1
|
Ruan ZR, Yu Z, Xing C, Chen EH. Inter-organ steroid hormone signaling promotes myoblast fusion via direct transcriptional regulation of a single key effector gene. Curr Biol 2024; 34:1438-1452.e6. [PMID: 38513654 PMCID: PMC11003854 DOI: 10.1016/j.cub.2024.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/24/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Steroid hormones regulate tissue development and physiology by modulating the transcription of a broad spectrum of genes. In insects, the principal steroid hormones, ecdysteroids, trigger the expression of thousands of genes through a cascade of transcription factors (TFs) to coordinate developmental transitions such as larval molting and metamorphosis. However, whether ecdysteroid signaling can bypass transcriptional hierarchies to exert its function in individual developmental processes is unclear. Here, we report that a single non-TF effector gene mediates the transcriptional output of ecdysteroid signaling in Drosophila myoblast fusion, a critical step in muscle development and differentiation. Specifically, we show that the 20-hydroxyecdysone (commonly referred to as "ecdysone") secreted from an extraembryonic tissue, amnioserosa, acts on embryonic muscle cells to directly activate the expression of antisocial (ants), which encodes an essential scaffold protein enriched at the fusogenic synapse. Not only is ants transcription directly regulated by the heterodimeric ecdysone receptor complex composed of ecdysone receptor (EcR) and ultraspiracle (USP) via ecdysone-response elements but also more strikingly, expression of ants alone is sufficient to rescue the myoblast fusion defect in ecdysone signaling-deficient mutants. We further show that EcR/USP and a muscle-specific TF Twist synergistically activate ants expression in vitro and in vivo. Taken together, our study provides the first example of a steroid hormone directly activating the expression of a single key non-TF effector gene to regulate a developmental process via inter-organ signaling and provides a new paradigm for understanding steroid hormone signaling in other developmental and physiological processes.
Collapse
Affiliation(s)
- Zhi-Rong Ruan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ze Yu
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Macpherson CV, Daisley BA, Mallory E, Allen-Vercoe E. The untapped potential of cell culture in disentangling insect-microbial relationships. MICROBIOME RESEARCH REPORTS 2024; 3:20. [PMID: 38841412 PMCID: PMC11149091 DOI: 10.20517/mrr.2023.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 06/07/2024]
Abstract
Cell culture is a powerful technique for the investigation of molecular mechanisms fundamental to health and disease in a diverse array of organisms. Cell lines offer several advantages, namely their simplistic approach and high degree of reproducibility. One field where cell culture has proven particularly useful is the study of the microbiome, where cell culture has led to the illumination of microbial influences on host immunity, nutrition, and physiology. Thus far, researchers have focused cell culture work predominantly on humans, but the growing field of insect microbiome research stands to benefit greatly from its application. Insects constitute one of Earth's most diverse and ancient life forms and, just as with humans, possess microbiomes with great significance to their health. Insects, which play critical roles in supporting food security and ecological stability, are facing increasing threats from agricultural intensification, climate change, and pesticide use. As the microbiome is closely tied to host health, gaining a more robust understanding is of increasing importance. In this review, we assert that the cultivation and utilization of insect gut cell lines in microbiome research will bridge critical knowledge gaps essential for informing insect management practices in a world under pressure.
Collapse
Affiliation(s)
| | | | | | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G 2W1, ON, Canada
| |
Collapse
|
3
|
Chen D, Lan X, Huang X, Huang J, Zhou X, Miao Z, Ma Y, Goto A, Ji S, Hoffmann JA. Single Cell Analysis of the Fate of Injected Oncogenic RasV12 Cells in Adult Wild Type Drosophila. J Innate Immun 2023; 15:442-467. [PMID: 36996781 PMCID: PMC10066352 DOI: 10.1159/000529096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/09/2023] [Indexed: 04/01/2023] Open
Abstract
We have injected dish-cultured oncogenic RasV12 cells into adult male flies and analyzed by single cell transcriptomics their destiny within the host after 11 days. We identified in the preinjection samples and in the 11-day postinjection samples in all 16 clusters of cells, of which 5 disappeared during the experiment in the host. The other cell clusters expanded and expressed genes involved in the regulation of cell cycle, metabolism, and development. In addition, three clusters expressed genes related to inflammation and defense. Predominant among these were genes coding for phagocytosis and/or characteristic for plasmatocytes (the fly equivalent of macrophages). A pilot experiment indicated that the injection into flies of oncogenic cells, in which two of most strongly expressed genes had been previously silenced by RNA interference, into flies resulted in a dramatic reduction of their proliferation in the host flies as compared to controls. As we have shown earlier, the proliferation of the injected oncogenic cells in the adult flies is a hallmark of the disease and induces a wave of transcriptions in the experimental flies. We hypothesize that this results from a bitter dialogue between the injected cells and the host, while the experiments presented here should contribute to deciphering this dialogue.
Collapse
Affiliation(s)
- Di Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiao Lan
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiaoming Huang
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jieqing Huang
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Zhou
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Zhichao Miao
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yuting Ma
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Akira Goto
- Université de Strasbourg and CNRS, Insect Models of Innate Immunity (M3I; UPR9022), Strasbourg, France
| | - Shanming Ji
- Université de Strasbourg and CNRS, Insect Models of Innate Immunity (M3I; UPR9022), Strasbourg, France
| | - Jules A. Hoffmann
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg and CNRS, Insect Models of Innate Immunity (M3I; UPR9022), Strasbourg, France
- University of Strasbourg Institute for Advanced Study, Strasbourg, France
| |
Collapse
|
4
|
Lewerentz J, Johansson AM, Stenberg P. The path to immortalization of cells starts by managing stress through gene duplications. Exp Cell Res 2023; 422:113431. [PMID: 36423660 DOI: 10.1016/j.yexcr.2022.113431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
The genomes of immortalized cell lines (and cancer cells) are characterized by multiple types of aberrations, ranging from single nucleotide polymorphisms (SNPs) to structural rearrangements that have accumulated over time. Consequently, it is difficult to estimate the relative impact of different aberrations, the order of events, and which gene functions were under selective pressure at the early stage towards cellular immortalization. Here, we have established novel cell cultures derived from Drosophila melanogaster embryos that were sampled at multiple time points over a one-year period. Using short-read DNA sequencing, we show that copy-number gain in preferentially stress-related genes were acquired in a dominant fraction of cells in 300-days old cultures. Furthermore, transposable elements were active in cells of all cultures. Only a few (<1%) SNPs could be followed over time, and these showed no trend to increase or decrease. We conclude that the early cellular responses of a novel culture comprise sequence duplication and transposable element activity. During immortalization, positive selection first occurs on genes that are related to stress response before shifting to genes that are related to growth.
Collapse
Affiliation(s)
- Jacob Lewerentz
- Department of Molecular Biology, Umeå University, Umeå, Västerbotten, SE-901 87, Sweden.
| | - Anna-Mia Johansson
- Department of Molecular Biology, Umeå University, Umeå, Västerbotten, SE-901 87, Sweden
| | - Per Stenberg
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Västerbotten, SE-901 87, Sweden
| |
Collapse
|
5
|
A new continuous cell line from the pest insect, Anomala cuprea (Coleoptera; Scarabaeidae): emergence of contractile cells. In Vitro Cell Dev Biol Anim 2022; 58:610-618. [PMID: 35867318 DOI: 10.1007/s11626-022-00707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
Abstract
Insect contractile cells frequently appear at an early phase of cell culture, but in most cases, they disappear before a continuous cell line is established, so the cell line ceases to contract. Continuous contractile insect cell lines are currently available from only one species each of Hymenoptera and Diptera. Here, we obtained a new cell line that contracted long after being established as a continuous cell line. The cell line contracted for a short period at an early phase of insect cell culture before a continuous cell line was established, but then did not contract again for several years. After this cell line entered the continuous growth phase, it produced spontaneously contractile tissues for about 4 mo but stopped contracting again. This is the first instance of a cell line that contracted after its establishment as a non-contractile continuous cell line. It is unclear whether the contractile cells survive or die after contraction ceases at an early phase of cell culture, and our results indicate that potential contractile cells survive for years after they stop to contract. The cells of this line sometimes produced complex contractile structures, such as sheet-like tissues. Only a few continuous cell lines have been derived from scarabaeid beetles. The new continuous cell line was derived from the culture of the fat bodies of the scarab beetle Anomala cuprea, which is a pest in the agriculture and forestry of Japan. The population doubling time of the new cell line was 2.5 d and thus it grows very rapidly among coleopteran continuous cell lines. Our new cell line will facilitate research on the physiology and pathology of Coleoptera, including scarab beetles, and may also contribute to research on invertebrate muscles.
Collapse
|
6
|
Krzywinska E, Ferretti L, Krzywinski J. Establishment and a comparative transcriptomic analysis of a male-specific cell line from the African malaria mosquito Anopheles gambiae. Sci Rep 2022; 12:6885. [PMID: 35477969 PMCID: PMC9046191 DOI: 10.1038/s41598-022-10686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Cell lines allow studying various biological processes that may not be easily tractable in whole organisms. Here, we have established the first male-specific cell line from the African malaria mosquito, Anopheles gambiae. The cells, named AgMM and derived from the sex-sorted neonate larvae, were able to undergo spontaneous contractions for a number of passages following establishment, indicating their myoblast origin. Comparison of their transcriptome to the transcriptome of an A. gambiae-derived Sua5.1 hemocyte cells revealed distinguishing molecular signatures of each cell line, including numerous muscle-related genes that were highly and uniquely expressed in the AgMM cells. Moreover, the AgMM cells express the primary sex determiner gene Yob and support male sex determination and dosage compensation pathways. Therefore, the AgMM cell line represents a valuable tool for molecular and biochemical in vitro studies of these male-specific processes. In a broader context, a rich transcriptomic data set generated in this study contributes to a better understanding of transcribed regions of the A. gambiae genome and sheds light on the biology of both cell types, facilitating their anticipated use for various cell-based assays.
Collapse
Affiliation(s)
| | - Luca Ferretti
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | | |
Collapse
|
7
|
Bai Y, Caussinus E, Leo S, Bosshardt F, Myachina F, Rot G, Robinson MD, Lehner CF. A cis-regulatory element promoting increased transcription at low temperature in cultured ectothermic Drosophila cells. BMC Genomics 2021; 22:771. [PMID: 34711176 PMCID: PMC8555087 DOI: 10.1186/s12864-021-08057-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Background Temperature change affects the myriad of concurrent cellular processes in a non-uniform, disruptive manner. While endothermic organisms minimize the challenge of ambient temperature variation by keeping the core body temperature constant, cells of many ectothermic species maintain homeostatic function within a considerable temperature range. The cellular mechanisms enabling temperature acclimation in ectotherms are still poorly understood. At the transcriptional level, the heat shock response has been analyzed extensively. The opposite, the response to sub-optimal temperature, has received lesser attention in particular in animal species. The tissue specificity of transcriptional responses to cool temperature has not been addressed and it is not clear whether a prominent general response occurs. Cis-regulatory elements (CREs), which mediate increased transcription at cool temperature, and responsible transcription factors are largely unknown. Results The ectotherm Drosophila melanogaster with a presumed temperature optimum around 25 °C was used for transcriptomic analyses of effects of temperatures at the lower end of the readily tolerated range (14–29 °C). Comparative analyses with adult flies and cell culture lines indicated a striking degree of cell-type specificity in the transcriptional response to cool. To identify potential cis-regulatory elements (CREs) for transcriptional upregulation at cool temperature, we analyzed temperature effects on DNA accessibility in chromatin of S2R+ cells. Candidate cis-regulatory elements (CREs) were evaluated with a novel reporter assay for accurate assessment of their temperature-dependency. Robust transcriptional upregulation at low temperature could be demonstrated for a fragment from the pastrel gene, which expresses more transcript and protein at reduced temperatures. This CRE is controlled by the JAK/STAT signaling pathway and antagonizing activities of the transcription factors Pointed and Ets97D. Conclusion Beyond a rich data resource for future analyses of transcriptional control within the readily tolerated range of an ectothermic animal, a novel reporter assay permitting quantitative characterization of CRE temperature dependence was developed. Our identification and functional dissection of the pst_E1 enhancer demonstrate the utility of resources and assay. The functional characterization of this CoolUp enhancer provides initial mechanistic insights into transcriptional upregulation induced by a shift to temperatures at the lower end of the readily tolerated range. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08057-4.
Collapse
Affiliation(s)
- Yu Bai
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Emmanuel Caussinus
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Stefano Leo
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Fritz Bosshardt
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Faina Myachina
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Gregor Rot
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Christian F Lehner
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
8
|
Chen D, Roychowdhury-Sinha A, Prakash P, Lan X, Fan W, Goto A, Hoffmann JA. A time course transcriptomic analysis of host and injected oncogenic cells reveals new aspects of Drosophila immune defenses. Proc Natl Acad Sci U S A 2021; 118:e2100825118. [PMID: 33737397 PMCID: PMC8000351 DOI: 10.1073/pnas.2100825118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oncogenic RasV12 cells [A. Simcox et al., PLoS Genet 4, e1000142 (2008)] injected into adult males proliferated massively after a lag period of several days, and led to the demise of the flies after 2 to 3 wk. The injection induced an early massive transcriptomic response that, unexpectedly, included more than 100 genes encoding chemoreceptors of various families. The kinetics of induction and the identities of the induced genes differed markedly from the responses generated by injections of microbes. Subsequently, hundreds of genes were up-regulated, attesting to intense catabolic activities in the flies, active tracheogenesis, and cuticulogenesis, as well as stress and inflammation-type responses. At 11 d after the injections, GFP-positive oncogenic cells isolated from the host flies exhibited a markedly different transcriptomic profile from that of the host and distinct from that at the time of their injection, including in particular up-regulated expression of genes typical for cells engaged in the classical antimicrobial response of Drosophila.
Collapse
Affiliation(s)
- Di Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, 511436 Guangzhou, China;
- Insect Models of Innate Immunity (M3I; UPR9022), CNRS, University of Strasbourg, F-67084 Strasbourg, France
| | | | - Pragya Prakash
- Insect Models of Innate Immunity (M3I; UPR9022), CNRS, University of Strasbourg, F-67084 Strasbourg, France
| | - Xiao Lan
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, 511436 Guangzhou, China
| | - Wenmin Fan
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, 511436 Guangzhou, China
| | - Akira Goto
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, 511436 Guangzhou, China;
- Insect Models of Innate Immunity (M3I; UPR9022), CNRS, University of Strasbourg, F-67084 Strasbourg, France
| | - Jules A Hoffmann
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, 511436 Guangzhou, China;
- Insect Models of Innate Immunity (M3I; UPR9022), CNRS, University of Strasbourg, F-67084 Strasbourg, France
- University of Strasbourg Institute for Advanced Study, 67000 Strasbourg, France
| |
Collapse
|
9
|
Swevers L, Denecke S, Vogelsang K, Geibel S, Vontas J. Can the mammalian organoid technology be applied to the insect gut? PEST MANAGEMENT SCIENCE 2021; 77:55-63. [PMID: 32865304 DOI: 10.1002/ps.6067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Mammalian intestinal organoids are multicellular structures that closely resemble the structure of the intestinal epithelium and can be generated in vitro from intestinal stem cells under appropriate culture conditions. This technology has transformed pharmaceutical research and drug development in human medicine. For the insect gut, no biotechnological platform equivalent to organoid cultures has been described yet. Comparison of the regulation of intestinal homeostasis and growth between insects and mammals has revealed significant similarities but also important differences. In contrast to mammals, the differentiation potential of available insect cell lines is limited and can not be exploited for in vitro permeability assays to measure the uptake of insecticides. The successful development of in vitro models could be a result of the emergence of molecular mechanisms of self-organization and signaling in the intestine that are unique to mammals. It is nevertheless considered that the technology gap is a consequence of vast differences in knowledge, particularly with respect to culture conditions that maintain the differentation potential of insect midgut cells. From the viewpoint of pest control, advanced in vitro models of the insect midgut would be very desirable because of its key barrier function for orally ingested insecticides with hemolymphatic target and its role in insecticide resistance. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Agia Paraskevi, 15341, Greece
| | - Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | | | - Sven Geibel
- Bayer AG, Crop Science Devision, R&D Pest Control, Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
10
|
Muscle development : a view from adult myogenesis in Drosophila. Semin Cell Dev Biol 2020; 104:39-50. [DOI: 10.1016/j.semcdb.2020.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
|
11
|
Guo Y, Goodman CL, Stanley DW, Bonning BC. Cell Lines for Honey Bee Virus Research. Viruses 2020; 12:E236. [PMID: 32093360 PMCID: PMC7077248 DOI: 10.3390/v12020236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
With ongoing colony losses driven in part by the Varroa mite and the associated exacerbation of the virus load, there is an urgent need to protect honey bees (Apis mellifera) from fatal levels of virus infection and from the non-target effects of insecticides used in agricultural settings. A continuously replicating cell line derived from the honey bee would provide a valuable tool for the study of molecular mechanisms of virus-host interaction, for the screening of antiviral agents for potential use within the hive, and for the assessment of the risk of current and candidate insecticides to the honey bee. However, the establishment of a continuously replicating honey bee cell line has proved challenging. Here, we provide an overview of attempts to establish primary and continuously replicating hymenopteran cell lines, methods (including recent results) of establishing honey bee cell lines, challenges associated with the presence of latent viruses (especially Deformed wing virus) in established cell lines and methods to establish virus-free cell lines. We also describe the potential use of honey bee cell lines in conjunction with infectious clones of honey bee viruses for examination of fundamental virology.
Collapse
Affiliation(s)
- Ya Guo
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA;
| | - Cynthia L. Goodman
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, Columbia, MO 65203, USA; (C.L.G.); (D.W.S.)
| | - David W. Stanley
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, Columbia, MO 65203, USA; (C.L.G.); (D.W.S.)
| | - Bryony C. Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
12
|
Rubio NR, Fish KD, Trimmer BA, Kaplan DL. Possibilities for Engineered Insect Tissue as a Food Source. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
13
|
Luhur A, Klueg KM, Roberts J, Zelhof AC. Thawing, Culturing, and Cryopreserving Drosophila Cell Lines. J Vis Exp 2019:10.3791/59459. [PMID: 31058891 PMCID: PMC7032961 DOI: 10.3791/59459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There are currently over 160 distinct Drosophila cell lines distributed by the Drosophila Genomics Resource Center (DGRC). With genome engineering, the number of novel cell lines is expected to increase. The DGRC aims to familiarize researchers with using Drosophila cell lines as an experimental tool to complement and drive their research agenda. Procedures for working with a variety of Drosophila cell lines with distinct characteristics are provided, including protocols for thawing, culturing, and cryopreserving cell lines. Importantly, this publication demonstrates the best practices required to work with Drosophila cell lines to minimize the risk of contaminations from adventitious microorganisms or from other cell lines. Researchers who become familiar with these procedures will be able to delve into the many applications that use Drosophila cultured cells including biochemistry, cell biology and functional genomics.
Collapse
Affiliation(s)
- Arthur Luhur
- Drosophila Genomics Resource Center, Department of Biology, Indiana University Bloomington;
| | - Kristin M Klueg
- Drosophila Genomics Resource Center, Department of Biology, Indiana University Bloomington
| | - Johnny Roberts
- Drosophila Genomics Resource Center, Department of Biology, Indiana University Bloomington
| | - Andrew C Zelhof
- Drosophila Genomics Resource Center, Department of Biology, Indiana University Bloomington
| |
Collapse
|
14
|
Rubio NR, Fish KD, Trimmer BA, Kaplan DL. In Vitro Insect Muscle for Tissue Engineering Applications. ACS Biomater Sci Eng 2019; 5:1071-1082. [PMID: 33405797 DOI: 10.1021/acsbiomaterials.8b01261] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tissue engineering is primarily associated with medical disciplines, and research has thus focused on mammalian cells. For applications where clinical relevance is not a constraint, it is useful to evaluate the potential of alternative cell sources to form tissues in vitro. Specifically, skeletal muscle tissue engineering for bioactuation and cultured foods could benefit from the incorporation of invertebrate cells because of their less stringent growth requirements and other versatile features. Here, we used a Drosophila muscle cell line to demonstrate the benefits of insect cells relative to those derived from vertebrates. The cells were adapted to serum-free media, transitioned between adherent and suspension cultures, and manipulated with hormones. Furthermore, we analyzed edible scaffolds to support cell adhesion and assayed cellular protein and minerals to evaluate nutrition potential. The insect muscle cells exhibited advantageous growth patterns and hold unique functionality for tissue engineering applications beyond the medical realm.
Collapse
Affiliation(s)
- Natalie R Rubio
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Kyle D Fish
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Barry A Trimmer
- Department of Biology, Tufts University, 200 Boston Avenue #4700, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
15
|
Luhur A, Klueg KM, Zelhof AC. Generating and working with Drosophila cell cultures: Current challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e339. [PMID: 30561900 DOI: 10.1002/wdev.339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/30/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022]
Abstract
The use of Drosophila cell cultures has positively impacted both fundamental and biomedical research. The most widely used cell lines: Schneider, Kc, the CNS and imaginal disc lines continue to be the choice for many applications. Drosophila cell lines provide a homogenous source of cells suitable for biochemical experimentations, transcriptomics, functional genomics, and biomedical applications. They are amenable to RNA interference and serve as a platform for high-throughput screens to identify relevant candidate genes or drugs for any biological process. Currently, CRISPR-based functional genomics are also being developed for Drosophila cell lines. Even though many uniquely derived cell lines exist, cell genetic techniques such the transgenic UAS-GAL4-based RasV12 oncogene expression, CRISPR-Cas9 editing and recombination mediated cassette exchange are likely to drive the establishment of many more lines from specific tissues, cells, or genotypes. However, the pace of creating new lines is hindered by several factors inherent to working with Drosophila cell cultures: single cell cloning, optimal media formulations and culture conditions capable of supporting lines from novel tissue sources or genotypes. Moreover, even though many Drosophila cell lines are morphologically and transcriptionally distinct it may be necessary to implement a standard for Drosophila cell line authentication, ensuring the identity and purity of each cell line. Altogether, recent advances and a standardized authentication effort should improve the utility of Drosophila cell cultures as a relevant model for fundamental and biomedical research. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes.
Collapse
Affiliation(s)
- Arthur Luhur
- Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana
| | - Kristin M Klueg
- Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana
| | - Andrew C Zelhof
- Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana
| |
Collapse
|
16
|
Gunage RD, Dhanyasi N, Reichert H, VijayRaghavan K. Drosophila adult muscle development and regeneration. Semin Cell Dev Biol 2017; 72:56-66. [DOI: 10.1016/j.semcdb.2017.11.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/08/2017] [Accepted: 11/11/2017] [Indexed: 12/13/2022]
|
17
|
Plouhinec JL, Medina-Ruiz S, Borday C, Bernard E, Vert JP, Eisen MB, Harland RM, Monsoro-Burq AH. A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates. PLoS Biol 2017; 15:e2004045. [PMID: 29049289 PMCID: PMC5663519 DOI: 10.1371/journal.pbio.2004045] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 10/31/2017] [Accepted: 09/29/2017] [Indexed: 12/18/2022] Open
Abstract
During vertebrate neurulation, the embryonic ectoderm is patterned into lineage progenitors for neural plate, neural crest, placodes and epidermis. Here, we use Xenopus laevis embryos to analyze the spatial and temporal transcriptome of distinct ectodermal domains in the course of neurulation, during the establishment of cell lineages. In order to define the transcriptome of small groups of cells from a single germ layer and to retain spatial information, dorsal and ventral ectoderm was subdivided along the anterior-posterior and medial-lateral axes by microdissections. Principal component analysis on the transcriptomes of these ectoderm fragments primarily identifies embryonic axes and temporal dynamics. This provides a genetic code to define positional information of any ectoderm sample along the anterior-posterior and dorsal-ventral axes directly from its transcriptome. In parallel, we use nonnegative matrix factorization to predict enhanced gene expression maps onto early and mid-neurula embryos, and specific signatures for each ectoderm area. The clustering of spatial and temporal datasets allowed detection of multiple biologically relevant groups (e.g., Wnt signaling, neural crest development, sensory placode specification, ciliogenesis, germ layer specification). We provide an interactive network interface, EctoMap, for exploring synexpression relationships among genes expressed in the neurula, and suggest several strategies to use this comprehensive dataset to address questions in developmental biology as well as stem cell or cancer research. Vertebrate embryo germ layers become progressively regionalized by evolutionarily conserved molecular processes. Catching the early steps of this dynamic spatial cell diversification at the scale of the transcriptome was challenging, even with the advent of efficient RNA sequencing. We have microdissected complementary and defined areas of a single germ layer, the developing ectoderm, and explored how the transcriptome changes over time and space in the ectoderm during the differentiation of frog epidermis, neural plate, and neural crest. We have created EctoMap, a searchable interface using these regional transcriptomes, to predict the expression of the 31 thousand genes expressed in neurulae and their networks of co-expression, predictive of functional relationships. Through several examples, we illustrate how these data provide insights in development, cancer, evolution and stem cell biology.
Collapse
Affiliation(s)
- Jean-Louis Plouhinec
- Université Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
- MINES ParisTech, PSL Research University, CBIO - Centre for Computational Biology, Paris, France
| | - Sofía Medina-Ruiz
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Caroline Borday
- Université Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Elsa Bernard
- MINES ParisTech, PSL Research University, CBIO - Centre for Computational Biology, Paris, France
- Institut Curie, INSERM U900, Paris, France
- INSERM U900, Paris, France
| | - Jean-Philippe Vert
- MINES ParisTech, PSL Research University, CBIO - Centre for Computational Biology, Paris, France
- Institut Curie, INSERM U900, Paris, France
- INSERM U900, Paris, France
| | - Michael B. Eisen
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development Biology, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Richard M. Harland
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Anne H. Monsoro-Burq
- Université Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Universitaire de France, Paris, France
- * E-mail:
| |
Collapse
|
18
|
Potential neoplastic evolution of Vero cells: in vivo and in vitro characterization. Cytotechnology 2017; 69:741-750. [PMID: 28386771 DOI: 10.1007/s10616-017-0082-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 03/12/2017] [Indexed: 02/04/2023] Open
Abstract
Vero cell lines are extensively employed in viral vaccine manufacturing. Similarly to all established cells, mutations can occur during Vero cells in vitro amplification which can result in adverse features compromising their biological safety. To evaluate the potential neoplastic evolution of these cells, in vitro transformation test, gene expression analysis and karyotyping were compared among low- (127 and 139 passages) and high-passage (passage 194) cell lines, as well as transformed colonies (TCs). In vivo tumorigenicity was also tested to confirm preliminary in vitro data obtained for low passage lines and TCs. Moreover, Vero cells cultivated in foetal bovine serum-free medium and derived from TCs were analysed to investigate the influence of cultivation methods on tumorigenic evolution. Low-passage Vero developed TCs in soft agar, without showing any tumorigenic evolution when inoculated in the animal model. Karyotyping showed a hypo-diploid modal chromosome number and rearrangements with no difference among Vero cell line passages and TCs. These abnormalities were reported also in serum-free cultivated Vero. Gene expression revealed that high-passage Vero cells had several under-expressed and a few over-expressed genes compared to low-passage ones. Gene ontology revealed no significant enrichment of pathways related to oncogenic risk. These findings suggest that in vitro high passage, and not culture conditions, induces Vero transformation correlated to karyotype and gene expression alterations. These data, together with previous investigations reporting tumour induction in high-passage Vero cells, suggest the use of low-passage Vero cells or cell lines other than Vero to increase the safety of vaccine manufacturing.
Collapse
|
19
|
Hu Y, Comjean A, Perrimon N, Mohr SE. The Drosophila Gene Expression Tool (DGET) for expression analyses. BMC Bioinformatics 2017; 18:98. [PMID: 28187709 PMCID: PMC5303223 DOI: 10.1186/s12859-017-1509-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/31/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Next-generation sequencing technologies have greatly increased our ability to identify gene expression levels, including at specific developmental stages and in specific tissues. Gene expression data can help researchers understand the diverse functions of genes and gene networks, as well as help in the design of specific and efficient functional studies, such as by helping researchers choose the most appropriate tissue for a study of a group of genes, or conversely, by limiting a long list of gene candidates to the subset that are normally expressed at a given stage or in a given tissue. RESULTS We report DGET, a Drosophila Gene Expression Tool ( www.flyrnai.org/tools/dget/web/ ), which stores and facilitates search of RNA-Seq based expression profiles available from the modENCODE consortium and other public data sets. Using DGET, researchers are able to look up gene expression profiles, filter results based on threshold expression values, and compare expression data across different developmental stages, tissues and treatments. In addition, at DGET a researcher can analyze tissue or stage-specific enrichment for an inputted list of genes (e.g., 'hits' from a screen) and search for additional genes with similar expression patterns. We performed a number of analyses to demonstrate the quality and robustness of the resource. In particular, we show that evolutionary conserved genes expressed at high or moderate levels in both fly and human tend to be expressed in similar tissues. Using DGET, we compared whole tissue profile and sub-region/cell-type specific datasets and estimated a potential source of false positives in one dataset. We also demonstrated the usefulness of DGET for synexpression studies by querying genes with expression profile similar to the mesodermal master regulator Twist. CONCLUSION Altogether, DGET provides a flexible tool for expression data retrieval and analysis with short or long lists of Drosophila genes, which can help scientists to design stage- or tissue-specific in vivo studies and do other subsequent analyses.
Collapse
Affiliation(s)
- Yanhui Hu
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| | - Aram Comjean
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Norbert Perrimon
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Stephanie E Mohr
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| |
Collapse
|
20
|
Fagegaltier D, Falciatori I, Czech B, Castel S, Perrimon N, Simcox A, Hannon GJ. Oncogenic transformation of Drosophila somatic cells induces a functional piRNA pathway. Genes Dev 2016; 30:1623-35. [PMID: 27474441 PMCID: PMC4973292 DOI: 10.1101/gad.284927.116] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
Abstract
Germline genes often become re-expressed in soma-derived human cancers as "cancer/testis antigens" (CTAs), and piRNA (PIWI-interacting RNA) pathway proteins are found among CTAs. However, whether and how the piRNA pathway contributes to oncogenesis in human neoplasms remain poorly understood. We found that oncogenic Ras combined with loss of the Hippo tumor suppressor pathway reactivates a primary piRNA pathway in Drosophila somatic cells coincident with oncogenic transformation. In these cells, Piwi becomes loaded with piRNAs derived from annotated generative loci, which are normally restricted to either the germline or the somatic follicle cells. Negating the pathway leads to increases in the expression of a wide variety of transposons and also altered expression of some protein-coding genes. This correlates with a reduction in the proliferation of the transformed cells in culture, suggesting that, at least in this context, the piRNA pathway may play a functional role in cancer.
Collapse
Affiliation(s)
- Delphine Fagegaltier
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Ilaria Falciatori
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Benjamin Czech
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | | | - Norbert Perrimon
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Amanda Simcox
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gregory J Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom; The New York Genome Center, New York, New York 10011, USA
| |
Collapse
|
21
|
Manivannan SN, Simcox A. Targeted genetics in Drosophila cell lines: Inserting single transgenes in vitro. Fly (Austin) 2016; 10:134-41. [PMID: 27261098 PMCID: PMC4970541 DOI: 10.1080/19336934.2016.1191716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022] Open
Abstract
A long-standing problem with analyzing transgene expression in tissue-culture cells is the variation caused by random integration of different copy numbers of transfected transgenes. In mammalian cells, single transgenes can be inserted by homologous recombination but this process is inefficient in Drosophila cells. To tackle this problem, our group, and the Cherbas group, used recombination-mediated cassette exchange (RMCE) to introduce single-copy transgenes into specific locations in the Drosophila genome. In both cases, ϕC31 was used to catalyze recombination between its target sequences attP in the genome, and attB flanking the donor sequence. We generated cell lines de novo with a single attP-flanked cassette for recombination, whereas, Cherbas et al. introduced a single attP-flanked cassette into existing cell lines. In both approaches, a 2-drug selection scheme was used to select for cells with a single copy of the donor sequence inserted by RMCE and against cells with random integration of multiple copies. Here we describe the general advantages of using RMCE to introduce genes into fly cells, the different attributes of the 2 methods, and how future work could make use of other recombinases and CRISPR/Cas9 genome editing to further enable genetic manipulation of Drosophila cells in vitro.
Collapse
Affiliation(s)
| | - Amanda Simcox
- Department of Molecular Genetics, The Ohio State University, Columbus, OH
| |
Collapse
|
22
|
Abstract
Steroid hormones induce cascades of gene activation and repression with transformative effects on cell fate . Steroid transduction plays a major role in the development and physiology of nearly all metazoan species, and in the progression of the most common forms of cancer. Despite the paramount importance of steroids in developmental and translational biology, a complete map of transcriptional response has not been developed for any hormone . In the case of 20-hydroxyecdysone (ecdysone) in Drosophila melanogaster, these trajectories range from apoptosis to immortalization. We mapped the ecdysone transduction network in a cohort of 41 cell lines, the largest such atlas yet assembled. We found that the early transcriptional response mirrors the distinctiveness of physiological origins: genes respond in restricted patterns, conditional on the expression levels of dozens of transcription factors. Only a small cohort of genes is constitutively modulated independent of initial cell state. Ecdysone-responsive genes tend to organize into directional same-stranded units, with consecutive genes induced from the same strand. Here, we identify half of the ecdysone receptor heterodimer as the primary rate-limiting step in the response, and find that initial receptor isoform levels modulate the activated cohort of target transcription factors. This atlas of steroid response reveals organizing principles of gene regulation by a model type II nuclear receptor and lays the foundation for comprehensive and predictive understanding of the ecdysone transduction network in the fruit fly.
Collapse
|