1
|
Provatas K, Chantzi N, Amptazi N, Patsakis M, Nayak A, Mouratidis I, Zaravinos A, Pavlopoulos G, Georgakopoulos-Soares I. invertiaDB: a database of inverted repeats across organismal genomes. Nucleic Acids Res 2025; 53:gkaf329. [PMID: 40272360 PMCID: PMC12019632 DOI: 10.1093/nar/gkaf329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Inverted repeats are repetitive elements that can form hairpin and cruciform structures. They are linked to genomic instability; however, they also have various biological functions. Their distribution differs markedly across taxonomic groups in the tree of life, and they exhibit high polymorphism due to their inherent genomic instability. Advances in sequencing technologies and declined costs have enabled the generation of an ever-growing number of complete genomes for organisms across taxonomic groups in the tree of life. However, a comprehensive database encompassing inverted repeats across diverse organismal genomes has been lacking. We present invertiaDB, the first comprehensive database of inverted repeats spanning multiple taxa, featuring repeats identified in the genomes of 118 101 organisms across all major taxonomic groups. For each organism, we derived inverted repeats with arm lengths of at least 10 bp, spacer lengths up to 8 bp, and no mismatches in the arms. The database currently hosts 34 330 450 inverted repeat sequences, serving as a centralized, user-friendly repository to perform searches and interactive visualizations, and download existing inverted repeat data for independent analysis. invertiaDB is implemented as a web portal for browsing, analyzing, and downloading inverted repeat data. invertiaDB is publicly available at https://invertiadb.netlify.app/homepage.html.
Collapse
Affiliation(s)
- Kimonas Provatas
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, United States
| | - Nikol Chantzi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, United States
| | - Nafsika Amptazi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, United States
| | - Michail Patsakis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, United States
| | - Akshatha Nayak
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, United States
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, United States
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, 1516, Cyprus
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, 1516, Cyprus
| | - Georgios A Pavlopoulos
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari 16672, Greece
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, United States
| |
Collapse
|
2
|
Provatas K, Chantzi N, Patsakis M, Nayak A, Mouratidis I, Pavlopoulos GA, Georgakopoulos-Soares I. invertiaDB: A Database of Inverted Repeats Across Organismal Genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622808. [PMID: 39605716 PMCID: PMC11601276 DOI: 10.1101/2024.11.11.622808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Inverted repeats are repetitive elements that can form hairpin and cruciform structures. They are linked to genomic instability, however they also have various biological functions. Their distribution differs markedly across taxonomic groups in the tree of life, and they exhibit high polymorphism due to their inherent genomic instability. Advances in sequencing technologies and declined costs have enabled the generation of an ever-growing number of complete genomes for organisms across taxonomic groups in the tree of life. However, a comprehensive database encompassing inverted repeats across diverse organismal genomes has been lacking. We present InvertiaDB, the first comprehensive database of inverted repeats spanning multiple taxa, featuring repeats identified in the genomes of 118,070 organisms across all major taxonomic groups. The database currently hosts 30,067,666 inverted repeat sequences, serving as a centralized, user-friendly repository to perform searches, interactive visualization, and download existing inverted repeat data for independent analysis. invertiaDB is implemented as a web portal for browsing, analyzing and downloading inverted repeat data. invertiaDB is publicly available at https://invertiadb.netlify.app/homepage.html.
Collapse
Affiliation(s)
- Kimonas Provatas
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Nikol Chantzi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Michail Patsakis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Akshatha Nayak
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | | | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
3
|
Rigou S, Schmitt A, Alempic JM, Lartigue A, Vendloczki P, Abergel C, Claverie JM, Legendre M. Pithoviruses Are Invaded by Repeats That Contribute to Their Evolution and Divergence from Cedratviruses. Mol Biol Evol 2023; 40:msad244. [PMID: 37950899 PMCID: PMC10664404 DOI: 10.1093/molbev/msad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023] Open
Abstract
Pithoviridae are amoeba-infecting giant viruses possessing the largest viral particles known so far. Since the discovery of Pithovirus sibericum, recovered from a 30,000-yr-old permafrost sample, other pithoviruses, and related cedratviruses, were isolated from various terrestrial and aquatic samples. Here, we report the isolation and genome sequencing of 2 Pithoviridae from soil samples, in addition to 3 other recent isolates. Using the 12 available genome sequences, we conducted a thorough comparative genomic study of the Pithoviridae family to decipher the organization and evolution of their genomes. Our study reveals a nonuniform genome organization in 2 main regions: 1 concentrating core genes and another gene duplications. We also found that Pithoviridae genomes are more conservative than other families of giant viruses, with a low and stable proportion (5% to 7%) of genes originating from horizontal transfers. Genome size variation within the family is mainly due to variations in gene duplication rates (from 14% to 28%) and massive invasion by inverted repeats. While these repeated elements are absent from cedratviruses, repeat-rich regions cover as much as a quarter of the pithoviruses genomes. These regions, identified using a dedicated pipeline, are hotspots of mutations, gene capture events, and genomic rearrangements that contribute to their evolution.
Collapse
Affiliation(s)
- Sofia Rigou
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Alain Schmitt
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Jean-Marie Alempic
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Audrey Lartigue
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Peter Vendloczki
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Chantal Abergel
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Jean-Michel Claverie
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Matthieu Legendre
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| |
Collapse
|
4
|
Smirnov A, Battulin N. Concatenation of Transgenic DNA: Random or Orchestrated? Genes (Basel) 2021; 12:genes12121969. [PMID: 34946918 PMCID: PMC8701086 DOI: 10.3390/genes12121969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022] Open
Abstract
Generation of transgenic organisms by pronuclear microinjection has become a routine procedure. However, while the process of DNA integration in the genome is well understood, we still do not know much about the recombination between transgene molecules that happens in the first moments after DNA injection. Most of the time, injected molecules are joined together in head-to-tail tandem repeats-the so-called concatemers. In this review, we focused on the possible concatenation mechanisms and how they could be studied with genetic reporters tracking individual copies in concatemers. We also discuss various features of concatemers, including palindromic junctions and repeat-induced gene silencing (RIGS). Finally, we speculate how cooperation of DNA repair pathways creates a multicopy concatenated insert.
Collapse
Affiliation(s)
- Alexander Smirnov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
| | - Nariman Battulin
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
- Institute of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
5
|
Lin ZJ, Wang X, Wang J, Tan Y, Tang X, Werren JH, Zhang D, Wang X. Comparative analysis reveals the expansion of mitochondrial DNA control region containing unusually high G-C tandem repeat arrays in Nasonia vitripennis. Int J Biol Macromol 2020; 166:1246-1257. [PMID: 33159940 DOI: 10.1016/j.ijbiomac.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022]
Abstract
Insect mitochondrial DNA (mtDNA) ranges from 14 to 19 kbp, and the size difference is attributed to the AT-rich control region. Jewel wasps have a parasitoid lifestyle, which may affect mitochondria function and evolution. We sequenced, assembled, and annotated mitochondrial genomes in Nasonia and outgroup species. Gene composition and order are conserved within Nasonia, but they differ from other parasitoids by two large inversion events that were not reported before. We observed a much higher substitution rate relative to the nuclear genome and mitochondrial introgression between N. giraulti and N. oneida, which is consistent with previous studies. Most strikingly, N. vitripennis mtDNA has an extremely long control region (7665 bp), containing twenty-nine 217 bp tandem repeats and can fold into a super-cruciform structure. In contrast to tandem repeats commonly found in other mitochondria, these high-copy repeats are highly conserved (98.7% sequence identity), much longer in length (approximately 8 Kb), extremely GC-rich (50.7%), and CpG-rich (percent CpG 19.4% vs. 1.1% in coding region), resulting in a 23 kbp mtDNA beyond the typical size range in insects. These N. vitripennis-specific mitochondrial repeats are not related to any known sequences in insect mitochondria. Their evolutionary origin and functional consequences warrant further investigations.
Collapse
Affiliation(s)
- Zi Jie Lin
- Department of Chemistry, Columbus State University, Columbus, GA 31909, United States of America
| | - Xiaozhu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States of America
| | - Jinbin Wang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yongjun Tan
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, MO 63103, United States of America
| | - Xueming Tang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY 14627, United States of America
| | - Dapeng Zhang
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, MO 63103, United States of America
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States of America; HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States of America; Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, United States of America; Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, United States of America.
| |
Collapse
|
6
|
Essebier A, Vera Wolf P, Cao MD, Carroll BJ, Balasubramanian S, Bodén M. Statistical Enrichment of Epigenetic States Around Triplet Repeats that Can Undergo Expansions. Front Neurosci 2016; 10:92. [PMID: 27013954 PMCID: PMC4782033 DOI: 10.3389/fnins.2016.00092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/23/2016] [Indexed: 12/18/2022] Open
Abstract
More than 30 human genetic diseases are linked to tri-nucleotide repeat expansions. There is no known mechanism that explains repeat expansions in full, but changes in the epigenetic state of the associated locus has been implicated in the disease pathology for a growing number of examples. A comprehensive comparative analysis of the genomic features associated with diverse repeat expansions has been lacking. Here, in an effort to decipher the propensity of repeats to undergo expansion and result in a disease state, we determine the genomic coordinates of tri-nucleotide repeat tracts at base pair resolution and computationally establish epigenetic profiles around them. Using three complementary statistical tests, we reveal that several epigenetic states are enriched around repeats that are associated with disease, even in cells that do not harbor expansion, relative to a carefully stratified background. Analysis of over one hundred cell types reveals that epigenetic states generally tend to vary widely between genic regions and cell types. However, there is qualified consistency in the epigenetic signatures of repeats associated with disease suggesting that changes to the chromatin and the DNA around an expanding repeat locus are likely to be similar. These epigenetic signatures may be exploited further to develop models that could explain the propensity of repeats to undergo expansions.
Collapse
Affiliation(s)
- Alexandra Essebier
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | - Patricia Vera Wolf
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | - Minh Duc Cao
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | | | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| |
Collapse
|
7
|
Abstract
During meiosis, numerous DNA double-strand breaks (DSBs) are formed as part of the normal developmental program. This seemingly destructive behavior is necessary for successful meiosis, since repair of the DSBs through homologous recombination (HR) helps to produce physical links between the homologous chromosomes essential for correct chromosome segregation later in meiosis. However, DSB formation at such a massive scale also introduces opportunities to generate gross chromosomal rearrangements. In this review, we explore ways in which meiotic DSBs can result in such genomic alterations.
Collapse
|
8
|
Thys RG, Lehman CE, Pierce LCT, Wang YH. DNA secondary structure at chromosomal fragile sites in human disease. Curr Genomics 2015; 16:60-70. [PMID: 25937814 PMCID: PMC4412965 DOI: 10.2174/1389202916666150114223205] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease.
Collapse
Affiliation(s)
- Ryan G Thys
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Christine E Lehman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
9
|
Lu S, Wang G, Bacolla A, Zhao J, Spitser S, Vasquez KM. Short Inverted Repeats Are Hotspots for Genetic Instability: Relevance to Cancer Genomes. Cell Rep 2015; 10:1674-1680. [PMID: 25772355 DOI: 10.1016/j.celrep.2015.02.039] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/26/2015] [Accepted: 02/16/2015] [Indexed: 12/25/2022] Open
Abstract
Analyses of chromosomal aberrations in human genetic disorders have revealed that inverted repeat sequences (IRs) often co-localize with endogenous chromosomal instability and breakage hotspots. Approximately 80% of all IRs in the human genome are short (<100 bp), yet the mutagenic potential of such short cruciform-forming sequences has not been characterized. Here, we find that short IRs are enriched at translocation breakpoints in human cancer and stimulate the formation of DNA double-strand breaks (DSBs) and deletions in mammalian and yeast cells. We provide evidence for replication-related mechanisms of IR-induced genetic instability and a novel XPF cleavage-based mechanism independent of DNA replication. These discoveries implicate short IRs as endogenous sources of DNA breakage involved in disease etiology and suggest that these repeats represent a feature of genome plasticity that may contribute to the evolution of the human genome by providing a means for diversity within the population.
Collapse
Affiliation(s)
- Steve Lu
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin - Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard R1800, Austin, TX 78723, USA
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin - Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard R1800, Austin, TX 78723, USA
| | - Albino Bacolla
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin - Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard R1800, Austin, TX 78723, USA
| | - Junhua Zhao
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin - Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard R1800, Austin, TX 78723, USA
| | - Scott Spitser
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin - Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard R1800, Austin, TX 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin - Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard R1800, Austin, TX 78723, USA.
| |
Collapse
|
10
|
Seligmann H. Mitochondrial swinger replication: DNA replication systematically exchanging nucleotides and short 16S ribosomal DNA swinger inserts. Biosystems 2014; 125:22-31. [PMID: 25283331 DOI: 10.1016/j.biosystems.2014.09.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 11/27/2022]
Abstract
Assuming systematic exchanges between nucleotides (swinger RNAs) resolves genomic 'parenthood' of some orphan mitochondrial transcripts. Twenty-three different systematic nucleotide exchanges (bijective transformations) exist. Similarities between transcription and replication suggest occurrence of swinger DNA. GenBank searches for swinger DNA matching the 23 swinger versions of human and mouse mitogenomes detect only vertebrate mitochondrial swinger DNA for swinger type AT+CG (from five different studies, 149 sequences) matching three human and mouse mitochondrial genes: 12S and 16S ribosomal RNAs, and cytochrome oxidase subunit I. Exchange A<->T+C<->G conserves self-hybridization properties, putatively explaining swinger biases for rDNA, against protein coding genes. Twenty percent of the regular human mitochondrial 16S rDNA consists of short swinger repeats (from 13 exchanges). Swinger repeats could originate from recombinations between regular and swinger DNA: duplicated mitochondrial genes of the parthenogenetic gecko Heteronotia binoei include fewer short A<->T+C<->G swinger repeats than non-duplicated mitochondrial genomes of that species. Presumably, rare recombinations between female and male mitochondrial genes (and in parthenogenetic situations between duplicated genes), favors reverse-mutations of swinger repeat insertions, probably because most inserts affect negatively ribosomal function. Results show that swinger DNA exists, and indicate that swinger polymerization contributes to the genesis of genetic material and polymorphism.
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine, URMITE CNRS-IRD 198 UMER 6236, Université de la Méditerranée, Marseille, France.
| |
Collapse
|
11
|
Vasquez KM, Wang G. The yin and yang of repair mechanisms in DNA structure-induced genetic instability. Mutat Res 2013; 743-744:118-131. [PMID: 23219604 PMCID: PMC3661696 DOI: 10.1016/j.mrfmmm.2012.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 01/14/2023]
Abstract
DNA can adopt a variety of secondary structures that deviate from the canonical Watson-Crick B-DNA form. More than 10 types of non-canonical or non-B DNA secondary structures have been characterized, and the sequences that have the capacity to adopt such structures are very abundant in the human genome. Non-B DNA structures have been implicated in many important biological processes and can serve as sources of genetic instability, implicating them in disease and evolution. Non-B DNA conformations interact with a wide variety of proteins involved in replication, transcription, DNA repair, and chromatin architectural regulation. In this review, we will focus on the interactions of DNA repair proteins with non-B DNA and their roles in genetic instability, as the proteins and DNA involved in such interactions may represent plausible targets for selective therapeutic intervention.
Collapse
Affiliation(s)
- Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| |
Collapse
|
12
|
Mukherjee K, Storici F. A mechanism of gene amplification driven by small DNA fragments. PLoS Genet 2012; 8:e1003119. [PMID: 23271978 PMCID: PMC3521702 DOI: 10.1371/journal.pgen.1003119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/11/2012] [Indexed: 11/19/2022] Open
Abstract
DNA amplification is a molecular process that increases the copy number of a chromosomal tract and often causes elevated expression of the amplified gene(s). Although gene amplification is frequently observed in cancer and other degenerative disorders, the molecular mechanisms involved in the process of DNA copy number increase remain largely unknown. We hypothesized that small DNA fragments could be the trigger of DNA amplification events. Following our findings that small fragments of DNA in the form of DNA oligonucleotides can be highly recombinogenic, we have developed a system in the yeast Saccharomyces cerevisiae to capture events of chromosomal DNA amplification initiated by small DNA fragments. Here we demonstrate that small DNAs can amplify a chromosomal region, generating either tandem duplications or acentric extrachromosomal DNA circles. Small fragment-driven DNA amplification (SFDA) occurs with a frequency that increases with the length of homology between the small DNAs and the target chromosomal regions. SFDA events are triggered even by small single-stranded molecules with as little as 20-nt homology with the genomic target. A double-strand break (DSB) external to the chromosomal amplicon region stimulates the amplification event up to a factor of 20 and favors formation of extrachromosomal circles. SFDA is dependent on Rad52 and Rad59, partially dependent on Rad1, Rad10, and Pol32, and independent of Rad51, suggesting a single-strand annealing mechanism. Our results reveal a novel molecular model for gene amplification, in which small DNA fragments drive DNA amplification and define the boundaries of the amplicon region. As DNA fragments are frequently found both inside cells and in the extracellular environment, such as the serum of patients with cancer or other degenerative disorders, we propose that SFDA may be a common mechanism for DNA amplification in cancer cells, as well as a more general cause of DNA copy number variation in nature.
Collapse
Affiliation(s)
- Kuntal Mukherjee
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Francesca Storici
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Lamprea-Burgunder E, Ludin P, Mäser P. Species-specific typing of DNA based on palindrome frequency patterns. DNA Res 2011; 18:117-24. [PMID: 21429991 PMCID: PMC3077040 DOI: 10.1093/dnares/dsr004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA in its natural, double-stranded form may contain palindromes, sequences which read the same from either side because they are identical to their reverse complement on the sister strand. Short palindromes are underrepresented in all kinds of genomes. The frequency distribution of short palindromes exhibits more than twice the inter-species variance of non-palindromic sequences, which renders palindromes optimally suited for the typing of DNA. Here, we show that based on palindrome frequency, DNA sequences can be discriminated to the level of species of origin. By plotting the ratios of actual occurrence to expectancy, we generate palindrome frequency patterns that allow to cluster different sequences of the same genome and to assign plasmids, and in some cases even viruses to their respective host genomes. This finding will be of use in the growing field of metagenomics.
Collapse
|
14
|
Paek AL, Kaochar S, Jones H, Elezaby A, Shanks L, Weinert T. Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast. Genes Dev 2009; 23:2861-75. [PMID: 20008936 DOI: 10.1101/gad.1862709] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Large-scale changes (gross chromosomal rearrangements [GCRs]) are common in genomes, and are often associated with pathological disorders. We report here that a specific pair of nearby inverted repeats in budding yeast fuse to form a dicentric chromosome intermediate, which then rearranges to form a translocation and other GCRs. We next show that fusion of nearby inverted repeats is general; we found that many nearby inverted repeats that are present in the yeast genome also fuse, as does a pair of synthetically constructed inverted repeats. Fusion occurs between inverted repeats that are separated by several kilobases of DNA and share >20 base pairs of homology. Finally, we show that fusion of inverted repeats, surprisingly, does not require genes involved in double-strand break (DSB) repair or genes involved in other repeat recombination events. We therefore propose that fusion may occur by a DSB-independent, DNA replication-based mechanism (which we term "faulty template switching"). Fusion of nearby inverted repeats to form dicentrics may be a major cause of instability in yeast and in other organisms.
Collapse
Affiliation(s)
- Andrew L Paek
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
15
|
Delprat A, Negre B, Puig M, Ruiz A. The transposon Galileo generates natural chromosomal inversions in Drosophila by ectopic recombination. PLoS One 2009; 4:e7883. [PMID: 19936241 PMCID: PMC2775673 DOI: 10.1371/journal.pone.0007883] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 10/01/2009] [Indexed: 11/25/2022] Open
Abstract
Background Transposable elements (TEs) are responsible for the generation of chromosomal inversions in several groups of organisms. However, in Drosophila and other Dipterans, where inversions are abundant both as intraspecific polymorphisms and interspecific fixed differences, the evidence for a role of TEs is scarce. Previous work revealed that the transposon Galileo was involved in the generation of two polymorphic inversions of Drosophila buzzatii. Methodology/Principal Findings To assess the impact of TEs in Drosophila chromosomal evolution and shed light on the mechanism involved, we isolated and sequenced the two breakpoints of another widespread polymorphic inversion from D. buzzatii, 2z3. In the non inverted chromosome, the 2z3 distal breakpoint was located between genes CG2046 and CG10326 whereas the proximal breakpoint lies between two novel genes that we have named Dlh and Mdp. In the inverted chromosome, the analysis of the breakpoint sequences revealed relatively large insertions (2,870-bp and 4,786-bp long) including two copies of the transposon Galileo (subfamily Newton), one at each breakpoint, plus several other TEs. The two Galileo copies: (i) are inserted in opposite orientation; (ii) present exchanged target site duplications; and (iii) are both chimeric. Conclusions/Significance Our observations provide the best evidence gathered so far for the role of TEs in the generation of Drosophila inversions. In addition, they show unequivocally that ectopic recombination is the causative mechanism. The fact that the three polymorphic D. buzzatii inversions investigated so far were generated by the same transposon family is remarkable and is conceivably due to Galileo's unusual structure and current (or recent) transpositional activity.
Collapse
Affiliation(s)
- Alejandra Delprat
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | | | | | | |
Collapse
|
16
|
Wang G, Zhao J, Vasquez KM. Methods to determine DNA structural alterations and genetic instability. Methods 2009; 48:54-62. [PMID: 19245837 PMCID: PMC2693251 DOI: 10.1016/j.ymeth.2009.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/15/2009] [Indexed: 11/16/2022] Open
Abstract
Chromosomal DNA is a dynamic structure that can adopt a variety of non-canonical (i.e., non-B) conformations. In this regard, at least 10 different forms of non-B DNA conformations have been identified; many of them have been found to be mutagenic, and associated with human disease development. Despite the importance of non-B DNA structures in genetic instability and DNA metabolic processes, mechanisms by which instability occurs remain largely undefined. The purpose of this review is to summarize current methodologies that are used to address questions in the field of non-B DNA structure-induced genetic instability. Advantages and disadvantages of each method will be discussed. A focused effort to further elucidate the mechanisms of non-B DNA-induced genetic instability will lead to a better understanding of how these structure-forming sequences contribute to the development of human disease.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| | - Junhua Zhao
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| | - Karen M. Vasquez
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| |
Collapse
|
17
|
Barros P, Blanco MG, Boán F, Gómez-Márquez J. Evolution of a complex minisatellite DNA sequence. Mol Phylogenet Evol 2008; 49:488-94. [PMID: 18723095 DOI: 10.1016/j.ympev.2008.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 07/07/2008] [Accepted: 07/29/2008] [Indexed: 11/17/2022]
Abstract
Minisatellites are tandem repeats of short DNA units widely distributed in genomes. However, the information on their dynamics in a phylogenetic context is very limited. Here we have studied the organization of the MsH43 locus in several species of primates and from these data we have reconstructed the evolutionary history of this complex minisatellite. Overall, with the exception of gibbon, MsH43 has an organization that is asymmetric, since the distribution of repeats is distinct between the 5' and 3' halves, and heterogeneous since there are many different repeats, some of them characteristic of each species. Inspection of the MsH43 arrays showed the existence of many duplications and deletions, suggesting the implication of slippage processes in the generation of polymorphism. Concerning the evolutionary history of this minisatellite, we propose that the birth of MsH43 may be situated before the divergence of Old World Monkeys since we found the existence of some MsH43 repeat motifs in prosimians and New World Monkeys. The analysis of MsH43 in apes revealed the existence of an evolutionary breakpoint in the pathway that originated African great apes and humans. Remarkably, human MsH43 is more homologous to orang-utan than to the corresponding sequence in gorilla and chimpanzee. This finding does not comply with the evolutionary paradigm that continuous alterations occur during the course of genome evolution. To adjust our results to the standard phylogeny of primates, we propose the existence of a wandering allele that was maintained almost unaltered during the period that extends between orang-utan and humans.
Collapse
Affiliation(s)
- Paula Barros
- Departamento de Bioquímica e Bioloxía Molecular, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
18
|
Reliene R, Bishop AJR, Schiestl RH. Involvement of homologous recombination in carcinogenesis. ADVANCES IN GENETICS 2007; 58:67-87. [PMID: 17452246 DOI: 10.1016/s0065-2660(06)58003-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA alterations of every type are associated with the incidence of carcinogenesis, often on the genomic scale. Although homologous recombination (HR) is an important pathway of DNA repair, evidence is accumulating that deleterious genomic rearrangements can result from HR. It therefore follows that HR events may play a causative role in carcinogenesis. HR is elevated in response to carcinogens. HR may also be increased or decreased when its upstream regulation is perturbed or components of the HR machinery itself are not fully functional. This chapter summarizes research findings that demonstrate an association between HR and carcinogenesis. Increased or decreased frequencies of HR have been found in cancer cells and cancer-prone hereditary human disorders characterized by mutations in genes playing a role in HR, such as ATM, Tp53, BRCA, BLM, and WRN genes. Another evidence linking perturbations in HR and carcinogenesis is provided by studies showing that exposure to carcinogens results in an increased frequency of HR resulting in DNA deletions in yeast, human cells, or mice.
Collapse
Affiliation(s)
- Ramune Reliene
- Department of Pathology, Geffen School of Medicine, UCLA, Los Angeles, CA 90024, USA
| | | | | |
Collapse
|
19
|
van Steensel MAM, Frank J. Monoclonal Origin of Anatomically Distinct Basal Cell Carcinomas: Is there Really Hard Evidence at Hand? J Invest Dermatol 2006; 126:2727-9; author reply 2729-30. [PMID: 16874313 DOI: 10.1038/sj.jid.5700471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Ashley T, Gaeth AP, Inagaki H, Seftel A, Cohen MM, Anderson LK, Kurahashi H, Emanuel BS. Meiotic recombination and spatial proximity in the etiology of the recurrent t(11;22). Am J Hum Genet 2006; 79:524-38. [PMID: 16909390 PMCID: PMC1559541 DOI: 10.1086/507652] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 07/10/2006] [Indexed: 01/27/2023] Open
Abstract
Although balanced translocations are among the most common human chromosomal aberrations, the constitutional t(11;22)(q23;q11) is the only known recurrent non-Robertsonian translocation. Evidence indicates that de novo formation of the t(11;22) occurs during meiosis. To test the hypothesis that spatial proximity of chromosomes 11 and 22 in meiotic prophase oocytes and spermatocytes plays a role in the rearrangement, the positions of the 11q23 and 22q11 translocation breakpoints were examined. Fluorescence in situ hybridization with use of DNA probes for these sites demonstrates that 11q23 is closer to 22q11 in meiosis than to a control at 6q26. Although chromosome 21p11, another control, often lies as close to 11q23 as does 22q11 during meiosis, chromosome 21 rarely rearranges with 11q23, and the DNA sequence of chromosome 21 appears to be less susceptible than 22q11 to double-strand breaks (DSBs). It has been suggested that the rearrangement recurs as a result of the palindromic AT-rich repeats at both 11q23 and 22q11, which extrude hairpin structures that are susceptible to DSBs. To determine whether the DSBs at these sites coincide with normal hotspots of meiotic recombination, immunocytochemical mapping of MLH1, a protein involved in crossing over, was employed. The results indicate that the translocation breakpoints do not coincide with recombination hotspots and therefore are unlikely to be the result of meiotic programmed DSBs, although MRE11 is likely to be involved. Previous analysis indicated that the DSBs appear to be repaired by a mechanism similar to nonhomologous end joining (NHEJ), although NHEJ is normally suppressed during meiosis. Taken together, these studies support the hypothesis that physical proximity between 11q23 and 22q11--but not typical meiotic recombinational activity in meiotic prophase--plays an important role in the generation of the constitutional t(11;22) rearrangement.
Collapse
Affiliation(s)
- Terry Ashley
- Genetics Department, School of Medicine, Yale University, New Haven, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
DNA palindromes are a source of instability in eukaryotic genomes but remain under-investigated because they are difficult to study. Nonetheless, progress in the last year or so has begun to form a coherent picture of how DNA palindromes cause damage in eukaryotes and how this damage is opposed by cellular mechanisms. In yeast, the features of double strand DNA interruptions that appear at palindromic sites in vivo suggest that a resolvase-type activity creates the fractures by attacking a palindrome after it extrudes into a cruciform structure. Induction of DNA breaks in this fashion could be deterred through a Center-Break palindrome revision process as investigated in detail in mice. The MRX/MRN likely plays a pivotal role in prevention of palindrome-induced genome damage in eukaryotes.
Collapse
Affiliation(s)
- Susanna M Lewis
- Graduate Department of Molecular and Medical Genetics, University of Toronto, Ont., Canada.
| | | |
Collapse
|
22
|
Narayanan V, Mieczkowski PA, Kim HM, Petes TD, Lobachev KS. The Pattern of Gene Amplification Is Determined by the Chromosomal Location of Hairpin-Capped Breaks. Cell 2006; 125:1283-96. [PMID: 16814715 DOI: 10.1016/j.cell.2006.04.042] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/11/2006] [Accepted: 04/26/2006] [Indexed: 11/18/2022]
Abstract
DNA palindromes often colocalize in cancer cells with chromosomal regions that are predisposed to gene amplification. The molecular mechanisms by which palindromes can cause gene amplification are largely unknown. Using yeast as a model system, we found that hairpin-capped double-strand breaks (DSBs) occurring at the location of human Alu-quasipalindromes lead to the formation of intrachromosomal amplicons with large inverted repeats (equivalent to homogeneously staining regions in mammalian chromosomes) or extrachromosomal palindromic molecules (equivalent to double minutes [DM] in mammalian cells). We demonstrate that the specific outcomes of gene amplification depend on the applied selection, the nature of the break, and the chromosomal location of the amplified gene relative to the site of the hairpin-capped DSB. The rules for the palindrome-dependent pathway of gene amplification defined in yeast may operate during the formation of amplicons in human tumors.
Collapse
Affiliation(s)
- Vidhya Narayanan
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
Repetitive DNA sequences are abundant in eukaryotic genomes, and many of these sequences have the potential to adopt non-B DNA conformations. Genes harboring non-B DNA structure-forming sequences increase the risk of genetic instability and thus are associated with human diseases. In this review, we discuss putative mechanisms responsible for genetic instability events occurring at these non-B DNA structures, with a focus on hairpins, left-handed Z-DNA, and intramolecular triplexes or H-DNA. Slippage and misalignment are the most common events leading to DNA structure-induced mutagenesis. However, a number of other mechanisms of genetic instability have been proposed based on the finding that these structures not only induce expansions and deletions, but can also induce DNA strand breaks and rearrangements. The available data implicate a variety of proteins, such as mismatch repair proteins, nucleotide excision repair proteins, topoisomerases, and structure specific-nucleases in the processing of these mutagenic DNA structures. The potential mechanisms of genetic instability induced by these structures and their contribution to human diseases are discussed.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, P.O. Box 389, Smithville, 78957, USA
| | | |
Collapse
|
24
|
Drury MD, Skogen MJ, Kmiec EB. A tolerance of DNA heterology in the mammalian targeted gene repair reaction. Oligonucleotides 2005; 15:155-71. [PMID: 16201904 DOI: 10.1089/oli.2005.15.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Targeted gene repair consists of at least two major steps, the pairing of an oligonucleotide to a site bearing DNA sequence complementarity followed by a nucleotide exchange reaction directed by the oligonucleotide. In this study, oligonucleotides with different structures were designed to target a stably integrated (mutant) enhanced green fluorescent protein (EGFP) gene and used to direct the repair of a single base mutation. We show that the efficiency of correction is influenced by the degree of DNA sequence homology existing between the oligonucleotide and target gene. Correction is reduced when a heterologous stretch of DNA sequence is placed in the center of the oligonucleotide and the mismatched base pair is then formed near the terminus. The negative impact of heterology is dependent on the type of DNA sequence inserted and on the size of the heterologous region. If the heterologous sequence is palindromic and adopts a secondary structure, the negative impact on the correction frequency is removed, and wild-type levels of repair are restored. Although differences in the efficiency of correction are observed in various cell types, the effect of structural changes on gene repair is consistent. These results reveal the existence of a directional-specific repair pathway that relies on the pairing stability of a bilateral complex and emphasize the importance of sequence homology between pairing partners for efficient catalysis of gene repair.
Collapse
Affiliation(s)
- Miya D Drury
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
25
|
Rattray AJ, Shafer BK, Neelam B, Strathern JN. A mechanism of palindromic gene amplification in Saccharomyces cerevisiae. Genes Dev 2005; 19:1390-9. [PMID: 15937224 PMCID: PMC1142561 DOI: 10.1101/gad.1315805] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Selective gene amplification is associated with normal development, neoplasia, and drug resistance. One class of amplification events results in large arrays of inverted repeats that are often complex in structure, thus providing little information about their genesis. We made a recombination substrate in Saccharomyces cerevisiae that frequently generates palindromic duplications to repair a site-specific double-strand break in strains deleted for the SAE2 gene. The resulting palindromes are stable in sae2Delta cells, but unstable in wild-type cells. We previously proposed that the palindromes are formed by invasion and break-induced replication, followed by an unknown end joining mechanism. Here we demonstrate that palindrome formation can occur in the absence of RAD50, YKU70, and LIG4, indicating that palindrome formation defines a new class of nonhomologous end joining events. Sequence data from 24 independent palindromic duplication junctions suggest that the duplication mechanism utilizes extremely short (4-6 bp), closely spaced (2-9 bp), inverted repeats to prime DNA synthesis via an intramolecular foldback of a 3' end. In view of our data, we present a foldback priming model for how a single copy sequence is duplicated to generate a palindrome.
Collapse
Affiliation(s)
- Alison J Rattray
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702, USA
| | | | | | | |
Collapse
|
26
|
Hendricks CA, Engelward BP. "Recombomice": the past, present, and future of recombination-detection in mice. DNA Repair (Amst) 2005; 3:1255-61. [PMID: 15336621 DOI: 10.1016/j.dnarep.2004.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2004] [Indexed: 11/22/2022]
Abstract
Homology directed repair (HDR) provides an efficient strategy for repairing and tolerating many types of DNA lesions, such as strand breaks, base damage, and crosslinks. Recombinational repair and lesion avoidance pathways that involve homology searching are integral to normal DNA replication. Indeed, it is estimated that at least ten HDR events take place each time a mammalian cell divides. HDR is associated with the transfer and exchange of DNA sequences. Usually, homologous sequences are aligned perfectly and flanking sequences are not exchanged. However, those sequence misalignments and exchanges that do occur can lead to rearrangements that contribute to cancer (e.g. deletions, inversions, translocations or loss of heterozygosity (LOH)). In order to reveal genetic and environmental factors that modulate HDR in mammals, several approaches have been used to detect recombination events in vivo. Here, we briefly review three methods for detecting homologous recombination in mice, namely: sister chromatid exchange (SCE), LOH, and recombination at tandem repeats. We conclude with a more detailed description of the recently developed "Fluorescent Yellow Direct Repeat" (FYDR) mouse model, which exploits enhanced yellow fluorescent protein (EYFP) for detecting mitotic homologous recombination in vivo. Applications of the FYDR mice are described, as well as the broader potential for using fluorescent proteins to detect recombination in various tissues/cell types in vivo.
Collapse
Affiliation(s)
- Carrie A Hendricks
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
27
|
Vinci G, Raicu F, Popa L, Popa O, Cocos R, McElreavey K. A deletion of a novel heat shock gene on the Y chromosome associated with azoospermia. Mol Hum Reprod 2005; 11:295-8. [PMID: 15734897 DOI: 10.1093/molehr/gah153] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deletions of the Y chromosome are a significant cause of spermatogenic failure. Three major deletion intervals have been defined and termed AZFa, AZFb and AZFc. Here, we report an unusual case of a proximal AZFb deletion that includes the Y chromosome palindromic sequence P4 and a novel heat shock factor (HSFY). This deletion neither include the genes EIF1AY, RPS4Y2 nor copies of the RBMY1 genes. The individual presented with idiopathic azoospermia. We propose that deletions of the testis-specific HSFY gene family may be a cause of unexplained cases of idiopathic male infertility. This deletion would not have been detected using current protocols for Y chromosome microdeletion screens, therefore we recommend that current screening protocols be extended to include this region and other palindrome sequences that contain genes expressed specifically in the testis.
Collapse
Affiliation(s)
- Giovanna Vinci
- Reproduction, Fertility and Populations, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
28
|
Casals F, Cáceres M, Manfrin MH, González J, Ruiz A. Molecular characterization and chromosomal distribution of Galileo, Kepler and Newton, three foldback transposable elements of the Drosophila buzzatii species complex. Genetics 2005; 169:2047-59. [PMID: 15695364 PMCID: PMC1449584 DOI: 10.1534/genetics.104.035048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Galileo is a foldback transposable element that has been implicated in the generation of two polymorphic chromosomal inversions in Drosophila buzzatii. Analysis of the inversion breakpoints led to the discovery of two additional elements, called Kepler and Newton, sharing sequence and structural similarities with Galileo. Here, we describe in detail the molecular structure of these three elements, on the basis of the 13 copies found at the inversion breakpoints plus 10 additional copies isolated during this work. Similarly to the foldback elements described in other organisms, these elements have long inverted terminal repeats, which in the case of Galileo possess a complex structure and display a high degree of internal variability between copies. A phylogenetic tree built with their shared sequences shows that the three elements are closely related and diverged approximately 10 million years ago. We have also analyzed the abundance and chromosomal distribution of these elements in D. buzzatii and other species of the repleta group by Southern analysis and in situ hybridization. Overall, the results suggest that these foldback elements are present in all the buzzatti complex species and may have played an important role in shaping their genomes. In addition, we show that recombination rate is the main factor determining the chromosomal distribution of these elements.
Collapse
Affiliation(s)
- Ferran Casals
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.
| | | | | | | | | |
Collapse
|
29
|
Farah JA, Cromie G, Steiner WW, Smith GR. A novel recombination pathway initiated by the Mre11/Rad50/Nbs1 complex eliminates palindromes during meiosis in Schizosaccharomyces pombe. Genetics 2005; 169:1261-74. [PMID: 15654094 PMCID: PMC1449568 DOI: 10.1534/genetics.104.037515] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA palindromes are rare in humans but are associated with meiosis-specific translocations. The conserved Mre11/Rad50/Nbs1 (MRN) complex is likely directly involved in processing palindromes through the homologous recombination pathway of DNA repair. Using the fission yeast Schizosaccharomyces pombe as a model system, we show that a 160-bp palindrome (M-pal) is a meiotic recombination hotspot and is preferentially eliminated by gene conversion. Importantly, this hotspot depends on the MRN complex for full activity and reveals a new pathway for generating meiotic DNA double-strand breaks (DSBs), separately from the Rec12 (ortholog of Spo11) pathway. We show that MRN-dependent DSBs are formed at or near the M-pal in vivo, and in contrast to the Rec12-dependent breaks, they appear early, during premeiotic replication. Analysis of mrn mutants indicates that the early DSBs are generated by the MRN nuclease activity, demonstrating the previously hypothesized MRN-dependent breakage of hairpins during replication. Our studies provide a genetic and physical basis for frequent translocations between palindromes in human meiosis and identify a conserved meiotic process that constantly selects against palindromes in eukaryotic genomes.
Collapse
Affiliation(s)
- Joseph A Farah
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | |
Collapse
|
30
|
Abstract
DNA sequences containing long adjacent inverted repeats (palindromes) are inherently unstable and are associated with many types of chromosomal rearrangements. The instability associated with palindromic sequences also creates difficulties in their molecular analysis: long palindromes (>250 bp/arm) are highly unstable in Escherichia coli, and cannot be directly PCR amplified or sequenced due to their propensity to form intra-strand hairpins. Here, we show that DNA molecules containing long palindromes (>900 bp/arm) can be transformed and stably maintained in Saccharomyces cerevisiae cells lacking a functional SAE2 gene. Treatment of the palindrome-containing DNA with sodium bisulfite at high temperature results in deamination of cytosine, converting it to uracil and thus reducing the propensity to form intra-strand hairpins. The bisulfite-treated DNA can then be PCR amplified, cloned and sequenced, allowing determination of the nucleotide sequence of the junctions. Our data demonstrates that long palindromes with either no spacer (perfect) or a 2 bp spacer can be stably maintained, recovered and sequenced from sae2Delta yeast cells. Since DNA sequences from mammalian cells can be gap repaired by their co-transformation into yeast cells with an appropriate vector, the methods described in this manuscript should provide some of the necessary tools to isolate and characterize palindromic junctions from mammalian cells.
Collapse
Affiliation(s)
- Alison J Rattray
- GRCBL/NCI-FCRDC, PO Box B/ Building 539 Room 151, Frederick, MD 21702, USA.
| |
Collapse
|
31
|
Dere R, Napierala M, Ranum LPW, Wells RD. Hairpin Structure-forming Propensity of the (CCTG·CAGG) Tetranucleotide Repeats Contributes to the Genetic Instability Associated with Myotonic Dystrophy Type 2. J Biol Chem 2004; 279:41715-26. [PMID: 15292165 DOI: 10.1074/jbc.m406415200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The genetic instabilities of (CCTG.CAGG)(n) tetranucleotide repeats were investigated to evaluate the molecular mechanisms responsible for the massive expansions found in myotonic dystrophy type 2 (DM2) patients. DM2 is caused by an expansion of the repeat from the normal allele of 26 to as many as 11,000 repeats. Genetic expansions and deletions were monitored in an African green monkey kidney cell culture system (COS-7 cells) as a function of the length (30, 114, or 200 repeats), orientation, or proximity of the repeat tracts to the origin (SV40) of replication. As found for CTG.CAG repeats related to DM1, the instabilities were greater for the longer tetranucleotide repeat tracts. Also, the expansions and deletions predominated when cloned in orientation II (CAGG on the leading strand template) rather than I and when cloned proximal rather than distal to the replication origin. Biochemical studies on synthetic d(CAGG)(26) and d(CCTG)(26) as models of unpaired regions of the replication fork revealed that d(CAGG)(26) has a marked propensity to adopt a defined base paired hairpin structure, whereas the complementary d(CCTG)(26) lacks this capacity. The effect of orientation described above differs from all previous results with three triplet repeat sequences (including CTG.CAG), which are also involved in the etiologies of other hereditary neurological diseases. However, similar to the triplet repeat sequences, the ability of one of the two strands to form a more stable folded structure, in our case the CAGG strand, explains this unorthodox "reversed" behavior.
Collapse
Affiliation(s)
- Ruhee Dere
- Institute of Biosciences and Technology, Center for Genome Research, Texas A and M University System Health Science Center, Texas Medical Center, Houston, Texas 77030-3303, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Mobile elements make up large portions of most eukaryotic genomes. They create genetic instability, not only through insertional mutation but also by contributing recombination substrates, both during and long after their insertion. The combination of whole-genome sequences and the development of innovative new assays to test the function of mobile elements have increased our understanding of how these elements mobilize and how their insertion impacts genome diversity and human disease.
Collapse
Affiliation(s)
- Prescott L Deininger
- Department of Environmental Health Sciences, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
33
|
Couëdel C, Mills KD, Barchi M, Shen L, Olshen A, Johnson RD, Nussenzweig A, Essers J, Kanaar R, Li GC, Alt FW, Jasin M. Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells. Genes Dev 2004; 18:1293-304. [PMID: 15175261 PMCID: PMC420355 DOI: 10.1101/gad.1209204] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are mechanistically distinct DNA repair pathways that contribute substantially to double-strand break (DSB) repair in mammalian cells. We have combined mutations in factors from both repair pathways, the HR protein Rad54 and the DNA-end-binding factor Ku80, which has a role in NHEJ. Rad54(-/-)Ku80(-/-) mice were severely compromised in their survival, such that fewer double mutants were born than expected, and only a small proportion of those born reached adulthood. However, double-mutant mice died at lower frequency from tumors than Ku80 single mutant mice, likely as a result of rapid demise at a young age from other causes. When challenged with an exogenous DNA damaging agent, ionizing radiation, double-mutant mice were exquisitely sensitive to low doses. Tissues and cells from double-mutant mice also showed indications of spontaneous DNA damage. Testes from some Rad54(-/-)Ku80(-/-) mice displayed enhanced apoptosis and reduced sperm production, and embryonic fibroblasts from Rad54(-/-)Ku80(-/-) animals accumulated foci of gamma-H2AX, a marker for DSBs. The substantially increased DNA damage response in the double mutants implies a cooperation of the two DSB repair pathways for survival and genomic integrity in the animal.
Collapse
Affiliation(s)
- Chrystelle Couëdel
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fernandes S, Paracchini S, Meyer LH, Floridia G, Tyler-Smith C, Vogt PH. A large AZFc deletion removes DAZ3/DAZ4 and nearby genes from men in Y haplogroup N. Am J Hum Genet 2004; 74:180-7. [PMID: 14639527 PMCID: PMC1181906 DOI: 10.1086/381132] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Accepted: 10/31/2003] [Indexed: 11/04/2022] Open
Abstract
Deletion of the entire AZFc locus on the human Y chromosome leads to male infertility. The functional roles of the individual gene families mapped to AZFc are, however, still poorly understood, since the analysis of the region is complicated by its repeated structure. We have therefore used single-nucleotide variants (SNVs) across approximately 3 Mb of the AZFc sequence to identify 17 AZFc haplotypes and have examined them for deletion of individual AZFc gene copies. We found five individuals who lacked SNVs from a large segment of DNA containing the DAZ3/DAZ4 and BPY2.2/BPY2.3 gene doublets in distal AZFc. Southern blot analyses showed that the lack of these SNVs was due to deletion of the underlying DNA segment. Typing 118 binary Y markers showed that all five individuals belonged to Y haplogroup N, and 15 of 15 independently ascertained men in haplogroup N carried a similar deletion. Haplogroup N is known to be common and widespread in Europe and Asia, and there is no indication of reduced fertility in men with this Y chromosome. We therefore conclude that a common variant of the human Y chromosome lacks the DAZ3/DAZ4 and BPY2.2/BPY2.3 doublets in distal AZFc and thus that these genes cannot be required for male fertility; the gene content of the AZFc locus is likely to be genetically redundant. Furthermore, the observed deletions cannot be derived from the GenBank reference sequence by a single recombination event; an origin by homologous recombination from such a sequence organization must be preceded by an inversion event. These data confirm the expectation that the human Y chromosome sequence and gene complement may differ substantially between individuals and more variations are to be expected in different Y chromosomal haplogroups.
Collapse
Affiliation(s)
- S. Fernandes
- Section of Molecular Genetics & Infertility, Department of Gynecological Endocrinology & Reproductive Medicine, University of Heidelberg, Heidelberg; Department of Human Genetics, Faculty of Medicine, University of Porto, Porto, Portugal; and Department of Biochemistry, University of Oxford, Oxford
| | - S. Paracchini
- Section of Molecular Genetics & Infertility, Department of Gynecological Endocrinology & Reproductive Medicine, University of Heidelberg, Heidelberg; Department of Human Genetics, Faculty of Medicine, University of Porto, Porto, Portugal; and Department of Biochemistry, University of Oxford, Oxford
| | - L. H. Meyer
- Section of Molecular Genetics & Infertility, Department of Gynecological Endocrinology & Reproductive Medicine, University of Heidelberg, Heidelberg; Department of Human Genetics, Faculty of Medicine, University of Porto, Porto, Portugal; and Department of Biochemistry, University of Oxford, Oxford
| | - G. Floridia
- Section of Molecular Genetics & Infertility, Department of Gynecological Endocrinology & Reproductive Medicine, University of Heidelberg, Heidelberg; Department of Human Genetics, Faculty of Medicine, University of Porto, Porto, Portugal; and Department of Biochemistry, University of Oxford, Oxford
| | - C. Tyler-Smith
- Section of Molecular Genetics & Infertility, Department of Gynecological Endocrinology & Reproductive Medicine, University of Heidelberg, Heidelberg; Department of Human Genetics, Faculty of Medicine, University of Porto, Porto, Portugal; and Department of Biochemistry, University of Oxford, Oxford
| | - P. H. Vogt
- Section of Molecular Genetics & Infertility, Department of Gynecological Endocrinology & Reproductive Medicine, University of Heidelberg, Heidelberg; Department of Human Genetics, Faculty of Medicine, University of Porto, Porto, Portugal; and Department of Biochemistry, University of Oxford, Oxford
| |
Collapse
|
35
|
Henning W, Stürzbecher HW. Homologous recombination and cell cycle checkpoints: Rad51 in tumour progression and therapy resistance. Toxicology 2003; 193:91-109. [PMID: 14599770 DOI: 10.1016/s0300-483x(03)00291-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We provide an overview of the functional interrelationship between genes and proteins related to DNA repair by homologous recombination and cell cycle regulation in relation to the progression and therapy resistance of human tumours. To ensure the high-fidelity transmission of genetic information from one generation to the next, cells have evolved mechanisms to monitor genome integrity. Upon DNA damage, cells initiate complex response pathways including cell cycle arrest, activation of genes and gene products involved in DNA repair, and under some circumstances, the triggering of programmed cell death. Deregulation of this co-ordinated response leads to genetic instability and is fundamental to the aetiology of human cancer. Homologous recombination involved in DNA repair is induced by environmental damage as well as misreplication during the normal cell cycle. However, when not regulated properly, it can result in the loss of heterozygocity or genetic rearrangements, central to the process of carcinogenesis. The central step of homologous recombination is the DNA strand exchange reaction catalysed by the eukaryotic Rad51 protein. Here, we describe the recent progress in our understanding of how Rad51 is involved in the signalling and repair of DNA damage and how tumour suppressors, such as p53, ATM, BRCA1, BRCA2, BLM and FANCD2 are linked to Rad51-dependent pathways. An increased knowledge of the role of Rad51 in DNA repair by homologous recombination and its effects on cell cycle progression, tumour development and tumour resistance may provide opportunities for identifying improved diagnostic markers and developing more effective treatments for cancer.
Collapse
Affiliation(s)
- Wilhelm Henning
- Institute of Pathology, University Clinic Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | |
Collapse
|
36
|
Cunningham LA, Coté AG, Cam-Ozdemir C, Lewis SM. Rapid, stabilizing palindrome rearrangements in somatic cells by the center-break mechanism. Mol Cell Biol 2003; 23:8740-50. [PMID: 14612414 PMCID: PMC262683 DOI: 10.1128/mcb.23.23.8740-8750.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Revised: 08/11/2003] [Accepted: 08/28/2003] [Indexed: 02/01/2023] Open
Abstract
DNA palindromes are associated with rearrangement in a variety of organisms. A unique opportunity to examine the impact of a long palindrome in mammals is afforded by the Line 78 strain of mice. Previously it was found that the transgene in Line 78 is likely to be palindromic and that the symmetry of the transgene was responsible for a high level of germ line instability. Here we prove that Line 78 mice harbor a true 15.4-kb palindrome, and through the establishment of cell lines from Line 78 mice we have shown that the palindrome rearranges at the impressive rate of about 0.5% per population doubling. The rearrangements observed to arise from rapid palindrome modification are consistent with a center-break mechanism where double-strand breaks, created through hairpin nicking of an extruded cruciform, are imprecisely rejoined, thus introducing deletions at the palindrome center. Significantly, palindrome rearrangements in somatic tissue culture cells almost completely mirrored the structures generated in vivo in the mouse germ line. The close correspondence between germ line and somatic events indicates the possibility that center-break modification of palindromes is an important mechanism for preventing mutation in both contexts. Permanent cell lines carrying a verified palindrome provide an essential tool for future mechanistic analyses into the consequences of palindromy in the mammalian genome.
Collapse
|
37
|
Gotter AL, Shaikh TH, Budarf ML, Rhodes CH, Emanuel BS. A palindrome-mediated mechanism distinguishes translocations involving LCR-B of chromosome 22q11.2. Hum Mol Genet 2003; 13:103-15. [PMID: 14613967 PMCID: PMC2818528 DOI: 10.1093/hmg/ddh004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two known recurrent constitutional translocations, t(11;22) and t(17;22), as well as a non-recurrent t(4;22), display derivative chromosomes that have joined to a common site within the low copy repeat B (LCR-B) region of 22q11.2. This breakpoint is located between two AT-rich inverted repeats that form a nearly perfect palindrome. Breakpoints within the 11q23, 17q11 and 4q35 partner chromosomes also fall near the center of palindromic sequences. In the present work the breakpoints of a fourth translocation involving LCR-B, a balanced ependymoma-associated t(1;22), were characterized not only to localize this junction relative to known genes, but also to further understand the mechanism underlying these rearrangements. FISH mapping was used to localize the 22q11.2 breakpoint to LCR-B and the 1p21 breakpoint to single BAC clones. STS mapping narrowed the 1p21.2 breakpoint to a 1990 bp AT-rich region, and junction fragments were amplified by nested PCR. Junction fragment-derived sequence indicates that the 1p21.2 breakpoint splits a 278 nt palindrome capable of forming stem-loop secondary structure. In contrast, the 1p21.2 reference genomic sequence from clones in the database does not exhibit this configuration, suggesting a predisposition for regional genomic instability perhaps etiologic for this rearrangement. Given its similarity to known chromosomal fragile site (FRA) sequences, this polymorphic 1p21.2 sequence may represent one of the FRA1 loci. Comparative analysis of the secondary structure of sequences surrounding translocation breakpoints that involve LCR-B with those not involving this region indicate a unique ability of the former to form stem-loop structures. The relative likelihood of forming these configurations appears to be related to the rate of translocation occurrence. Further analysis suggests that constitutional translocations in general occur between sequences of similar melting temperature and propensity for secondary structure.
Collapse
Affiliation(s)
- Anthony L. Gotter
- Division of Human Genetics and Molecular Biology, Children’s Hospital of Philadelphia, 3615 Civic Center Boulevard, ARC 1002, Philadelphia, PA 19104, USA
| | - Tamim H. Shaikh
- Division of Human Genetics and Molecular Biology, Children’s Hospital of Philadelphia, 3615 Civic Center Boulevard, ARC 1002, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Marcia L. Budarf
- Division of Human Genetics and Molecular Biology, Children’s Hospital of Philadelphia, 3615 Civic Center Boulevard, ARC 1002, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - C. Harker Rhodes
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Beverly S. Emanuel
- Division of Human Genetics and Molecular Biology, Children’s Hospital of Philadelphia, 3615 Civic Center Boulevard, ARC 1002, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- To whom correspondence should be addressed. Tel: +1 2155903856; Fax: +1 2155903764;
| |
Collapse
|
38
|
Hendricks CA, Almeida KH, Stitt MS, Jonnalagadda VS, Rugo RE, Kerrison GF, Engelward BP. Spontaneous mitotic homologous recombination at an enhanced yellow fluorescent protein (EYFP) cDNA direct repeat in transgenic mice. Proc Natl Acad Sci U S A 2003; 100:6325-30. [PMID: 12750464 PMCID: PMC164445 DOI: 10.1073/pnas.1232231100] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A transgenic mouse has been created that provides a powerful tool for revealing genetic and environmental factors that modulate mitotic homologous recombination. The fluorescent yellow direct-repeat (FYDR) mice described here carry two different copies of expression cassettes for truncated coding sequences of the enhanced yellow fluorescent protein (EYFP), arranged in tandem. Homologous recombination between these repeated elements can restore full-length EYFP coding sequence to yield a fluorescent phenotype, and the resulting fluorescent recombinant cells are rapidly quantifiable by flow cytometry. Analysis of genomic DNA from recombined FYDR cells shows that this mouse model detects gene conversions, and based on the arrangement of the integrated recombination substrate, unequal sister-chromatid exchanges and repair of collapsed replication forks are also expected to reconstitute EYFP coding sequence. The rate of spontaneous recombination in primary fibroblasts derived from adult ear tissue is 1.3 +/- 0.1 per 106 cell divisions. Interestingly, the rate is approximately 10-fold greater in fibroblasts derived from embryonic tissue. We observe an approximately 15-fold increase in the frequency of recombinant cells in cultures of ear fibroblasts when exposed to mitomycin C, which is consistent with the ability of interstrand crosslinks to induce homologous recombination. In addition to studies of recombination in cultured primary cells, the frequency of recombinant cells present in skin was also measured by direct analysis of disaggregated cells. Thus, the FYDR mouse model can be used for studies of mitotic homologous recombination both in vitro and in vivo.
Collapse
Affiliation(s)
- Carrie A Hendricks
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
McCulloch RD, Read LR, Baker MD. Strand invasion and DNA synthesis from the two 3' ends of a double-strand break in Mammalian cells. Genetics 2003; 163:1439-47. [PMID: 12702687 PMCID: PMC1462519 DOI: 10.1093/genetics/163.4.1439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Analysis of the crossover products recovered following transformation of mammalian cells with a sequence insertion ("ends-in") gene-targeting vector revealed a novel class of recombinant. In this class of recombinants, a single vector copy has integrated into an ectopic genomic position, leaving the structure of the cognate chromosomal locus unaltered. Thus, in this respect, the recombinants resemble simple cases of random vector integration. However, the important difference is that the two paired 3' vector ends have acquired endogenous, chromosomal sequences flanking both sides of the vector-borne double-strand break (DSB). In some cases, copying was extensive, extending >16 kb into nonhomologous flanking DNA. The results suggest that mammalian homologous recombination events can involve strand invasion and DNA synthesis by both 3' ends of the DSB. These DNA interactions are a central, predicted feature of the DSBR model of recombination.
Collapse
Affiliation(s)
- Richard D McCulloch
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
40
|
Baum C, Düllmann J, Li Z, Fehse B, Meyer J, Williams DA, von Kalle C. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003; 101:2099-114. [PMID: 12511419 DOI: 10.1182/blood-2002-07-2314] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent conceptual and technical improvements have resulted in clinically meaningful levels of gene transfer into repopulating hematopoietic stem cells. At the same time, evidence is accumulating that gene therapy may induce several kinds of unexpected side effects, based on preclinical and clinical data. To assess the therapeutic potential of genetic interventions in hematopoietic cells, it will be important to derive a classification of side effects, to obtain insights into their underlying mechanisms, and to use rigorous statistical approaches in comparing data. We here review side effects related to target cell manipulation; vector production; transgene insertion and expression; selection procedures for transgenic cells; and immune surveillance. We also address some inherent differences between hematopoiesis in the most commonly used animal model, the laboratory mouse, and in humans. It is our intention to emphasize the need for a critical and hypothesis-driven analysis of "transgene toxicology," in order to improve safety, efficiency, and prognosis for the yet small but expanding group of patients that could benefit from gene therapy.
Collapse
Affiliation(s)
- Christopher Baum
- Department of Hematology and Oncology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|