1
|
Wang F, Qi L, Zhang Z, Duan H, Wang Y, Zhang K, Li J. The Mechanism and Latest Research Progress of Blood-Brain Barrier Breakthrough. Biomedicines 2024; 12:2302. [PMID: 39457617 PMCID: PMC11504064 DOI: 10.3390/biomedicines12102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The bloodstream and the central nervous system (CNS) are separated by the blood-brain barrier (BBB), an intricate network of blood vessels. Its main role is to regulate the environment within the brain. The primary obstacle for drugs to enter the CNS is the low permeability of the BBB, presenting a significant hurdle in treating brain disorders. In recent years, significant advancements have been made in researching methods to breach the BBB. However, understanding how to penetrate the BBB is essential for researching drug delivery techniques. Therefore, this article reviews the methods and mechanisms for breaking through the BBB, as well as the current research progress on this mechanism.
Collapse
Affiliation(s)
- Fei Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Liujie Qi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Zhongna Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Huimin Duan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Yanchao Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| |
Collapse
|
2
|
Aulova KS, Urusov AE, Chernyak AD, Toporkova LB, Chicherina GS, Buneva VN, Orlovskaya IA, Nevinsky GA. Cellular and Immunological Analysis of 2D2/Th Hybrid Mice Prone to Experimental Autoimmune Encephalomyelitis in Comparison with 2D2 and Th Lines. Int J Mol Sci 2024; 25:9900. [PMID: 39337388 PMCID: PMC11432411 DOI: 10.3390/ijms25189900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/30/2024] Open
Abstract
Previously, we described the mechanisms of development of autoimmune encephalomyelitis (EAE) in 3-month-old C57BL/6, Th, and 2D2 mice. The faster and more profound spontaneous development of EAE with the achievement of deeper pathology occurs in hybrid 2D2/Th mice. Here, the cellular and immunological analysis of EAE development in 2D2/Th mice was carried out. In Th, 2D2, and 2D2/Th mice, the development of EAE is associated with a change in the differentiation profile of hemopoietic bone marrow stem cells, which, in 2D2/Th, differs significantly from 2D2 and Th mice. Hybrid 2D2/Th mice demonstrate a significant difference in these changes in all strains of mice, leading to the production of antibodies with catalytic activities, known as abzymes, against self-antigens: myelin oligodendrocyte glycoprotein (MOG), DNA, myelin basic protein (MBP), and five histones (H1-H4) hydrolyze these antigens. There is also the proliferation of B and T lymphocytes in different organs (blood, bone marrow, thymus, spleen, lymph nodes). The patterns of changes in the concentration of antibodies and the relative activity of abzymes during the spontaneous development of EAE in the hydrolysis of these immunogens are significantly or radically different for the three lines of mice: Th, 2D2, and 2D2/Th. Several factors may play an essential role in the acceleration of EAE in 2D2/Th mice. The treatment of mice with MOG accelerates the development of EAE pathology. In the initial period of EAE development, the concentration of anti-MOG antibodies in 2D2/Th is significantly higher than in Th (29.1-fold) and 2D2 (11.7-fold). As shown earlier, antibodies with DNase activity penetrate cellular and nuclear membranes and activate cell apoptosis, stimulating autoimmune processes. In the initial period of EAE development, the concentration of anti-DNA antibodies in 2D2/Th hybrids is higher than in Th (4.6-fold) and 2D2 (25.7-fold); only 2D2/Th mice exhibited a very strong 10.6-fold increase in the DNase activity of IgGs during the development of EAE. Free histones in the blood are cytotoxic and stimulate the development of autoimmune diseases. Only in 2D2/Th mice, during different periods of EAE development, was a sharp increase in the anti-antibody activity in the hydrolysis of some histones observed.
Collapse
Affiliation(s)
- Kseniya S Aulova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Division of RAS, Lavrentiev Ave. 8, Novosibirsk 630090, Russia
| | - Andrey E Urusov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Division of RAS, Lavrentiev Ave. 8, Novosibirsk 630090, Russia
| | - Aleksander D Chernyak
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Division of RAS, Lavrentiev Ave. 8, Novosibirsk 630090, Russia
| | - Ludmila B Toporkova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Division of RAS, Lavrentiev Ave. 8, Novosibirsk 630090, Russia
| | - Galina S Chicherina
- Institute of Systematics and Ecology of Animals of the Siberian Division of the RAS, Novosibirsk 630091, Russia
| | - Valentina N Buneva
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Division of RAS, Lavrentiev Ave. 8, Novosibirsk 630090, Russia
| | - Irina A Orlovskaya
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Division of RAS, Lavrentiev Ave. 8, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Schiffmann D, Lampkemeyer V, Lindner M, Fleck AK, Koch K, Eschborn M, Liebmann M, Strecker JK, Minnerup J, Wiendl H, Klotz L. Endurance Exercise Attenuates Established Progressive Experimental Autoimmune Encephalomyelitis and Is Associated with an Amelioration of Innate Immune Responses in NOD Mice. Int J Mol Sci 2023; 24:15798. [PMID: 37958787 PMCID: PMC10648469 DOI: 10.3390/ijms242115798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease causing axonal degeneration and demyelination. Exercise in mice with active monophasic experimental autoimmune encephalomyelitis (EAE) attenuates disease severity associated with diverse impacts on T cell-mediated immunity. However, studies have so far focused on preventive approaches. In this study, we investigated the impact of endurance exercise on established EAE disease in a model of secondary progressive MS. When the exercise program on motorized running wheels was started at disease manifestation, the disease course was significantly ameliorated. This was associated with a significant decrease in B cell, dendritic cell, and neutrophil cell counts in the central nervous system (CNS). Furthermore, we observed an increased expression of major histocompatibility complex class II (MHC-II) as well as alterations in costimulatory molecule expression in CNS B cells and dendritic cells. In contrast, T cell responses were not altered in the CNS or periphery. Thus, exercise training is capable of attenuating the disease course even in established secondary progressive EAE, potentially via modulation of the innate immune compartment. Further studies are warranted to corroborate our findings and assess the potential of this lifestyle intervention as a complementary therapeutic strategy in secondary progressive MS patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany; (D.S.)
| |
Collapse
|
4
|
Nishihara H, Perriot S, Gastfriend BD, Steinfort M, Cibien C, Soldati S, Matsuo K, Guimbal S, Mathias A, Palecek SP, Shusta EV, Pasquier RD, Engelhardt B. Intrinsic blood-brain barrier dysfunction contributes to multiple sclerosis pathogenesis. Brain 2022; 145:4334-4348. [PMID: 35085379 PMCID: PMC10200307 DOI: 10.1093/brain/awac019] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 07/20/2023] Open
Abstract
Blood-brain barrier (BBB) breakdown and immune cell infiltration into the CNS are early hallmarks of multiple sclerosis (MS). The mechanisms leading to BBB dysfunction are incompletely understood and generally thought to be a consequence of neuroinflammation. Here, we have challenged this view and asked if intrinsic alterations in the BBB of MS patients contribute to MS pathogenesis. To this end, we made use of human induced pluripotent stem cells derived from healthy controls and MS patients and differentiated them into brain microvascular endothelial cell (BMEC)-like cells as in vitro model of the BBB. MS-derived BMEC-like cells showed impaired junctional integrity, barrier properties and efflux pump activity when compared to healthy controls. Also, MS-derived BMEC-like cells displayed an inflammatory phenotype with increased adhesion molecule expression and immune cell interactions. Activation of Wnt/β-catenin signalling in MS-derived endothelial progenitor cells enhanced barrier characteristics and reduced the inflammatory phenotype. Our study provides evidence for an intrinsic impairment of BBB function in MS patients that can be modelled in vitro. Human iPSC-derived BMEC-like cells are thus suitable to explore the molecular underpinnings of BBB dysfunction in MS and will assist in the identification of potential novel therapeutic targets for BBB stabilization.
Collapse
Affiliation(s)
- Hideaki Nishihara
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Sylvain Perriot
- Laboratory of Neuroimmunology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Benjamin D Gastfriend
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Marel Steinfort
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Celine Cibien
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Kinya Matsuo
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Sarah Guimbal
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Amandine Mathias
- Laboratory of Neuroimmunology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Renaud Du Pasquier
- Laboratory of Neuroimmunology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Tolmacheva AS, Aulova KS, Urusov AE, Doronin VB, Nevinsky GA. Antibodies-Abzymes with Antioxidant Activities in Two Th and 2D2 Experimental Autoimmune Encephalomyelitis Mice during the Development of EAE Pathology. Molecules 2022; 27:7527. [PMID: 36364362 PMCID: PMC9656754 DOI: 10.3390/molecules27217527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 08/30/2023] Open
Abstract
The exact mechanisms of multiple sclerosis development are still unknown. However, the development of EAE (experimental autoimmune encephalomyelitis) in Th and 2D2 mice is associated with the infringement of the differentiation profiles of bone marrow hematopoietic stem cells which are bound with the production of compounds that are harmful for human autoantibodies-abzymes that hydrolyze myelin oligodendrocyte glycoprotein, myelin basic protein, and DNA. It showed that autoimmune patients' antioxidant IgG antibodies oxidise some compounds due to their peroxidase (H2O2-dependent) and oxidoreductase (H2O2-independent) activities more effectively than those in healthy humans can. It was interesting to identify whether the redox activities of the antibodies change during the development of autoimmune diseases. Here, we analyzed the change in these redox activities of the IgGs from the blood of Th and 2D2 mice, which corresponded to different stages of the EAE development. The peroxidase activity in the oxidation of ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) in the Th (4-fold) and 2D2 (2-fold) mice IgGs, on average, is higher than the oxidoreductase activity is. The peroxidase activity of the Th (1.9-fold) and 2D2 (3.5-fold) mice IgGs remarkably increased during the 40 days of the spontaneous development of EAE. Forty days after the immunization of the MOG peroxidase activity, the IgGs of the Th and 2D2 mice increased 5.6-6.0 times when they were compared with those that presented no increase (3 months of age). The mice IgGs were oxidized with 3,3'-diaminobenzidine (2.4-4.3-fold) and o-phenylenediamine (139-143-fold) less efficiently than they were with ABTS. However, the temper of the change in the IgG activity in the oxidation of these substrates during the spontaneous and MOG-induced development of EAE was close to that which occurred for ABTS. All of the data show that the IgG peroxidase and oxidoreductase activities of EAE mice can play an important role in their protection from toxic compounds and oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
CNS Pericytes Modulate Local T Cell Infiltration in EAE. Int J Mol Sci 2022; 23:ijms232113081. [PMID: 36361868 PMCID: PMC9658756 DOI: 10.3390/ijms232113081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Pericytes at the blood–brain barrier (BBB) are located between the tight endothelial cell layer of the blood vessels and astrocytic endfeet. They contribute to central nervous system (CNS) homeostasis by regulating BBB development and maintenance. Loss of pericytes results in increased numbers of infiltrating immune cells in the CNS in experimental autoimmune encephalomyelitis (EAE), the mouse model for multiple sclerosis (MS). However, little is known about their competence to modulate immune cell activation or function in CNS autoimmunity. To evaluate the capacity of pericytes to directly interact with T cells in an antigen-specific fashion and potentially (re)shape their function, we depleted major histocompatibility complex (MHC) class II from pericytes in a cell type-specific fashion and performed T cell-pericyte cocultures and EAE experiments. We found that pericytes present antigen in vitro to induce T cell activation and proliferation. In an adoptive transfer EAE experiment, pericyte-specific MHC II KO resulted in locally enhanced T cell infiltration in the CNS; even though, overall disease course of mice was not affected. Thus, pericytes may serve as non-professional antigen-presenting cells affecting states of T cell activation, thereby locally shaping lesion formation in CNS inflammation but without modulating disease severity.
Collapse
|
7
|
Jamann H, Cui QL, Desu HL, Pernin F, Tastet O, Halaweh A, Farzam-kia N, Mamane VH, Ouédraogo O, Cleret-Buhot A, Daigneault A, Balthazard R, Klement W, Lemaître F, Arbour N, Antel J, Stratton JA, Larochelle C. Contact-Dependent Granzyme B-Mediated Cytotoxicity of Th17-Polarized Cells Toward Human Oligodendrocytes. Front Immunol 2022; 13:850616. [PMID: 35479072 PMCID: PMC9035748 DOI: 10.3389/fimmu.2022.850616] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is characterized by the loss of myelin and of myelin-producing oligodendrocytes (OLs) in the central nervous system (CNS). Pro-inflammatory CD4+ Th17 cells are considered pathogenic in MS and are harmful to OLs. We investigated the mechanisms driving human CD4+ T cell-mediated OL cell death. Using fluorescent and brightfield in vitro live imaging, we found that compared to Th2-polarized cells, Th17-polarized cells show greater interactions with primary human OLs and human oligodendrocytic cell line MO3.13, displaying longer duration of contact, lower mean speed, and higher rate of vesicle-like structure formation at the sites of contact. Using single-cell RNA sequencing, we assessed the transcriptomic profile of primary human OLs and Th17-polarized cells in direct contact or separated by an insert. We showed that upon close interaction, OLs upregulate the expression of mRNA coding for chemokines and antioxidant/anti-apoptotic molecules, while Th17-polarized cells upregulate the expression of mRNA coding for chemokines and pro-inflammatory cytokines such as IL-17A, IFN-γ, and granzyme B. We found that secretion of CCL3, CXCL10, IFN-γ, TNFα, and granzyme B is induced upon direct contact in cocultures of human Th17-polarized cells with human OLs. In addition, we validated by flow cytometry and immunofluorescence that granzyme B levels are upregulated in Th17-polarized compared to Th2-polarized cells and are even higher in Th17-polarized cells upon direct contact with OLs or MO3.13 cells compared to Th17-polarized cells separated from OLs by an insert. Moreover, granzyme B is detected in OLs and MO3.13 cells following direct contact with Th17-polarized cells, suggesting the release of granzyme B from Th17-polarized cells into OLs/MO3.13 cells. To confirm granzyme B–mediated cytotoxicity toward OLs, we showed that recombinant human granzyme B can induce OLs and MO3.13 cell death. Furthermore, pretreatment of Th17-polarized cells with a reversible granzyme B blocker (Ac-IEPD-CHO) or a natural granzyme B blocker (serpina3N) improved survival of MO3.13 cells upon coculture with Th17 cells. In conclusion, we showed that human Th17-polarized cells form biologically significant contacts with human OLs and exert direct toxicity by releasing granzyme B.
Collapse
Affiliation(s)
- Hélène Jamann
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Haritha L. Desu
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Florian Pernin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Olivier Tastet
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
| | - Alexandre Halaweh
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Immunology and Infectiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Negar Farzam-kia
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Victoria Hannah Mamane
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Oumarou Ouédraogo
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Immunology and Infectiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Aurélie Cleret-Buhot
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
| | - Audrey Daigneault
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
| | - Renaud Balthazard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Wendy Klement
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Florent Lemaître
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nathalie Arbour
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jack Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Catherine Larochelle
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Catherine Larochelle,
| |
Collapse
|
8
|
Cell Differentiation and Proliferation in the Bone Marrow and Other Organs of 2D2 Mice during Spontaneous Development of EAE Leading to the Production of Abzymes. Molecules 2022; 27:molecules27072195. [PMID: 35408594 PMCID: PMC9000721 DOI: 10.3390/molecules27072195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
The exact cellular and molecular mechanisms of multiple sclerosis and other autoimmune diseases have not been established. Autoimmune pathologies are known to be associated with faults in the immune system and changes in the differentiation profiles of bone marrow stem cells. This study analyzed various characteristics of experimental autoimmune encephalomyelitis (EAE) in 2D2 mice. Differentiation profiles of six hematopoietic stem cells of bone marrow were found to significantly differ in 2D2 male and female mice during the spontaneous development of EAE. In addition, we found various properties of B and T cells, CD4+ and CD8+ lymphocytes in blood and several organs (bone marrow, spleen, thymus, and lymph nodes) of 2D2 male and female mice to be considerably different. These changes in hematopoietic stem cells differentiation profiles and level of lymphocyte proliferation in various organs of 2D2 mice were found to induce the production of IgGs against DNA, myelin basic protein, and myelin oligodendrocyte glycoprotein, increasing the number of autoantibodies hydrolyzing these substrates. We compared the changes of these immunological and biochemical parameters in 2D2 mice with those of mice of two other lines (Th and C57BL/6), also prone to spontaneous development of EAE. Some noticeable and even extreme variations were found in the time-related development of parameters between male and female mice of 2D2, Th, and C57BL/6 lines. Despite some differences, mice of all three lines demonstrated the changes in hematopoietic stem cells profiles, lymphocyte content, and production of catalytic autoantibodies. Given that these changes are harmful to mice, we believe them to cause the development of experimental autoimmune encephalomyelitis.
Collapse
|
9
|
Vimalathas G, Kristensen BW. Expression, prognostic significance and therapeutic implications of PD-L1 in gliomas. Neuropathol Appl Neurobiol 2022; 48:e12767. [PMID: 34533233 PMCID: PMC9298327 DOI: 10.1111/nan.12767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
The advent of checkpoint immunotherapy, particularly with programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) inhibitors, has provided ground-breaking results in several advanced cancers. Substantial efforts are being made to extend these promising therapies to other refractory cancers such as gliomas, especially glioblastoma, which represents the most frequent and malignant glioma and carries an exceptionally grim prognosis. Thus, there is a need for new therapeutic strategies with related biomarkers. Gliomas have a profoundly immunosuppressive tumour micro-environment and evade immunological destruction by several mechanisms, one being the expression of inhibitory immune checkpoint molecules such as PD-L1. PD-L1 is recognised as an important therapeutic target and its expression has been shown to hold prognostic value in different cancers. Several clinical trials have been launched and some already completed, but PD-1/PD-L1 inhibitors have yet to show convincing clinical efficacy in gliomas. Part of the explanation may reside in the vast molecular heterogeneity of gliomas and a complex interplay within the tumour micro-environment. In parallel, critical knowledge about PD-L1 expression is beginning to accumulate including knowledge on expression levels, testing methodology, co-expression with other checkpoint molecules and prognostic and predictive value. This article reviews these aspects and points out areas where biomarker research is needed to develop more successful checkpoint-related therapeutic strategies in gliomas.
Collapse
Affiliation(s)
| | - Bjarne Winther Kristensen
- Department of PathologyOdense University HospitalOdenseDenmark
- Department of Pathology, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC)University of CopenhagenCopenhagenDenmark
| |
Collapse
|
10
|
Li YX, Wang HB, Jin JB, Yang CL, Hu JB, Li J. Advances in the research of nano delivery systems in ischemic stroke. Front Bioeng Biotechnol 2022; 10:984424. [PMID: 36338131 PMCID: PMC9634573 DOI: 10.3389/fbioe.2022.984424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Ischemic stroke is the most common type of cerebrovascular disease with high disability rate and mortality. The blood-brain barrier (BBB) protects the homeostasis of the brain's microenvironment and impedes the penetration of 98% of drugs. Therefore, effective treatment requires the better drug transport across membranes and increased drug distribution. Nanoparticles are a good choice for drugs to cross BBB. The main pathways of nano delivery systems through BBB include passive diffusion, adsorption-mediated endocytosis, receptor-mediated transport, carrier-mediated transport, etc. At present, the materials used in brain-targeted delivery can be divided into natural polymer, synthetic polymers, inorganic materials and phospholipid. In this review, we first introduced several ways of nano delivery systems crossing the BBB, and then summarized their applications in ischemic stroke. Based on their potential and challenges in the treatment of ischemic stroke, new ideas and prospects are proposed for designing feasible and effective nano delivery systems.
Collapse
Affiliation(s)
- Yi-Xuan Li
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Hong-Bo Wang
- Department of Pharmacy, Ningbo University Affiliated Yangming Hospital, Yuyao, China
| | - Jian-Bo Jin
- Department of Pharmacy, Ningbo University Affiliated Yangming Hospital, Yuyao, China
| | - Chun-Lin Yang
- Department of Pharmacy, Ningbo University Affiliated Yangming Hospital, Yuyao, China
| | - Jing-Bo Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Jing Li
- Department of Pharmacy, Ningbo University Affiliated Yangming Hospital, Yuyao, China
- *Correspondence: Jing Li,
| |
Collapse
|
11
|
Fleck AK, Hucke S, Teipel F, Eschborn M, Janoschka C, Liebmann M, Wami H, Korn L, Pickert G, Hartwig M, Wirth T, Herold M, Koch K, Falk-Paulsen M, Dobrindt U, Kovac S, Gross CC, Rosenstiel P, Trautmann M, Wiendl H, Schuppan D, Kuhlmann T, Klotz L. Dietary conjugated linoleic acid links reduced intestinal inflammation to amelioration of CNS autoimmunity. Brain 2021; 144:1152-1166. [PMID: 33899089 PMCID: PMC8105041 DOI: 10.1093/brain/awab040] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
A close interaction between gut immune responses and distant organ-specific autoimmunity including the CNS in multiple sclerosis has been established in recent years. This so-called gut–CNS axis can be shaped by dietary factors, either directly or via indirect modulation of the gut microbiome and its metabolites. Here, we report that dietary supplementation with conjugated linoleic acid, a mixture of linoleic acid isomers, ameliorates CNS autoimmunity in a spontaneous mouse model of multiple sclerosis, accompanied by an attenuation of intestinal barrier dysfunction and inflammation as well as an increase in intestinal myeloid-derived suppressor-like cells. Protective effects of dietary supplementation with conjugated linoleic acid were not abrogated upon microbiota eradication, indicating that the microbiome is dispensable for these conjugated linoleic acid-mediated effects. Instead, we observed a range of direct anti-inflammatory effects of conjugated linoleic acid on murine myeloid cells including an enhanced IL10 production and the capacity to suppress T-cell proliferation. Finally, in a human pilot study in patients with multiple sclerosis (n = 15, under first-line disease-modifying treatment), dietary conjugated linoleic acid-supplementation for 6 months significantly enhanced the anti-inflammatory profiles as well as functional signatures of circulating myeloid cells. Together, our results identify conjugated linoleic acid as a potent modulator of the gut–CNS axis by targeting myeloid cells in the intestine, which in turn control encephalitogenic T-cell responses.
Collapse
Affiliation(s)
- Ann-Katrin Fleck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stephanie Hucke
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Flavio Teipel
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Melanie Eschborn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Claudia Janoschka
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Haleluya Wami
- Institute for Hygiene, University Hospital Münster, Münster, Germany
| | - Lisanne Korn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Geethanjali Pickert
- Institute of Translational Immunology, University Medical Center Mainz, Mainz, Germany
| | - Marvin Hartwig
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Timo Wirth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Martin Herold
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Kathrin Koch
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Ulrich Dobrindt
- Institute for Hygiene, University Hospital Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Marcel Trautmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center Mainz, Mainz, Germany.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tanja Kuhlmann
- Department of Neuropathology, University of Münster, Münster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| |
Collapse
|
12
|
Saini L, Sondhi V. CNS autoimmunity in children: An unwanted wrinkle in a smooth narrative. Med J Armed Forces India 2021; 77:138-146. [PMID: 33867628 PMCID: PMC8042506 DOI: 10.1016/j.mjafi.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/13/2021] [Indexed: 11/25/2022] Open
Abstract
The emerging paradigm of childhood autoimmune neurological disorders has exploded in recent times due to reliable diagnostic methods and their ease of availability, well-defined diagnostic criteria, and universal awareness about these disorders. The most important aspect of these disorders is a considerable recovery in response to early targeted immunotherapy. If left untreated and/or ill-treated, these can lead to mortality or lifelong morbidity. Autoantibodies can target any part of the central nervous system (CNS), ranging from superficial structures like myelin to deep intracellular ion channels like voltage-gated potassium channels, resulting in contrasting and at times overlapping symptomatology. Though neuroimaging characteristics and serological tests confirm these disorders' diagnosis, it is essential to suspect them clinically and start management before the reports are available for minimizing morbidity and mortality. In the pediatric age group, several metabolic conditions, like mitochondrial disorders and enzyme deficiencies like HMG-CoA-lyase deficiency, can develop neuroimaging patterns similar to those seen in childhood CNS autoimmune disorders and may also show a favorable response to steroids in acute phases. Hence, the clinician must suspect and work up the index patient appropriately. Here, we briefly discuss the pathophysiology, clinical clues, and potential therapeutic targets related to pediatric CNS autoimmune disorders.
Collapse
Affiliation(s)
- Lokesh Saini
- Assistant Professor (Pediatrics), Pediatric Neurology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vishal Sondhi
- Associate Professor, Department of Pediatrics, Armed Forces Medical College, Pune, India
| |
Collapse
|
13
|
Aulova KS, Urusov AE, Toporkova LB, Sedykh SE, Shevchenko YA, Tereshchenko VP, Sennikov SV, Budde T, Meuth SG, Orlovskaya IA, Nevinsky GA. Catalytic antibodies in the bone marrow and other organs of Th mice during spontaneous development of experimental autoimmune encephalomyelitis associated with cell differentiation. Mol Biol Rep 2021; 48:1055-1068. [PMID: 33595783 PMCID: PMC7925503 DOI: 10.1007/s11033-020-06117-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/20/2020] [Indexed: 10/25/2022]
Abstract
Exact mechanisms of autoimmune disease development are still yet unknown. However, it is known that the development of autoimmune diseases is associated with defects in the immune system, namely, the violation of the bone marrow hematopoietic stem cells (HSCs) differentiation profiles. Different characteristics of autoimmune reaction development in experimental autoimmune encephalomyelitis (EAE) prone Th mice characterizing T-lymphocytes response were analyzed using standard approaches. Profiles of several HSCs differentiation of bone marrow (BFU-E, CFU-E, CFU-GM, CFU-GEMM, T- and B-lymphocytes) of Th male and female mice during spontaneous development of EAE were noticeably different. Patterns of total lymphocytes, B- and T-cells proliferation in several different organs (bone marrow, blood, spleen, thymus, and lymph nodes) were also remarkably different. In addition, there were in time noticeable differences in their changes for some organs of male and female mice. Characters of changes in the profiles of CD4 and CD8 cells proliferation in some organs not always coincide with those for total T lymphocytes. The changes in the differentiation profiles of HSCs and the level of lymphocytes proliferation in the bone marrow and other organs were associated with the increase in the concentration of antibodies against DNA, myelin basic protein, and myelin oligodendrocyte glycoprotein, and catalytic antibodies hydrolyzing these substrates. Despite some differences in changes in the analyzed parameters, in general, the spontaneous development of EAE in male and female mice occurs to some extent in a comparable way.
Collapse
Affiliation(s)
- Kseniya S Aulova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Andrey E Urusov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ludmila B Toporkova
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey E Sedykh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yuliya A Shevchenko
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valery P Tereshchenko
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergei V Sennikov
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Thomas Budde
- Institut Für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, 48149, Munster, Germany
| | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-Universität, Albert-Schweitzer-Campus 1, 48149, Munster, Germany
| | - Irina A Orlovskaya
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
14
|
Burgaletto C, Munafò A, Di Benedetto G, De Francisci C, Caraci F, Di Mauro R, Bucolo C, Bernardini R, Cantarella G. The immune system on the TRAIL of Alzheimer's disease. J Neuroinflammation 2020; 17:298. [PMID: 33050925 PMCID: PMC7556967 DOI: 10.1186/s12974-020-01968-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive degeneration and loss of neurons in specific regions of the central nervous system. Chronic activation of the immune cells resident in the brain, peripheral immune cell trafficking across the blood-brain barrier, and release of inflammatory and neurotoxic factors, appear critical contributors of the neuroinflammatory response that drives the progression of neurodegenerative processes in AD. As the neuro-immune network is impaired in course of AD, this review is aimed to point out the essential supportive role of innate and adaptive immune response either in normal brain as well as in brain recovery from injury. Since a fine-tuning of the immune response appears crucial to ensure proper nervous system functioning, we focused on the role of the TNF superfamily member, TNF-related apoptosis-inducing ligand (TRAIL), which modulates both the innate and adaptive immune response in the pathogenesis of several immunological disorders and, in particular, in AD-related neuroinflammation. We here summarized mounting evidence of potential involvement of TRAIL signaling in AD pathogenesis, with the aim to provide clearer insights about potential novel therapeutic approaches in AD.
Collapse
Affiliation(s)
- Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Antonio Munafò
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Cettina De Francisci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Rosaria Di Mauro
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy.,Clinical Toxicology Unit, University Hospital, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy. .,Clinical Toxicology Unit, University Hospital, University of Catania, Catania, Italy.
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| |
Collapse
|
15
|
Aulova KS, Urusov AE, Toporkova LB, Sedykh SE, Shevchenko YA, Tereshchenko VP, Sennikov SV, Budde T, Meuth SG, Popova NA, Orlovskaya IA, Nevinsky GA. Production of Abzymes in Th, CBA, and C57BL/6 Mice before and after MOG Treatment: Comparing Changes in Cell Differentiation and Proliferation. Biomolecules 2019; 10:E53. [PMID: 31905713 PMCID: PMC7023472 DOI: 10.3390/biom10010053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/12/2019] [Accepted: 12/27/2019] [Indexed: 01/02/2023] Open
Abstract
Till yet there is no data concerning mechanisms of autoimmune diseases development. Experimental autoimmune encephalomyelitis (EAE) prone C57BL/6 (T- and B-lymphocyte response), non-autoimmune CBA, and Th mice with T cell response were immunized with myelin oligodendrocyte glycoprotein (MOG35-55) to compare different characteristics of autoimmune reaction development. Bone marrow differentiation profiles of hematopoietic stem cells (HSCs), lymphocyte proliferation in various organs associated with the production of antibodies against DNA, myelin basic protein (MBP), and MOG, as well as abzymes hydrolyzing these antigens, were analyzed before and after immunization. Profiles of HSC differentiation [BFU-E (erythroid burst-forming unit (early erythroid colonies), CFU-E (erythroid burst-forming unit (late erythroid colonies), CFU-GM (granulocytic-macrophagic colony-forming unit), and CFU-GEMM granulocytic-erythroid-megakaryocytic-macrophagic colony-forming unit] and patterns of lymphocyte proliferation in different organs (brain, spleen, thymus, and lymph nodes) were very different for C57BL/6, CBA, and Th mice. We conclude that only C57BL/6 mice were predisposed to spontaneous and MOG-induced acceleration of EAE development. CBA mice are not prone to the development of autoimmune reactions. After immunization, Th mice demonstrate changes in several parameters similar to C57BL/6 and other to CBA mice; Th mice are more prone to developing autoimmune reactions than CBA mice. Our data may be important for understanding the combined presence in mice lymphocytes with T and B cell responses for spontaneous and induced autoimmune diseases.
Collapse
Affiliation(s)
- Kseniya S. Aulova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.S.A.); (A.E.U.); (S.E.S.)
| | - Andrey E. Urusov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.S.A.); (A.E.U.); (S.E.S.)
| | - Ludmila B. Toporkova
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (L.B.T.); (Y.A.S.); (V.P.T.); (S.V.S.); (I.A.O.)
| | - Sergey E. Sedykh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.S.A.); (A.E.U.); (S.E.S.)
| | - Yuliya A. Shevchenko
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (L.B.T.); (Y.A.S.); (V.P.T.); (S.V.S.); (I.A.O.)
| | - Valery P. Tereshchenko
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (L.B.T.); (Y.A.S.); (V.P.T.); (S.V.S.); (I.A.O.)
| | - Sergei V. Sennikov
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (L.B.T.); (Y.A.S.); (V.P.T.); (S.V.S.); (I.A.O.)
| | - Thomas Budde
- Westfälische Wilhelms-Universität, Institut für Physiologie I, Robert-Koch-Str. 27a, D-48149 Münster, Germany;
| | - Sven G. Meuth
- Department of Neurology, Westfälische Wilhelms-Universität, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany;
| | - Nelly A. Popova
- Institute Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Irina A. Orlovskaya
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (L.B.T.); (Y.A.S.); (V.P.T.); (S.V.S.); (I.A.O.)
| | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.S.A.); (A.E.U.); (S.E.S.)
- Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
16
|
Gross CC, Meyer C, Bhatia U, Yshii L, Kleffner I, Bauer J, Tröscher AR, Schulte-Mecklenbeck A, Herich S, Schneider-Hohendorf T, Plate H, Kuhlmann T, Schwaninger M, Brück W, Pawlitzki M, Laplaud DA, Loussouarn D, Parratt J, Barnett M, Buckland ME, Hardy TA, Reddel SW, Ringelstein M, Dörr J, Wildemann B, Kraemer M, Lassmann H, Höftberger R, Beltrán E, Dornmair K, Schwab N, Klotz L, Meuth SG, Martin-Blondel G, Wiendl H, Liblau R. CD8 + T cell-mediated endotheliopathy is a targetable mechanism of neuro-inflammation in Susac syndrome. Nat Commun 2019; 10:5779. [PMID: 31852955 PMCID: PMC6920411 DOI: 10.1038/s41467-019-13593-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022] Open
Abstract
Neuroinflammation is often associated with blood-brain-barrier dysfunction, which contributes to neurological tissue damage. Here, we reveal the pathophysiology of Susac syndrome (SuS), an enigmatic neuroinflammatory disease with central nervous system (CNS) endotheliopathy. By investigating immune cells from the blood, cerebrospinal fluid, and CNS of SuS patients, we demonstrate oligoclonal expansion of terminally differentiated activated cytotoxic CD8+ T cells (CTLs). Neuropathological data derived from both SuS patients and a newly-developed transgenic mouse model recapitulating the disease indicate that CTLs adhere to CNS microvessels in distinct areas and polarize granzyme B, which most likely results in the observed endothelial cell injury and microhemorrhages. Blocking T-cell adhesion by anti-α4 integrin-intervention ameliorates the disease in the preclinical model. Similarly, disease severity decreases in four SuS patients treated with natalizumab along with other therapy. Our study identifies CD8+ T-cell-mediated endotheliopathy as a key disease mechanism in SuS and highlights therapeutic opportunities.
Collapse
Affiliation(s)
- Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| | - Céline Meyer
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, CHU Purpan - BP 3028 - 31024, Toulouse Cedex 3, Toulouse, France
| | - Urvashi Bhatia
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Lidia Yshii
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, CHU Purpan - BP 3028 - 31024, Toulouse Cedex 3, Toulouse, France
| | - Ilka Kleffner
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Anna R Tröscher
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Sebastian Herich
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Tilman Schneider-Hohendorf
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Henrike Plate
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, University of Münster, Pottkamp 2, 48149, Münster, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37099, Göttingen, Germany
| | - Marc Pawlitzki
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - David-Axel Laplaud
- UMR 1064, INSERM, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, CHU Nantes - Hôtel Dieu Bd Jean Monnet, 44093, Nantes Cedex 01, France
- Service Neurologie, CHU Nantes, Nantes, France
| | - Delphine Loussouarn
- Service d'Anatomo-Pathologie, CHU Nantes, Hôtel-Dieu, rez-de-jardin, 44093, Nantes Cedex 1, France
| | - John Parratt
- Department of Neurology, Royal North Shore Hospital, Sydney, Australia
- Australia Northern Clinical School, University of Sydney, Reserve Road, St Leonards, Sydney, NSW, 2065, Australia
| | - Michael Barnett
- Brain and Mind Centre, Medical Faculty, University of Sydney, Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Michael E Buckland
- Brain and Mind Centre, Medical Faculty, University of Sydney, Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, 94, Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Todd A Hardy
- Brain and Mind Centre, Medical Faculty, University of Sydney, Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
- Department of Neurology, Concord Hospital, University of Sydney, Sydney, NSW, 2139, Australia
| | - Stephen W Reddel
- Brain and Mind Centre, Medical Faculty, University of Sydney, Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
- Department of Neurology, Concord Hospital, University of Sydney, Sydney, NSW, 2139, Australia
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
- Department of Neurology, Center of Neurology und Neuropsychiatry, LVR-Klinikum, Heinrich Heine University Düsseldorf, Bergische Landstraße 2, 40629, Düsseldorf, Germany
| | - Jan Dörr
- Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure, Experimental and Clinical Research Center, Charitéplatz 1, 10117, Berlin, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Markus Kraemer
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
- Department of Neurology, Alfried Krupp Hospital, Alfried-Krupp-Strasse 21, 45130, Essen, Germany
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, Biomedical Center and Hospital of the Ludwig-Maximilians-University Munich, Großhaderner Straße 9, Martinsried, 82152, Munich, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Biomedical Center and Hospital of the Ludwig-Maximilians-University Munich, Großhaderner Straße 9, Martinsried, 82152, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- Cells in Motion (CiM), Münster, Germany
| | - Guillaume Martin-Blondel
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, CHU Purpan - BP 3028 - 31024, Toulouse Cedex 3, Toulouse, France
- Department of Infectious and Tropical Diseases, Toulouse University Hospital, Toulouse, France
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
- Australia Northern Clinical School, University of Sydney, Reserve Road, St Leonards, Sydney, NSW, 2065, Australia.
- Cells in Motion (CiM), Münster, Germany.
| | - Roland Liblau
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, CHU Purpan - BP 3028 - 31024, Toulouse Cedex 3, Toulouse, France.
| |
Collapse
|
17
|
Aibara N, Ohyama K. Selective and Sensitive Mass Spectrometric Identification of Immune Complex Antigens in Cerebrospinal Fluid. Methods Mol Biol 2019; 2044:247-253. [PMID: 31432417 DOI: 10.1007/978-1-4939-9706-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Comprehensive identification of immune complex antigens (IC-antigens) in cerebrospinal fluid (CSF) is useful to provide insights into pathophysiology and could form the basis for novel diagnostic and treatment strategies for central nervous system autoimmune diseases and other neurological disorders. Immune complexome analysis is the method for comprehensively identifying IC-antigens in biological fluids (such as serum and CSF). Here, we describe IC-antigens detection method; specifically, ICs in CSF are captured and are subjected to papain-digestion elution and tryptic digestion, and are analyzed by nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS).
Collapse
Affiliation(s)
- Nozomi Aibara
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kaname Ohyama
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
18
|
Proteomic approach to profiling immune complex antigens in cerebrospinal fluid samples from patients with central nervous system autoimmune diseases. Clin Chim Acta 2018; 484:26-31. [PMID: 29775619 DOI: 10.1016/j.cca.2018.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Immune complexes (ICs) may clearly reflect immunological abnormalities caused by disease, especially for autoimmune diseases. Although ICs have been detected in cerebrospinal fluid (CSF) from patients with CNS autoimmune diseases, identities of antigens in such ICs have not been comprehensively determined. METHODS We used immune complexome analysis, in which nano-liquid chromatography-tandem mass spectrometry is employed to comprehensively identify antigens incorporated into ICs in biological fluids, to characterize ICs in CSF samples from patients with CNS autoimmune diseases, and to find disease-specific IC antigen to a certain CNS autoimmune disease. Also, we compared the IC antigens we identified with the reported CSF proteome or with the published plasma proteome to examine if the method is distinguished from the conventional CSF proteome analysis. RESULTS We identified 176 antigens in 78 CSF samples. We then assessed the overlaps among these antigens, the CSF proteome, and the plasma proteome; 140 of the 176 antigens were found to be exclusively detected by our method. Notably, IC-associated suprabasin in CSF was 100% specific to neuropsychiatric systemic lupus erythematosus (NPSLE). CONCLUSIONS This report is the first to comprehensively identify the antigens incorporated into ICs in CSF. There was limited overlap between the antigens we identified and the CSF proteome or the plasma proteome; therefore, our method can be distinguished from the conventional CSF proteome analysis. Although the sensitivity of disease-specific IC-antigens detected in immune complexome analysis screening, the sensitivity may be improved by developing an ELISA method specifically for detecting the ICs. Immune complexome analysis of CSF may be a new and promising path to biomarker discovery for diagnosis and study for CNS autoimmune diseases.
Collapse
|
19
|
Lindner M, Klotz L, Wiendl H. Mechanisms underlying lesion development and lesion distribution in CNS autoimmunity. J Neurochem 2018; 146:122-132. [PMID: 29574788 DOI: 10.1111/jnc.14339] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/30/2022]
Abstract
It is widely accepted that development of autoimmunity in the central nervous system (CNS) is triggered by autoreactive T cells, that are activated in the periphery and gain the capacity to migrate through endothelial cells at the blood-brain barrier (BBB) into the CNS. Upon local reactivation, an inflammatory cascade is initiated, that subsequently leads to a recruitment of additional immune cells ultimately causing demyelination and axonal damage. Even though the interaction of immune cells with the BBB has been in the focus of research for many years, the exact mechanisms of how immune cells enter and exit the CNS remains poorly understood. In this line, the factors deciding immune cell entry routes, lesion formation, cellular composition as well as distribution within the CNS have also not been elucidated. The following factors have been proposed to represent key determinants for lesion evaluation and distribution: (i) presence and density of (auto) antigens in the CNS, (ii) local immune milieu at sites of lesion development and resolution, (iii) trafficking routes and specific trafficking requirements, especially at the BBB and (iv) characteristics and phenotypes of CNS infiltrating cells and cell subsets (e.g. features of T helper subtypes or CD8 cells). The heterogeneity of lesion development within inflammatory demyelinating diseases remains poorly understood until today, but here especially orphan inflammatory CNS disorders such as neuromyelitis optica spectrum disorder (NMOSD), Rasmussen encephalitis or SUSAC syndrome might give important insights in critical determinants of lesion topography. Finally, investigating the interaction of T cells with the BBB using in vitro approaches or tracking of T cells in vivo in animals or even human patients, as well as the discovery of lymphatic vasculature in the CNS are teaching us new aspects during the development of CNS autoimmunity. In this review, we discuss recent findings which help to unravel mechanisms underlying lesion topography and might lead to new diagnostic or therapeutic approaches in neuroinflammatory disorders including multiple sclerosis (MS).
Collapse
Affiliation(s)
- Maren Lindner
- Department of Neurology, University Hospital Münster, Münster, DE, Germany
| | - Luisa Klotz
- Department of Neurology, University Hospital Münster, Münster, DE, Germany
| | - Heinz Wiendl
- Department of Neurology, University Hospital Münster, Münster, DE, Germany.,Sydney Medical School, University of Sydney, Sydney, AU, Australia
| |
Collapse
|
20
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
21
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
22
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
23
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
24
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
25
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
26
|
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018. [DOI: 10.1002/jlb.1ru1117-428r order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
The blood–brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
27
|
Sonar SA, Lal G. Blood-brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018; 103:839-853. [PMID: 29431873 DOI: 10.1002/jlb.1ru1117-428r] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
The blood-brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
28
|
Endothelial cells and lymphatics at the interface between the immune and central nervous systems: implications for multiple sclerosis. Curr Opin Neurol 2018; 30:222-230. [PMID: 28323646 DOI: 10.1097/wco.0000000000000454] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW The central nervous system (CNS) has a unique relationship with the immune system. This review highlights the distinct roles of lymphatic vessels and endothelial cells in the interface between CNS and immune cells and invites to revisit the concept of CNS immune privilege. RECENT FINDINGS T cells can follow several routes to penetrate the CNS parenchyma but may also benefit, together with antigen-loaded presenting cells, from the newly described lymphatic network to exit the CNS. CNS endothelial cells (EC) critically positioned at the interface between circulating immune cells and the CNS regulate the multistep cascade for immune cell trafficking into the CNS. They can also be considered as semiprofessional antigen-presenting cells through their ability to present antigens to T cells and to regulate their activation through co-stimulatory and inhibitory molecules. SUMMARY The lymphatic network linking the CNS to draining lymph nodes may contribute to the inflammatory reaction occurring in multiple sclerosis (MS). The abundance and strategic positioning of endothelial cells at the blood-brain barrier level most likely endow them with an important role in controlling local adaptive immune responses, rendering them potential therapeutic targets in neuro-inflammatory such as MS.
Collapse
|
29
|
Shi SJ, Ding ML, Wang LJ, Wu JH, Han DH, Zheng GX, Guo ZY, Xi WJ, Qin WJ, Yang AG, Wen WH. CD4 +T cell specific B7-H1 selectively inhibits proliferation of naïve T cells and Th17 differentiation in experimental autoimmune encephalomyelitis. Oncotarget 2017; 8:90028-90036. [PMID: 29163808 PMCID: PMC5685729 DOI: 10.18632/oncotarget.21357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/01/2017] [Indexed: 01/05/2023] Open
Abstract
It is widely acknowledged that interleukin 17-producing T helper (Th17) cells are critically participant in the pathogenesis of multiple sclerosis. In the current study, we identified that the expression of CD4+T cells specific co-inhibitory molecule B7-homologue 1(B7-H1) in spleenocytes and mononuclear cells isolated from brains and spinal cord were positive correlated with Th1 and Th17 cells generation and disease severity in experimental autoimmune encephalomyelitis (EAE). Furthermore, B7-H1 transgenic mice developed milder EAE symptoms and fewer Th17 cells than B7-H1 wild type mice. We also found the proliferation of naïve CD4+CD62+T cells isolated from B7-H1 transgenic mice was inhibited. And naïve T cells isolated from B7-H1 transgenic mice produced fewer Th17 cells than WT mice in Th17-polarizing conditions, but the Th1, Th2, and inducible Treg differentiation were the similar in naïve T cells isolated from B7-H1 transgenic mice and WT mice. In conclusion, our study show CD4+T cells specific B7-H1 is a slective inhibitor in proliferation of naïve T cells, Th17 differentiation and pathogenesis of multiple sclerosis.
Collapse
Affiliation(s)
- Sheng-Jia Shi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, 710069, Shaanxi Province, P.R. China.,Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, P.R. China.,Reproduction Medicine Center, No. 202 Hospital of PLA, Shenyang, 11000, Liaoning Province, P.R. China
| | - Mei-Ling Ding
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Disease, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, P.R. China
| | - Li-Juan Wang
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, P.R. China
| | - Jie-Heng Wu
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, 710069, Shaanxi Province, P.R. China
| | - Dong-Hui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, P.R. China
| | - Guo-Xu Zheng
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, 710069, Shaanxi Province, P.R. China
| | - Zhang-Yan Guo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, 710069, Shaanxi Province, P.R. China
| | - Wen-Jin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, 710069, Shaanxi Province, P.R. China
| | - Wei-Jun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, P.R. China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, 710069, Shaanxi Province, P.R. China
| | - Wei-Hong Wen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, 710069, Shaanxi Province, P.R. China
| |
Collapse
|
30
|
Lucca LE, Hafler DA. Co-inhibitory blockade while preserving tolerance: checkpoint inhibitors for glioblastoma. Immunol Rev 2017; 276:9-25. [PMID: 28258696 DOI: 10.1111/imr.12529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The introduction of immunotherapy with checkpoint receptor blockade has changed the treatment of advanced cancers, at times inducing prolonged remission. Nevertheless, the success rate of the approach is variable across patients and different tumor types, and treatment is often accompanied by severe immune-related side effects, suggesting the importance of co-inhibitory pathway for both prevention of autoimmunity and failure of tumor rejection. A better understanding of how to uncouple anti-tumor activity from loss of self-tolerance is necessary to increase the therapeutic efficacy of checkpoint immunotherapy. In this review, we describe basic concepts of T-cell exhaustion that occur in cancer, highlighting the role of co-inhibitory receptors in contributing to this process while preventing immunopathology. By providing an overview of the current therapeutic success and immune-related burden of secondary effects of checkpoint immunotherapy, we illustrate the "double-edged sword" related to interference with immune-regulatory pathways. Finally, since achieving tumor rejection while preserving self-tolerance is particularly important for the central nervous system, we analyze the case for checkpoint immunotherapy in glioblastoma, the most common adult brain tumor.
Collapse
Affiliation(s)
- Liliana E Lucca
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
31
|
Yang T, Wang S, Yang X, Zheng Q, Wang L, Li Q, Wei M, Du Z, Fan Y. Upregulation of Bcl-2 and Its Promoter Signals in CD4+ T Cells during Neuromyelitis Optica Remission. Front Neurosci 2017; 11:11. [PMID: 28174515 PMCID: PMC5258721 DOI: 10.3389/fnins.2017.00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/09/2017] [Indexed: 12/27/2022] Open
Abstract
The homeostatic balance between production and elimination of CD4+ T cells in peripheral blood plays an important role in patients with neuromyelitis optica (NMO). The objective of the present study was to evaluate the anti-apoptosis genes Bcl-2 and its promoter signal (nuclear factor kappa-light-chain-enhancer of activated B cells, NFκB) in CD4+ T cells. Healthy subjects (HS, n = 25) and patients with multiple sclerosis (MS) (n = 25) and NMO (n = 30) in remission were consecutively enrolled in this prospective study between May and December 2015. CD4+ T cells were isolated using magnetic beads coated with anti-CD4 monoclonal antibodies, and gene expression of Bcl-2, NFκB, phosphatidylinositol-4, 5-bisphosphate 3-kinase/protein kinase B (PI3K/Akt), and MAP kinase kinase kinase 7 (MAP3K7) was measured by real-time reverse transcription-polymerase chain reaction (rt-PCR). Cytokines of tumor necrosis factor (TNF)-α and interleukin (IL)-1β were detected using human cytokine multiplex assay. Bcl-2 and NFκB gene expressions were elevated in NMO patients (1.63 ± 0.25; 2.35 ± 0.25) compared with those of HS (0.90 ± 0.11; 1.42 ± 0.22) and/or MS patients (1.03 ± 0.18; 1.55 ± 0.20) (P < 0.05). MAP3K7, but not Akt, was increased in NMO patients (1.23 ± 0.18; 1.56 ± 0.22) (P < 0.01) and was a significant factor related to elevated NFκB gene expressions (P < 0.001). On the other hand, IL-1β and TNF-α were also detected in the study and the results showed that both were elevated in NMO patients (23.84 ± 1.81; 56.40 ± 2.45) (P < 0.01; P < 0.05, respectively). We propose that MAP3K7 induced by IL-1β and TNF-α but not Akt promotes NFκB expression and, in turn, prolongs Bcl-2-mediated survival of CD4+ T cells in NMO patients.
Collapse
Affiliation(s)
- Tao Yang
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University Beijing, China
| | - Su Wang
- Department of Tumor Radiotherapy, Hiser Medical Center of Qingdao Qingdao, China
| | - Xiao Yang
- School of Management Science and Engineering, Shandong University of Finance and Economics Jinan, China
| | - Qi Zheng
- Department of Oncology, Guang An Men Hospital of China Academy of Chinese Medical SciencesBeijing, China; School of Traditional Chinese Medicine, Capital Medical UniversityBeijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University Beijing, China
| | - Qian Li
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University Beijing, China
| | - Mingyan Wei
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University Beijing, China
| | - Zongpan Du
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University Beijing, China
| | - Yongping Fan
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University Beijing, China
| |
Collapse
|