1
|
Andrade F. Opinion: How does XIST promote sex bias in autoimmune diseases? Front Immunol 2024; 15:1399408. [PMID: 38665922 PMCID: PMC11043550 DOI: 10.3389/fimmu.2024.1399408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Affiliation(s)
- Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Fluorescent probes in stomatology. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
3
|
Long non-coding RNA Xist contribution in systemic lupus erythematosus and rheumatoid arthritis. Clin Immunol 2022; 236:108937. [PMID: 35114365 DOI: 10.1016/j.clim.2022.108937] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
Growing evidence points towards the role of the long non-coding (lnc)-RNA Xist expressed in female cells as a predominant key actor for the sex bias observed in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Indeed, in female cells, lnc-Xist controls transcription directly by spreading across the inactivated X chromosome (Xi) and indirectly by sequestring miRNAs as a sponge. The inactivation process at Xi is altered in lymphocytes from SLE women and associated with important variations in ribonucleoproteins (RNP) associated with lnc-Xist. In fibroblast-like synoviocytes (FLS) and osteoclasts from RA women, proinflammatory and proliferative pathways are upregulated due to the sequestration effect exerted by lnc-Xist overexpression on miRNAs. The key role played by lnc-Xist in SLE and RA is further supported by it's knock down that recapitulates the SLE B cell extrafollicular profile and controls RA associated FLS proinflammatory cytokine production and proliferation.
Collapse
|
4
|
Carrel L, Brown CJ. When the Lyon(ized chromosome) roars: ongoing expression from an inactive X chromosome. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160355. [PMID: 28947654 PMCID: PMC5627157 DOI: 10.1098/rstb.2016.0355] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/21/2022] Open
Abstract
A tribute to Mary Lyon was held in October 2016. Many remarked about Lyon's foresight regarding many intricacies of the X-chromosome inactivation process. One such example is that a year after her original 1961 hypothesis she proposed that genes with Y homologues should escape from X inactivation to achieve dosage compensation between males and females. Fifty-five years later we have learned many details about these escapees that we attempt to summarize in this review, with a particular focus on recent findings. We now know that escapees are not rare, particularly on the human X, and that most lack functionally equivalent Y homologues, leading to their increasingly recognized role in sexually dimorphic traits. Newer sequencing technologies have expanded profiling of primary tissues that will better enable connections to sex-biased disorders as well as provide additional insights into the X-inactivation process. Chromosome organization, nuclear location and chromatin environments distinguish escapees from other X-inactivated genes. Nevertheless, several big questions remain, including what dictates their distinct epigenetic environment, the underlying basis of species differences in escapee regulation, how different classes of escapees are distinguished, and the roles that local sequences and chromosome ultrastructure play in escapee regulation.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- Laura Carrel
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, 500 University Drive, Mail code H171, Hershey, PA 17033, USA
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada BC V6T 1Z3
| |
Collapse
|
5
|
Shang D, Yang H, Xu Y, Yao Q, Zhou W, Shi X, Han J, Su F, Su B, Zhang C, Li C, Li X. A global view of network of lncRNAs and their binding proteins. MOLECULAR BIOSYSTEMS 2014; 11:656-63. [PMID: 25483728 DOI: 10.1039/c4mb00409d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recently, the long non-coding RNAs (lncRNAs) have obtained wide attention because they have broad and crucial functions in regulating complex biological processes. Many lncRNAs functioned by interfacing with corresponding RNA binding proteins and the complexity of lncRNAs' function was attributed to multiple lncRNA-protein interactions. To gain insights into the global relationship between lncRNAs and their binding proteins, here we constructed a lncRNA-protein network (LPN) based on experimentally determined functional interactions between them. This network included 177 lncRNAs, 92 proteins and 683 relationships between them. Cluster analysis of LPN revealed that some proteins (such as AGO and IGFBP families) and lncRNA (such as XIST and MALAT1) were densely connected, suggesting the potential co-regulated mechanism and functional cross-talk of different lncRNAs. We then characterized the lncRNA functions and found that lncRNA binding proteins (LBPs) enriched in many cancer or cancer-related pathways. Finally, we investigated the different topological properties of LBPs in PPIs network. Compared with disease proteins and average ones, LBPs tend to have significantly higher degree, betweenness, and closeness but a relatively lower clustering coefficient, indicating their centrality and essentiality in the context of a biological network.
Collapse
Affiliation(s)
- Desi Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
D'Amico F, Skarmoutsou E, Mazzarino MC. The sex bias in systemic sclerosis: on the possible mechanisms underlying the female disease preponderance. Clin Rev Allergy Immunol 2014; 47:334-43. [PMID: 24126759 DOI: 10.1007/s12016-013-8392-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Systemic sclerosis is a multifactorial and heterogeneous disease. Genetic and environmental factors are known to interplay in the onset and progression of systemic sclerosis. Sex plays an important and determinant role in the development of such a disorder. Systemic sclerosis shows a significant female preponderance. However, the reason for this female preponderance is incompletely understood. Hormonal status, genetic and epigenetic differences, and lifestyle have been considered in order to explain female preponderance in systemic sclerosis. Sex chromosomes play a determinant role in contributing to systemic sclerosis onset and progression, as well as in its sex-biased prevalence. It is known, in fact, that X chromosome contains many sex- and immuno-related genes, thus contributing to immuno tolerance and sex hormone status. This review focuses mainly on the recent progress on epigenetic mechanisms--exclusively linked to the X chromosome--which would contribute to the development of systemic sclerosis. Furthermore, we report also some hypotheses (dealing with skewed X chromosome inactivation, X gene reactivation, acquired monosomy) that have been proposed in order to justify the female preponderance in autoimmune diseases. However, despite the intensive efforts in elucidating the mechanisms involved in the pathogenesis of systemic sclerosis, many questions remain still unanswered.
Collapse
Affiliation(s)
- Fabio D'Amico
- Department of Bio-medical Sciences, University of Catania, via Androne 83, 95124, Catania, Italy,
| | | | | |
Collapse
|
7
|
Karouzakis E, Gay RE, Gay S, Neidhart M. Epigenetic deregulation in rheumatoid arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 711:137-49. [PMID: 21627047 DOI: 10.1007/978-1-4419-8216-2_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this chapter, we discuss the current understanding of the possible epigenetics changes that occur in rheumatoid arthritis. In particular, we describe that deregulation ofDNA methylation and histone modifications can occur in the immune system and lead to rheumatoid arthritis. In addition, we discuss the role of rheumatoid arthritis synovial fibroblasts in autoimmunity. Examples of changes in DNA methylation and histone modification occurring in synovial fibroblasts during the disease process are reviewed in this chapter. In conclusion, we discuss the possible use of epigenetic therapy and describe future experiments that can elucidate further the epigenetic changes observed in the disease.
Collapse
Affiliation(s)
- Emmanuel Karouzakis
- Center for Experimental Rheumatology, University Hospital Zurich, Gloriastrasse, Zurich, Switzerland
| | | | | | | |
Collapse
|
8
|
Qian Y, Murphy RF. Improved recognition of figures containing fluorescence microscope images in online journal articles using graphical models. Bioinformatics 2008; 24:569-76. [PMID: 18033795 PMCID: PMC2901545 DOI: 10.1093/bioinformatics/btm561] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION There is extensive interest in automating the collection, organization and analysis of biological data. Data in the form of images in online literature present special challenges for such efforts. The first steps in understanding the contents of a figure are decomposing it into panels and determining the type of each panel. In biological literature, panel types include many kinds of images collected by different techniques, such as photographs of gels or images from microscopes. We have previously described the SLIF system (http://slif.cbi.cmu.edu) that identifies panels containing fluorescence microscope images among figures in online journal articles as a prelude to further analysis of the subcellular patterns in such images. This system contains a pretrained classifier that uses image features to assign a type (class) to each separate panel. However, the types of panels in a figure are often correlated, so that we can consider the class of a panel to be dependent not only on its own features but also on the types of the other panels in a figure. RESULTS In this article, we introduce the use of a type of probabilistic graphical model, a factor graph, to represent the structured information about the images in a figure, and permit more robust and accurate inference about their types. We obtain significant improvement over results for considering panels separately. AVAILABILITY The code and data used for the experiments described here are available from http://murphylab.web.cmu.edu/software.
Collapse
Affiliation(s)
- Yuntao Qian
- Center for Bioimage Informatics and Machine Learning Department, Carnegie Mellon University, Pittsburgh, USA
| | | |
Collapse
|
9
|
Abstract
In this review we trace back the history of an idea that takes a new approach in restorative neurotransplantation by focusing on the "multifaceted dialogue" between graft and host and assigns a central role to graft-evoked host plasticity. In several experimental examples ranging from the transfer of solid fetal tissue grafts into mechanical cortical injuries to deposits of neural stem cells into hemisectioned spinal cord. MPTP-damaged substantia nigra or mutant cerebella supportive evidence is provided for the hypothesis, that in many CNS disorders regeneration of the host CNS can be achieved by taking advantage of the inherent capacity of neural grafts to induce protective and restorative mechanisms within the host. This principle might once allow us to spare even complex circuitry from neurodegeneration.
Collapse
Affiliation(s)
- Jitka Ourednik
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | | |
Collapse
|
10
|
Ourednik V, Ourednik J. Multifaceted dialogue between graft and host in neurotransplantation. J Neurosci Res 2004; 76:193-204. [PMID: 15048917 DOI: 10.1002/jnr.20037] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Current restorative neurotransplantation research focuses mainly on the potential of the neural graft to replace damaged or missing cell populations and to deliver needed gene products in the form of transgenes. Because of this graft-oriented bias of the procedure, possible dormant regenerative capabilities within the host have been largely underestimated and dismissed as insignificant. This review discusses existing evidence that neural grafts can have stimulating effects on host-intrinsic plasticity that can help regeneration of the mammalian central nervous system. If confirmed, the synergistic interaction between graft and host might substantially enhance our therapeutic possibilities.
Collapse
Affiliation(s)
- Vaclav Ourednik
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, 50011, USA.
| | | |
Collapse
|
11
|
Ourednik J, Ourednik V, Lynch WP, Schachner M, Snyder EY. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol 2002; 20:1103-10. [PMID: 12379867 DOI: 10.1038/nbt750] [Citation(s) in RCA: 418] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2002] [Accepted: 08/09/2002] [Indexed: 01/09/2023]
Abstract
We investigated the hypothesis that neural stem cells (NSCs) possess an intrinsic capacity to "rescue" dysfunctional neurons in the brains of aged mice. The study focused on a neuronal cell type with stereotypical projections that is commonly compromised in the aged brain-the dopaminergic (DA) neuron. Unilateral implantation of murine NSCs into the midbrains of aged mice, in which the presence of stably impaired but nonapoptotic DA neurons was increased by treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), was associated with bilateral reconstitution of the mesostriatal system. Functional assays paralleled the spatiotemporal recovery of tyrosine hydroxylase (TH) and dopamine transporter (DAT) activity, which, in turn, mirrored the spatiotemporal distribution of donor-derived cells. Although spontaneous conversion of donor NSCs to TH(+) cells contributed to nigral reconstitution in DA-depleted areas, the majority of DA neurons in the mesostriatal system were "rescued" host cells. Undifferentiated donor progenitors spontaneously expressing neuroprotective substances provided a plausible molecular basis for this finding. These observations suggest that host structures may benefit not only from NSC-derived replacement of lost neurons but also from the "chaperone" effect of some NSC-derived progeny.
Collapse
Affiliation(s)
- Jitka Ourednik
- Department of Neurobiology, Swiss Federal Institute of Technology, Hoenggerberg, CH-8093, Switzerland.
| | | | | | | | | |
Collapse
|
12
|
Chong S, Kontaraki J, Bonifer C, Riggs AD. A Functional chromatin domain does not resist X chromosome inactivation: silencing of cLys correlates with methylation of a dual promoter-replication origin. Mol Cell Biol 2002; 22:4667-76. [PMID: 12052875 PMCID: PMC133922 DOI: 10.1128/mcb.22.13.4667-4676.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the molecular mechanism(s) involved in the propagation and maintenance of X chromosome inactivation (XCI), the 21.4-kb chicken lysozyme (cLys) chromatin domain was inserted into the Hprt locus on the mouse X chromosome. The inserted fragment includes flanking matrix attachment regions (MARs), an origin of bidirectional replication (OBR), and all the cis-regulatory elements required for correct tissue-specific expression of cLys. It also contains a recently identified and widely expressed second gene, cGas41. The cLys domain is known to function as an autonomous unit resistant to chromosomal position effects, as evidenced by numerous transgenic mouse lines showing copy-number-dependent and development-specific expression of cLys in the myeloid lineage. We asked the questions whether this functional chromatin domain was resistant to XCI and whether the X inactivation signal could spread across an extended region of avian DNA. A generally useful method was devised to generate pure populations of macrophages with the transgene either on the active (Xa) or the inactive (Xi) chromosome. We found that (i) cLys and cGas41 are expressed normally from the Xa; (ii) the cLys chromatin domain, even when bracketed by MARs, is not resistant to XCI; (iii) transcription factors are excluded from lysozyme enhancers on the Xi; and (iv) inactivation correlates with methylation of a CpG island that is both an OBR and a promoter of the cGas41 gene.
Collapse
Affiliation(s)
- Suyinn Chong
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
13
|
Abstract
X-chromosome inactivation leads to divergent fates for two homologous chromosomes. Whether one X remains active or becomes silenced depends on the activity of Xist, a gene expressed only from the inactive X and whose RNA product 'paints' the X in cis. Recent work argues that Xist RNA itself is the acting agent for initiating the silencing step. Xist RNA contains separable domains for RNA localization and chromosome silencing. While no Xist RNA-interacting factors have been identified, a growing collection of chromatin alterations have been identified on the inactive X, including variant histone H2A composition and histone H3 methylation. Some or all of these changes may be critical for chromosome-wide silencing. As none of the silencing proteins identified so far is unique to X chromosome inactivation, the specificity must partly reside in Xist RNA whose spread along the X orchestrates general silencing factors for this specific task.
Collapse
Affiliation(s)
- Dena E Cohen
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|