1
|
Mukhametzyanova L, Schmitt LT, Torres-Rivera J, Rojo-Romanos T, Lansing F, Paszkowski-Rogacz M, Hollak H, Brux M, Augsburg M, Schneider PM, Buchholz F. Activation of recombinases at specific DNA loci by zinc-finger domain insertions. Nat Biotechnol 2024; 42:1844-1854. [PMID: 38297187 PMCID: PMC11631766 DOI: 10.1038/s41587-023-02121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024]
Abstract
Recombinases have several potential advantages as genome editing tools compared to nucleases and other editing enzymes, but the process of engineering them to efficiently recombine predetermined DNA targets demands considerable investment of time and labor. Here we sought to harness zinc-finger DNA-binding domains (ZFDs) to program recombinase binding by developing fusions, in which ZFDs are inserted into recombinase coding sequences. By screening libraries of hybrid proteins, we optimized the insertion site, linker length, spacing and ZFD orientation and generated Cre-type recombinases that remain dormant unless the insertionally fused ZFD binds its target site placed in the vicinity of the recombinase binding site. The developed fusion improved targeted editing efficiencies of recombinases by four-fold and abolished measurable off-target activity in mammalian cells. The ZFD-dependent activity is transferable to a recombinase with relaxed specificity, providing the means for developing fully programmable recombinases. Our engineered recombinases provide improved genome editing tools with increased precision and efficiency.
Collapse
Affiliation(s)
- Liliya Mukhametzyanova
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Lukas Theo Schmitt
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
- Seamless Therapeutics GmbH, Dresden, Germany
| | - Julia Torres-Rivera
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Teresa Rojo-Romanos
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
- Seamless Therapeutics GmbH, Dresden, Germany
| | - Felix Lansing
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
- Seamless Therapeutics GmbH, Dresden, Germany
| | | | - Heike Hollak
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
- Seamless Therapeutics GmbH, Dresden, Germany
| | - Melanie Brux
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Martina Augsburg
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Paul Martin Schneider
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
- Seamless Therapeutics GmbH, Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany.
| |
Collapse
|
2
|
Cadden GM, Schloetel JG, McKenzie G, Boocock MR, Magennis SW, Stark WM. Direct observation of subunit rotation during DNA strand exchange by serine recombinases. Nat Commun 2024; 15:10407. [PMID: 39613732 PMCID: PMC11607074 DOI: 10.1038/s41467-024-54531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024] Open
Abstract
Serine recombinases are proposed to catalyse site-specific recombination by a unique mechanism called subunit rotation. Cutting and rejoining DNA occurs within an intermediate synaptic complex comprising a recombinase tetramer bound to two DNA sites. After double-strand cleavage at both sites, one half of the complex rotates 180° relative to the other, before re-ligation of the DNA ends. We used single-molecule FRET (smFRET) methods to provide compelling direct physical evidence for subunit rotation by recombinases Tn3 resolvase and Sin. Synaptic complexes containing fluorescently labelled DNA show FRET fluctuations consistent with the subunit rotation model. FRET changes were associated with the rotation steps, on a timescale of 0.4-1.1s - 1 , as well as opening and closing of the gap between the scissile phosphates during cleavage and ligation. Multiple rounds of recombination were observed within the ~25 s observation period, including frequent consecutive rotation events in the cleaved-DNA state without evidence of intermediate ligation.
Collapse
Affiliation(s)
- Gillian M Cadden
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, UK
| | - Jan-Gero Schloetel
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK
| | - Grant McKenzie
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK
| | - Martin R Boocock
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK
| | - Steven W Magennis
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, UK.
| | - W Marshall Stark
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK.
| |
Collapse
|
3
|
Bisht D, Salave S, Desai N, Gogoi P, Rana D, Biswal P, Sarma G, Benival D, Kommineni N, Desai D. Genome editing and its role in vaccine, diagnosis, and therapeutic advancement. Int J Biol Macromol 2024; 269:131802. [PMID: 38670178 DOI: 10.1016/j.ijbiomac.2024.131802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Genome editing involves precise modification of specific nucleotides in the genome using nucleases like CRISPR/Cas, ZFN, or TALEN, leading to increased efficiency of homologous recombination (HR) for gene editing, and it can result in gene disruption events via non-homologous end joining (NHEJ) or homology-driven repair (HDR). Genome editing, particularly CRISPR-Cas9, revolutionizes vaccine development by enabling precise modifications of pathogen genomes, leading to enhanced vaccine efficacy and safety. It allows for tailored antigen optimization, improved vector design, and deeper insights into host genes' impact on vaccine responses, ultimately enhancing vaccine development and manufacturing processes. This review highlights different types of genome editing methods, their associated risks, approaches to overcome the shortcomings, and the diverse roles of genome editing.
Collapse
Affiliation(s)
- Deepanker Bisht
- ICAR- Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Nimeet Desai
- Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Purnima Gogoi
- School of Medicine and Public Health, University of Wisconsin and Madison, Madison, WI 53726, USA
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Prachurya Biswal
- College of Veterinary and Animal Sciences, Bihar Animal Sciences University, Kishanganj 855115, Bihar, India
| | - Gautami Sarma
- College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, U.S. Nagar, Uttarakhand, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India.
| | | | - Dhruv Desai
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Chen X, Du J, Yun S, Xue C, Yao Y, Rao S. Recent advances in CRISPR-Cas9-based genome insertion technologies. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102138. [PMID: 38379727 PMCID: PMC10878794 DOI: 10.1016/j.omtn.2024.102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Programmable genome insertion (or knock-in) is vital for both fundamental and translational research. The continuously expanding number of CRISPR-based genome insertion strategies demonstrates the ongoing development in this field. Common methods for site-specific genome insertion rely on cellular double-strand breaks repair pathways, such as homology-directed repair, non-homologous end-joining, and microhomology-mediated end joining. Recent advancements have further expanded the toolbox of programmable genome insertion techniques, including prime editing, integrase coupled with programmable nuclease, and CRISPR-associated transposon. These tools possess their own capabilities and limitations, promoting tremendous efforts to enhance editing efficiency, broaden targeting scope and improve editing specificity. In this review, we first summarize recent advances in programmable genome insertion techniques. We then elaborate on the cons and pros of each technique to assist researchers in making informed choices when using these tools. Finally, we identify opportunities for future improvements and applications in basic research and therapeutics.
Collapse
Affiliation(s)
- Xinwen Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jingjing Du
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Shaowei Yun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Chaoyou Xue
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Yao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
5
|
Yarnall MTN, Ioannidi EI, Schmitt-Ulms C, Krajeski RN, Lim J, Villiger L, Zhou W, Jiang K, Garushyants SK, Roberts N, Zhang L, Vakulskas CA, Walker JA, Kadina AP, Zepeda AE, Holden K, Ma H, Xie J, Gao G, Foquet L, Bial G, Donnelly SK, Miyata Y, Radiloff DR, Henderson JM, Ujita A, Abudayyeh OO, Gootenberg JS. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat Biotechnol 2023; 41:500-512. [PMID: 36424489 PMCID: PMC10257351 DOI: 10.1038/s41587-022-01527-4] [Citation(s) in RCA: 205] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022]
Abstract
Programmable genome integration of large, diverse DNA cargo without DNA repair of exposed DNA double-strand breaks remains an unsolved challenge in genome editing. We present programmable addition via site-specific targeting elements (PASTE), which uses a CRISPR-Cas9 nickase fused to both a reverse transcriptase and serine integrase for targeted genomic recruitment and integration of desired payloads. We demonstrate integration of sequences as large as ~36 kilobases at multiple genomic loci across three human cell lines, primary T cells and non-dividing primary human hepatocytes. To augment PASTE, we discovered 25,614 serine integrases and cognate attachment sites from metagenomes and engineered orthologs with higher activity and shorter recognition sequences for efficient programmable integration. PASTE has editing efficiencies similar to or exceeding those of homology-directed repair and non-homologous end joining-based methods, with activity in non-dividing cells and in vivo with fewer detectable off-target events. PASTE expands the capabilities of genome editing by allowing large, multiplexed gene insertion without reliance on DNA repair pathways.
Collapse
Affiliation(s)
- Matthew T N Yarnall
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eleonora I Ioannidi
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- ETH Zürich, Zürich, Switzerland
| | - Cian Schmitt-Ulms
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rohan N Krajeski
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Justin Lim
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lukas Villiger
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wenyuan Zhou
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kaiyi Jiang
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sofya K Garushyants
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Liyang Zhang
- Integrated DNA Technologies, Coralville, IA, USA
| | | | | | | | | | | | - Hong Ma
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jun Xie
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Guangping Gao
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Greg Bial
- Yecuris Corporation, Tualatin, OR, USA
| | | | | | | | | | | | - Omar O Abudayyeh
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Jonathan S Gootenberg
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Rowland SJ, Boocock MR, Burke ME, Rice PA, Stark WM. The protein-protein interactions required for assembly of the Tn3 resolution synapse. Mol Microbiol 2021; 114:952-965. [PMID: 33405333 DOI: 10.1111/mmi.14579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022]
Abstract
The site-specific recombinase Tn3 resolvase initiates DNA strand exchange when two res recombination sites and six resolvase dimers interact to form a synapse. The detailed architecture of this intricate recombination machine remains unclear. We have clarified which of the potential dimer-dimer interactions are required for synapsis and recombination, using a novel complementation strategy that exploits a previously uncharacterized resolvase from Bartonella bacilliformis ("Bart"). Tn3 and Bart resolvases recognize different DNA motifs, via diverged C-terminal domains (CTDs). They also differ substantially at N-terminal domain (NTD) surfaces involved in dimerization and synapse assembly. We designed NTD-CTD hybrid proteins, and hybrid res sites containing both Tn3 and Bart dimer binding sites. Using these components in in vivo assays, we demonstrate that productive synapsis requires a specific "R" interface involving resolvase NTDs at all three dimer-binding sites in res. Synapses containing mixtures of wild-type Tn3 and Bart resolvase NTD dimers are recombination-defective, but activity can be restored by replacing patches of Tn3 resolvase R interface residues with Bart residues, or vice versa. We conclude that the Tn3/Bart family synapse is assembled exclusively by R interactions between resolvase dimers, except for the one special dimer-dimer interaction required for catalysis.
Collapse
Affiliation(s)
- Sally-J Rowland
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Martin R Boocock
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Mary E Burke
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Voziyanova E, Li F, Shah R, Voziyanov Y. Genome targeting by hybrid Flp-TAL recombinases. Sci Rep 2020; 10:17479. [PMID: 33060660 PMCID: PMC7562724 DOI: 10.1038/s41598-020-74474-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/08/2020] [Indexed: 11/09/2022] Open
Abstract
Genome engineering is a rapidly evolving field that benefits from the availability of different tools that can be used to perform genome manipulation tasks. We describe here the development of the Flp-TAL recombinases that can target genomic FRT-like sequences in their native chromosomal locations. Flp-TAL recombinases are hybrid enzymes that are composed of two functional modules: a variant of site-specific tyrosine recombinase Flp, which can have either narrow or broad target specificity, and the DNA-binding domain of the transcription activator-like effector, TAL. In Flp-TAL, the TAL module is responsible for delivering and stabilizing the Flp module onto the desired genomic FRT-like sequence where the Flp module mediates recombination. We demonstrate the functionality of the Flp-TAL recombinases by performing integration and deletion experiments in human HEK-293 cells. In the integration experiments we targeted a vector to three genomic FRT-like sequences located in the β-globin locus. In the deletion experiments we excised ~ 15 kilobases of DNA that contained a fragment of the integrated vector sequence and the neighboring genome sequence. On average, the efficiency of the integration and deletion reactions was about 0.1% and 20%, respectively.
Collapse
Affiliation(s)
- Eugenia Voziyanova
- School of Biological Sciences, Louisiana Tech University, 1 Adams Blvd., Ruston, LA, 71272, USA
| | - Feng Li
- School of Biological Sciences, Louisiana Tech University, 1 Adams Blvd., Ruston, LA, 71272, USA
| | - Riddhi Shah
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Yuri Voziyanov
- School of Biological Sciences, Louisiana Tech University, 1 Adams Blvd., Ruston, LA, 71272, USA.
| |
Collapse
|
8
|
Standage-Beier K, Brookhouser N, Balachandran P, Zhang Q, Brafman DA, Wang X. RNA-Guided Recombinase-Cas9 Fusion Targets Genomic DNA Deletion and Integration. CRISPR J 2020; 2:209-222. [PMID: 31436506 DOI: 10.1089/crispr.2019.0013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CRISPR-based technologies have become central to genome engineering. However, CRISPR-based editing strategies are dependent on the repair of DNA breaks via endogenous DNA repair mechanisms, which increases susceptibility to unwanted mutations. Here we complement Cas9 with a recombinase's functionality by fusing a hyperactive mutant resolvase from transposon Tn3, a member of serine recombinases, to a catalytically inactive Cas9, which we term integrase Cas9 (iCas9). We demonstrate iCas9 targets DNA deletion and integration. First, we validate iCas9's function in Saccharomyces cerevisiae using a genome-integrated reporter. Cooperative targeting by CRISPR RNAs at spacings of 22 or 40 bp enables iCas9-mediated recombination. Next, iCas9's ability to target DNA deletion and integration in human HEK293 cells is demonstrated using dual GFP-mCherry fluorescent reporter plasmid systems. Finally, we show that iCas9 is capable of targeting integration into a genomic reporter locus. We envision targeting and design concepts of iCas9 will contribute to genome engineering and synthetic biology.
Collapse
Affiliation(s)
- Kylie Standage-Beier
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona.,Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, Arizona; University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona.,Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Parithi Balachandran
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Qi Zhang
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - David A Brafman
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Xiao Wang
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| |
Collapse
|
9
|
Li H, Sharp R, Rutherford K, Gupta K, Van Duyne GD. Serine Integrase attP Binding and Specificity. J Mol Biol 2018; 430:4401-4418. [PMID: 30227134 DOI: 10.1016/j.jmb.2018.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 01/31/2023]
Abstract
Serine integrases catalyze the site-specific insertion of viral DNA into a host's genome. The minimal requirements and irreversible nature of this integration reaction have led to the use of serine integrases in applications ranging from bacterial memory storage devices to gene therapy. Our understanding of how the integrase proteins recognize the viral (attP) and host (attB) attachment sites is limited, with structural data available for only a Listeria integrase C-terminal domain (CTD) bound to an attP half-site. Here we report quantitative binding and saturation mutagenesis analyses for the Listeria innocua prophage attP site and a new 2.8-Å crystal structure of the CTD•attP half site. We find that Int binds with high affinity to attP (6.9 nM), but the Int CTD binds to attP half-sites with only 7- to 10-fold lower affinity, supporting the idea that free energy is expended to open an Int dimer for attP binding. Despite the 50-bp Int-attP interaction surface, only 20 residues are sensitive to mutagenesis, and of these, only 6 require a specific residue for efficient Int binding and integration activity. One of the integrase DNA-binding domains, the recombinase domain, appears to be primarily non-specific. Several substitutions result in an improved attP site, indicating that higher-efficiency attachment sites can be obtained through site engineering. These findings advance our understanding of serine integrase function and provide important data for efforts towards engineering this family of enzymes for a variety of biotechnology applications.
Collapse
Affiliation(s)
- Huiguang Li
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert Sharp
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karen Rutherford
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kushol Gupta
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Nomura W. Development of Toolboxes for Precision Genome/Epigenome Editing and Imaging of Epigenetics. CHEM REC 2018; 18:1717-1726. [PMID: 30066981 DOI: 10.1002/tcr.201800036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022]
Abstract
Zinc finger (ZF) proteins are composed of repeated ββα modules and coordinate a zinc ion. ZF domains recognizing specific DNA target sequences can be substituted for the binding domains of various DNA-modifying enzymes to create designer nucleases, recombinases, and methyltransferases with programmable sequence specificity. Enzymatic genome editing and modification can be applied to many fields of basic research and medicine. The recent development of new platforms using transcription activator-like effector (TALE) proteins or the CRISPR-Cas9 system has expanded the range of possibilities for genome-editing technologies. In addition, these DNA binding domains can also be utilized to build a toolbox for epigenetic controls by fusing them with protein- or DNA-modifying enzymes. Here, our research on epigenome editing including the development of artificial zinc finger recombinase (ZFR), split DNA methyltransferase, and fluorescence imaging of histone proteins by ZIP tag-probe system is introduced. Advances in the ZF, TALE, and CRISPR-Cas9 platforms have paved the way for the next generation of genome/epigenome engineering approaches.
Collapse
Affiliation(s)
- Wataru Nomura
- Institute of Biomaterials and Bioenginerring, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
11
|
Bogdanove AJ, Bohm A, Miller JC, Morgan RD, Stoddard BL. Engineering altered protein-DNA recognition specificity. Nucleic Acids Res 2018; 46:4845-4871. [PMID: 29718463 PMCID: PMC6007267 DOI: 10.1093/nar/gky289] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023] Open
Abstract
Protein engineering is used to generate novel protein folds and assemblages, to impart new properties and functions onto existing proteins, and to enhance our understanding of principles that govern protein structure. While such approaches can be employed to reprogram protein-protein interactions, modifying protein-DNA interactions is more difficult. This may be related to the structural features of protein-DNA interfaces, which display more charged groups, directional hydrogen bonds, ordered solvent molecules and counterions than comparable protein interfaces. Nevertheless, progress has been made in the redesign of protein-DNA specificity, much of it driven by the development of engineered enzymes for genome modification. Here, we summarize the creation of novel DNA specificities for zinc finger proteins, meganucleases, TAL effectors, recombinases and restriction endonucleases. The ease of re-engineering each system is related both to the modularity of the protein and the extent to which the proteins have evolved to be capable of readily modifying their recognition specificities in response to natural selection. The development of engineered DNA binding proteins that display an ideal combination of activity, specificity, deliverability, and outcomes is not a fully solved problem, however each of the current platforms offers unique advantages, offset by behaviors and properties requiring further study and development.
Collapse
Affiliation(s)
- Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Bohm
- Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Jeffrey C Miller
- Sangamo Therapeutics Inc. 501 Canal Blvd., Richmond, CA 94804, USA
| | - Richard D Morgan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98019, USA
| |
Collapse
|
12
|
Abstract
Serine integrases catalyze precise rearrangement of DNA through site-specific recombination of small sequences of DNA called attachment (att) sites. Unlike other site-specific recombinases, the recombination reaction driven by serine integrases is highly directional and can only be reversed in the presence of an accessory protein called a recombination directionality factor (RDF). The ability to control reaction directionality has led to the development of serine integrases as tools for controlled rearrangement and modification of DNA in synthetic biology, gene therapy, and biotechnology. This review discusses recent advances in serine integrase technologies focusing on their applications in genome engineering, DNA assembly, and logic and data storage devices.
Collapse
Affiliation(s)
- Christine A. Merrick
- School
of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum
Brown Road, Edinburgh EH9
3FF, U.K
| | - Jia Zhao
- Novo
Nordisk (China) Pharmaceuticals Co., Ltd., Lei Shing Hong Center, Guangshunnan Avenue, Beijing 100102, China
| | - Susan J. Rosser
- School
of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum
Brown Road, Edinburgh EH9
3FF, U.K
| |
Collapse
|
13
|
Thompson DB, Aboulhouda S, Hysolli E, Smith CJ, Wang S, Castanon O, Church GM. The Future of Multiplexed Eukaryotic Genome Engineering. ACS Chem Biol 2018; 13:313-325. [PMID: 29241002 PMCID: PMC5880278 DOI: 10.1021/acschembio.7b00842] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multiplex genome editing is the simultaneous introduction of multiple distinct modifications to a given genome. Though in its infancy, maturation of this field will facilitate powerful new biomedical research approaches and will enable a host of far-reaching biological engineering applications, including new therapeutic modalities and industrial applications, as well as "genome writing" and de-extinction efforts. In this Perspective, we focus on multiplex editing of large eukaryotic genomes. We describe the current state of multiplexed genome editing, the current limits of our ability to multiplex edits, and provide perspective on the many applications that fully realized multiplex editing technologies would enable in higher eukaryotic genomes. We offer a broad look at future directions, covering emergent CRISPR-based technologies, advances in intracellular delivery, and new DNA assembly approaches that may enable future genome editing on a massively multiplexed scale.
Collapse
Affiliation(s)
- David B. Thompson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA
| | - Soufiane Aboulhouda
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA
| | - Eriona Hysolli
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA
| | - Cory J. Smith
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA
| | - Stan Wang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA
| | - Oscar Castanon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128 Palaiseau, France
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Olorunniji FJ, McPherson AL, Rosser SJ, Smith MCM, Colloms SD, Stark WM. Control of serine integrase recombination directionality by fusion with the directionality factor. Nucleic Acids Res 2017; 45:8635-8645. [PMID: 28666339 PMCID: PMC5737554 DOI: 10.1093/nar/gkx567] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/29/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteriophage serine integrases are extensively used in biotechnology and synthetic biology for assembly and rearrangement of DNA sequences. Serine integrases promote recombination between two different DNA sites, attP and attB, to form recombinant attL and attR sites. The 'reverse' reaction requires another phage-encoded protein called the recombination directionality factor (RDF) in addition to integrase; RDF activates attL × attR recombination and inhibits attP × attB recombination. We show here that serine integrases can be fused to their cognate RDFs to create single proteins that catalyse efficient attL × attR recombination in vivo and in vitro, whereas attP × attB recombination efficiency is reduced. We provide evidence that activation of attL × attR recombination involves intra-subunit contacts between the integrase and RDF moieties of the fusion protein. Minor changes in the length and sequence of the integrase-RDF linker peptide did not affect fusion protein recombination activity. The efficiency and single-protein convenience of integrase-RDF fusion proteins make them potentially very advantageous for biotechnology/synthetic biology applications. Here, we demonstrate efficient gene cassette replacement in a synthetic metabolic pathway gene array as a proof of principle.
Collapse
Affiliation(s)
- Femi J Olorunniji
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Arlene L McPherson
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Susan J Rosser
- SynthSys - Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Roger Land Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JD, UK
| | - Margaret C M Smith
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Sean D Colloms
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
15
|
Nelson CE, Robinson-Hamm JN, Gersbach CA. Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nat Rev Neurol 2017; 13:647-661. [DOI: 10.1038/nrneurol.2017.126] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Olorunniji FJ, Rosser SJ, Marshall Stark W. Purification and In Vitro Characterization of Zinc Finger Recombinases. Methods Mol Biol 2017; 1642:229-245. [PMID: 28815504 DOI: 10.1007/978-1-4939-7169-5_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Zinc finger recombinases (ZFRs) are designer site-specific recombinases that have been adapted for a variety of genome editing purposes. Due to their modular nature, ZFRs can be customized for targeted sequence recognition and recombination. There has been substantial research on the in vivo properties and applications of ZFRs; however, in order to fully understand and customize them, it will be necessary to study their properties in vitro. Experiments in vitro can allow us to optimize catalytic activities, improve target specificity, measure and minimize off-target activity, and characterize key steps in the recombination pathway that might be modified to improve performance. Here, we present a straightforward set of protocols for the expression and purification of ZFRs, an assay system for catalytic proficiency in vitro and bandshift assays for detection of sequence-specific DNA interactions.
Collapse
Affiliation(s)
- Femi J Olorunniji
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow, G12 8QQ, Scotland
| | - Susan J Rosser
- SynthSys-Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, CH Waddington Building, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JD, Scotland
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow, G12 8QQ, Scotland.
| |
Collapse
|
17
|
Gaj T, Sirk SJ, Shui SL, Liu J. Genome-Editing Technologies: Principles and Applications. Cold Spring Harb Perspect Biol 2016; 8:a023754. [PMID: 27908936 PMCID: PMC5131771 DOI: 10.1101/cshperspect.a023754] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Targeted nucleases have provided researchers with the ability to manipulate virtually any genomic sequence, enabling the facile creation of isogenic cell lines and animal models for the study of human disease, and promoting exciting new possibilities for human gene therapy. Here we review three foundational technologies-clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs). We discuss the engineering advances that facilitated their development and highlight several achievements in genome engineering that were made possible by these tools. We also consider artificial transcription factors, illustrating how this technology can complement targeted nucleases for synthetic biology and gene therapy.
Collapse
Affiliation(s)
- Thomas Gaj
- Department of Bioengineering, University of California, Berkeley, California 94720
| | - Shannon J Sirk
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
| | - Sai-Lan Shui
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
18
|
Chaikind B, Bessen JL, Thompson DB, Hu JH, Liu DR. A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res 2016; 44:9758-9770. [PMID: 27515511 PMCID: PMC5175349 DOI: 10.1093/nar/gkw707] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
We describe the development of ‘recCas9’, an RNA-programmed small serine recombinase that functions in mammalian cells. We fused a catalytically inactive dCas9 to the catalytic domain of Gin recombinase using an optimized fusion architecture. The resulting recCas9 system recombines DNA sites containing a minimal recombinase core site flanked by guide RNA-specified sequences. We show that these recombinases can operate on DNA sites in mammalian cells identical to genomic loci naturally found in the human genome in a manner that is dependent on the guide RNA sequences. DNA sequencing reveals that recCas9 catalyzes guide RNA-dependent recombination in human cells with an efficiency as high as 32% on plasmid substrates. Finally, we demonstrate that recCas9 expressed in human cells can catalyze in situ deletion between two genomic sites. Because recCas9 directly catalyzes recombination, it generates virtually no detectable indels or other stochastic DNA modification products. This work represents a step toward programmable, scarless genome editing in unmodified cells that is independent of endogenous cellular machinery or cell state. Current and future generations of recCas9 may facilitate targeted agricultural breeding, or the study and treatment of human genetic diseases.
Collapse
Affiliation(s)
- Brian Chaikind
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical institute, Harvard University, Cambridge, MA 02138 USA
| | - Jeffrey L Bessen
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical institute, Harvard University, Cambridge, MA 02138 USA
| | - David B Thompson
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Johnny H Hu
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - David R Liu
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA .,Howard Hughes Medical institute, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
19
|
Abstract
The field of genome engineering has created new possibilities for gene therapy, including improved animal models of disease, engineered cell therapies, and in vivo gene repair. The most significant challenge for the clinical translation of genome engineering is the development of safe and effective delivery vehicles. A large body of work has applied genome engineering to genetic modification in vitro, and clinical trials have begun using cells modified by genome editing. Now, promising preclinical work is beginning to apply these tools in vivo. This article summarizes the development of genome engineering platforms, including meganucleases, zinc finger nucleases, TALENs, and CRISPR/Cas9, and their flexibility for precise genetic modifications. The prospects for the development of safe and effective viral and nonviral delivery vehicles for genome editing are reviewed, and promising advances in particular therapeutic applications are discussed.
Collapse
Affiliation(s)
- Christopher E Nelson
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
- Center for Genomic & Computational Biology, Duke University, Durham, North Carolina 27708
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
- Center for Genomic & Computational Biology, Duke University, Durham, North Carolina 27708
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina 27708;
| |
Collapse
|
20
|
Abstract
Tyrosine site-specific recombinases (YRs) are widely distributed among prokaryotes and their viruses, and were thought to be confined to the budding yeast lineage among eukaryotes. However, YR-harboring retrotransposons (the DIRS and PAT families) and DNA transposons (Cryptons) have been identified in a variety of eukaryotes. The YRs utilize a common chemical mechanism, analogous to that of type IB topoisomerases, to bring about a plethora of genetic rearrangements with important physiological consequences in their respective biological contexts. A subset of the tyrosine recombinases has provided model systems for analyzing the chemical mechanisms and conformational features of the recombination reaction using chemical, biochemical, topological, structural, and single molecule-biophysical approaches. YRs with simple reaction requirements have been utilized to bring about programmed DNA rearrangements for addressing fundamental questions in developmental biology. They have also been employed to trace the topological features of DNA within high-order DNA interactions established by protein machines. The directed evolution of altered specificity YRs, combined with their spatially and temporally regulated expression, heralds their emergence as vital tools in genome engineering projects with wide-ranging biotechnological and medical applications.
Collapse
|
21
|
Abstract
Serine resolvases are an interesting group of site-specific recombinases that, in their native contexts, resolve large fused replicons into smaller separated ones. Some resolvases are encoded by replicative transposons and resolve the transposition product, in which the donor and recipient molecules are fused, into separate replicons. Other resolvases are encoded by plasmids and function to resolve plasmid dimers into monomers. Both types are therefore involved in the spread and maintenance of antibiotic-resistance genes. Resolvases and the closely related invertases were the first serine recombinases to be studied in detail, and much of our understanding of the unusual strand exchange mechanism of serine recombinases is owed to those early studies. Resolvases and invertases have also served as paradigms for understanding how DNA topology can be harnessed to regulate enzyme activity. Finally, their relatively modular structure, combined with a wealth of structural and biochemical data, has made them good choices for engineering chimeric recombinases with designer specificity. This chapter focuses on the current understanding of serine resolvases, with a focus on the contributions of structural studies.
Collapse
|
22
|
Abstract
The fields of molecular genetics, biotechnology and synthetic biology are demanding ever more sophisticated molecular tools for programmed precise modification of cell genomic DNA and other DNA sequences. This review presents the current state of knowledge and development of one important group of DNA-modifying enzymes, the site-specific recombinases (SSRs). SSRs are Nature's 'molecular machines' for cut-and-paste editing of DNA molecules by inserting, deleting or inverting precisely defined DNA segments. We survey the SSRs that have been put to use, and the types of applications for which they are suitable. We also discuss problems associated with uses of SSRs, how these problems can be minimized, and how recombinases are being re-engineered for improved performance and novel applications.
Collapse
|
23
|
Fujii W, Onuma A, Yoshioka S, Nagashima K, Sugiura K, Naito K. Finding of a highly efficient ZFN pair for Aqpep gene functioning in murine zygotes. J Reprod Dev 2015; 61:589-93. [PMID: 26460691 PMCID: PMC4685226 DOI: 10.1262/jrd.2015-087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The generation efficiencies of mutation-induced mice when using engineered zinc-finger nucleases (ZFNs) have
been generally 10 to 20% of obtained pups in previous studies. The discovery of high-affinity DNA-binding
modules can contribute to the generation of various kinds of novel artificial chromatin-targeting tools, such
as zinc-finger acetyltransferases, zinc-finger histone kinases and so on, as well as improvement of reported
zinc-finger recombinases and zinc-finger methyltransferases. Here, we report a novel ZFN pair that has a
highly efficient mutation-induction ability in murine zygotes. The ZFN pair induced mutations in all obtained
mice in the target locus, exon 17 of aminopeptidase Q gene, and almost all of the pups had biallelic
mutations. This high efficiency was also shown in the plasmid DNA transfected in a cultured human cell line.
The induced mutations were inherited normally in the next generation. The zinc-finger modules of this ZFN pair
are expected to contribute to the development of novel ZF-attached chromatin-targeting tools.
Collapse
Affiliation(s)
- Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Skaar K, Claesson M, Odegrip R, Högbom M, Haggård-Ljungquist E, Stenmark P. Crystal structure of the bacteriophage P2 integrase catalytic domain. FEBS Lett 2015; 589:3556-63. [PMID: 26453836 DOI: 10.1016/j.febslet.2015.09.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/14/2015] [Accepted: 09/25/2015] [Indexed: 11/18/2022]
Abstract
Bacteriophage P2 is a temperate phage capable of integrating its DNA into the host genome by site-specific recombination upon lysogenization. Integration and excision of the phage genome requires P2 integrase, which performs recognition, cleavage and joining of DNA during these processes. This work presents the high-resolution crystal structure of the catalytic domain of P2 integrase, and analysis of the structure-function relationship of several previously identified non-functional P2 integrase mutants. The DNA binding area is characterized by a large positively charged patch, harboring key residues. The structure reveals potential for large dimer flexibility, likely essential for rearrangement of DNA strands upon integration and excision of the phage DNA.
Collapse
Affiliation(s)
- Karin Skaar
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Magnus Claesson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Richard Odegrip
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
25
|
Abstract
Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances.
Collapse
Affiliation(s)
- Isaac B Hilton
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA; Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
26
|
Redesigning Recombinase Specificity for Safe Harbor Sites in the Human Genome. PLoS One 2015; 10:e0139123. [PMID: 26414179 PMCID: PMC4587366 DOI: 10.1371/journal.pone.0139123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
Site-specific recombinases (SSRs) are valuable tools for genetic engineering due to their ability to manipulate DNA in a highly specific manner. Engineered zinc-finger and TAL effector recombinases, in particular, are two classes of SSRs composed of custom-designed DNA-binding domains fused to a catalytic domain derived from the resolvase/invertase family of serine recombinases. While TAL effector and zinc-finger proteins can be assembled to recognize a wide range of possible DNA sequences, recombinase catalytic specificity has been constrained by inherent base requirements present within each enzyme. In order to further expand the targeted recombinase repertoire, we used a genetic screen to isolate enhanced mutants of the Bin and Tn21 recombinases that recognize target sites outside the scope of other engineered recombinases. We determined the specific base requirements for recombination by these enzymes and demonstrate their potential for genome engineering by selecting for variants capable of specifically recombining target sites present in the human CCR5 gene and the AAVS1 safe harbor locus. Taken together, these findings demonstrate that complementing functional characterization with protein engineering is a potentially powerful approach for generating recombinases with expanded targeting capabilities.
Collapse
|
27
|
Nomura W. [Application and potential of genome engineering by artificial enzymes]. YAKUGAKU ZASSHI 2015; 135:405-14. [PMID: 25759050 DOI: 10.1248/yakushi.14-00240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Artificial zinc finger proteins (ZFPs) consist of Cys2-His2-type modules composed of approximately 30 amino acids that adopt a ββα structure and coordinate a zinc ion. ZFPs recognizing specific DNA target sequences can substitute for the binding domains of various DNA-modifying enzymes to create designer nucleases, recombinases, and methylases with programmable sequence specificity. Enzymatic genome editing and modification can be applied to many fields of basic research and medicine. The recent development of new platforms using transcription activator-like effector (TALE) proteins or the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) system has expanded the range of possibilities for genome-editing technologies. These technologies empower investigators with the ability to efficiently knockout or regulate the functions of genes of interest. In this review, we discuss historical advancements in artificial ZFP applications and important issues that may influence the future of genome editing and engineering technologies. The development of artificial ZFPs has greatly increased the feasibility of manipulating endogenous gene functions through transcriptional control and gene modification. Advances in the ZFP, TALE, and CRISPR/Cas platforms have paved the way for the next generation of genome engineering approaches. Perspectives for the future of genome engineering are also discussed, including applications of targeting specific genomic alleles and studies in synthetic biology.
Collapse
Affiliation(s)
- Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
28
|
Abstract
ABSTRACT
In site-specific recombination, two short DNA sequences (‘sites’) are each cut at specific points in both strands, and the cut ends are rejoined to new partners. The enzymes that mediate recognition of the sites and the subsequent cutting and rejoining steps are called recombinases. Most recombinases fall into one of two families according to similarities of their protein sequences and mechanisms; these families are known as the tyrosine recombinases and the serine recombinases, the names referring to the conserved amino acid residue that attacks the DNA phosphodiester and becomes covalently linked to a DNA strand end during catalysis. This chapter gives an overview of our current understanding of the serine recombinases, their types, biological roles, structures, catalytic mechanisms, mechanisms of regulation, and applications.
Collapse
|
29
|
Abstract
In recent years, application of serine integrases for genomic engineering has increased in popularity. The factor-independence and unidirectionality of these large serine recombinases makes them well suited for reactions such as site-directed vector integration and cassette exchange in a wide variety of organisms. In order to generate information that might be useful for altering the specificity of serine integrases and to improve their efficiency, we tested a hybridization strategy that has been successful with several small serine recombinases. We created chimeras derived from three characterized members of the serine integrase family, phiC31, phiBT1, and TG1 integrases, by joining their amino- and carboxy-terminal portions. We found that several phiBT1-phiC31 (BC) and phiC31-TG1 (CT) hybrid integrases are active in E. coli. BC chimeras function on native att-sites and on att-sites that are hybrids between those of the two donor enzymes, while CT chimeras only act on the latter att-sites. A BC hybrid, BC{−1}, was also active in human HeLa cells. Our work is the first to demonstrate chimeric serine integrase activity. This analysis sheds light on integrase structure and function, and establishes a potentially tractable means to probe the specificity of the thousands of putative large serine recombinases that have been revealed by bioinformatics studies.
Collapse
Affiliation(s)
- Alfonso P Farruggio
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5120, USA
| | - Michele P Calos
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5120, USA
| |
Collapse
|
30
|
Gaj T, Sirk SJ, Tingle RD, Mercer AC, Wallen MC, Barbas CF. Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign. J Am Chem Soc 2014; 136:5047-56. [PMID: 24611715 PMCID: PMC3985937 DOI: 10.1021/ja4130059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Despite
recent advances in genome engineering made possible by
the emergence of site-specific endonucleases, there remains a need
for tools capable of specifically delivering genetic payloads into
the human genome. Hybrid recombinases based on activated catalytic
domains derived from the resolvase/invertase family of serine recombinases
fused to Cys2-His2 zinc-finger or TAL effector
DNA-binding domains are a class of reagents capable of achieving this.
The utility of these enzymes, however, has been constrained by their
low overall targeting specificity, largely due to the formation of
side-product homodimers capable of inducing off-target modifications.
Here, we combine rational design and directed evolution to re-engineer
the serine recombinase dimerization interface and generate a recombinase
architecture that reduces formation of these undesirable homodimers
by >500-fold. We show that these enhanced recombinases demonstrate
substantially improved targeting specificity in mammalian cells and
achieve rates of site-specific integration similar to those previously
reported for site-specific nucleases. Additionally, we show that enhanced
recombinases exhibit low toxicity and promote the delivery of the
human coagulation factor IX and α-galactosidase genes into endogenous
genomic loci with high specificity. These results provide a general
means for improving hybrid recombinase specificity by protein engineering
and illustrate the potential of these enzymes for basic research and
therapeutic applications.
Collapse
Affiliation(s)
- Thomas Gaj
- The Skaggs Institute for Chemical Biology and the Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
31
|
Sirk SJ, Gaj T, Jonsson A, Mercer AC, Barbas CF. Expanding the zinc-finger recombinase repertoire: directed evolution and mutational analysis of serine recombinase specificity determinants. Nucleic Acids Res 2014; 42:4755-66. [PMID: 24452803 PMCID: PMC3985619 DOI: 10.1093/nar/gkt1389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The serine recombinases are a diverse family of modular enzymes that promote high-fidelity DNA rearrangements between specific target sites. Replacement of their native DNA-binding domains with custom-designed Cys2–His2 zinc-finger proteins results in the creation of engineered zinc-finger recombinases (ZFRs) capable of achieving targeted genetic modifications. The flexibility afforded by zinc-finger domains enables the design of hybrid recombinases that recognize a wide variety of potential target sites; however, this technology remains constrained by the strict recognition specificities imposed by the ZFR catalytic domains. In particular, the ability to fully reprogram serine recombinase catalytic specificity has been impeded by conserved base requirements within each recombinase target site and an incomplete understanding of the factors governing DNA recognition. Here we describe an approach to complement the targeting capacity of ZFRs. Using directed evolution, we isolated mutants of the β and Sin recombinases that specifically recognize target sites previously outside the scope of ZFRs. Additionally, we developed a genetic screen to determine the specific base requirements for site-specific recombination and showed that specificity profiling enables the discovery of unique genomic ZFR substrates. Finally, we conducted an extensive and family-wide mutational analysis of the serine recombinase DNA-binding arm region and uncovered a diverse network of residues that confer target specificity. These results demonstrate that the ZFR repertoire is extensible and highlights the potential of ZFRs as a class of flexible tools for targeted genome engineering.
Collapse
Affiliation(s)
- Shannon J Sirk
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA, Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA and Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 2013; 9:641. [PMID: 23340847 PMCID: PMC3564264 DOI: 10.1038/msb.2012.66] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/16/2012] [Indexed: 12/15/2022] Open
Abstract
This review provides an overview of methodologies and technologies enabling genome-scale engineering, focusing on the design, construction, and testing of modified genomes in a variety of organisms. Future applications for systems and synthetic biology are discussed. Genome-modification technologies enable the rational engineering and perturbation of biological systems. Historically, these methods have been limited to gene insertions or mutations at random or at a few pre-defined locations across the genome. The handful of methods capable of targetedgene editing suffered from low efficiencies, significant labor costs, or both. Recent advances have dramatically expanded our ability to engineer cells in a directed and combinatorial manner. Here, we review current technologies and methodologies for genome-scale engineering, discuss the prospects for extending efficient genome modification to new hosts, and explore the implications of continued advances toward the development of flexibly programmable chasses, novel biochemistries, and safer organismal and ecological engineering.
Collapse
|
34
|
Gaj T, Sirk SJ, Barbas CF. Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng 2013; 111:1-15. [PMID: 23982993 DOI: 10.1002/bit.25096] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/20/2022]
Abstract
Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study.
Collapse
Affiliation(s)
- Thomas Gaj
- The Skaggs Institute for Chemical Biology and the Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, 92037
| | | | | |
Collapse
|
35
|
Gaj T, Mercer AC, Sirk SJ, Smith HL, Barbas CF. A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Res 2013; 41:3937-46. [PMID: 23393187 PMCID: PMC3616721 DOI: 10.1093/nar/gkt071] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zinc-finger recombinases (ZFRs) represent a potentially powerful class of tools for targeted genetic engineering. These chimeric enzymes are composed of an activated catalytic domain derived from the resolvase/invertase family of serine recombinases and a custom-designed zinc-finger DNA-binding domain. The use of ZFRs, however, has been restricted by sequence requirements imposed by the recombinase catalytic domain. Here, we combine substrate specificity analysis and directed evolution to develop a diverse collection of Gin recombinase catalytic domains capable of recognizing an estimated 3.77 × 107 unique DNA sequences. We show that ZFRs assembled from these engineered catalytic domains recombine user-defined DNA targets with high specificity, and that designed ZFRs integrate DNA into targeted endogenous loci in human cells. This study demonstrates the feasibility of generating customized ZFRs and the potential of ZFR technology for a diverse range of applications, including genome engineering, synthetic biology and gene therapy.
Collapse
Affiliation(s)
- Thomas Gaj
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
36
|
Eroshenko N, Church GM. Mutants of Cre recombinase with improved accuracy. Nat Commun 2013; 4:2509. [PMID: 24056590 PMCID: PMC3972015 DOI: 10.1038/ncomms3509] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 08/27/2013] [Indexed: 01/17/2023] Open
Abstract
Despite rapid advances in genome engineering technologies, inserting genes into precise locations in the human genome remains an outstanding problem. It has been suggested that site-specific recombinases can be adapted towards use as transgene delivery vectors. The specificity of recombinases can be altered either with directed evolution or via fusions to modular DNA-binding domains. Unfortunately, both wild-type and altered variants often have detectable activities at off-target sites. Here we use bacterial selections to identify mutations in the dimerization surface of Cre recombinase (R32V, R32M and 303GVSdup) that improve the accuracy of recombination. The mutants are functional in bacteria, in human cells and in vitro (except for 303GVSdup, which we did not purify), and have improved selectivity against both model off-target sites and the entire E. coli genome. We propose that destabilizing binding cooperativity may be a general strategy for improving the accuracy of dimeric DNA-binding proteins.
Collapse
Affiliation(s)
- Nikolai Eroshenko
- Harvard School of Engineering and Applied Sciences, Cambridge, MA 02138, USA
| | | |
Collapse
|
37
|
Mercer AC, Gaj T, Fuller RP, Barbas CF. Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res 2012; 40:11163-72. [PMID: 23019222 PMCID: PMC3510496 DOI: 10.1093/nar/gks875] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Site-specific recombinases are powerful tools for genome engineering. Hyperactivated variants of the resolvase/invertase family of serine recombinases function without accessory factors, and thus can be re-targeted to sequences of interest by replacing native DNA-binding domains (DBDs) with engineered zinc-finger proteins (ZFPs). However, imperfect modularity with particular domains, lack of high-affinity binding to all DNA triplets, and difficulty in construction has hindered the widespread adoption of ZFPs in unspecialized laboratories. The discovery of a novel type of DBD in transcription activator-like effector (TALE) proteins from Xanthomonas provides an alternative to ZFPs. Here we describe chimeric TALE recombinases (TALERs): engineered fusions between a hyperactivated catalytic domain from the DNA invertase Gin and an optimized TALE architecture. We use a library of incrementally truncated TALE variants to identify TALER fusions that modify DNA with efficiency and specificity comparable to zinc-finger recombinases in bacterial cells. We also show that TALERs recombine DNA in mammalian cells. The TALER architecture described herein provides a platform for insertion of customized TALE domains, thus significantly expanding the targeting capacity of engineered recombinases and their potential applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Andrew C Mercer
- The Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
38
|
Owens JB, Urschitz J, Stoytchev I, Dang NC, Stoytcheva Z, Belcaid M, Maragathavally KJ, Coates CJ, Segal DJ, Moisyadi S. Chimeric piggyBac transposases for genomic targeting in human cells. Nucleic Acids Res 2012; 40:6978-91. [PMID: 22492708 PMCID: PMC3413120 DOI: 10.1093/nar/gks309] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/23/2012] [Accepted: 03/25/2012] [Indexed: 11/14/2022] Open
Abstract
Integrating vectors such as viruses and transposons insert transgenes semi-randomly and can potentially disrupt or deregulate genes. For these techniques to be of therapeutic value, a method for controlling the precise location of insertion is required. The piggyBac (PB) transposase is an efficient gene transfer vector active in a variety of cell types and proven to be amenable to modification. Here we present the design and validation of chimeric PB proteins fused to the Gal4 DNA binding domain with the ability to target transgenes to pre-determined sites. Upstream activating sequence (UAS) Gal4 recognition sites harbored on recipient plasmids were preferentially targeted by the chimeric Gal4-PB transposase in human cells. To analyze the ability of these PB fusion proteins to target chromosomal locations, UAS sites were randomly integrated throughout the genome using the Sleeping Beauty transposon. Both N- and C-terminal Gal4-PB fusion proteins but not native PB were capable of targeting transposition nearby these introduced sites. A genome-wide integration analysis revealed the ability of our fusion constructs to bias 24% of integrations near endogenous Gal4 recognition sequences. This work provides a powerful approach to enhance the properties of the PB system for applications such as genetic engineering and gene therapy.
Collapse
Affiliation(s)
- Jesse B. Owens
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Johann Urschitz
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Ilko Stoytchev
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Nong C. Dang
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Zoia Stoytcheva
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Mahdi Belcaid
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Kommineni J. Maragathavally
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Craig J. Coates
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - David J. Segal
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Stefan Moisyadi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
39
|
Nomura W, Masuda A, Ohba K, Urabe A, Ito N, Ryo A, Yamamoto N, Tamamura H. Effects of DNA binding of the zinc finger and linkers for domain fusion on the catalytic activity of sequence-specific chimeric recombinases determined by a facile fluorescent system. Biochemistry 2012; 51:1510-7. [PMID: 22304662 DOI: 10.1021/bi201878x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Artificial zinc finger proteins (ZFPs) consist of Cys(2)-His(2)-type modules composed of ∼30 amino acids with a ββα structure that coordinates a zinc ion. ZFPs that recognize specific DNA target sequences can substitute for the binding domains of enzymes that act on DNA to create designer enzymes with programmable sequence specificity. The most studied of these engineered enzymes are zinc finger nucleases (ZFNs). ZFNs have been widely used to model organisms and are currently in human clinical trials with an aim of therapeutic gene editing. Difficulties with ZFNs arise from unpredictable mutations caused by nonhomologous end joining and off-target DNA cleavage and mutagenesis. A more recent strategy that aims to address the shortcomings of ZFNs involves zinc finger recombinases (ZFRs). A thorough understanding of ZFRs and methods for their modification promises powerful new tools for gene manipulation in model organisms as well as in gene therapy. In an effort to design efficient and specific ZFRs, the effects of the DNA binding affinity of the zinc finger domains and the linker sequence between ZFPs and recombinase catalytic domains have been assessed. A plasmid system containing ZFR target sites was constructed for evaluation of catalytic activities of ZFRs with variable linker lengths and numbers of zinc finger modules. Recombination efficiencies were evaluated by restriction enzyme analysis of isolated plasmids after reaction in Escherichia coli and changes in EGFP fluorescence in mammalian cells. The results provide information relevant to the design of ZFRs that will be useful for sequence-specific genome modification.
Collapse
Affiliation(s)
- Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Gersbach CA, Gaj T, Gordley RM, Mercer AC, Barbas CF. Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase. Nucleic Acids Res 2011; 39:7868-78. [PMID: 21653554 PMCID: PMC3177191 DOI: 10.1093/nar/gkr421] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 11/13/2022] Open
Abstract
The development of new methods for gene addition to mammalian genomes is necessary to overcome the limitations of conventional genetic engineering strategies. Although a variety of DNA-modifying enzymes have been used to directly catalyze the integration of plasmid DNA into mammalian genomes, there is still an unmet need for enzymes that target a single specific chromosomal site. We recently engineered zinc-finger recombinase (ZFR) fusion proteins that integrate plasmid DNA into a synthetic target site in the human genome with exceptional specificity. In this study, we present a two-step method for utilizing these enzymes in any cell type at randomly-distributed target site locations. The piggyBac transposase was used to insert recombinase target sites throughout the genomes of human and mouse cell lines. The ZFR efficiently and specifically integrated a transfected plasmid into these genomic target sites and into multiple transposons within a single cell. Plasmid integration was dependent on recombinase activity and the presence of recombinase target sites. This work demonstrates the potential for broad applicability of the ZFR technology in genome engineering, synthetic biology and gene therapy.
Collapse
Affiliation(s)
- Charles A. Gersbach
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas Gaj
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Russell M. Gordley
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andrew C. Mercer
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Carlos F. Barbas
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
41
|
Prorocic MM, Wenlong D, Olorunniji FJ, Akopian A, Schloetel JG, Hannigan A, McPherson AL, Stark WM. Zinc-finger recombinase activities in vitro. Nucleic Acids Res 2011; 39:9316-28. [PMID: 21849325 PMCID: PMC3241657 DOI: 10.1093/nar/gkr652] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Zinc-finger recombinases (ZFRs) are chimaeric proteins comprising a serine recombinase catalytic domain linked to a zinc-finger DNA binding domain. ZFRs can be tailored to promote site-specific recombination at diverse 'Z-sites', which each comprise a central core sequence flanked by zinc-finger domain-binding motifs. Here, we show that purified ZFRs catalyse efficient high-specificity reciprocal recombination between pairs of Z-sites in vitro. No off-site activity was detected. Under different reaction conditions, ZFRs can catalyse Z-site-specific double-strand DNA cleavage. ZFR recombination activity in Escherichia coli and in vitro is highly dependent on the length of the Z-site core sequence. We show that this length effect is manifested at reaction steps prior to formation of recombinants (binding, synapsis and DNA cleavage). The design of the ZFR protein itself is also a crucial variable affecting activity. A ZFR with a very short (2 amino acids) peptide linkage between the catalytic and zinc-finger domains has high activity in vitro, whereas a ZFR with a very long linker was less recombination-proficient and less sensitive to variations in Z-site length. We discuss the causes of these phenomena, and their implications for practical applications of ZFRs.
Collapse
Affiliation(s)
- Marko M Prorocic
- Institute of Infection, Immunity and Inflammation, University of Glasgow, GBRC, Glasgow G12 8QQ, Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Site-specific recombinases as tools for heterologous gene integration. Appl Microbiol Biotechnol 2011; 92:227-39. [DOI: 10.1007/s00253-011-3519-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/19/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
|
43
|
Manipulating piggyBac transposon chromosomal integration site selection in human cells. Mol Ther 2011; 19:1636-44. [PMID: 21730970 DOI: 10.1038/mt.2011.129] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability to direct gene delivery to a user-defined chromosomal location would greatly improve gene transfer applications. The piggyBac transposon system is a nonviral gene transfer system proven effective in a variety of cells and tissues, including human cells. We fused a highly site-specific synthetic zinc-finger DNA-binding domain (ZFP) to the N-terminus of the piggyBac transposase and evaluated site-directed genomic integration in human cells. Chimeric ZFP-piggyBac transposase exhibited robust gene transfer activity, targeted binding to a cognate endogenous chromosomal ZFP site in the human genome, and site-directed transposon integration into an episomal plasmid target containing a single ZFP site in human cells. We evaluated the ability of ZFP-piggyBac to direct gene integration into an engineered chromosomal ZFP target site in the human genome and consistently observed a higher degree of ZFP-piggyBac site-directed genomic integration when compared to native piggyBac. Chromatin immunoprecipitation (ChIP) experiments revealed binding of native piggyBac to our engineered TTAA-containing chromosomal target which supported integration, but not a TTAA-deficient chromosomal target which lacked integration. Our results offer insight into the requirements for using a chimeric zinc finger-piggyBac transposase to direct integration into a user-defined chromosomal location.
Collapse
|
44
|
Proudfoot C, McPherson AL, Kolb AF, Stark WM. Zinc finger recombinases with adaptable DNA sequence specificity. PLoS One 2011; 6:e19537. [PMID: 21559340 PMCID: PMC3084882 DOI: 10.1371/journal.pone.0019537] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/31/2011] [Indexed: 12/31/2022] Open
Abstract
Site-specific recombinases have become essential tools in genetics and molecular biology for the precise excision or integration of DNA sequences. However, their utility is currently limited to circumstances where the sites recognized by the recombinase enzyme have been introduced into the DNA being manipulated, or natural 'pseudosites' are already present. Many new applications would become feasible if recombinase activity could be targeted to chosen sequences in natural genomic DNA. Here we demonstrate efficient site-specific recombination at several sequences taken from a 1.9 kilobasepair locus of biotechnological interest (in the bovine β-casein gene), mediated by zinc finger recombinases (ZFRs), chimaeric enzymes with linked zinc finger (DNA recognition) and recombinase (catalytic) domains. In the "Z-sites" tested here, 22 bp casein gene sequences are flanked by 9 bp motifs recognized by zinc finger domains. Asymmetric Z-sites were recombined by the concomitant action of two ZFRs with different zinc finger DNA-binding specificities, and could be recombined with a heterologous site in the presence of a third recombinase. Our results show that engineered ZFRs may be designed to promote site-specific recombination at many natural DNA sequences.
Collapse
Affiliation(s)
- Chris Proudfoot
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Arlene L. McPherson
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Andreas F. Kolb
- Nutrition and Epigenetics Group, Life Long Health Division, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - W. Marshall Stark
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Brown WR, Lee NC, Xu Z, Smith MC. Serine recombinases as tools for genome engineering. Methods 2011; 53:372-9. [DOI: 10.1016/j.ymeth.2010.12.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 01/14/2023] Open
|
46
|
Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 2011; 11:11-27. [PMID: 21182466 PMCID: PMC3267165 DOI: 10.2174/156652311794520111] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/10/2010] [Accepted: 12/10/2010] [Indexed: 12/17/2022]
Abstract
The importance of safer approaches for gene therapy has been underscored by a series of severe adverse events (SAEs) observed in patients involved in clinical trials for Severe Combined Immune Deficiency Disease (SCID) and Chromic Granulomatous Disease (CGD). While a new generation of viral vectors is in the process of replacing the classical gamma-retrovirus-based approach, a number of strategies have emerged based on non-viral vectorization and/or targeted insertion aimed at achieving safer gene transfer. Currently, these methods display lower efficacies than viral transduction although many of them can yield more than 1% of engineered cells in vitro. Nuclease-based approaches, wherein an endonuclease is used to trigger site-specific genome editing, can significantly increase the percentage of targeted cells. These methods therefore provide a real alternative to classical gene transfer as well as gene editing. However, the first endonuclease to be in clinic today is not used for gene transfer, but to inactivate a gene (CCR5) required for HIV infection. Here, we review these alternative approaches, with a special emphasis on meganucleases, a family of naturally occurring rare-cutting endonucleases, and speculate on their current and future potential.
Collapse
Affiliation(s)
- George Silva
- Cellectis, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Laurent Poirot
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Roman Galetto
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Julianne Smith
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Centre (CNIO), Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | | | - Frédéric Pâques
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
- Cellectis, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| |
Collapse
|
47
|
Park S, Jo K, Oh HB. Zinc-finger motif noncovalent interactions with double-stranded DNA characterized by negative-ion electrospray ionization mass spectrometry. Analyst 2011; 136:3739-46. [DOI: 10.1039/c1an15376e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Structure-guided reprogramming of serine recombinase DNA sequence specificity. Proc Natl Acad Sci U S A 2010; 108:498-503. [PMID: 21187418 DOI: 10.1073/pnas.1014214108] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Routine manipulation of cellular genomes is contingent upon the development of proteins and enzymes with programmable DNA sequence specificity. Here we describe the structure-guided reprogramming of the DNA sequence specificity of the invertase Gin from bacteriophage Mu and Tn3 resolvase from Escherichia coli. Structure-guided and comparative sequence analyses were used to predict a network of amino acid residues that mediate resolvase and invertase DNA sequence specificity. Using saturation mutagenesis and iterative rounds of positive antibiotic selection, we identified extensively redesigned and highly convergent resolvase and invertase populations in the context of engineered zinc-finger recombinase (ZFR) fusion proteins. Reprogrammed variants selectively catalyzed recombination of nonnative DNA sequences > 10,000-fold more effectively than their parental enzymes. Alanine-scanning mutagenesis revealed the molecular basis of resolvase and invertase DNA sequence specificity. When used as rationally designed ZFR heterodimers, the reprogrammed enzyme variants site-specifically modified unnatural and asymmetric DNA sequences. Early studies on the directed evolution of serine recombinase DNA sequence specificity produced enzymes with relaxed substrate specificity as a result of randomly incorporated mutations. In the current study, we focused our mutagenesis exclusively on DNA determinants, leading to redesigned enzymes that remained highly specific and directed transgene integration into the human genome with > 80% accuracy. These results demonstrate that unique resolvase and invertase derivatives can be developed to site-specifically modify the human genome in the context of zinc-finger recombinase fusion proteins.
Collapse
|
49
|
Modular system for the construction of zinc-finger libraries and proteins. Nat Protoc 2010; 5:791-810. [PMID: 20360772 DOI: 10.1038/nprot.2010.34] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Engineered zinc-finger transcription factors (ZF-TF) are powerful tools to modulate the expression of specific genes. Complex libraries of ZF-TF can be delivered into cells to scan the genome for genes responsible for a particular phenotype or to select the most effective ZF-TF to regulate an individual gene. In both cases, the construction of highly representative and unbiased libraries is critical. In this protocol, we describe a user-friendly ZF technology suitable for the creation of complex libraries and the construction of customized ZF-TFs. The new technology described here simplifies the building of ZF libraries, avoids PCR-introduced bias and ensures equal representation of every module. We also describe the construction of a customized ZF-TF that can be transferred to a number of expression vectors. This protocol can be completed in 9-11 d.
Collapse
|
50
|
Gersbach CA, Gaj T, Gordley RM, Barbas CF. Directed evolution of recombinase specificity by split gene reassembly. Nucleic Acids Res 2010; 38:4198-206. [PMID: 20194120 PMCID: PMC2896519 DOI: 10.1093/nar/gkq125] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The engineering of new enzymes that efficiently and specifically modify DNA sequences is necessary for the development of enhanced gene therapies and genetic studies. To address this need, we developed a robust strategy for evolving site-specific recombinases with novel substrate specificities. In this system, recombinase variants are selected for activity on new substrates based on enzyme-mediated reassembly of the gene encoding β-lactamase that confers ampicillin resistance to Escherichia coli. This stringent evolution method was used to alter the specificities of catalytic domains in the context of a modular zinc finger-recombinase fusion protein. Gene reassembly was detectable over several orders of magnitude, which allowed for tunable selectivity and exceptional sensitivity. Engineered recombinases were evolved to react with sequences from the human genome with only three rounds of selection. Many of the evolved residues, selected from a randomly-mutated library, were conserved among other members of this family of recombinases. This enhanced evolution system will translate recombinase engineering and genome editing into a practical and expedient endeavor for academic, industrial and clinical applications.
Collapse
Affiliation(s)
- Charles A Gersbach
- The Skaggs Institute for Chemical Biology, Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|