilm generation of S. mutans and Mix in a dose-dependent and time-dependent manner, but it was invalid in a neutral environment. The lactic acid production, polysaccharide production, and pH drop range reduced with the incorporation of bedaquiline in a pH 5 environment. Its inhibitory effect (>56 mg/L) against H+-ATPase enzyme in S. mutans and its non-toxic effect (<10 mg/L) on periodontal ligament stem cells were also confirmed. Conclusion Bedaquiline is efficient in inhibiting the proliferation and biofilm generation of S. mutans and other oral pathogens in an acidic environment. Its high targeting property and non-cytotoxicity also promote its clinical application potential in preventing caries. Further investigation of its specific action sites and drug modification are warranted.
Collapse
Affiliation(s)
- Meng Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Faculty of Dentistry, University of Hong Kong, Sai Ying Pun, Hong Kong
| | - Wenqian Yu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shujing Zhou
- Department of Stomatology, Maternal and Child Health Hospital of Liaocheng City, Liaocheng, China
| | - Bing Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dongjiao Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
48
|
Dijksteel GS, Ulrich MMW, Middelkoop E, Boekema BKHL. Review: Lessons Learned From Clinical Trials Using Antimicrobial Peptides (AMPs). Front Microbiol 2021; 12:616979. [PMID: 33692766 PMCID: PMC7937881 DOI: 10.3389/fmicb.2021.616979] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs) or host defense peptides protect the host against various pathogens such as yeast, fungi, viruses and bacteria. AMPs also display immunomodulatory properties ranging from the modulation of inflammatory responses to the promotion of wound healing. More interestingly, AMPs cause cell disruption through non-specific interactions with the membrane surface of pathogens. This is most likely responsible for the low or limited emergence of bacterial resistance against many AMPs. Despite the increasing number of antibiotic-resistant bacteria and the potency of novel AMPs to combat such pathogens, only a few AMPs are in clinical use. Therefore, the current review describes (i) the potential of AMPs as alternatives to antibiotics, (ii) the challenges toward clinical implementation of AMPs and (iii) strategies to improve the success rate of AMPs in clinical trials, emphasizing the lessons we could learn from these trials.
Collapse
Affiliation(s)
- Gabrielle S Dijksteel
- Association of Dutch Burn Centres, Beverwijk, Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Magda M W Ulrich
- Association of Dutch Burn Centres, Beverwijk, Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esther Middelkoop
- Association of Dutch Burn Centres, Beverwijk, Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
49
|
Sumida K, Lau WL, Kovesdy CP, Kalantar-Zadeh K, Kalantar-Zadeh K. Microbiome modulation as a novel therapeutic approach in chronic kidney disease. Curr Opin Nephrol Hypertens 2021; 30:75-84. [PMID: 33148949 DOI: 10.1097/mnh.0000000000000661] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Gut dysbiosis has been implicated in the pathogenesis of chronic kidney disease (CKD). Interventions aimed at restoring gut microbiota have emerged as a potential therapeutic option in CKD. This review summarizes the current evidence on gut microbiota-targeted strategies in patients with CKD. RECENT FINDINGS A growing number of studies have shown that plant-based diets, low-protein diets, prebiotic, probiotic, and synbiotic supplementation, and constipation treatment may lead to favorable alterations in the gut microbiota. Current evidence suggests that the implementation of both plant-based and low-protein diets has potential benefits for the primary prevention of CKD, and for slowing CKD progression, with minimal risk of hyperkalemia and/or cachexia. The use of prebiotics, probiotics, and synbiotics and laxatives may have beneficial effects on uremic toxin generation, but their evidence is limited for the prevention and treatment of CKD. Recent advances in diagnostic technologies (e.g., high-throughput sequencing and nanotechnology) could enhance rapid diagnosis, monitoring, and design of effective therapeutic strategies for mitigating gut dysbiosis in CKD. SUMMARY Plant-based and low-protein diets, prebiotic, probiotic, and synbiotic supplementation, and constipation treatment represent novel gut microbiota-targeted strategies in the conservative management of CKD, which could improve clinical outcomes in CKD.
Collapse
Affiliation(s)
- Keiichi Sumida
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Wei Ling Lau
- Division of Nephrology and Hypertension, Department of Medicine, University of California Irvine, Orange, California
| | - Csaba P Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
- Nephrology Section, Memphis VA Medical Center, Memphis, Tennessee, USA
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology and Hypertension, Department of Medicine, University of California Irvine, Orange, California
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
50
|
Pfeifer CS, Kreth J, Koley D, Ferracane JL. Considerations for Designing Next-Generation Composite Dental Materials. ORAL BIOFILMS AND MODERN DENTAL MATERIALS 2021:99-114. [DOI: 10.1007/978-3-030-67388-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|