1
|
Jin Y, Xue J, Li X, Zhong X. Downregulation of PIP4K2C inhibits the breast cancer cell proliferation, migration and invasion. Transl Oncol 2025; 57:102420. [PMID: 40393249 DOI: 10.1016/j.tranon.2025.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/12/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025] Open
Abstract
Phosphoinositide signaling pathway has garnered significant attention in recent years due to its implication in metabolic alterations associated with various human diseases, including breast cancer. Phosphatidylinositol-5-phosphate 4-kinase (PIP4K) catalyzes the phosphorylation of phosphatidylinositol-5-phosphate (PI5P) to produce phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), a lipid that regulates signaling pathways associated with cancer cell growth and metastasis. In breast cancer, PIP4Ks, especially PIP4Kα and PIP4Kβ, have emerged as a significant player, with their dysregulation linked to tumor progression and poor prognosis. However, the role of PIP4Kγ (encoded by PIP4K2C), the other isoform of PIP4K family, remains largely uncharted in breast cancer. Here, we demonstrated that the expression of PIP4K2C is upregulated in breast cancer tissues opposed to the normal tissue utilizing the GTEx and the TCGA public database. The elevation of PIP4K2C expression is further confirmed in the breast cancer cell lines and tissues. Downregulated expression of PIP4K2C by siRNA lowered the subcellular PI(4,5)P2 and suppressed proliferation, migration and invasion of MDA-MB-468, MCF7 breast cancer cell lines. Our research substantiates PIP4K2C as a promising diagnostic and therapeutic biomarker for breast cancer, warranting further investigation into its mechanistic and clinical implications.
Collapse
Affiliation(s)
- Yue Jin
- Department of Medical Research Center, Northern Jiangsu People's Hospital, Jiangsu, Yangzhou, 225001, PR China.
| | - Jian Xue
- Department of Emergency Medicine, Yizheng People's Hospital, Jiangsu, Yangzhou, 211400, PR China.
| | - Xinyue Li
- Department of Molecular Diagnosis, Northern Jiangsu People's Hospital, Jiangsu, Yangzhou, 225001, , PR China.
| | - Xiaoli Zhong
- Medical College, Yangzhou University, Jiangsu, Yangzhou, 225009, PR China.
| |
Collapse
|
2
|
Llorente A, Arora GK, Murad R, Emerling BM. Phosphoinositide kinases in cancer: from molecular mechanisms to therapeutic opportunities. Nat Rev Cancer 2025; 25:463-487. [PMID: 40181165 DOI: 10.1038/s41568-025-00810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 04/05/2025]
Abstract
Phosphoinositide kinases, extending beyond the well-known phosphoinositide 3-kinase (PI3K), are key players in the dynamic and site-specific phosphorylation of lipid phosphoinositides. Unlike PI3Ks, phosphatidylinositol 4-kinases (PI4Ks) and phosphatidylinositol phosphate kinases (PIPKs) do not usually exhibit mutational alterations, but mostly show altered expression in tumours, orchestrating a broad spectrum of signalling, metabolic and immune processes, all of which are crucial in the pathogenesis of cancer. Dysregulation of PI4Ks and PIPKs has been associated with various malignancies, which has sparked considerable interest towards their therapeutic targeting. In this Review we summarize the current understanding of the lesser-studied phosphoinositide kinase families, PI4K and PIPK, focusing on their functions and relevance in cancer. In addition, we provide an overview of ongoing efforts driving the preclinical and clinical development of phosphoinositide kinase-targeting molecules.
Collapse
Affiliation(s)
- Alicia Llorente
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Gurpreet K Arora
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rabi Murad
- Bioformatics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Brooke M Emerling
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Lee GB, Yang C, Hu F, Hao L. Evaluating sample normalization methods for MS-based multi-omics and the application to a neurodegenerative mouse model. Analyst 2025; 150:1271-1279. [PMID: 39995368 PMCID: PMC11851094 DOI: 10.1039/d4an01573h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Mass spectrometry (MS)-based omics methods have transformed biomedical research with accurate and high-throughput analysis of diverse molecules in biological systems. Recent technological advances also enabled multi-omics to be achieved from the same sample or on a single analytical platform. Sample normalization is a critical step in MS-omics studies but is usually conducted independently for each omics experiment. To bridge this technical gap, we evaluated different sample normalization methods suitable for analyzing proteins, lipids, and metabolites from the same sample for multi-omics analysis. We found that normalizing samples based on tissue weight or protein concentration before or after extraction generated distinct quantitative results. Normalizing samples first by tissue weight before extraction and then by protein concentration after extraction resulted in the lowest sample variation to reveal true biological differences. We then applied this two-step normalization method to investigate multi-omics profiles of mouse brains lacking the GRN gene. Loss-of-function mutations in the GRN gene lead to the deficiency of the progranulin protein and eventually cause neurodegeneration. Comparing the proteomics, lipidomics, and metabolomics profiles of GRN KO and WT mouse brains revealed molecular changes and pathways related to lysosomal dysfunction and neuroinflammation. In summary, we demonstrated the importance of selecting an appropriate normalization method during multi-omics sample preparation. Our normalization method is applicable to all tissue-based multi-omics studies, ensuring reliable and accurate biomolecule quantification for biological comparisons.
Collapse
Affiliation(s)
- Gwang Bin Lee
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742, USA.
| | - Cha Yang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ling Hao
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
4
|
Takeuchi K, Nagase L, Kageyama S, Kanoh H, Oshima M, Ogawa-Iio A, Ikeda Y, Fujii Y, Kondo S, Osaka N, Masuda T, Ishihara T, Nakamura Y, Hirota Y, Sasaki T, Senda T, Sasaki AT. PI5P4K inhibitors: promising opportunities and challenges. FEBS J 2025. [PMID: 39828902 DOI: 10.1111/febs.17393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/30/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
Phosphatidylinositol 5-phosphate 4-kinases (PI5P4K), also known as type II PIPKs or PIPKIIs, convert the lipid second messenger PI5P to PI(4,5)P2. The PI5P4K family consists of three isozymes in mammals-PI5P4Kα, β, and γ-which notably utilize both GTP and ATP as phosphodonors. Unlike the other two isozymes, which can utilize both ATP and GTP, PI5P4Kβ exhibits a marked preference for GTP over ATP, acting as an intracellular GTP sensor that alters its kinase activity in response to physiological changes in GTP concentration. Knockout studies have demonstrated a critical role for PI5P4Kα and β in tumorigenesis, while PI5P4Kγ has been implicated in regulating immune and neural systems. Pharmacological targeting of PI5P4K holds promise for the development of new therapeutic approaches against cancer, immune dysfunction, and neurodegenerative diseases. Although several PI5P4K inhibitors have already been developed, challenges remain in PI5P4K inhibitor development, including a discrepancy between in vitro and cellular efficacy. This discrepancy is attributable to mainly three factors. (a) Most PI5P4K inhibitors were developed at low ATP levels, where these enzymes exhibit minimal activity. (b) Non-catalytic functions of PI5P4K require careful interpretation of PI5P4K depletion studies, as their scaffolding roles suppress class I PI3K signaling. (c) The lack of pharmacodynamic markers for in vivo assessment complicates efficacy assessment. To address these issues and promote the development of effective and targeted therapeutic strategies, this review provides an analytical overview of the distinct roles of individual isozymes and recent developments in PI5P4K inhibitors, emphasizing structural insights and the importance of pharmacodynamic marker identification.
Collapse
Affiliation(s)
- Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
- Cellular and Molecular Biology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Lisa Nagase
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Shun Kageyama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Hirotaka Kanoh
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masashi Oshima
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
| | - Aki Ogawa-Iio
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma-ku, Japan
| | - Yoshiki Ikeda
- Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Japan
| | - Yuki Fujii
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
| | - Sei Kondo
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Natsuki Osaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Takeshi Masuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Tsukasa Ishihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoshikazu Nakamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Yoshihisa Hirota
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma-ku, Japan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Japan
- Department of Lipid Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Japan
| | - Atsuo T Sasaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, OH, USA
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Japan
| |
Collapse
|
5
|
Berginski ME, Jenner MR, Joisa CU, Herrera Loeza G, Golitz BT, Lipner MB, Leary JR, Rashid N, Johnson GL, Yeh JJ, Gomez SM. Kinome state is predictive of cell viability in pancreatic cancer tumor and cancer-associated fibroblast cell lines. PeerJ 2024; 12:e17797. [PMID: 39221276 PMCID: PMC11365483 DOI: 10.7717/peerj.17797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Numerous aspects of cellular signaling are regulated by the kinome-the network of over 500 protein kinases that guides and modulates information transfer throughout the cell. The key role played by both individual kinases and assemblies of kinases organized into functional subnetworks leads to kinome dysregulation driving many diseases, particularly cancer. In the case of pancreatic ductal adenocarcinoma (PDAC), a variety of kinases and associated signaling pathways have been identified for their key role in the establishment of disease as well as its progression. However, the identification of additional relevant therapeutic targets has been slow and is further confounded by interactions between the tumor and the surrounding tumor microenvironment. In this work, we attempt to link the state of the human kinome, or kinotype, with cell viability in treated, patient-derived PDAC tumor and cancer-associated fibroblast cell lines. We applied classification models to independent kinome perturbation and kinase inhibitor cell screen data, and found that the inferred kinotype of a cell has a significant and predictive relationship with cell viability. We further find that models are able to identify a set of kinases whose behavior in response to perturbation drive the majority of viability responses in these cell lines, including the understudied kinases CSNK2A1/3, CAMKK2, and PIP4K2C. We next utilized these models to predict the response of new, clinical kinase inhibitors that were not present in the initial dataset for model devlopment and conducted a validation screen that confirmed the accuracy of the models. These results suggest that characterizing the perturbed state of the human protein kinome provides significant opportunity for better understanding of signaling behavior and downstream cell phenotypes, as well as providing insight into the broader design of potential therapeutic strategies for PDAC.
Collapse
Affiliation(s)
- Matthew E. Berginski
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Madison R. Jenner
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Chinmaya U. Joisa
- Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, United States of America
| | - Gabriela Herrera Loeza
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Brian T. Golitz
- Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Matthew B. Lipner
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Jack R. Leary
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biostatistics, University of Florida, Gainsville, FL, United States of America
| | - Naim Rashid
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Gary L. Johnson
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Jen Jen Yeh
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Shawn M. Gomez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
- Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, United States of America
| |
Collapse
|
6
|
Randén-Brady R, Carpén T, Hautala LC, Tolvanen T, Haglund C, Joenväärä S, Mattila P, Mäkitie A, Lehtonen S, Hagström J, Silén S. LRG1 and SDR16C5 protein expressions differ according to HPV status in oropharyngeal squamous cell carcinoma. Sci Rep 2024; 14:14148. [PMID: 38898137 PMCID: PMC11187215 DOI: 10.1038/s41598-024-64823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
The increasing incidence of oropharyngeal squamous cell carcinoma (OPSCC) is primarily due to human papillomavirus, and understanding the tumor biology caused by the virus is crucial. Our goal was to investigate the proteins present in the serum of patients with OPSCC, which were not previously studied in OPSCC tissue. We examined the difference in expression of these proteins between HPV-positive and -negative tumors and their correlation with clinicopathological parameters and patient survival. The study included 157 formalin-fixed, paraffin-embedded tissue samples and clinicopathological data. Based on the protein levels in the sera of OPSCC patients, we selected 12 proteins and studied their expression in HPV-negative and HPV-positive OPSCC cell lines. LRG1, SDR16C5, PIP4K2C and MVD proteins were selected for immunohistochemical analysis in HPV-positive and -negative OPSCC tissue samples. These protein´s expression levels were compared with clinicopathological parameters and patient survival to investigate their clinical relevance. LRG1 expression was strong in HPV-negative whereas SDR16C5 expression was strong in HPV-positive tumors. Correlation was observed between LRG1, SDR16C5, and PIP4K2C expression and patient survival. High expression of PIP4K2C was found to be an independent prognostic factor for overall survival and expression correlated with HPV-positive tumor status. The data suggest the possible role of LRG1, SDR16C5 and PIP4K2C in OPSCC biology.
Collapse
Affiliation(s)
- Reija Randén-Brady
- Department of Pathology, University of Helsinki, 00014, Helsinki, Finland.
- Department of Pathology, University of Helsinki and Helsinki University Hospital, 00290, Helsinki, Finland.
| | - Timo Carpén
- Department of Pathology, University of Helsinki, 00014, Helsinki, Finland
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki, and Helsinki University Hospital, 00029, Helsinki, Finland
- Faculty of Medicine, Research Program in Systems Oncology, University of Helsinki, 00014, Helsinki, Finland
| | - Laura C Hautala
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, 00014, Helsinki, Finland
| | - Tuomas Tolvanen
- Department of Pathology, University of Helsinki, 00014, Helsinki, Finland
| | - Caj Haglund
- University of Helsinki, and Helsinki University Hospital, 00029, Helsinki, Finland
| | - Sakari Joenväärä
- Transplantation Laboratory, Haartman Institute, University of Helsinki and Helsinki University Hospital, 00029, Helsinki, Finland
- HUS Diagnostic Center, Department of Pathology, HUSLAB, Helsinki University Hospital, 00029, Helsinki, Finland
| | - Petri Mattila
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki, and Helsinki University Hospital, 00029, Helsinki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki, and Helsinki University Hospital, 00029, Helsinki, Finland
- Faculty of Medicine, Research Program in Systems Oncology, University of Helsinki, 00014, Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska Hospital, 171 76, Stockholm, Sweden
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, 00014, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, 00014, Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology, University of Helsinki, 00014, Helsinki, Finland
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Oral Pathology and Oral Radiology, University of Turku, 20520, Turku, Finland
- Transplantation Laboratory, Haartman Institute, University of Helsinki and Helsinki University Hospital, 00029, Helsinki, Finland
- HUS Diagnostic Center, Department of Pathology, HUSLAB, Helsinki University Hospital, 00029, Helsinki, Finland
| | - Suvi Silén
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki, and Helsinki University Hospital, 00029, Helsinki, Finland
- Faculty of Medicine, Research Program in Systems Oncology, University of Helsinki, 00014, Helsinki, Finland
| |
Collapse
|
7
|
Mansat M, Kpotor AO, Chicanne G, Picot M, Mazars A, Flores-Flores R, Payrastre B, Hnia K, Viaud J. MTM1-mediated production of phosphatidylinositol 5-phosphate fuels the formation of podosome-like protrusions regulating myoblast fusion. Proc Natl Acad Sci U S A 2024; 121:e2217971121. [PMID: 38805272 PMCID: PMC11161799 DOI: 10.1073/pnas.2217971121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
Myogenesis is a multistep process that requires a spatiotemporal regulation of cell events resulting finally in myoblast fusion into multinucleated myotubes. Most major insights into the mechanisms underlying fusion seem to be conserved from insects to mammals and include the formation of podosome-like protrusions (PLPs) that exert a driving force toward the founder cell. However, the machinery that governs this process remains poorly understood. In this study, we demonstrate that MTM1 is the main enzyme responsible for the production of phosphatidylinositol 5-phosphate, which in turn fuels PI5P 4-kinase α to produce a minor and functional pool of phosphatidylinositol 4,5-bisphosphate that concentrates in PLPs containing the scaffolding protein Tks5, Dynamin-2, and the fusogenic protein Myomaker. Collectively, our data reveal a functional crosstalk between a PI-phosphatase and a PI-kinase in the regulation of PLP formation.
Collapse
Affiliation(s)
- Mélanie Mansat
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC)31432, Toulouse Cedex 04, France
| | - Afi Oportune Kpotor
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC)31432, Toulouse Cedex 04, France
| | - Gaëtan Chicanne
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC)31432, Toulouse Cedex 04, France
| | - Mélanie Picot
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC)31432, Toulouse Cedex 04, France
| | - Anne Mazars
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC)31432, Toulouse Cedex 04, France
| | - Rémy Flores-Flores
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC)31432, Toulouse Cedex 04, France
| | - Bernard Payrastre
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC)31432, Toulouse Cedex 04, France
- Hematology Laboratory, University Hospital of Toulouse31059, Toulouse Cedex 03, France
| | - Karim Hnia
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC)31432, Toulouse Cedex 04, France
| | - Julien Viaud
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC)31432, Toulouse Cedex 04, France
| |
Collapse
|
8
|
Jin Y, Xue J. Lipid kinases PIP5Ks and PIP4Ks: potential drug targets for breast cancer. Front Oncol 2023; 13:1323897. [PMID: 38156113 PMCID: PMC10753794 DOI: 10.3389/fonc.2023.1323897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Phosphoinositides, a small group of lipids found in all cellular membranes, have recently garnered heightened attention due to their crucial roles in diverse biological processes and different diseases. Among these, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the most abundant bis-phosphorylated phosphoinositide within the signaling system, stands notably connected to breast cancer. Not only does it serve as a key activator of the frequently altered phosphatidylinositol 3-kinase (PI3K) pathway in breast cancer, but also its conversion to phosphatidylinositol-3,4,5-triphosphate (PI(3,4,5)P3) is an important direction for breast cancer research. The generation and degradation of phosphoinositides intricately involve phosphoinositide kinases. PI(4,5)P2 generation emanates from the phosphorylation of PI4P or PI5P by two lipid kinase families: Type I phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) and Type II phosphatidylinositol-5-phosphate 4-kinases (PIP4Ks). In this comprehensive review, we focus on these two lipid kinases and delineate their compositions and respective cellular localization. Moreover, we shed light on the expression patterns and functions of distinct isoforms of these kinases in breast cancer. For a deeper understanding of their functional dynamics, we expound upon various mechanisms governing the regulation of PIP5Ks and PIP4Ks activities. A summary of effective and specific small molecule inhibitors designed for PIP5Ks or PIP4Ks are also provided. These growing evidences support PIP5Ks and PIP4Ks as promising drug targets for breast cancer.
Collapse
Affiliation(s)
- Yue Jin
- Department of Molecular Diagnosis, Northern Jiangsu People’s Hospital, Yangzhou University Clinical Medical College, Yangzhou, China
| | - Jian Xue
- Department of Emergency Medicine, Yizheng People’s Hospital, Yangzhou University Clinical Medical College, Yangzhou, China
| |
Collapse
|
9
|
Llorente A, Loughran RM, Emerling BM. Targeting phosphoinositide signaling in cancer: relevant techniques to study lipids and novel avenues for therapeutic intervention. Front Cell Dev Biol 2023; 11:1297355. [PMID: 37954209 PMCID: PMC10634348 DOI: 10.3389/fcell.2023.1297355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Phosphoinositides serve as essential players in numerous biological activities and are critical for overall cellular function. Due to their complex chemical structures, localization, and low abundance, current challenges in the phosphoinositide field include the accurate measurement and identification of specific variants, particularly those with acyl chains. Researchers are intensively developing innovative techniques and approaches to address these challenges and advance our understanding of the impact of phosphoinositide signaling on cellular biology. This article provides an overview of recent advances in the study of phosphoinositides, including mass spectrometry, lipid biosensors, and real-time activity assays using fluorometric sensors. These methodologies have proven instrumental for a comprehensive exploration of the cellular distribution and dynamics of phosphoinositides and have shed light on the growing significance of these lipids in human health and various pathological processes, including cancer. To illustrate the importance of phosphoinositide signaling in disease, this perspective also highlights the role of a family of lipid kinases named phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks), which have recently emerged as exciting therapeutic targets for cancer treatment. The ongoing exploration of phosphoinositide signaling not only deepens our understanding of cellular biology but also holds promise for novel interventions in cancer therapy.
Collapse
Affiliation(s)
| | | | - Brooke M. Emerling
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, United States
| |
Collapse
|
10
|
Abstract
The accidental discovery of PI5P (phosphatidylinositol-5-phosphate) was published 25 years ago, when PIP5K type II (phosphoinositide-4-phosphate 5-kinase) was shown to actually be a 4-kinase that uses PI5P as a substrate to generate PI(4,5)P2. Consequently, PIP5K type II was renamed to PI5P4K, or PIP4K for short, and PI5P became the last of the 7 signaling phosphoinositides to be discovered. Much of what we know about PI5P comes from genetic studies of PIP4K, as the pathways for PI5P synthesis, the downstream targets of PI5P and how PI5P affects cellular function all remain largely enigmatic. Nevertheless, PI5P and PI5P-dependent PI(4,5)P2 synthesis have been clearly implicated in metabolic homeostasis and in diseases such as cancer. Here, we review the past 25 years of PI5P research, with particular emphasis on the impact this small signaling lipid has on human health.
Collapse
Affiliation(s)
- Lucia E. Rameh
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Raymond D. Blind
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
11
|
Ghosh A, Venugopal A, Shinde D, Sharma S, Krishnan M, Mathre S, Krishnan H, Saha S, Raghu P. PI3P-dependent regulation of cell size and autophagy by phosphatidylinositol 5-phosphate 4-kinase. Life Sci Alliance 2023; 6:e202301920. [PMID: 37316298 PMCID: PMC10267561 DOI: 10.26508/lsa.202301920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023] Open
Abstract
Phosphatidylinositol 3-phosphate (PI3P) and phosphatidylinositol 5-phosphate (PI5P) are low-abundance phosphoinositides crucial for key cellular events such as endosomal trafficking and autophagy. Phosphatidylinositol 5-phosphate 4-kinase (PIP4K) is an enzyme that regulates PI5P in vivo but can act on both PI5P and PI3P in vitro. In this study, we report a role for PIP4K in regulating PI3P levels in Drosophila Loss-of-function mutants of the only Drosophila PIP4K gene show reduced cell size in salivary glands. PI3P levels are elevated in dPIP4K 29 and reverting PI3P levels back towards WT, without changes in PI5P levels, can rescue the reduced cell size. dPIP4K 29 mutants also show up-regulation in autophagy and the reduced cell size can be reverted by depleting Atg8a that is required for autophagy. Lastly, increasing PI3P levels in WT can phenocopy the reduction in cell size and associated autophagy up-regulation seen in dPIP4K 29 Thus, our study reports a role for a PIP4K-regulated PI3P pool in the control of autophagy and cell size.
Collapse
Affiliation(s)
- Avishek Ghosh
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | | | - Dhananjay Shinde
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Sanjeev Sharma
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Meera Krishnan
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Swarna Mathre
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Harini Krishnan
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Sankhanil Saha
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Padinjat Raghu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| |
Collapse
|
12
|
Cao X, Lenk GM, Meisler MH. Altered phenotypes due to genetic interaction between the mouse phosphoinositide biosynthesis genes Fig4 and Pip4k2c. G3 (BETHESDA, MD.) 2023; 13:jkad007. [PMID: 36691351 PMCID: PMC10411592 DOI: 10.1093/g3journal/jkad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/25/2023]
Abstract
Loss-of-function mutations of FIG4 are responsible for neurological disorders in human and mouse that result from reduced abundance of the signaling lipid PI(3,5)P2. In contrast, loss-of-function mutations of the phosphoinositide kinase PIP4K2C result in elevated abundance of PI(3,5)P2. These opposing effects on PI(3,5)P2 suggested that we might be able to compensate for deficiency of FIG4 by reducing expression of PIP4K2C. To test this hypothesis in a whole animal model, we generated triallelic mice with genotype Fig 4-/-, Pip4k2c+/-; these mice are null for Fig 4 and haploinsufficient for Pip4k2c. The neonatal lethality of Fig 4 null mice in the C57BL/6J strain background was rescued by reduced expression of Pip4k2c. The lysosome enlargement characteristic of Fig 4 null cells was also reduced by heterozygous loss of Pip4k2c. The data demonstrate interaction between these two genes, and suggest that inhibition of the kinase PIPK4C2 could be a target for treatment of FIG4 deficiency disorders such as Charcot-Marie-Tooth Type 4J and Yunis-Varón Syndrome.
Collapse
Affiliation(s)
- Xu Cao
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| |
Collapse
|
13
|
Burke JE, Triscott J, Emerling BM, Hammond GRV. Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nat Rev Drug Discov 2023; 22:357-386. [PMID: 36376561 PMCID: PMC9663198 DOI: 10.1038/s41573-022-00582-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Lipid phosphoinositides are master regulators of almost all aspects of a cell's life and death and are generated by the tightly regulated activity of phosphoinositide kinases. Although extensive efforts have focused on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years have revealed opportunities for targeting almost all phosphoinositide kinases in human diseases, including cancer, immunodeficiencies, viral infection and neurodegenerative disease. This has led to widespread efforts in the clinical development of potent and selective inhibitors of phosphoinositide kinases. This Review summarizes our current understanding of the molecular basis for the involvement of phosphoinositide kinases in disease and assesses the preclinical and clinical development of phosphoinositide kinase inhibitors.
Collapse
Affiliation(s)
- John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Joanna Triscott
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Teng M, Jiang J, Wang ES, Geng Q, Toenjes ST, Donovan KA, Mageed N, Yue H, Nowak RP, Wang J, Manz TD, Fischer ES, Cantley LC, Gray NS. Targeting the Dark Lipid Kinase PIP4K2C with a Potent and Selective Binder and Degrader. Angew Chem Int Ed Engl 2023; 62:e202302364. [PMID: 36898968 PMCID: PMC10150580 DOI: 10.1002/anie.202302364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/12/2023]
Abstract
Phosphatidylinositol 5-phosphate 4-kinase, type II, gamma (PIP4K2C) remains a poorly understood lipid kinase with minimal enzymatic activity but potential scaffolding roles in immune modulation and autophagy-dependent catabolism. Achieving potent and selective agents for PIP4K2C while sparing other lipid and non-lipid kinases has been challenging. Here, we report the discovery of the highly potent PIP4K2C binder TMX-4102, which shows exclusive binding selectivity for PIP4K2C. Furthermore, we elaborated the PIP4K2C binder into TMX-4153, a bivalent degrader capable of rapidly and selectively degrading endogenous PIP4K2C. Collectively, our work demonstrates that PIP4K2C is a tractable and degradable target, and that TMX-4102 and TMX-4153 are useful leads to further interrogate the biological roles and therapeutic potential of PIP4K2C.
Collapse
Affiliation(s)
- Mingxing Teng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
| | - Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
| | - Eric S. Wang
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 (USA)
| | - Qixiang Geng
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA 94305 (USA)
| | - Sean T. Toenjes
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA 94305 (USA)
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (USA)
| | - Nada Mageed
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
| | - Hong Yue
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (USA)
| | - Radosław P. Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (USA)
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (USA)
| | - Theresa D. Manz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (USA)
| | - Lewis C. Cantley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (USA)
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA 94305 (USA)
| |
Collapse
|
15
|
Ji W, Wang ES, Manz TD, Jiang J, Donovan KA, Abulaiti X, Fischer ES, Cantley LC, Zhang T, Gray NS. Development of potent and selective degraders of PI5P4Kγ. Eur J Med Chem 2023; 247:115027. [PMID: 36584631 PMCID: PMC10150581 DOI: 10.1016/j.ejmech.2022.115027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks), a family of three members in mammals (α, β and γ), have emerged as potential therapeutic targets due to their role in regulating many important cellular signaling pathways. In comparison to the PI5P4Kα and PI5P4Kβ, which usually have similar expression profiles across cancer cells, PI5P4Kγ exhibits distinct expression patterns, and pathological functions for PI5P4Kγ have been proposed in the context of cancer and neurodegenerative diseases. PI5P4Kγ has very low kinase activity and has been proposed to inhibit the PI4P5Ks through scaffolding function, providing a rationale for developing a selective PI5P4Kγ degrader. Here, we report the development and characterization of JWZ-1-80, a first-in-class PI5P4Kγ degrader. JWZ-1-80 potently degrades PI5P4Kγ via the ubiquitin-proteasome system and exhibits proteome-wide selectivity and is therefore a useful tool compound for further dissecting the biological functions of PI5P4Kγ.
Collapse
Affiliation(s)
- Wenzhi Ji
- Chemical and Systems Biology, Chem-H, Stanford Cancer Institute, Stanford Medicine, Stanford University, Stanford, CA, USA
| | - Eric S Wang
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Theresa D Manz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Xianmixinuer Abulaiti
- Chemical and Systems Biology, Chem-H, Stanford Cancer Institute, Stanford Medicine, Stanford University, Stanford, CA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY, USA
| | - Tinghu Zhang
- Chemical and Systems Biology, Chem-H, Stanford Cancer Institute, Stanford Medicine, Stanford University, Stanford, CA, USA.
| | - Nathanael S Gray
- Chemical and Systems Biology, Chem-H, Stanford Cancer Institute, Stanford Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
Triscott J, Reist M, Küng L, Moselle FC, Lehner M, Gallon J, Ravi A, Arora GK, de Brot S, Lundquist M, Gallart-Ayala H, Ivanisevic J, Piscuoglio S, Cantley LC, Emerling BM, Rubin MA. PI5P4Kα supports prostate cancer metabolism and exposes a survival vulnerability during androgen receptor inhibition. SCIENCE ADVANCES 2023; 9:eade8641. [PMID: 36724278 PMCID: PMC9891700 DOI: 10.1126/sciadv.ade8641] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/03/2023] [Indexed: 05/07/2023]
Abstract
Phosphatidylinositol (PI)regulating enzymes are frequently altered in cancer and have become a focus for drug development. Here, we explore the phosphatidylinositol-5-phosphate 4-kinases (PI5P4K), a family of lipid kinases that regulate pools of intracellular PI, and demonstrate that the PI5P4Kα isoform influences androgen receptor (AR) signaling, which supports prostate cancer (PCa) cell survival. The regulation of PI becomes increasingly important in the setting of metabolic stress adaptation of PCa during androgen deprivation (AD), as we show that AD influences PI abundance and enhances intracellular pools of PI-4,5-P2. We suggest that this PI5P4Kα-AR relationship is mitigated through mTORC1 dysregulation and show that PI5P4Kα colocalizes to the lysosome, the intracellular site of mTORC1 complex activation. Notably, this relationship becomes prominent in mouse prostate tissue following surgical castration. Finally, multiple PCa cell models demonstrate marked survival vulnerability following stable PI5P4Kα inhibition. These results nominate PI5P4Kα as a target to disrupt PCa metabolic adaptation to castrate resistance.
Collapse
Affiliation(s)
- Joanna Triscott
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Matthias Reist
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Lukas Küng
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Francielle C. Moselle
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Marika Lehner
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - John Gallon
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Archna Ravi
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA 92037, USA
| | - Gurpreet K. Arora
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA 92037, USA
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Mark Lundquist
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Salvatore Piscuoglio
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Brooke M. Emerling
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA 92037, USA
| | - Mark A. Rubin
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Bern Center for Precision Medicine, University of Bern and Inselspital, Bern 3008, Switzerland
| |
Collapse
|
17
|
Ashley IA, Kitchen SA, Gorman LM, Grossman AR, Oakley CA, Suggett DJ, Weis VM, Rosset SL, Davy SK. Genomic conservation and putative downstream functionality of the phosphatidylinositol signalling pathway in the cnidarian-dinoflagellate symbiosis. Front Microbiol 2023; 13:1094255. [PMID: 36777026 PMCID: PMC9909359 DOI: 10.3389/fmicb.2022.1094255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
The mutualistic cnidarian-dinoflagellate symbiosis underpins the evolutionary success of stony corals and the persistence of coral reefs. However, a molecular understanding of the signalling events that lead to the successful establishment and maintenance of this symbiosis remains unresolved. For example, the phosphatidylinositol (PI) signalling pathway has been implicated during the establishment of multiple mutualistic and parasitic interactions across the kingdoms of life, yet its role within the cnidarian-dinoflagellate symbiosis remains unexplored. Here, we aimed to confirm the presence and assess the specific enzymatic composition of the PI signalling pathway across cnidaria and dinoflagellates by compiling 21 symbiotic anthozoan (corals and sea anemones) and 28 symbiotic dinoflagellate (Symbiodiniaceae) transcriptomic and genomic datasets and querying genes related to this pathway. Presence or absence of PI-kinase and PI-phosphatase orthologs were also compared between a broad sampling of taxonomically related symbiotic and non-symbiotic species. Across the symbiotic anthozoans analysed, there was a complete and highly conserved PI pathway, analogous to the pathway found in model eukaryotes. The Symbiodiniaceae pathway showed similarities to its sister taxon, the Apicomplexa, with the absence of PI 4-phosphatases. However, conversely to Apicomplexa, there was also an expansion of homologs present in the PI5-phosphatase and PI5-kinase groups, with unique Symbiodiniaceae proteins identified that are unknown from non-symbiotic unicellular organisms. Additionally, we aimed to unravel the putative functionalities of the PI signalling pathway in this symbiosis by analysing phosphoinositide (PIP)-binding proteins. Analysis of phosphoinositide (PIP)-binding proteins showed that, on average, 2.23 and 1.29% of the total assemblies of anthozoan and Symbiodiniaceae, respectively, have the potential to bind to PIPs. Enrichment of Gene Ontology (GO) terms associated with predicted PIP-binding proteins within each taxon revealed a broad range of functions, including compelling links to processes putatively involved in symbiosis regulation. This analysis establishes a baseline for current understanding of the PI pathway across anthozoans and Symbiodiniaceae, and thus a framework to target future research.
Collapse
Affiliation(s)
- Immy A. Ashley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sheila A. Kitchen
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Lucy M. Gorman
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution, Stanford, CA, United States
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - David J. Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Sabrina L. Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand,*Correspondence: Simon K. Davy,
| |
Collapse
|
18
|
Llorente A, Arora GK, Grenier SF, Emerling BM. PIP kinases: A versatile family that demands further therapeutic attention. Adv Biol Regul 2023; 87:100939. [PMID: 36517396 PMCID: PMC9992244 DOI: 10.1016/j.jbior.2022.100939] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Phosphoinositides are membrane-localized phospholipids that regulate a plethora of essential cellular processes. These lipid signaling molecules are critical for cell homeostasis and therefore their levels are strictly regulated by the coordinated action of several families of lipid kinases and phosphatases. In this review, we provide a focused perspective on the phosphatidylinositol phosphate kinase (PIPK) family and the three subfamilies that compose it: Type I PIPKs or phosphatidylinositol-4-phosphate 5-kinases (PI4P5Ks), Type II PIPKs or phosphatidylinositol-5-phosphate 4-kinases (PI5P4Ks), and Type III PIPKs or phosphatidylinositol-3-phosphate 5-kinases (PIKfyve). Each subfamily is responsible for catalyzing a hydroxyl phosphorylation on specific phosphoinositide species to generate a double phosphorylated lipid, therefore regulating the levels of both substrate and product. Here, we summarize our current knowledge about the functions and regulation of each PIPK subfamily. Further, we highlight the roles of these kinases in various in vivo genetic models and give an overview of their involvement in multiple pathological conditions. The phosphoinositide field has been long focused on targeting PI3K signaling, but growing evidence suggests that it is time to draw attention to the other phosphoinositide kinases. The discovery of the involvement of PIPKs in the pathogenesis of multiple diseases has prompted substantial efforts to turn these enzymes into pharmacological targets. An increasingly refined knowledge of the biology of PIPKs in a variety of in vitro and in vivo models will facilitate the development of effective approaches for therapeutic intervention with the potential to translate into meaningful clinical benefits for patients suffering from cancer, immunological and infectious diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Alicia Llorente
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Gurpreet K Arora
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Shea F Grenier
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Brooke M Emerling
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA.
| |
Collapse
|
19
|
Axisa PP, Yoshida TM, Lucca LE, Kasler HG, Lincoln MR, Pham GH, Del Priore D, Carpier JM, Lucas CL, Verdin E, Sumida TS, Hafler DA. A multiple sclerosis-protective coding variant reveals an essential role for HDAC7 in regulatory T cells. Sci Transl Med 2022; 14:eabl3651. [PMID: 36516268 DOI: 10.1126/scitranslmed.abl3651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies identifying hundreds of susceptibility loci for autoimmune diseases indicate that genes active in immune cells predominantly mediate risk. However, identification and functional characterization of causal variants remain challenging. Here, we focused on the immunomodulatory role of a protective variant of histone deacetylase 7 (HDAC7). This variant (rs148755202, HDAC7.p.R166H) was identified in a study of low-frequency coding variation in multiple sclerosis (MS). Through transcriptomic analyses, we demonstrate that wild-type HDAC7 regulates genes essential for the function of Foxp3+ regulatory T cells (Tregs), an immunosuppressive subset of CD4 T cells that is generally dysfunctional in patients with MS. Moreover, Treg-specific conditional hemizygous deletion of HDAC7 increased the severity of experimental autoimmune encephalitis (EAE), a mouse model of neuroinflammation. In contrast, Tregs transduced with the protective HDAC7 R166H variant exhibited higher suppressive capacity in an in vitro functional assay, mirroring phenotypes previously observed in patient samples. In vivo modeling of the human HDAC7 R166H variant by generation of a knock-in mouse model bearing an orthologous R150H substitution demonstrated decreased EAE severity linked to transcriptomic alterations of brain-infiltrating Tregs, as assessed by single-cell RNA sequencing. Our data suggest that dysregulation of epigenetic modifiers, a distinct molecular class associated with disease risk, may influence disease onset. Last, our approach provides a template for the translation of genetic susceptibility loci to detailed functional characterization, using in vitro and in vivo modeling.
Collapse
Affiliation(s)
- Pierre-Paul Axisa
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tomomi M Yoshida
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Liliana E Lucca
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Matthew R Lincoln
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Giang H Pham
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Dante Del Priore
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jean-Marie Carpier
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Carrie L Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Tomokazu S Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA.,Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| |
Collapse
|
20
|
Yang L, Weng S, Qian X, Wang M, Ying W. Strategy for Microscale Extraction and Proteome Profiling of Peripheral Blood Mononuclear Cells. Anal Chem 2022; 94:8827-8832. [PMID: 35699231 DOI: 10.1021/acs.analchem.1c05365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peripheral blood mononuclear cells (PBMCs) play vital roles in physiological and pathological processes and represent a rich source for disease monitoring. Typical molecular profiling on PBMCs involves the sorting of cell subsets and thus requires a large volume of peripheral blood (PB), which impedes the clinical practicability of omics tools in PBMC measurements. It would be clinically invaluable to develop a convenient approach for preparing PBMCs from small volumes of PB and for deep proteome profiling of PBMCs. To this end, here, we designed an apparatus (PBMC-mCap) for microscale enrichment and proteome analysis of PBMCs, which pushed the needed PB volume from the normal 2 mL or higher to 100 μL or lower, comparable to the volume of a drop of finger blood. A PBMC-specific mass spectra library containing 8869 proteins and 121,956 peptides was further built, which, in combination with the optimized data-independent acquisition strategy, helped to identify 6000 and 6500 proteins from PBMCs with 100 μL and 1 mL of PB as initial materials, respectively. Further application of the strategy for PBMC proteomes revealed a steady difference between gender (male vs female) and upon stimulus (COVID-19 vaccination). For the latter, we observed differentially expressed genes and pathways involving the activation of immune cells, including the NF-κB pathway, inflammation response, and antiviral response. Our strategy for the proteome analysis of microscale PBMCs may provide a convenient clinical toolkit for disease diagnosis and healthy state monitoring.
Collapse
Affiliation(s)
- Li Yang
- School of Basic Medical Science, Anhui Medical University, Hefei 230032, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing 102206, China
| | - Shuang Weng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing 102206, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing 102206, China
| | - Mingchao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing 102206, China
| | - Wantao Ying
- School of Basic Medical Science, Anhui Medical University, Hefei 230032, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing 102206, China
| |
Collapse
|
21
|
Wang YH, Sheetz MP. When PIP 2 Meets p53: Nuclear Phosphoinositide Signaling in the DNA Damage Response. Front Cell Dev Biol 2022; 10:903994. [PMID: 35646908 PMCID: PMC9136457 DOI: 10.3389/fcell.2022.903994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanisms that maintain genome stability are critical for preventing tumor progression. In the past decades, many strategies were developed for cancer treatment to disrupt the DNA repair machinery or alter repair pathway selection. Evidence indicates that alterations in nuclear phosphoinositide lipids occur rapidly in response to genotoxic stresses. This implies that nuclear phosphoinositides are an upstream element involved in DNA damage signaling. Phosphoinositides constitute a new signaling interface for DNA repair pathway selection and hence a new opportunity for developing cancer treatment strategies. However, our understanding of the underlying mechanisms by which nuclear phosphoinositides regulate DNA damage repair, and particularly the dynamics of those processes, is rather limited. This is partly because there are a limited number of techniques that can monitor changes in the location and/or abundance of nuclear phosphoinositide lipids in real time and in live cells. This review summarizes our current knowledge regarding the roles of nuclear phosphoinositides in DNA damage response with an emphasis on the dynamics of these processes. Based upon recent findings, there is a novel model for p53's role with nuclear phosphoinositides in DNA damage response that provides new targets for synthetic lethality of tumors.
Collapse
Affiliation(s)
| | - Michael P. Sheetz
- Biochemistry and Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
22
|
Boffey H, Rooney TPC, Willems HMG, Edwards S, Green C, Howard T, Ogg D, Romero T, Scott DE, Winpenny D, Duce J, Skidmore J, Clarke JH, Andrews SP. Development of Selective Phosphatidylinositol 5-Phosphate 4-Kinase γ Inhibitors with a Non-ATP-competitive, Allosteric Binding Mode. J Med Chem 2022; 65:3359-3370. [PMID: 35148092 PMCID: PMC9097471 DOI: 10.1021/acs.jmedchem.1c01819] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 12/31/2022]
Abstract
Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are emerging as attractive therapeutic targets in diseases, such as cancer, immunological disorders, and neurodegeneration, owing to their central role in regulating cell signaling pathways that are either dysfunctional or can be modulated to promote cell survival. Different modes of binding may enhance inhibitor selectivity and reduce off-target effects in cells. Here, we describe efforts to improve the physicochemical properties of the selective PI5P4Kγ inhibitor, NIH-12848 (1). These improvements enabled the demonstration that this chemotype engages PI5P4Kγ in intact cells and that compounds from this series do not inhibit PI5P4Kα or PI5P4Kβ. Furthermore, the first X-ray structure of PI5P4Kγ bound to an inhibitor has been determined with this chemotype, confirming an allosteric binding mode. An exemplar from this chemical series adopted two distinct modes of inhibition, including through binding to a putative lipid interaction site which is 18 Å from the ATP pocket.
Collapse
Affiliation(s)
- Helen
K. Boffey
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - Timothy P. C. Rooney
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - Henriette M. G. Willems
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - Simon Edwards
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - Christopher Green
- UK
Dementia Research Institute, University
of Cambridge, Island
Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - Tina Howard
- Peak
Proteins, Alderley Park, Macclesfield SK10 4TG, Cheshire, U.K.
| | - Derek Ogg
- Peak
Proteins, Alderley Park, Macclesfield SK10 4TG, Cheshire, U.K.
| | - Tamara Romero
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - Duncan E. Scott
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - David Winpenny
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - James Duce
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - John Skidmore
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - Jonathan H. Clarke
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - Stephen P. Andrews
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| |
Collapse
|
23
|
Arora GK, Palamiuc L, Emerling BM. Expanding role of PI5P4Ks in cancer: A promising druggable target. FEBS Lett 2022; 596:3-16. [PMID: 34822164 PMCID: PMC9154051 DOI: 10.1002/1873-3468.14237] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Cancer cells are challenged by a myriad of microenvironmental stresses, and it is their ability to efficiently adapt to the constantly changing nutrient, energy, oxidative, and/or immune landscape that allows them to survive and proliferate. Such adaptations, however, result in distinct vulnerabilities that are attractive therapeutic targets. Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are a family of druggable stress-regulated phosphoinositide kinases that become conditionally essential as a metabolic adaptation, paving the way to targeting cancer cell dependencies. Further, PI5P4Ks have a synthetic lethal interaction with the tumor suppressor p53, the loss of which is one of the most prevalent genetic drivers of malignant transformation. PI5P4K's emergence as a crucial axis in the expanding landscape of phosphoinositide signaling in cancer has already stimulated the development of specific inhibitors. Thus, a better understanding of the biology of the PI5P4Ks will allow for targeted and effective therapeutic interventions. Here, we attempt to summarize the mounting roles of the PI5P4Ks in cancer, including evidence that targeting them is a therapeutic vulnerability and promising next-in-line treatment for multiple cancer subtypes.
Collapse
Affiliation(s)
- Gurpreet K Arora
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Lavinia Palamiuc
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Brooke M Emerling
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, USA
| |
Collapse
|
24
|
Novel insights into the molecular mechanisms underlying risk of colorectal cancer from smoking and red/processed meat carcinogens by modeling exposure in normal colon organoids. Oncotarget 2021; 12:1863-1877. [PMID: 34548904 PMCID: PMC8448508 DOI: 10.18632/oncotarget.28058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/13/2021] [Indexed: 12/23/2022] Open
Abstract
Tobacco smoke and red/processed meats are well-known risk factors for colorectal cancer (CRC). Most research has focused on studies of normal colon biopsies in epidemiologic studies or treatment of CRC cell lines in vitro. These studies are often constrained by challenges with accuracy of self-report data or, in the case of CRC cell lines, small sample sizes and lack of relationship to normal tissue at risk. In an attempt to address some of these limitations, we performed a 24-hour treatment of a representative carcinogens cocktail in 37 independent organoid lines derived from normal colon biopsies. Machine learning algorithms were applied to bulk RNA-sequencing and revealed cellular composition changes in colon organoids. We identified 738 differentially expressed genes in response to carcinogens exposure. Network analysis identified significantly different modules of co-expression, that included genes related to MSI-H tumor biology, and genes previously implicated in CRC through genome-wide association studies. Our study helps to better define the molecular effects of representative carcinogens from smoking and red/processed meat in normal colon epithelial cells and in the etiology of the MSI-H subtype of CRC, and suggests an overlap between molecular mechanisms involved in inherited and environmental CRC risk.
Collapse
|
25
|
PIP4Ks impact on PI3K, FOXP3, and UHRF1 signaling and modulate human regulatory T cell proliferation and immunosuppressive activity. Proc Natl Acad Sci U S A 2021; 118:2010053118. [PMID: 34312224 DOI: 10.1073/pnas.2010053118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) play fundamental roles in maintaining peripheral tolerance to prevent autoimmunity and limit legitimate immune responses, a feature hijacked in tumor microenvironments in which the recruitment of Tregs often extinguishes immune surveillance through suppression of T-effector cell signaling and tumor cell killing. The pharmacological tuning of Treg activity without impacting on T conventional (Tconv) cell activity would likely be beneficial in the treatment of various human pathologies. PIP4K2A, 2B, and 2C constitute a family of lipid kinases that phosphorylate PtdIns5P to PtdIns(4,5)P 2 They are involved in stress signaling, act as synthetic lethal targets in p53-null tumors, and in mice, the loss of PIP4K2C leads to late onset hyperinflammation. Accordingly, a human single nucleotide polymorphism (SNP) near the PIP4K2C gene is linked with susceptibility to autoimmune diseases. How PIP4Ks impact on human T cell signaling is not known. Using ex vivo human primary T cells, we found that PIP4K activity is required for Treg cell signaling and immunosuppressive activity. Genetic and pharmacological inhibition of PIP4K in Tregs reduces signaling through the PI3K, mTORC1/S6, and MAPK pathways, impairs cell proliferation, and increases activation-induced cell death while sparing Tconv. PIP4K and PI3K signaling regulate the expression of the Treg master transcriptional activator FOXP3 and the epigenetic signaling protein Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). Our studies suggest that the pharmacological inhibition of PIP4K can reprogram human Treg identity while leaving Tconv cell signaling and T-helper differentiation to largely intact potentially enhancing overall immunological activity.
Collapse
|
26
|
Goroshchuk O, Kolosenko I, Kunold E, Vidarsdottir L, Pirmoradian M, Azimi A, Jafari R, Palm-Apergi C. Thermal proteome profiling identifies PIP4K2A and ZADH2 as off-targets of Polo-like kinase 1 inhibitor volasertib. FASEB J 2021; 35:e21741. [PMID: 34143546 DOI: 10.1096/fj.202100457rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
Polo-like kinase 1 (PLK1) is an important cell cycle kinase and an attractive target for anticancer treatments. An ATP-competitive small molecular PLK1 inhibitor, volasertib, has reached phase III in clinical trials in patients with refractory acute myeloid leukemia as a combination treatment with cytarabine. However, severe side effects limited its use. The origin of the side effects is unclear and might be due to insufficient specificity of the drug. Thus, identifying potential off-targets to volasertib is important for future clinical trials and for the development of more specific drugs. In this study, we used thermal proteome profiling (TPP) to identify proteome-wide targets of volasertib. Apart from PLK1 and proteins regulated by PLK1, we identified about 200 potential volasertib off-targets. Comparison of this result with the mass-spectrometry analysis of volasertib-treated cells showed that phosphatidylinositol phosphate and prostaglandin metabolism pathways are affected by volasertib. We confirmed that PIP4K2A and ZADH2-marker proteins for these pathways-are, indeed, stabilized by volasertib. PIP4K2A, however, was not affected by another PLK1 inhibitor onvansertib, suggesting that PIP4K2A is a true off-target of volasertib. Inhibition of these proteins is known to impact both the immune response and fatty acid metabolism and could explain some of the side effects seen in volasertib-treated patients.
Collapse
Affiliation(s)
- Oksana Goroshchuk
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Iryna Kolosenko
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Elena Kunold
- Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, Karolinska Institutet, Solna, Sweden
| | - Linda Vidarsdottir
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Mohammad Pirmoradian
- Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, Karolinska Institutet, Solna, Sweden
| | - Alireza Azimi
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Rozbeh Jafari
- Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, Karolinska Institutet, Solna, Sweden
| | - Caroline Palm-Apergi
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
27
|
Pharmacological inhibition of PI5P4Kα/β disrupts cell energy metabolism and selectively kills p53-null tumor cells. Proc Natl Acad Sci U S A 2021; 118:2002486118. [PMID: 34001596 DOI: 10.1073/pnas.2002486118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most human cancer cells harbor loss-of-function mutations in the p53 tumor suppressor gene. Genetic experiments have shown that phosphatidylinositol 5-phosphate 4-kinase α and β (PI5P4Kα and PI5P4Kβ) are essential for the development of late-onset tumors in mice with germline p53 deletion, but the mechanism underlying this acquired dependence remains unclear. PI5P4K has been previously implicated in metabolic regulation. Here, we show that inhibition of PI5P4Kα/β kinase activity by a potent and selective small-molecule probe disrupts cell energy homeostasis, causing AMPK activation and mTORC1 inhibition in a variety of cell types. Feedback through the S6K/insulin receptor substrate (IRS) loop contributes to insulin hypersensitivity and enhanced PI3K signaling in terminally differentiated myotubes. Most significantly, the energy stress induced by PI5P4Kαβ inhibition is selectively toxic toward p53-null tumor cells. The chemical probe, and the structural basis for its exquisite specificity, provide a promising platform for further development, which may lead to a novel class of diabetes and cancer drugs.
Collapse
|
28
|
Ravi A, Palamiuc L, Loughran RM, Triscott J, Arora GK, Kumar A, Tieu V, Pauli C, Reist M, Lew RJ, Houlihan SL, Fellmann C, Metallo C, Rubin MA, Emerling BM. PI5P4Ks drive metabolic homeostasis through peroxisome-mitochondria interplay. Dev Cell 2021; 56:1661-1676.e10. [PMID: 33984270 DOI: 10.1016/j.devcel.2021.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
PI5P4Ks are a class of phosphoinositide kinases that phosphorylate PI-5-P to PI-4,5-P2. Distinct localization of phosphoinositides is fundamental for a multitude of cellular functions. Here, we identify a role for peroxisomal PI-4,5-P2 generated by the PI5P4Ks in maintaining energy balance. We demonstrate that PI-4,5-P2 regulates peroxisomal fatty acid oxidation by mediating trafficking of lipid droplets to peroxisomes, which is essential for sustaining mitochondrial metabolism. Using fluorescent-tagged lipids and metabolite tracing, we show that loss of the PI5P4Ks significantly impairs lipid uptake and β-oxidation in the mitochondria. Further, loss of PI5P4Ks results in dramatic alterations in mitochondrial structural and functional integrity, which under nutrient deprivation is further exacerbated, causing cell death. Notably, inhibition of the PI5P4Ks in cancer cells and mouse tumor models leads to decreased cell viability and tumor growth, respectively. Together, these studies reveal an unexplored role for PI5P4Ks in preserving metabolic homeostasis, which is necessary for tumorigenesis.
Collapse
Affiliation(s)
- Archna Ravi
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Lavinia Palamiuc
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ryan M Loughran
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Joanna Triscott
- Department of Biomedical Research and Bern Center for Precision Medicine, University of Bern and Inselspital Bern, Bern 3008, Switzerland
| | - Gurpreet K Arora
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Avi Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Vivian Tieu
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Chantal Pauli
- Institute of Pathology and Molecular Pathology, University Hospital Zürich and the University of Zurich (UZH), Zurich 8006, Switzerland
| | - Matthias Reist
- Department of Biomedical Research and Bern Center for Precision Medicine, University of Bern and Inselspital Bern, Bern 3008, Switzerland
| | - Rachel J Lew
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Shauna L Houlihan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christof Fellmann
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christian Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark A Rubin
- Department of Biomedical Research and Bern Center for Precision Medicine, University of Bern and Inselspital Bern, Bern 3008, Switzerland
| | - Brooke M Emerling
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Magadum A, Singh N, Kurian AA, Sharkar MTK, Sultana N, Chepurko E, Kaur K, Żak MM, Hadas Y, Lebeche D, Sahoo S, Hajjar R, Zangi L. Therapeutic Delivery of Pip4k2c-Modified mRNA Attenuates Cardiac Hypertrophy and Fibrosis in the Failing Heart. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004661. [PMID: 34026458 PMCID: PMC8132051 DOI: 10.1002/advs.202004661] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Heart failure (HF) remains a major cause of morbidity and mortality worldwide. One of the risk factors for HF is cardiac hypertrophy (CH), which is frequently accompanied by cardiac fibrosis (CF). CH and CF are controlled by master regulators mTORC1 and TGF-β, respectively. Type-2-phosphatidylinositol-5-phosphate-4-kinase-gamma (Pip4k2c) is a known mTORC1 regulator. It is shown that Pip4k2c is significantly downregulated in the hearts of CH and HF patients as compared to non-injured hearts. The role of Pip4k2c in the heart during development and disease is unknown. It is shown that deleting Pip4k2c does not affect normal embryonic cardiac development; however, three weeks after TAC, adult Pip4k2c-/- mice has higher rates of CH, CF, and sudden death than wild-type mice. In a gain-of-function study using a TAC mouse model, Pip4k2c is transiently upregulated using a modified mRNA (modRNA) gene delivery platform, which significantly improve heart function, reverse CH and CF, and lead to increased survival. Mechanistically, it is shown that Pip4k2c inhibits TGFβ1 via its N-terminal motif, Pip5k1α, phospho-AKT 1/2/3, and phospho-Smad3. In sum, loss-and-gain-of-function studies in a TAC mouse model are used to identify Pip4k2c as a potential therapeutic target for CF, CH, and HF, for which modRNA is a highly translatable gene therapy approach.
Collapse
Affiliation(s)
- Ajit Magadum
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Neha Singh
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Ann Anu Kurian
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Mohammad Tofael Kabir Sharkar
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Nishat Sultana
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Elena Chepurko
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Keerat Kaur
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Magdalena M. Żak
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Yoav Hadas
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Djamel Lebeche
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Susmita Sahoo
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Roger Hajjar
- Phospholamban FoundationAmsterdamThe Netherlands
| | - Lior Zangi
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| |
Collapse
|
30
|
Raghu P. Emerging cell biological functions of phosphatidylinositol 5 phosphate 4 kinase. Curr Opin Cell Biol 2021; 71:15-20. [PMID: 33677148 DOI: 10.1016/j.ceb.2021.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 01/30/2021] [Indexed: 12/22/2022]
Abstract
The generation of phosphoinositides (PIs) with spatial and temporal control is a key mechanism in cellular organization and signaling. The synthesis of PIs is mediated by PI kinases, proteins that are able to phosphorylate unique substrates at specific positions on the inositol headgroup to generate signaling molecules. Phosphatidylinositol 5 phosphate 4 kinase (PIP4K) is one such lipid kinase that is able to specifically phosphorylate phosphatidylinositol 5 phosphate, the most recently discovered PI to generate the well-known and abundant PI, phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2]. PIP4K appears to be encoded only in metazoan genomes, and several genetic studies indicate important physiological functions for these enzymes in metabolism, immune function, and growth control. PIP4K has recently been reported to localize to multiple cellular compartments, including the nucleus, plasma membrane, endosomal systems, and autophagosome. However, the biochemical activity of these enzymes that is relevant to these physiological functions remains elusive. We review recent developments in this area and highlight emerging roles for these enzymes in cellular organization.
Collapse
Affiliation(s)
- Padinjat Raghu
- Cellular Organization and Signaling, National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
31
|
Fu R, Gillen AE, Grabek KR, Riemondy KA, Epperson LE, Bustamante CD, Hesselberth JR, Martin SL. Dynamic RNA Regulation in the Brain Underlies Physiological Plasticity in a Hibernating Mammal. Front Physiol 2021; 11:624677. [PMID: 33536943 PMCID: PMC7848201 DOI: 10.3389/fphys.2020.624677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Hibernation is a physiological and behavioral phenotype that minimizes energy expenditure. Hibernators cycle between profound depression and rapid hyperactivation of multiple physiological processes, challenging our concept of mammalian homeostasis. How the hibernator orchestrates and survives these extremes while maintaining cell to organismal viability is unknown. Here, we enhance the genome integrity and annotation of a model hibernator, the 13-lined ground squirrel. Our new assembly brings this genome to near chromosome-level contiguity and adds thousands of previously unannotated genes. These new genomic resources were used to identify 6,505 hibernation-related, differentially-expressed and processed transcripts using RNA-seq data from three brain regions in animals whose physiological status was precisely defined using body temperature telemetry. A software tool, squirrelBox, was developed to foster further data analyses and visualization. SquirrelBox includes a comprehensive toolset for rapid visualization of gene level and cluster group dynamics, sequence scanning of k-mer and domains, and interactive exploration of gene lists. Using these new tools and data, we deconvolute seasonal from temperature-dependent effects on the brain transcriptome during hibernation for the first time, highlighting the importance of carefully timed samples for studies of differential gene expression in hibernation. The identified genes include a regulatory network of RNA binding proteins that are dynamic in hibernation along with the composition of the RNA pool. In addition to passive effects of temperature, we provide evidence for regulated transcription and RNA turnover during hibernation. Significant alternative splicing, largely temperature dependent, also occurs during hibernation. These findings form a crucial first step and provide a roadmap for future work toward defining novel mechanisms of tissue protection and metabolic depression that may 1 day be applied toward improving human health.
Collapse
Affiliation(s)
- Rui Fu
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States
| | - Austin E Gillen
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katharine R Grabek
- Fauna Bio Incorporated, Emeryville, CA, United States.,Department of Biomedical Data Science, Stanford University, Stanford, CA, United States
| | - Kent A Riemondy
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States
| | - L Elaine Epperson
- Center for Genes, Environment & Health, National Jewish Health, Denver, CO, United States
| | - Carlos D Bustamante
- Department of Biomedical Data Science, Stanford University, Stanford, CA, United States
| | - Jay R Hesselberth
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Sandra L Martin
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Cell & Developmental Biology, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
32
|
Wang DG, Paddock MN, Lundquist MR, Sun JY, Mashadova O, Amadiume S, Bumpus TW, Hodakoski C, Hopkins BD, Fine M, Hill A, Yang TJ, Baskin JM, Dow LE, Cantley LC. PIP4Ks Suppress Insulin Signaling through a Catalytic-Independent Mechanism. Cell Rep 2020; 27:1991-2001.e5. [PMID: 31091439 PMCID: PMC6619495 DOI: 10.1016/j.celrep.2019.04.070] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/06/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022] Open
Abstract
Insulin stimulates the conversion of phosphatidylino-sitol-4,5-bisphosphate (PI(4,5)P2) to phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3), which mediates downstream cellular responses. PI(4,5)P2 is produced by phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) and by phosphatidylinositol-5-phos-phate 4-kinases (PIP4Ks). Here, we show that the loss of PIP4Ks (PIP4K2A, PIP4K2B, and PIP4K2C) in vitro results in a paradoxical increase in PI(4,5)P2 and a concomitant increase in insulin-stimulated production of PI(3,4,5)P3. The reintroduction of either wild-type or kinase-dead mutants of the PIP4Ks restored cellular PI(4,5)P2 levels and insulin stimulation of the PI3K pathway, suggesting a catalytic-independent role of PIP4Ks in regulating PI(4,5)P2 levels. These effects are explained by an increase in PIP5K activity upon the deletion of PIP4Ks, which normally suppresses PIP5K activity through a direct binding interaction mediated by the N-terminal motif VMLϕFPDD of PIP4K. Our work uncovers an allosteric function of PIP4Ks in suppressing PIP5K-mediated PI(4,5)P2 synthesis and insulin-dependent conversion to PI(3,4,5)P3 and suggests that the pharmacological depletion of PIP4K enzymes could represent a strategy for enhancing insulin signaling. PI(4,5)P2 is produced by both phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) and by phosphatidylinositol-5-phosphate 4-kinases (PIP4Ks). Wang et al. report an allosteric function of a conserved N-terminal motif of PIP4Ks in suppressing PIP5K-mediated PI(4,5)P2 synthesis and insulin-dependent conversion to PI(3,4,5) P3. This non-catalytic role has implications for the development of PIP4K targeted therapies.
Collapse
Affiliation(s)
- Diana G Wang
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell Medicine/Rockefeller University/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Marcia N Paddock
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mark R Lundquist
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Janet Y Sun
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Oksana Mashadova
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Solomon Amadiume
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Timothy W Bumpus
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Cindy Hodakoski
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Matthew Fine
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Amanda Hill
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - T Jonathan Yang
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Lukas E Dow
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
33
|
Sharma S, Mathre S, Ramya V, Shinde D, Raghu P. Phosphatidylinositol 5 Phosphate 4-Kinase Regulates Plasma-Membrane PIP 3 Turnover and Insulin Signaling. Cell Rep 2020; 27:1979-1990.e7. [PMID: 31091438 PMCID: PMC6591132 DOI: 10.1016/j.celrep.2019.04.084] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/06/2019] [Accepted: 04/17/2019] [Indexed: 01/25/2023] Open
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP3) generation at the plasma membrane is a key event during activation of receptor tyrosine kinases such as the insulin receptor required for normal growth and metabolism. We report that in Drosophila, phosphatidylinositol 5 phosphate 4-kinase (PIP4K) is required to limit PIP3 levels during insulin receptor activation. Depletion of PIP4K increases the levels of PIP3 produced in response to insulin stimulation. We find that PIP4K function at the plasma membrane enhances class I phosphoinositide 3-kinase (PI3K) activity, although the catalytic ability of PIP4K to produce phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] at the plasma membrane is dispensable for this regulation. Animals lacking PIP4K show enhanced insulin signaling-dependent phenotypes and are resistant to the metabolic consequences of a high-sugar diet, highlighting the importance of PIP4K in normal metabolism and development. Thus, PIP4Ks are key regulators of receptor tyrosine kinase signaling with implications for growth factor-dependent processes including tumor growth, T cell activation, and metabolism.
Collapse
Affiliation(s)
- Sanjeev Sharma
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Swarna Mathre
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Visvanathan Ramya
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Dhananjay Shinde
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Padinjat Raghu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
34
|
Noch EK, Yim I, Milner TA, Cantley LC. Distribution and localization of phosphatidylinositol 5-phosphate, 4-kinase alpha and beta in the brain. J Comp Neurol 2020; 529:434-449. [PMID: 32449185 DOI: 10.1002/cne.24956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2 ) is critical for synaptic vesicle docking and fusion and generation of the second messengers, diacylglycerol and inositol-1,4,5-trisphosphate. PI-4,5-P2 can be generated by two families of kinases: type 1 phosphatidylinositol-4-phosphate 5-kinases, encoded by PIP5K1A, PIP5K1B and PIP5K1C, and type 2 phosphatidylinositol-5-phosphate 4-kinases, encoded by PIP4K2A, PIP4K2B, and PIP4K2C. While the roles of the type 1 enzymes in brain function have been extensively studied, the roles of the type 2 enzymes are poorly understood. Using selective antibodies validated by genetic deletion of pip4k2a or pip4k2b in mouse brain, we characterized the location of the enzymes, PI5P4Kα and PI5P4Kβ, encoded by these genes. In mice, we demonstrate that PI5P4Kα is expressed in adulthood, whereas PI5P4Kβ is expressed early in development. PI5P4Kα localizes to white matter tracts, especially the corpus callosum, and at a low level in neurons, while PI5P4Kβ is expressed in neuronal populations, especially hippocampus and cortex. Dual labeling studies demonstrate that PI5P4Kα co-localizes with the oligodendrocyte marker, Olig2, whereas PI5P4Kβ co-localizes with the neuronal marker, NeuN. Ultrastructural analysis demonstrates that both kinases are contained in axon terminals and dendritic spines adjacent to the synaptic membrane, which support a potential role in synaptic transmission. Immunoperoxidase analysis of macaque and human brain tissue demonstrate a conserved pattern for PI5P4Kα and PI5P4Kβ. These results highlight the diverse cell-autonomous expression of PI5P4Kα and PI5P4Kβ and support further exploration into their role in synaptic function in the brain.
Collapse
Key Words
- PIP4K
- RRID:AB_1,127,270
- RRID:AB_10,622,025
- RRID:AB_10,711,040
- RRID:AB_1904103
- RRID:AB_2,164,572
- RRID:AB_2,223,210
- RRID:AB_2096811
- RRID:AB_2269374
- RRID:AB_2300649
- RRID:AB_353,929
- RRID:AB_561,049
- brain
- neuron
- oligodendrocyte
- phosphatidylinositol-5-phosphate 4-kinase
- phosphoinositide
Collapse
Affiliation(s)
- Evan K Noch
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA.,Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Isaiah Yim
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA.,Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Lewis C Cantley
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
35
|
Sivakumaren SC, Shim H, Zhang T, Ferguson FM, Lundquist MR, Browne CM, Seo HS, Paddock MN, Manz TD, Jiang B, Hao MF, Krishnan P, Wang DG, Yang TJ, Kwiatkowski NP, Ficarro SB, Cunningham JM, Marto JA, Dhe-Paganon S, Cantley LC, Gray NS. Targeting the PI5P4K Lipid Kinase Family in Cancer Using Covalent Inhibitors. Cell Chem Biol 2020; 27:525-537.e6. [PMID: 32130941 PMCID: PMC7286548 DOI: 10.1016/j.chembiol.2020.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/14/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
The PI5P4Ks have been demonstrated to be important for cancer cell proliferation and other diseases. However, the therapeutic potential of targeting these kinases is understudied due to a lack of potent, specific small molecules available. Here, we present the discovery and characterization of a pan-PI5P4K inhibitor, THZ-P1-2, that covalently targets cysteines on a disordered loop in PI5P4Kα/β/γ. THZ-P1-2 demonstrates cellular on-target engagement with limited off-targets across the kinome. AML/ALL cell lines were sensitive to THZ-P1-2, consistent with PI5P4K's reported role in leukemogenesis. THZ-P1-2 causes autophagosome clearance defects and upregulation in TFEB nuclear localization and target genes, disrupting autophagy in a covalent-dependent manner and phenocopying the effects of PI5P4K genetic deletion. Our studies demonstrate that PI5P4Ks are tractable targets, with THZ-P1-2 as a useful tool to further interrogate the therapeutic potential of PI5P4K inhibition and inform drug discovery campaigns for these lipid kinases in cancer metabolism and other autophagy-dependent disorders.
Collapse
Affiliation(s)
- Sindhu Carmen Sivakumaren
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyeseok Shim
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark R Lundquist
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Christopher M Browne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcia N Paddock
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Theresa D Manz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbruecken, Germany
| | - Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ming-Feng Hao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Pranav Krishnan
- Department of Medicine, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Diana G Wang
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - T Jonathan Yang
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Nicholas P Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James M Cunningham
- Department of Medicine, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA.
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Manz TD, Sivakumaren SC, Ferguson FM, Zhang T, Yasgar A, Seo HS, Ficarro SB, Card JD, Shim H, Miduturu CV, Simeonov A, Shen M, Marto JA, Dhe-Paganon S, Hall MD, Cantley LC, Gray NS. Discovery and Structure-Activity Relationship Study of ( Z)-5-Methylenethiazolidin-4-one Derivatives as Potent and Selective Pan-phosphatidylinositol 5-Phosphate 4-Kinase Inhibitors. J Med Chem 2020; 63:4880-4895. [PMID: 32298120 DOI: 10.1021/acs.jmedchem.0c00227] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to their role in many important signaling pathways, phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are attractive targets for the development of experimental therapeutics for cancer, metabolic, and immunological disorders. Recent efforts to develop small molecule inhibitors for these lipid kinases resulted in compounds with low- to sub-micromolar potencies. Here, we report the identification of CVM-05-002 using a high-throughput screen of PI5P4Kα against our in-house kinase inhibitor library. CVM-05-002 is a potent and selective inhibitor of PI5P4Ks, and a 1.7 Å X-ray structure reveals its binding interactions in the ATP-binding pocket. Further investigation of the structure-activity relationship led to the development of compound 13, replacing the rhodanine-like moiety present in CVM-05-002 with an indole, a potent pan-PI5P4K inhibitor with excellent kinome-wide selectivity. Finally, we employed isothermal cellular thermal shift assays (CETSAs) to demonstrate the effective cellular target engagement of PI5P4Kα and -β by the inhibitors in HEK 293T cells.
Collapse
Affiliation(s)
- Theresa D Manz
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States.,Department of Pharmaceutical and Medicinal Chemistry, Saarland University, 66123 Saarbruecken, Germany
| | - Sindhu Carmen Sivakumaren
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 United States
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Scott B Ficarro
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, United States.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Joseph D Card
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, United States.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Hyeseok Shim
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, New York 10065, United States
| | - Chandrasekhar V Miduturu
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 United States
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 United States
| | - Jarrod A Marto
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, United States.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 United States
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, New York 10065, United States
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
37
|
Phosphoinositides in Retinal Function and Disease. Cells 2020; 9:cells9040866. [PMID: 32252387 PMCID: PMC7226789 DOI: 10.3390/cells9040866] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Phosphatidylinositol and its phosphorylated derivatives, the phosphoinositides, play many important roles in all eukaryotic cells. These include modulation of physical properties of membranes, activation or inhibition of membrane-associated proteins, recruitment of peripheral membrane proteins that act as effectors, and control of membrane trafficking. They also serve as precursors for important second messengers, inositol (1,4,5) trisphosphate and diacylglycerol. Animal models and human diseases involving defects in phosphoinositide regulatory pathways have revealed their importance for function in the mammalian retina and retinal pigmented epithelium. New technologies for localizing, measuring and genetically manipulating them are revealing new information about their importance for the function and health of the vertebrate retina.
Collapse
|
38
|
Manz T, Sivakumaren SC, Yasgar A, Hall MD, Davis MI, Seo HS, Card JD, Ficarro SB, Shim H, Marto JA, Dhe-Paganon S, Sasaki AT, Boxer MB, Simeonov A, Cantley LC, Shen M, Zhang T, Ferguson FM, Gray NS. Structure-Activity Relationship Study of Covalent Pan-phosphatidylinositol 5-Phosphate 4-Kinase Inhibitors. ACS Med Chem Lett 2020; 11:346-352. [PMID: 32184968 PMCID: PMC7074221 DOI: 10.1021/acsmedchemlett.9b00402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022] Open
Abstract
Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are important molecular players in a variety of diseases, such as cancer. Currently available PI5P4K inhibitors are reversible small molecules, which may lack selectivity and sufficient cellular on-target activity. In this study, we present a new class of covalent pan-PI5P4K inhibitors with potent biochemical and cellular activity. Our designs are based on THZ-P1-2, a covalent PI5P4K inhibitor previously developed in our lab. Here, we report further structure-guided optimization and structure-activity relationship (SAR) study of this scaffold, resulting in compound 30, which retained biochemical and cellular potency, while demonstrating a significantly improved selectivity profile. Furthermore, we confirm that the inhibitors show efficient binding affinity in the context of HEK 293T cells using isothermal CETSA methods. Taken together, compound 30 represents a highly selective pan-PI5P4K covalent lead molecule.
Collapse
Affiliation(s)
- Theresa
D. Manz
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department
of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbruecken, Germany
| | - Sindhu C. Sivakumaren
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Adam Yasgar
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Matthew D. Hall
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Mindy I. Davis
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Hyuk-Soo Seo
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Joseph D. Card
- Department
of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Oncologic Pathology, Dana-Farber Cancer
Institute, 360 Longwood
Avenue, Boston, Massachusetts 02215, United States
- Department
of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Scott B. Ficarro
- Department
of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Oncologic Pathology, Dana-Farber Cancer
Institute, 360 Longwood
Avenue, Boston, Massachusetts 02215, United States
- Department
of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Hyeseok Shim
- Meyer
Cancer Center, Weill Cornell Medicine and
New York Presbyterian Hospital, New York, New York 10065, United States
| | - Jarrod A. Marto
- Department
of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Oncologic Pathology, Dana-Farber Cancer
Institute, 360 Longwood
Avenue, Boston, Massachusetts 02215, United States
- Department
of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Sirano Dhe-Paganon
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Atsuo T. Sasaki
- Division
of Hematology and Oncology, University of
Cincinnati, 3125 Eden
Avenue, Cincinnati, Ohio 45267-0508, United States
| | - Matthew B. Boxer
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Lewis C. Cantley
- Meyer
Cancer Center, Weill Cornell Medicine and
New York Presbyterian Hospital, New York, New York 10065, United States
| | - Min Shen
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Tinghu Zhang
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Fleur M. Ferguson
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Nathanael S. Gray
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
39
|
Phosphatidylinositol 5 Phosphate (PI5P): From Behind the Scenes to the Front (Nuclear) Stage. Int J Mol Sci 2019; 20:ijms20092080. [PMID: 31035587 PMCID: PMC6539119 DOI: 10.3390/ijms20092080] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol (PI)-related signaling plays a pivotal role in many cellular aspects, including survival, cell proliferation, differentiation, DNA damage, and trafficking. PI is the core of a network of proteins represented by kinases, phosphatases, and lipases which are able to add, remove or hydrolyze PI, leading to different phosphoinositide products. Among the seven known phosphoinositides, phosphatidylinositol 5 phosphate (PI5P) was the last to be discovered. PI5P presence in cells is very low compared to other PIs. However, much evidence collected throughout the years has described the role of this mono-phosphoinositide in cell cycles, stress response, T-cell activation, and chromatin remodeling. Interestingly, PI5P has been found in different cellular compartments, including the nucleus. Here, we will review the nuclear role of PI5P, describing how it is synthesized and regulated, and how changes in the levels of this rare phosphoinositide can lead to different nuclear outputs.
Collapse
|
40
|
Gawden-Bone CM, Griffiths GM. Phospholipids: Pulling Back the Actin Curtain for Granule Delivery to the Immune Synapse. Front Immunol 2019; 10:700. [PMID: 31031745 PMCID: PMC6470250 DOI: 10.3389/fimmu.2019.00700] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 12/29/2022] Open
Abstract
Phosphoinositides, together with the phospholipids phosphatidylserine and phosphatidic acid, are important components of the plasma membrane acting as second messengers that, with diacylglycerol, regulate a diverse range of signaling events converting extracellular changes into cellular responses. Local changes in their distribution and membrane charge on the inner leaflet of the plasma membrane play important roles in immune cell function. Here we discuss their distribution and regulators highlighting the importance of membrane changes across the immune synapse on the cytoskeleton and the impact on the function of cytotoxic T lymphocytes.
Collapse
Affiliation(s)
| | - Gillian M Griffiths
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
41
|
Sharma G, Guardia CM, Roy A, Vassilev A, Saric A, Griner LN, Marugan J, Ferrer M, Bonifacino JS, DePamphilis ML. A family of PIKFYVE inhibitors with therapeutic potential against autophagy-dependent cancer cells disrupt multiple events in lysosome homeostasis. Autophagy 2019; 15:1694-1718. [PMID: 30806145 DOI: 10.1080/15548627.2019.1586257] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
High-throughput screening identified 5 chemical analogs (termed the WX8-family) that disrupted 3 events in lysosome homeostasis: (1) lysosome fission via tubulation without preventing homotypic lysosome fusion; (2) trafficking of molecules into lysosomes without altering lysosomal acidity, and (3) heterotypic fusion between lysosomes and autophagosomes. Remarkably, these compounds did not prevent homotypic fusion between lysosomes, despite the fact that homotypic fusion required some of the same machinery essential for heterotypic fusion. These effects varied 400-fold among WX8-family members, were time and concentration dependent, reversible, and resulted primarily from their ability to bind specifically to the PIKFYVE phosphoinositide kinase. The ability of the WX8-family to prevent lysosomes from participating in macroautophagy/autophagy suggested they have therapeutic potential in treating autophagy-dependent diseases. In fact, the most potent family member (WX8) was 100-times more lethal to 'autophagy-addicted' melanoma A375 cells than the lysosomal inhibitors hydroxychloroquine and chloroquine. In contrast, cells that were insensitive to hydroxychloroquine and chloroquine were also insensitive to WX8. Therefore, the WX8-family of PIKFYVE inhibitors provides a basis for developing drugs that could selectively kill autophagy-dependent cancer cells, as well as increasing the effectiveness of established anti-cancer therapies through combinatorial treatments. Abbreviations: ACTB: actin beta; Baf: bafilomycin A1; BECN1: beclin 1; BODIPY: boron-dipyrromethene; BORC: BLOC-1 related complex; BRAF: B-Raf proto-oncogene, serine/threonine kinase; BSA: bovine serum albumin; CTSD: cathepsin D; CQ: chloroquine; DNA: deoxyribonucleic acid; EC50: half maximal effective concentration; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HCQ: hydroxychloroquine; HOPS complex: homotypic fusion and protein sorting complex; Kd: equilibrium binding constant; IC50: half maximal inhibitory concentration; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MAP1LC3A: microtubule associated protein 1 light chain 3 alpha; MES: 2-(N-morpholino)ethanesulphonic acid; MTOR: mechanistic target of rapamycin kinase; μM: micromolar; NDF: 3-methylbenzaldehyde (2,6-dimorpholin-4-ylpyrimidin-4-yl)hydrazine;NEM: N-ethylmaleimide; NSF: N-ethylmaleimide sensitive factor; PBS: phosphate-buffered saline; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; PIP4K2C: phosphatidylinositol-5-phosphate 4-kinase type 2 gamma; PtdIns3P: phosphatidylinositol 3-phosphate; PtdIns(3,5)P2: phosphatidylinositol 3,5-biphosphate; RFP: red fluorescent protein; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; SQSTM1: sequestosome 1; TWEEN 20: polysorbate 20; V-ATPase: vacuolar-type H+-translocating ATPase; VPS39: VPS39 subunit of HOPS complex; VPS41: VPS41 subunit of HOPS complex; WWL: benzaldehyde [2,6-di(4-morpholinyl)-4-pyrimidinyl]hydrazone; WX8: 1H-indole-3-carbaldehyde [4-anilino-6-(4-morpholinyl)-1,3,5-triazin-2-yl]hydrazine; XBA: N-(3-chloro-4-fluorophenyl)-4,6-dimorpholino-1,3,5-triazin-2-amine hydrochloride; XB6: N-(4-ethylphenyl)-4,6-dimorpholino-1,3,5-triazin-2-amine hydrochloride.
Collapse
Affiliation(s)
- Gaurav Sharma
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Carlos M Guardia
- Cell Biology and Neurobiology Branch, National Institute of Child Health & Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Ajit Roy
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Alex Vassilev
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Amra Saric
- Cell Biology and Neurobiology Branch, National Institute of Child Health & Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Lori N Griner
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Juan Marugan
- Division of Pre-Clinical Innovation, NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health , Rockville , MD , USA
| | - Marc Ferrer
- Division of Pre-Clinical Innovation, NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health , Rockville , MD , USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, National Institute of Child Health & Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Melvin L DePamphilis
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
42
|
Functional analysis of the biochemical activity of mammalian phosphatidylinositol 5 phosphate 4-kinase enzymes. Biosci Rep 2019; 39:BSR20182210. [PMID: 30718367 PMCID: PMC6379509 DOI: 10.1042/bsr20182210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/20/2019] [Accepted: 01/29/2019] [Indexed: 01/12/2023] Open
Abstract
Phosphatidylinositol 5 phosphate 4-kinase (PIP4K) are enzymes that catalyse the phosphorylation of phosphatidylinositol 5-phosphate (PI5P) to generate PI(4,5)P2. Mammalian genomes contain three genes, PIP4K2Α, 2B and 2C and murine knockouts for these suggested important physiological roles in vivo. The proteins encoded by PIP4K2A, 2B and 2C show widely varying specific activities in vitro; PIP4K2A is highly active and PIP4K2C 2000-times less active, and the relationship between this biochemical activity and in vivo function is unknown. By contrast, the Drosophila genome encodes a single PIP4K (dPIP4K) that shows high specific activity in vitro and loss of this enzyme results in reduced salivary gland cell size in vivo. We find that the kinase activity of dPIP4K is essential for normal salivary gland cell size in vivo. Despite their highly divergent specific activity, we find that all three mammalian PIP4K isoforms are able to enhance salivary gland cell size in the Drosophila PIP4K null mutant implying a lack of correlation between in vitro activity measurements and in vivo function. Further, the kinase activity of PIP4K2C, reported to be almost inactive in vitro, is required for in vivo function. Our findings suggest the existence of unidentified factors that regulate PIP4K enzyme activity in vivo.
Collapse
|
43
|
Lundquist MR, Goncalves MD, Loughran RM, Possik E, Vijayaraghavan T, Yang A, Pauli C, Ravi A, Verma A, Yang Z, Johnson JL, Wong JCY, Ma Y, Hwang KSK, Weinkove D, Divecha N, Asara JM, Elemento O, Rubin MA, Kimmelman AC, Pause A, Cantley LC, Emerling BM. Phosphatidylinositol-5-Phosphate 4-Kinases Regulate Cellular Lipid Metabolism By Facilitating Autophagy. Mol Cell 2019; 70:531-544.e9. [PMID: 29727621 DOI: 10.1016/j.molcel.2018.03.037] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/13/2018] [Accepted: 03/29/2018] [Indexed: 01/21/2023]
Abstract
While the majority of phosphatidylinositol-4, 5-bisphosphate (PI-4, 5-P2) in mammalian cells is generated by the conversion of phosphatidylinositol-4-phosphate (PI-4-P) to PI-4, 5-P2, a small fraction can be made by phosphorylating phosphatidylinositol-5-phosphate (PI-5-P). The physiological relevance of this second pathway is not clear. Here, we show that deletion of the genes encoding the two most active enzymes in this pathway, Pip4k2a and Pip4k2b, in the liver of mice causes a large enrichment in lipid droplets and in autophagic vesicles during fasting. These changes are due to a defect in the clearance of autophagosomes that halts autophagy and reduces the supply of nutrients salvaged through this pathway. Similar defects in autophagy are seen in nutrient-starved Pip4k2a-/-Pip4k2b-/- mouse embryonic fibroblasts and in C. elegans lacking the PI5P4K ortholog. These results suggest that this alternative pathway for PI-4, 5-P2 synthesis evolved, in part, to enhance the ability of multicellular organisms to survive starvation.
Collapse
Affiliation(s)
- Mark R Lundquist
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marcus D Goncalves
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ryan M Loughran
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Metabolism and Signaling Networks Program, La Jolla, CA 92037, USA
| | - Elite Possik
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Tarika Vijayaraghavan
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Annan Yang
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chantal Pauli
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY 10065, USA
| | - Archna Ravi
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Metabolism and Signaling Networks Program, La Jolla, CA 92037, USA
| | - Akanksha Verma
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zhiwei Yang
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jared L Johnson
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jenny C Y Wong
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yilun Ma
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Katie Seo-Kyoung Hwang
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - David Weinkove
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Nullin Divecha
- The Inositide Laboratory, Centre for Biological Sciences, Southampton University, Southampton, SO17 1BJ, UK
| | - John M Asara
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Olivier Elemento
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mark A Rubin
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY 10065, USA
| | - Alec C Kimmelman
- Perlmutter Cancer Center, Department of Radiation Oncology, NYU Medical School, New York, NY 10016, USA
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Brooke M Emerling
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Metabolism and Signaling Networks Program, La Jolla, CA 92037, USA.
| |
Collapse
|
44
|
Zhang M, Saad C, Le L, Halfter K, Bauer B, Mansmann UR, Li J. Computational modeling of methionine cycle-based metabolism and DNA methylation and the implications for anti-cancer drug response prediction. Oncotarget 2018; 9:22546-22558. [PMID: 29875994 PMCID: PMC5989406 DOI: 10.18632/oncotarget.24547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/29/2017] [Indexed: 12/14/2022] Open
Abstract
The relationship between metabolism and methylation is considered to be an important aspect of cancer development and drug efficacy. However, it remains poorly defined how to apply this aspect to improve preclinical disease characterization and clinical treatment outcome. Using available molecular information from Kyoto Encyclopedia of Genes and Genomes (KEGG) and literature, we constructed a large-scale knowledge-based metabolic in silico model. For the purpose of model validation, we applied data from the Cancer Cell Line Encyclopedia (CCLE) to investigate computationally the impact of metabolism on chemotherapy efficacy. In our model, different metabolic components such as MAT2A, ATP6V0E1, NNMT involved in methionine cycle correlate with biologically measured chemotherapy outcome (IC50) that are in agreement with findings of independent studies. These proteins are potentially also involved in cellular methylation processes. In addition, several components such as 3,4-dihydoxymandelate, PAPSS2, UPP1 from metabolic pathways involved in the production of purine and pyrimidine correlate with IC50. This study clearly demonstrates that complex computational approaches can reflect findings of biological experiments. This demonstrates their high potential to grasp complex issues within systems medicine such as response prediction, biomarker identification using available data resources.
Collapse
Affiliation(s)
- Mengying Zhang
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians University of München, Munich, Germany
| | - Christian Saad
- Department of Computational Science, University of Augsburg, Augsburg, Germany
| | - Lien Le
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians University of München, Munich, Germany
| | - Kathrin Halfter
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians University of München, Munich, Germany
| | - Bernhard Bauer
- Department of Computational Science, University of Augsburg, Augsburg, Germany
| | - Ulrich R Mansmann
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians University of München, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jian Li
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians University of München, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
45
|
Al-Ramahi I, Giridharan SSP, Chen YC, Patnaik S, Safren N, Hasegawa J, de Haro M, Wagner Gee AK, Titus SA, Jeong H, Clarke J, Krainc D, Zheng W, Irvine RF, Barmada S, Ferrer M, Southall N, Weisman LS, Botas J, Marugan JJ. Inhibition of PIP4Kγ ameliorates the pathological effects of mutant huntingtin protein. eLife 2017; 6:29123. [PMID: 29256861 PMCID: PMC5743427 DOI: 10.7554/elife.29123] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
The discovery of the causative gene for Huntington’s disease (HD) has promoted numerous efforts to uncover cellular pathways that lower levels of mutant huntingtin protein (mHtt) and potentially forestall the appearance of HD-related neurological defects. Using a cell-based model of pathogenic huntingtin expression, we identified a class of compounds that protect cells through selective inhibition of a lipid kinase, PIP4Kγ. Pharmacological inhibition or knock-down of PIP4Kγ modulates the equilibrium between phosphatidylinositide (PI) species within the cell and increases basal autophagy, reducing the total amount of mHtt protein in human patient fibroblasts and aggregates in neurons. In two Drosophila models of Huntington’s disease, genetic knockdown of PIP4K ameliorated neuronal dysfunction and degeneration as assessed using motor performance and retinal degeneration assays respectively. Together, these results suggest that PIP4Kγ is a druggable target whose inhibition enhances productive autophagy and mHtt proteolysis, revealing a useful pharmacological point of intervention for the treatment of Huntington’s disease, and potentially for other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ismael Al-Ramahi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Baylor College of Medicine, Texas Medical Center, Houston, United States
| | | | - Yu-Chi Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Samarjit Patnaik
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Nathaniel Safren
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Junya Hasegawa
- Department of Cell and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Maria de Haro
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Baylor College of Medicine, Texas Medical Center, Houston, United States
| | - Amanda K Wagner Gee
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Steven A Titus
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Hyunkyung Jeong
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Jonathan Clarke
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Dimitri Krainc
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Wei Zheng
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Robin F Irvine
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Sami Barmada
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Noel Southall
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Lois S Weisman
- Department of Cell and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Juan Botas
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Baylor College of Medicine, Texas Medical Center, Houston, United States
| | - Juan Jose Marugan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| |
Collapse
|