1
|
Guo J, Wang K, Sun Q, Liu J, Zheng J. Targeting B4GALT3 in BMSCs-EVs for Therapeutic Control of HCC via NF-κB pathway inhibition. Cell Biol Toxicol 2025; 41:67. [PMID: 40186771 PMCID: PMC11972216 DOI: 10.1007/s10565-025-10013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Examining the communications in the tumor microenvironment (TME) specific to hepatocellular carcinoma (HCC), this exploration looks into the role played by beta-1,4-Galactosyltransferase III (B4GALT3) in bone marrow mesenchymal stromal cell-derived extracellular vesicles (BMSCs-EVs) regarding the NF-κB pathway and the triggering of cancer-associated fibroblasts (CAF). Through a multidisciplinary approach combining transcriptome sequencing, bioinformatic analysis, and various experimental models, the involvement of B4GALT3 in regulating CAF activity by modulating NF-κB signaling was brought to light in our study. The outcomes suggest that targeting B4GALT3 could impede HCC cell migration and invasion, promote apoptosis, and dampen tumor progression and metastasis, offering novel insights into potential therapeutic strategies for combating HCC.
Collapse
Affiliation(s)
- Juncheng Guo
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Kaiqiong Wang
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Qigang Sun
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Jun Liu
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Jinfang Zheng
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
2
|
Kuang Y, Ke M, Liu W, Xu F. FBXW2 inhibits the progression of gastric cancer via promoting β-catenin ubiquitylation. Int J Med Sci 2025; 22:1936-1943. [PMID: 40225854 PMCID: PMC11983310 DOI: 10.7150/ijms.108501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
Background: F-box and WD-repeat-containing protein 2 (FBXW2), an E3 ubiquitin ligase, may play a crucial role in tumorigenesis. However, its function in gastric cancer remains unknown. Methods: The expression levels of FBXW2 and β-catenin in gastric cancer samples were analyzed using RT-PCR and immunohistochemistry, with Pearson correlation analysis to assess their relationship. AGS and HGC-27 gastric cancer cells were transfected with sh-FBXW2, and their viability was evaluated using the CCK8 assay, while invasion ability was assessed via the transwell assay. Western blotting was performed to measure the expression levels of FBXW2, β-catenin, GSK3β, and Axin2 in AGS cells. Additionally, a ubiquitination assay was conducted to examine the effect of sh-FBXW2 on β-catenin ubiquitination. Immunoprecipitation was used to determine the potential interaction between FBXW2 and β-catenin. Results: FBXW2 expression was downregulated, whereas β-catenin expression was upregulated in gastric cancer tissues compared to adjacent normal tissues, showing a significant negative correlation (r = -0.52, P < 0.001). Knockdown of FBXW2 (sh-FBXW2) promoted gastric cancer cell viability and invasion while increasing β-catenin expression and reducing GSK3β and Axin2 levels. Furthermore, FBXW2 was found to bind β-catenin and facilitate its ubiquitination, leading to enhanced nuclear translocation of β-catenin. Conclusions: FBXW2 suppresses gastric cancer progression by promoting β-catenin ubiquitination, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yanshen Kuang
- Department of General Surgery, the First Medical Center, Chinese PLA General Hospital, Haidian District, No.28, Fuxing Road, Beijing 100853, China
| | | | | | | |
Collapse
|
3
|
Zou J, Geng R, Zhang Z, Ji X, Yin Z, Wang D, Guo R, Chen L, Liu J. Novel role of the SOX4/CSNK2A1 axis in regulating TOP2A phosphorylation in breast cancer progression. FASEB J 2025; 39:e70315. [PMID: 39931818 DOI: 10.1096/fj.202401907rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 05/08/2025]
Abstract
This study examines the critical role of DNA topoisomerase II alpha (TOP2A) phosphorylation in breast cancer progression, regulated by the SRY-box transcription factor 4 (SOX4)/Casein kinase II subunit alpha 1 (CSNK2A1) axis. Using integrated transcriptomic and proteomic analyses, data were sourced from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and The Cancer Genome Atlas (TCGA) databases. To explore the dataset, differential analysis, kinase-substrate enrichment analysis (KSEA), and weighted gene co-expression network analysis (WGCNA) were performed. Immune profiling, combined with survival analysis, revealed the prognosis linked to different immune profiles in breast cancer patients. In vitro experiments assessed the effect of SOX4 on CSNK2A1 promoter activity through real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, dual-luciferase reporter assays, and chromatin immunoprecipitation (ChIP). The phosphorylation level of TOP2A was also measured. Cell proliferation, migration, and invasion were evaluated using cell counting kit-8 (CCK-8), colony formation, and Transwell assays. In vivo studies extended to mouse models, where the effect of SOX4 on CSNK2A1-TOP2A phosphorylation was analyzed about tumor growth and metastasis. The results showed that upregulation of SOX4 increases CSNK2A1 transcription, which in turn promotes TOP2A phosphorylation and accelerates breast cancer progression. The clinical analysis identified three immune profiles, with the intermediate profile associated with a poorer prognosis, possibly due to enhanced TOP2A phosphorylation mediated by SOX4/CSNK2A1. Silencing SOX4 significantly reduced cell proliferation, migration, invasion, and tumor growth in vivo by lowering CSNK2A1-TOP2A phosphorylation. These findings highlight the therapeutic potential of targeting the SOX4/CSNK2A1 axis in breast cancer and provide insight into its mechanism through TOP2A phosphorylation.
Collapse
Affiliation(s)
- Jiaqiong Zou
- Department of Biochemistry & Molecular Biology, West China School of Basic Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ruiman Geng
- Department of Biochemistry & Molecular Biology, West China School of Basic Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhengkun Zhang
- Department of Biochemistry & Molecular Biology, West China School of Basic Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xuxu Ji
- Department of Biochemistry & Molecular Biology, West China School of Basic Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhaoru Yin
- Department of Biochemistry & Molecular Biology, West China School of Basic Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Dingxue Wang
- Department of Biochemistry & Molecular Biology, West China School of Basic Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Rong Guo
- Department of Biochemistry & Molecular Biology, West China School of Basic Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Lihong Chen
- Department of Biochemistry & Molecular Biology, West China School of Basic Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ji Liu
- Department of Biochemistry & Molecular Biology, West China School of Basic Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Wu Y, Li N, Shang J, Jiang J, Liu X. Identification of cancer-associated fibroblast subtypes and prognostic model development in breast cancer: role of the RUNX1/SDC1 axis in promoting invasion and metastasis. Cell Biol Toxicol 2025; 41:21. [PMID: 39753834 PMCID: PMC11698906 DOI: 10.1007/s10565-024-09950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/20/2024] [Indexed: 01/06/2025]
Abstract
In this study, we identified cancer-associated fibroblast (CAF) molecular subtypes and developed a CAF-based prognostic model for breast cancer (BRCA). The heterogeneity of cancer-associated fibroblasts (CAFs) and their significant involvement in the advancement of BRCA were discovered employing single-cell RNA sequencing. Notably, we discovered that the RUNX1/SDC1 axis enhances BRCA cell invasion and metastasis. RUNX1 transcriptionally upregulates SDC1, which facilitates extracellular matrix remodeling and promotes tumor cell migration. This finding highlights the vital contribution of CAFs to the tumor microenvironment and provides new potential targets for therapeutic intervention. The predictive model showcased remarkable precision in anticipating patient outcomes and could guide personalized treatment strategies.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Pancreatic and Thyroid Ward, Shenyang, 110004, P. R. China
| | - Nu Li
- Department of Breast surgery, The First Hospital of China Medical University, Shenyang, 110004, P.R. China
| | - Jin Shang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Jiazi Jiang
- Department of Emergency, The First Hospital of China Medical University, No.155 Nanjing Road, Heping District, Shenyang, 110001, Liaoning Province, P. R. China.
| | - Xiaoliang Liu
- Department of Emergency, The First Hospital of China Medical University, No.155 Nanjing Road, Heping District, Shenyang, 110001, Liaoning Province, P. R. China.
| |
Collapse
|
5
|
Wei J, Li W, Zhang P, Guo F, Liu M. Current trends in sensitizing immune checkpoint inhibitors for cancer treatment. Mol Cancer 2024; 23:279. [PMID: 39725966 DOI: 10.1186/s12943-024-02179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically transformed the treatment landscape for various malignancies, achieving notable clinical outcomes across a wide range of indications. Despite these advances, resistance to immune checkpoint blockade (ICB) remains a critical clinical challenge, characterized by variable response rates and non-durable benefits. However, growing research into the complex intrinsic and extrinsic characteristics of tumors has advanced our understanding of the mechanisms behind ICI resistance, potentially improving treatment outcomes. Additionally, robust predictive biomarkers are crucial for optimizing patient selection and maximizing the efficacy of ICBs. Recent studies have emphasized that multiple rational combination strategies can overcome immune checkpoint resistance and enhance susceptibility to ICIs. These findings not only deepen our understanding of tumor biology but also reveal the unique mechanisms of action of sensitizing agents, extending clinical benefits in cancer immunotherapy. In this review, we will explore the underlying biology of ICIs, discuss the significance of the tumor immune microenvironment (TIME) and clinical predictive biomarkers, analyze the current mechanisms of resistance, and outline alternative combination strategies to enhance the effectiveness of ICIs, including personalized strategies for sensitizing tumors to ICIs.
Collapse
Grants
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
Collapse
Affiliation(s)
- Jing Wei
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Wenke Li
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Pengfei Zhang
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Ming Liu
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
6
|
Lu J, Liu X, Cen A, Hong Y, Wang Y. HYPOXIA induces lncRNA HOTAIR for recruiting RELA in papillary thyroid cancer cells to upregulate miR-181a and promote angiogenesis. J Endocrinol Invest 2024; 47:2873-2884. [PMID: 38748197 DOI: 10.1007/s40618-024-02388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/02/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is one of the most common subtypes of thyroid carcinoma. Exosomal miR-181a plays an important role in the development of PTC. This study examined the regulatory mechanism of miR-181a under conditions of hypoxia and its impact on angiogenesis. METHODS A ribonucleoprotein immunoprecipitation (RIP) experiment was conducted to verify the interaction between HOTAIR and RELA. The relationship between RELA and the miR-181a promoter was detected by ChIP-qPCR. Short hairpin (sh) RNA was designed to knock down HOTAIR in TPC cells. The underlying mechanism of miR-181a was verified by use of dual-luciferase assays and rescue experiments. The regulatory effect of GATA6 on angiogenesis was studied using CCK8, EdU, Transwell, and western blot assays. RESULTS A RIP assay showed that HOTAIR could bind to RELA under hypoxic conditions. ChIP-qPCR and dual luciferase assays showed RELA could interact with the miR181a promoter and upregulate miR-181a. Knockdown of HOTAIR downregulated miR-181a in TPC-1 cells, and the downregulation could be rescued by RELA overexpression. MiR-181a downregulated GATA6 in HUVEC cells. Overexpression of GATA6 inhibited HUVEC proliferation, migration, tube formation, and EGFR expression. Exosomal miR-181a promoted angiogenesis by downregulating GATA6 expression. CONCLUSION HOTAIR activated RELA to upregulate miR-181a during hypoxia. Exosomal miR-181a promotes tumor angiogenesis by downregulating GATA6.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/pathology
- Thyroid Cancer, Papillary/metabolism
- Transcription Factor RelA/metabolism
- Transcription Factor RelA/genetics
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/metabolism
- Gene Expression Regulation, Neoplastic
- Cell Proliferation
- GATA6 Transcription Factor/genetics
- GATA6 Transcription Factor/metabolism
- Up-Regulation
- Cell Movement/genetics
- Cell Line, Tumor
- Hypoxia/metabolism
- Hypoxia/genetics
- Angiogenesis
Collapse
Affiliation(s)
- J Lu
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, China
| | - X Liu
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, China
| | - A Cen
- Department of Endocrinology, the People's Hospital of Jiangmen, Jiangmen, Guangdong, China
| | - Y Hong
- Department of Endocrinology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Y Wang
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, China.
| |
Collapse
|
7
|
Yang W, Huang X, Lv W, Jin Y, Zhu Y. LINC00365 promotes miR-221-5p to inhibit pyroptosis via Dicer in colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2024; 57:529-541. [PMID: 39439418 PMCID: PMC12040748 DOI: 10.3724/abbs.2024173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/24/2024] [Indexed: 10/25/2024] Open
Abstract
Pyroptosis, a newly discovered form of programmed cell death, is involved in the occurrence, development and drug resistance of a variety of tumors and has attracted increasing attention in recent years. LINC00365 is a novel lncRNA that has rarely been reported before. We previously reported that LINC00365 expression in colorectal cancer is closely associated with poor patient outcomes. Additionally, LINC00365 was confirmed to be positively correlated with miR-221-5p, and miR-221-5p is negatively correlated with gasdermin-D (GSDMD) in colorectal cancer tissues. Bioinformatics analysis and luciferase reporter gene experiments revealed that GSDMD is the target gene of miR-221-5p. Cell function experiments and nude mouse tumor transplantation assays confirmed that LINC00365 could regulate the expressions of pyroptosis-related proteins such as Caspase-1, Caspase-11, NLRP3 and GSDMD. RNA pulldown and RNA immunoprecipitation experiments further elucidated the mechanism by which LINC00365 regulates miR-221-5p. In the present study, we observe that LINC00365 promotes the expression of miR-221-5p by binding to the Dicer enzyme to inhibit GSDMD and plays an antipyroptotic role. Our findings suggest that LINC00365 may serve as a molecular biomarker for estimating the prognosis of patients with colorectal cancer and as a potential therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Weiqing Yang
- School of Graduate StudiesWannan Medical CollegeWuhu241002China
- Department of Oncologythe First Affiliated Hospital of Wannan Medical CollegeWuhu241002China
| | - Xiang Huang
- School of Public HealthWannan Medical CollegeWuhu241002China
| | - Weibin Lv
- School of Graduate StudiesWannan Medical CollegeWuhu241002China
- Department of Oncologythe First Affiliated Hospital of Wannan Medical CollegeWuhu241002China
| | - Yuelong Jin
- School of Public HealthWannan Medical CollegeWuhu241002China
| | - Yiping Zhu
- Department of Oncologythe First Affiliated Hospital of Wannan Medical CollegeWuhu241002China
| |
Collapse
|
8
|
Taniue K, Sugawara A, Zeng C, Han H, Gao X, Shimoura Y, Ozeki AN, Onoguchi-Mizutani R, Seki M, Suzuki Y, Hamada M, Akimitsu N. The MTR4/hnRNPK complex surveils aberrant polyadenylated RNAs with multiple exons. Nat Commun 2024; 15:8684. [PMID: 39419981 PMCID: PMC11487169 DOI: 10.1038/s41467-024-51981-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 08/21/2024] [Indexed: 10/19/2024] Open
Abstract
RNA surveillance systems degrade aberrant RNAs that result from defective transcriptional termination, splicing, and polyadenylation. Defective RNAs in the nucleus are recognized by RNA-binding proteins and MTR4, and are degraded by the RNA exosome complex. Here, we detect aberrant RNAs in MTR4-depleted cells using long-read direct RNA sequencing and 3' sequencing. MTR4 destabilizes intronic polyadenylated transcripts generated by transcriptional read-through over one or more exons, termed 3' eXtended Transcripts (3XTs). MTR4 also associates with hnRNPK, which recognizes 3XTs with multiple exons. Moreover, the aberrant protein translated from KCTD13 3XT is a target of the hnRNPK-MTR4-RNA exosome pathway and forms aberrant condensates, which we name KCTD13 3eXtended Transcript-derived protein (KeXT) bodies. Our results suggest that RNA surveillance in human cells inhibits the formation of condensates of a defective polyadenylated transcript-derived protein.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Anzu Sugawara
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Chao Zeng
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Han Han
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Xinyue Gao
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yuki Shimoura
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Atsuko Nakanishi Ozeki
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Rena Onoguchi-Mizutani
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
9
|
Qi H, Ma X, Ma Y, Jia L, Liu K, Wang H. Mechanisms of HIF1A-mediated immune evasion in gastric cancer and the impact on therapy resistance. Cell Biol Toxicol 2024; 40:87. [PMID: 39384651 PMCID: PMC11464584 DOI: 10.1007/s10565-024-09917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND The high prevalence and detrimental effects on patient outcomes make gastric cancer (GC) a significant health issue that persists internationally. Existing treatment modalities exhibit limited efficacy, prompting the exploration of immune checkpoint inhibitors as a novel therapeutic approach. However, resistance to immunotherapy poses a significant challenge in GC management, necessitating a profound grasp of the intrinsic molecular pathways. METHODS This study focuses on investigating the immunosuppressive mechanisms of quiescent cancer cells (QCCs) in GC, particularly their resistance to T-cell-mediated immune responses. Utilizing mouse models, gene editing techniques, and transcriptome sequencing, we aim to elucidate the interactions between QCCs, immune cells, and key regulatory factors like HIF1A. Functional enrichment analysis will further underscore the role of glycolysis-related genes in mediating immunosuppression by QCCs. RESULTS The cancer cells that survived GC treated with T-cell therapy lost their proliferative ability. QCCs, as the main resistance force to immunotherapy, exhibit stronger resistance to CD8+ T-cell attack and possess higher cancer-initiating potential. Single-cell sequencing analysis revealed that the microenvironment in the QCCs region harbors more M2-type tumor-associated macrophages and fewer T cells. This microenvironment in the QCCs region leads to the downregulation of T-cell immune activation and alters macrophage metabolic function. Transcriptome sequencing of QCCs identified upregulated genes related to chemo-resistance, hypoxia, and glycolysis. In vitro cell experiments illustrated that HIF1A promotes the transcription of glycolysis-related genes, and silencing HIF1A in QCCs enhances T-cell proliferation and activation in co-culture systems, induces apoptosis in QCCs, and increases QCCs' sensitivity to immune checkpoint inhibitors. In vivo, animal experiments showed that silencing HIF1A in QCCs can inhibit GC growth and metastasis. CONCLUSION Unraveling the molecular mechanisms by which QCCs resist T-cell-mediated immune responses through immunosuppression holds promising implications for refining treatment strategies and enhancing patient outcomes in GC. By delineating these intricate interactions, this study contributes crucial insights into precision medicine and improved therapeutic outcomes in GC management.
Collapse
Affiliation(s)
- Hao Qi
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Xiaoyu Ma
- Departments of Gastrointestinal Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yu Ma
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Liuyu Jia
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Kuncong Liu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Honghu Wang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
10
|
Zhang K, Fang X, Zhang Y, Zhang Y, Chao M. Transcriptional activation of PINK1 by MyoD1 mediates mitochondrial homeostasis to induce renal calcification in pediatric nephrolithiasis. Cell Death Discov 2024; 10:397. [PMID: 39242558 PMCID: PMC11379875 DOI: 10.1038/s41420-024-02117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024] Open
Abstract
This study aims to uncover the molecular mechanisms underlying pediatric kidney stone formation induced by renal calcium deposition by utilizing high-throughput sequencing data to reveal the regulation of PINK1 by MyoD1. We performed transcriptome sequencing on peripheral blood samples from healthy children and children with kidney stones to obtain differentially expressed genes (DEGs). Genes related to mitochondrial oxidative stress were obtained from the Genecards website and intersected with DEGs to obtain candidate target genes. Additionally, we conducted protein-protein interaction (PPI) analysis using the STRING database to identify core genes involved in pediatric kidney stone disease (KSD) and predicted their transcription factors using the hTFtarget database. We assessed the impact of MyoD1 on the activity of the PINK1 promoter using dual-luciferase reporter assays and investigated the enrichment of MyoD1 on the PINK1 promoter through chromatin immunoprecipitation (ChIP) experiments. To validate our hypothesis, we selected HK-2 cells and established an in vitro kidney stone model induced by calcium oxalate monohydrate (COM). We evaluated the expression levels of various genes, cell viability, volume of adherent crystals in each group, as well as mitochondrial oxidative stress in cells by measuring mitochondrial membrane potential (Δψm), superoxide dismutase (SOD) activity, reactive oxygen species (ROS), and malondialdehyde (MDA) content. Mitochondrial autophagy was assessed using mtDNA fluorescence staining and Western blot analysis of PINK1-related proteins. Apoptosis-related proteins were evaluated using Western blot analysis, and cell apoptosis was measured using flow cytometry. Furthermore, we developed a rat model of KSD and assessed the expression levels of various genes, as well as the pathologic changes in rat renal tissues using H&E and von Kossa staining, transmission electron microscopy (TEM), and the expression of creatinine, blood urea nitrogen, neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) to evaluate the mitochondrial oxidative stress in vivo (through measurement of Δψm, SOD activity, ROS, and MDA content). Mitochondrial autophagy was evaluated by Western blot analysis of PINK1-associated proteins. Apoptosis-related proteins were detected using Western blot analysis, and cellular apoptosis was examined using cell flow cytometry and TUNEL staining. Bioinformatics analysis revealed that the PINK1 gene is upregulated and vital in pediatric kidney stone patients. Our in vitro and in vivo experiments demonstrated that silencing PINK1 could inhibit kidney stone formation by suppressing mitochondrial oxidative stress both in vitro and in vivo. We identified MyoD1 as an upstream transcription factor of PINK1 that contributes to the occurrence of pediatric kidney stones through the activation of PINK1. Our in vivo and in vitro experiments collectively confirmed that silencing MyoD1 could inhibit mitochondrial oxidative stress, mitochondrial autophagy, and cellular apoptosis in a rat model of kidney stones by downregulating PINK1 expression, consequently suppressing the formation of kidney stones. In this study, we discovered that MyoD1 may promote kidney stone formation and development in pediatric patients by transcriptionally activating PINK1 to induce mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Kaiping Zhang
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China
| | - Xiang Fang
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China
| | - Ye Zhang
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China
| | - Yin Zhang
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China
| | - Min Chao
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China.
| |
Collapse
|
11
|
Nie H, Yu Y, Zhou S, Xu Y, Chen X, Qin X, Liu Z, Huang J, Zhang H, Yao J, Jiang Q, Wei B, Qin X. TCF3 as a multidimensional biomarker: oncogenicity, genomic alterations, and immune landscape in pan-cancer analysis. Acta Biochim Biophys Sin (Shanghai) 2024; 57:195-208. [PMID: 39205642 PMCID: PMC11868920 DOI: 10.3724/abbs.2024126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/25/2024] [Indexed: 09/04/2024] Open
Abstract
Transcription factor 3 (TCF3), a pivotal member of the TCF/LEF family, plays a critical role in tumorigenesis. Nonetheless, its impact on the tumor microenvironment (TME) and cancer phenotypes remains elusive. We perform an exhaustive analysis of TCF3 expression, DNA variation profiles, prognostic implications, and associations with the TME and immunological aspects. This study is based on a large-scale pan-cancer cohort, encompassing over 17,000 cancer patients from multiple independent datasets, validated by in vitro assays. Our results show that TCF3/4/7 exhibits differential expression patterns between normal and tumor tissues across pan-cancer analyses. Mutational analysis of TCF3 across diverse cancer types reveals the highest alteration rates in biliary tract cancer. Additionally, mutations and single nucleotide variants in TCF3/4/7 are found to exert varied effects on patient prognosis. Importantly, TCF3 emerges as a robust predictor of survival across all cancer cohorts and among patients receiving immune checkpoint inhibitors. Elevated TCF3 expression is correlated with more aggressive cancer subtypes, as validated by immunohistochemistry and diverse cohort data. Furthermore, TCF3 expression is positively correlated with intratumoral heterogeneity and angiogenesis. In vitro investigations demonstrate that TCF3 is involved in epithelial-mesenchymal transition, migration, invasion, and angiogenesis. These effects are likely mediated through the interaction of TCF3 with the NF-κB/MMP2 pathway, which is modulated by IL-17A in human uveal melanoma MUM2B cells. This study elucidates, for the first time, the significant associations of TCF3 with DNA variation profiles, prognostic outcomes, and the TME in multiple cancer contexts. TCF3 holds promise as a molecular marker for diagnosis and as a potential target for novel therapeutic strategies, particularly in uveal melanoma.
Collapse
Affiliation(s)
- Huiling Nie
- The Affiliated Eye Hospital and the Fourth School of Clinical MedicineNanjing Medical UniversityNanjing210004China
| | - Yang Yu
- The Affiliated Eye Hospital and the Fourth School of Clinical MedicineNanjing Medical UniversityNanjing210004China
| | - Siqi Zhou
- Department of UrologyFudan University Shanghai Cancer Center; Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yue Xu
- Department of Ophthalmologythe Fourth Affiliated Hospital of Soochow UniversitySuzhou215002China
| | - Xi Chen
- The Affiliated Eye Hospital and the Fourth School of Clinical MedicineNanjing Medical UniversityNanjing210004China
| | - Xun Qin
- The Affiliated Eye Hospital and the Fourth School of Clinical MedicineNanjing Medical UniversityNanjing210004China
| | - Zhangyu Liu
- The Affiliated Eye Hospital and the Fourth School of Clinical MedicineNanjing Medical UniversityNanjing210004China
| | - Jiayu Huang
- The Affiliated Eye Hospital and the Fourth School of Clinical MedicineNanjing Medical UniversityNanjing210004China
| | - Hailiang Zhang
- Department of UrologyFudan University Shanghai Cancer Center; Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jin Yao
- The Affiliated Eye Hospital and the Fourth School of Clinical MedicineNanjing Medical UniversityNanjing210004China
| | - Qin Jiang
- The Affiliated Eye Hospital and the Fourth School of Clinical MedicineNanjing Medical UniversityNanjing210004China
| | - Bingbing Wei
- Department of Urologythe Affiliated Wuxi People’s Hospital of Nanjing Medical UniversityWuxi214023China
| | - Xiaojian Qin
- Department of UrologyFudan University Shanghai Cancer Center; Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
12
|
Liu S, Zhan W, He X, Hao M, Shen W, Zhang X, Wang M, Li Z, Hou R, Ou Z, Feng Y, Chen F. ATPR induces acute promyelocytic leukemia cells differentiation and cycle arrest via the lncRNA CONCR/DDX11/PML-RARα signaling axis. Gene 2024; 917:148443. [PMID: 38582263 DOI: 10.1016/j.gene.2024.148443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/15/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Acute promyelocytic leukemia (APL) is a type of acute myeloid leukemia (AML) with a high mortality rate, and the production of PML-RARα fusion protein is the cause of its pathogenesis. Our group has synthesized a novel compound, 4-amino-2-trifluoromethyl-phenyl retinate (ATPR), by structural modification of All-trans retinoic acid (ATRA), which has strong cell differentiation-inducing effects and inhibits the expression of PML-RARα. In this study, acute promyelocytic leukemia NB4 cells before and after ATPR induction were analyzed by whole transcriptome microarray, and the expression of lncRNA CONCR was found to be significantly downregulated. The role of CONCR in ATPR-induced cell differentiation and cycle arrest was explored through overexpression and silencing of CONCR. And then the database was used to predict that CONCR may bind to DEAD/H-Box Helicase 11 (DDX11) protein to further explore the role of CONCR binding to DDX11. The results showed that ATPR could reduce the expression of CONCR, and overexpression of CONCR could reverse the ATPR-induced cell differentiation and cycle blocking effect, and conversely silencing of CONCR could promote this effect. RNA immunoprecipitation (RIP) experiments showed that CONCR could bind to DDX11, the protein expression levels of DDX11 and PML-RARα were elevated after overexpression of CONCR. These results suggest that ATPR can regulate the expression of DDX11 through CONCR to affect the expression of PML-RARα fusion protein, which in turn induces the differentiation and maturation of APL cells.
Collapse
MESH Headings
- Humans
- Cell Cycle Checkpoints/drug effects
- Cell Cycle Checkpoints/genetics
- Cell Differentiation
- Cell Line, Tumor
- DEAD-box RNA Helicases/drug effects
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Gene Expression Regulation, Leukemic
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Oncogene Proteins, Fusion/drug effects
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- RNA, Long Noncoding/drug effects
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Shen Liu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wenjing Zhan
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiong He
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Mengjia Hao
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wenwen Shen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiaoyue Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Meng Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Zihan Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Ruirui Hou
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Ziyao Ou
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yubin Feng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui, 230001, China.
| | - Feihu Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
13
|
Song C, Wang G, Liu M, Han S, Dong M, Peng M, Wang W, Wang Y, Xu Y, Liu L. Deciphering the SOX4/MAPK1 regulatory axis: a phosphoproteomic insight into IQGAP1 phosphorylation and pancreatic Cancer progression. J Transl Med 2024; 22:602. [PMID: 38943117 PMCID: PMC11212360 DOI: 10.1186/s12967-024-05377-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/06/2024] [Indexed: 07/01/2024] Open
Abstract
OBJECTIVE This study aims to elucidate the functional role of IQGAP1 phosphorylation modification mediated by the SOX4/MAPK1 regulatory axis in developing pancreatic cancer through phosphoproteomics analysis. METHODS Proteomics and phosphoproteomics data of pancreatic cancer were obtained from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Differential analysis, kinase-substrate enrichment analysis (KSEA), and independent prognosis analysis were performed on these datasets. Subtype analysis of pancreatic cancer patients was conducted based on the expression of prognostic-related proteins, and the prognosis of different subtypes was evaluated through prognosis analysis. Differential analysis of proteins in different subtypes was performed to identify differential proteins in the high-risk subtype. Clinical correlation analysis was conducted based on the expression of prognostic-related proteins, pancreatic cancer typing results, and clinical characteristics in the pancreatic cancer proteomics dataset. Functional pathway enrichment analysis was performed using GSEA/GO/KEGG, and most module proteins correlated with pancreatic cancer were selected using WGCNA analysis. In cell experiments, pancreatic cancer cells were grouped, and the expression levels of SOX4, MAPK1, and the phosphorylation level of IQGAP1 were detected by RT-qPCR and Western blot experiments. The effect of SOX4 on MAPK1 promoter transcriptional activity was assessed using a dual-luciferase assay, and the enrichment of SOX4 on the MAPK1 promoter was examined using a ChIP assay. The proliferation, migration, and invasion functions of grouped pancreatic cancer cells were assessed using CCK-8, colony formation, and Transwell assays. In animal experiments, the impact of SOX4 on tumor growth and metastasis through the regulation of MAPK1-IQGAP1 phosphorylation modification was studied by constructing subcutaneous and orthotopic pancreatic cancer xenograft models, as well as a liver metastasis model in nude mice. RESULTS Phosphoproteomics and proteomics data analysis revealed that the kinase MAPK1 may play an important role in pancreatic cancer progression by promoting IQGAP1 phosphorylation modification. Proteomics analysis classified pancreatic cancer patients into two subtypes, C1 and C2, where the high-risk C2 subtype was associated with poor prognosis, malignant tumor typing, and enriched tumor-related pathways. SOX4 may promote the occurrence of the high-risk C2 subtype of pancreatic cancer by regulating MAPK1-IQGAP1 phosphorylation modification. In vitro cell experiments confirmed that SOX4 promoted IQGAP1 phosphorylation modification by activating MAPK1 transcription while silencing SOX4 inhibited the proliferation, migration, and invasion of pancreatic cancer cells by reducing the phosphorylation level of MAPK1-IQGAP1. In vivo, animal experiments further confirmed that silencing SOX4 suppressed the growth and metastasis of pancreatic cancer by reducing the phosphorylation level of MAPK1-IQGAP1. CONCLUSION The findings of this study suggest that SOX4 promotes the phosphorylation modification of IQGAP1 by activating MAPK1 transcription, thereby facilitating the growth and metastasis of pancreatic cancer.
Collapse
Affiliation(s)
- Chao Song
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
- Department of General Surgery, Qingpu Branch, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, No. 1158 Park Road East, Qingpu District, Shanghai, PR China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China
| | - Ganggang Wang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Mengmeng Liu
- Department of Gastroenterology, Qingpu Branch, Affiliated Zhongshan Hospital of Fudan University, Shanghai, PR China
| | - Siyang Han
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, PR China
| | - Maozhen Peng
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
| | - Yicun Wang
- Department of General Surgery, Qingpu Branch, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, No. 1158 Park Road East, Qingpu District, Shanghai, PR China.
| | - Yaolin Xu
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China.
| | - Liang Liu
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China.
| |
Collapse
|
14
|
Chen X, Li M, Li H, Liu M, Su J, Ji Y. Implications of IFNγ SNP rs2069705 in primary Sjögren's syndrome: transcriptional activation and B cell infiltration. Am J Physiol Cell Physiol 2024; 326:C1494-C1504. [PMID: 38406824 PMCID: PMC11371360 DOI: 10.1152/ajpcell.00661.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Primary Sjögren's syndrome (pSS) is characterized by its autoimmune nature. This study investigates the role of the IFNγ SNP rs2069705 in modulating the susceptibility to pSS. Differential expression of IFNγ and BAFF was analyzed using the GEO database's mRNA microarray GSE84844. Genotyping of the IFNγ SNP rs2069705 was conducted via the dbSNP website. The JASPAR tool was used for predicting transcription factor bindings. Techniques such as dual-luciferase reporter assays, Chromatin immunoprecipitation, and analysis of a pSS mouse model were applied to study gene and protein interactions. A notable increase in the mutation frequency of IFNγ SNP rs2069705 was observed in MNCs from the exocrine glands of pSS mouse models. Bioinformatics analysis revealed elevated levels of IFNγ and BAFF in pSS samples. The model exhibited an increase in both CD20+ B cells and cells expressing IFNγ and BAFF. Knocking down IFNγ resulted in lowered BAFF expression and less lymphocyte infiltration, with BAFF overexpression reversing this suppression. Activation of the Janus kinase (JAK)/STAT1 pathway was found to enhance transcription in the BAFF promoter region, highlighting IFNγ's involvement in pSS. In addition, rs2069705 was shown to boost IFNγ transcription by promoting interaction between its promoter and STAT4. SNP rs2069705 in the IFNγ gene emerges as a pivotal element in pSS susceptibility, primarily by augmenting IFNγ transcription, activating the JAK/STAT1 pathway, and leading to B-lymphocyte infiltration in the exocrine glands.NEW & NOTEWORTHY The research employed a combination of bioinformatics analysis, genotyping, and experimental models, providing a multifaceted approach to understanding the complex interactions in pSS. We have uncovered that the rs2069705 SNP significantly affects the transcription of IFNγ, leading to altered immune responses and B-lymphocyte activity in pSS.
Collapse
Affiliation(s)
- Xi Chen
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Min Li
- Department of Immunology, Mianyang Central Hospital, Mianyang, China
| | - Honglin Li
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Miao Liu
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Jianrong Su
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Yuzhu Ji
- Department of Pathology, Mianyang Central Hospital, Mianyang, China
| |
Collapse
|
15
|
Zhang D, Chen K, Shan LS. Meta-analysis and transcriptomic analysis reveal that NKRF and ZBTB17 regulate the NF-κB signaling pathway, contributing to the shared molecular mechanisms of Alzheimer's disease and atherosclerosis. CNS Neurosci Ther 2024; 30:e14683. [PMID: 38738952 PMCID: PMC11090078 DOI: 10.1111/cns.14683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/26/2023] [Accepted: 01/15/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) and atherosclerosis (AS) are widespread diseases predominantly observed in the elderly population. Despite their prevalence, the underlying molecular interconnections between these two conditions are not well understood. METHODS Utilizing meta-analysis, bioinformatics methodologies, and the GEO database, we systematically analyzed transcriptome data to pinpoint key genes concurrently differentially expressed in AD and AS. Our experimental validations in mouse models highlighted the prominence of two genes, NKRF (NF-κB-repressing factor) and ZBTB17 (MYC-interacting zinc-finger protein 1). RESULTS These genes appear to influence the progression of both AD and AS by modulating the NF-κB signaling pathway, as confirmed through subsequent in vitro and in vivo studies. CONCLUSIONS This research uncovers a novel shared molecular pathway between AD and AS, underscoring the significant roles of NKRF and ZBTB17 in the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Di Zhang
- Department of CardiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Keyan Chen
- Laboratory Animal Science of China Medical UniversityShenyangLiaoningChina
| | - Li Shen Shan
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
16
|
Zhang M, Yang J, Liang G, Yuan H, Wu Y, Li L, Yu T, Zhang Y, Wang J. FOXA1-Driven pathways exacerbate Radiotherapy-Induced kidney injury in colorectal cancer. Int Immunopharmacol 2024; 131:111689. [PMID: 38471364 DOI: 10.1016/j.intimp.2024.111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVE This study aimed to investigate the role of FOXA1 in acute kidney injury (AKI) induced by radiotherapy in colorectal cancer. Although FOXA1 is known to be aberrantly expressed in malignant tumors, its contribution to AKI remains unclear. This study aimed to explore the involvement of FOXA1 in AKI induced by radiotherapy in colorectal cancer and its influence on the regulation of downstream target genes. METHODS Firstly, a transcriptome analysis was performed on mice to establish a radiation-induced AKI model, and qPCR was used to determine the expression of FOXA1 in renal cell injury models induced by X-ray irradiation. Additionally, FOXA1 was silenced using lentiviral vectors to investigate its effects on the apoptosis of mice with radiation-induced AKI and HK-2 cells. Next, bioinformatics analysis and various experimental validation methods such as ChIP assays, co-immunoprecipitation, and dual-luciferase reporter assays were employed to explore the relationship between FOXA1 and the downstream regulatory factors ITCH promoter and the ubiquitin ligase-degradable TXNIP. Finally, lentiviral overexpression or knockout techniques were used to investigate the impact of the FOXA1/ITCH/TXNIP axis on oxidative stress and the activation of inflammatory body NLRP3. RESULTS This study revealed that FOXA1 was significantly upregulated in the renal tissues of mice with radiation-induced AKI and in the injured HK-2 cells. Furthermore, in vitro cell experiments and animal experiments demonstrated that FOXA1 suppressed the transcription of the E3 ubiquitin ligase ITCH, thereby promoting apoptosis of renal tubular cells and causing renal tissue damage. Further in vivo animal experiments confirmed that TXNIP, a protein degraded by ITCH ubiquitination, could inhibit oxidative stress and the activation of NLRP3 inflammasome in the AKI mouse model. CONCLUSION FOXA1 enhances oxidative stress, cell apoptosis, and NLRP3 inflammasome activation by regulating the ITCH/TXNIP axis, thereby exacerbating radiotherapy-induced AKI.
Collapse
Affiliation(s)
- Minhai Zhang
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Jingyuan Yang
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China
| | - Guodong Liang
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Huiqiong Yuan
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yanni Wu
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Li Li
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Tao Yu
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuling Zhang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China.
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China.
| |
Collapse
|
17
|
Doghish AS, Zaki MB, Eldeib MG, Radwan AF, Moussa R, Abdel-Wahab MM, Kizilaslan EZ, Alhamshry NAA, Ashour AE, Elimam H. The potential relevance of long non-coding RNAs in colorectal cancer pathogenesis and treatment: A review focus on signaling pathways. Pathol Res Pract 2024; 253:155044. [PMID: 38141573 DOI: 10.1016/j.prp.2023.155044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Colorectal cancer (CRC) is one of the most frequent cancers in incidence and mortality. Despite advances in cancer biology, molecular genetics, and targeted treatments, CRC prognosis and survival have not kept pace. This is usually due to advanced staging and metastases at diagnosis. Thus, great importance has been placed upon understanding the molecular pathophysiology behind the development of CRC, which has highlighted the significance of non-coding RNA's role and associated intracellular signaling pathways in the pathogenesis of the disease. According to recent studies, long non-coding RNAs (lncRNA), a subtype of ncRNAs whose length exceeds 200 nucleotides, have been found to have regulatory functions on multiple levels. Their actions at the transcription, post-transcriptional, translational levels, and epigenetic regulation have made them prime modulators of gene expression. Due to their role in cellular cancer hallmarks, their dysregulation has been linked to several illnesses, including cancer. Furthermore, their clinical relevance has expanded due to their possible detection in blood which has cemented them as potential future biomarkers and thus, potential targets for new therapy. This review will highlight the importance of lncRNAs and related signaling pathways in the development of CRC and their subsequent clinical applications.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Mahmoud Gomaa Eldeib
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University - Kantara Branch, 41636 Ismailia, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Maie M Abdel-Wahab
- Department of Biochemistry, Faculty of Pharmacy, Sinai University - Kantara Branch, 41636 Ismailia, Egypt
| | | | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Abdelkader E Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Salman International University, Ras Sudr, South Sinai, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt.
| |
Collapse
|
18
|
Lima BM, de Azevedo ALK, Giner IS, Gomig THB, Ribeiro EMDSF, Cavalli IJ. Biomarker potential of the LEF1/TCF family members in breast cancer: Bioinformatic investigation on expression and clinical significance. Genet Mol Biol 2023; 46:e20220346. [PMID: 38100720 PMCID: PMC10723634 DOI: 10.1590/1678-4685-gmb-2022-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/18/2023] [Indexed: 12/17/2023] Open
Abstract
The LEF1/TCF transcription factor family is related to the development of diverse tissue types, including the mammary tissue, and dysregulation of its expression and function has been described to favor breast tumorigenesis. However, the clinical and biological relevance of this gene family in breast cancer is still poorly understood. Here, we used bioinformatics approaches aiming to reduce this gap. We investigated its expression patterns in molecular and immune breast cancer subtypes; its correlation with immune cell infiltration, and its prognostic values in predicting outcomes. Also, through regulons construction, we determined the genes whose expression is influenced by these transcription factors, and the pathways in which they are involved. We found that LEF1 and TCF3 are over-expressed in breast tumors regarding non-tumor samples, while TCF4 and TCF7 are down-expressed, with the gene's methylation status being associated with its expression dysregulation. All four transcription factors presented significance at the diagnostic and prognostic levels. LEF1, TCF4, and TCF7 presented a significant correlation with immune cell infiltration, being associated with the immune subtypes of less favorable outcomes. Altogether, this research contributes to a more accurate understanding of the expression and clinical and biomarker significance of the LEF1/TCF transcription factors in breast cancer.
Collapse
Affiliation(s)
- Beatriz Miotto Lima
- Universidade Federal do Paraná, Departamento de Genética,
Curitiba, Paraná, Brasil
| | | | - Igor Samesima Giner
- Universidade Federal do Paraná, Departamento de Genética,
Curitiba, Paraná, Brasil
| | | | | | - Iglenir João Cavalli
- Universidade Federal do Paraná, Departamento de Genética,
Curitiba, Paraná, Brasil
| |
Collapse
|
19
|
Lin Y, Shi H, Wu L, Ge L, Ma Z. Research progress of N6-methyladenosine in colorectal cancer: A review. Medicine (Baltimore) 2023; 102:e36394. [PMID: 38013272 PMCID: PMC10681580 DOI: 10.1097/md.0000000000036394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Colorectal cancer is the third most common malignant tumor worldwide, causing serious harm to human health. Epigenetic modification, especially RNA methylation modification, plays a critical role in the occurrence and development of colorectal cancer via post-transcriptional regulation of mRNA and non-coding RNA expression. Among these, N6-methyladenosine (m6A) is the most common chemical modification in mammals, which plays an important role in the progress of cancer, including colorectal cancer. m6A is a dynamic and reversible process and is mainly regulated by m6A methyltransferase ("writers"), m6A demethylases ("erasers"), and m6A binding proteins ("readers"). Herein, we reviewed recent advances in the role of m6A modification in colorectal cancer and focused on the factors affecting m6A modification. Furthermore, we discussed the clinical application of m6A modifications for colorectal cancer diagnosis, prognosis, and treatment and provided guides in clinical practice. m6A modification and m6A regulators play significant roles in the occurrence and development of colorectal cancer by regulating the stability and translation of mRNAs, the maturation of miRNAs, and the function of lncRNAs. m6A regulators can play biological roles in colorectal cancer through m6A-dependent manner or m6A-independent manner. Multiplies of internal factors, including miRNAs and lncRNAs, and external factors can also regulate the m6A modification by completing with m6A regulators in a base complement manner, regulating the expression of m6A and mutating the m6A site. m6A regulators and m6A modificantion are diagnostic and prognostic markers for CRC. Therefore, m6A regulators and m6A modificantion may be potential therapeutic target for CRC in the future.
Collapse
Affiliation(s)
- Yu Lin
- Department of Respiratory, Nanjing Gaochun People’s Hospital, Nanjing, China
| | - Hongjun Shi
- Department of Pharmacy, Nanjing Gaochun People’s Hospital, Nanjing, China
| | - Lianping Wu
- Department of Pharmacy, Nanjing Gaochun People’s Hospital, Nanjing, China
| | - Linyang Ge
- Department of Respiratory, Nanjing Gaochun People’s Hospital, Nanjing, China
| | - Zengqing Ma
- Department of Pharmacy, Nanjing Gaochun People’s Hospital, Nanjing, China
| |
Collapse
|
20
|
Wang G, Ma Z, Song C, Wang X, Zhou Z. miR-147b is an oncomiR acting synergistically with HIPK2 to promote pancreatic carcinogenesis. Cell Signal 2023; 111:110840. [PMID: 37543099 DOI: 10.1016/j.cellsig.2023.110840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
MicroRNAs (miRs, miRNAs) are known players in the regulatory network of pancreatic tumorigenesis, but the downstream effectors remain poorly characterized. This study addressed this issue based on in silico prediction, in vitro experiments, and in vivo validation. The differentially expressed PCa-related miRNAs and bioinformatics tools predicted downstream regulators. The expression of miR-147b was examined in PCa cell lines. Putative targets of miR-147b were predicted by a publicly available database and confirmed by luciferase activity assay. Mimic/inhibitor, siRNA/overexpression plasmid, or pifithrin-α (p53 inhibitor) were delivered into PCa cells to assess the effect of miR-147b, HIPK2, and p53 on malignant phenotypes of PCa cells. AntagomiR-147b and shRNA targeting HIPK2 were introduced to xenograft-bearing nude mice for in vivo experiments. The expression of miR-147b was significantly increased in PCa cell lines. Ectopic expression of miR-147b promoted the malignant phenotypes of PCa cells and inhibited their apoptosis. HIPK2 was confirmed as a target gene of miR-147b. Inhibiting miR-147b could promote HIPK2 expression and potentially activate the p53 pathway, inhibiting PCa cell growth. In vivo experiments suggested that miR-147b inhibition suppressed the growth of xenograft tumors in nude mice, while HIPK2 knockdown counteracted its effect. Collectively, our work reveals a novel miR-147b-mediated carcinogenic regulatory network in PCa that may be a viable target for PCa treatment.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai 201399, China
| | - Zenghui Ma
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai 201399, China
| | - Chao Song
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, Shanghai 201700, China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai 201399, China.
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai 201399, China.
| |
Collapse
|
21
|
He X, Lin F, Jia R, Xia Y, Liang Z, Xiao X, Hu Q, Deng X, Li Q, Sheng W. Coordinated modulation of long non-coding RNA ASBEL and curcumin co-delivery through multicomponent nanocomplexes for synchronous triple-negative breast cancer theranostics. J Nanobiotechnology 2023; 21:397. [PMID: 37904215 PMCID: PMC10617238 DOI: 10.1186/s12951-023-02168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Abnormally regulated long non-coding RNAs (lncRNAs) functions in cancer emphasize their potential to serve as potential targets for cancer therapeutic intervention. LncRNA ASBEL has been identified as oncogene and an anti-sense transcript of tumor-suppressor gene of BTG3 in triple-negative breast cancer (TNBC). RESULTS Herein, multicomponent self-assembled polyelectrolyte nanocomplexes (CANPs) based on the polyelectrolytes of bioactive hyaluronic acid (HA) and chitosan hydrochloride (CS) were designed and prepared for the collaborative modulation of oncogenic lncRNA ASBEL with antago3, an oligonucleotide antagonist targeting lncRNA ASBEL and hydrophobic curcumin (Cur) co-delivery for synergetic TNBC therapy. Antago3 and Cur co-incorporated CANPs were achieved via a one-step assembling strategy with the cooperation of noncovalent electrostatic interactions, hydrogen-bonding, and hydrophobic interactions. Moreover, the multicomponent assembled CANPs were ulteriorly decorated with a near-infrared fluorescence (NIRF) Cy-5.5 dye (FCANPs) for synchronous NIRF imaging and therapy monitoring performance. Resultantly, MDA-MB-231 cells proliferation, migration, and invasion were efficiently inhibited, and the highest apoptosis ratio was induced by FCANPs with coordination patterns. At the molecular level, effective regulation of lncRNA ASBEL/BTG3 and synchronous regulation of Bcl-2 and c-Met pathways could be observed. CONCLUSION As expected, systemic administration of FCANPs resulted in targeted and preferential accumulation of near-infrared fluorescence signal and Cur in the tumor tissue. More attractively, systemic FCANPs-mediated collaborative modulating lncRNA ASBEL/BTG3 and Cur co-delivery significantly suppressed the MDA-MB-231 xenograft tumor growth, inhibited metastasis and extended survival rate with negligible systemic toxicity. Our present study represented an effective approach to developing a promising theranostic platform for combating TNBC in a combined therapy pattern.
Collapse
Affiliation(s)
- Xuesong He
- Department of Environment and Life Science, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China
| | - Fengjuan Lin
- Department of Oncology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Runqing Jia
- Department of Environment and Life Science, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China
| | - Yang Xia
- Department of Environment and Life Science, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China
| | - Zhaoyuan Liang
- Department of Environment and Life Science, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China
| | - Xiangqian Xiao
- Department of Environment and Life Science, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China
| | - Qin Hu
- Department of Environment and Life Science, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China
| | - Xiongwei Deng
- Department of Environment and Life Science, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China.
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100049, China.
| | - Qun Li
- Department of Oncology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200123, China.
| | - Wang Sheng
- Department of Environment and Life Science, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China.
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100049, China.
| |
Collapse
|
22
|
Ding L, Hao K, Sang L, Shen X, Zhang C, Fu D, Qi X. ATF2-driven osteogenic activity of enoxaparin sodium-loaded polymethylmethacrylate bone cement in femoral defect regeneration. J Orthop Surg Res 2023; 18:646. [PMID: 37653390 PMCID: PMC10470168 DOI: 10.1186/s13018-023-04017-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Polymethylmethacrylate (PMMA) bone cement loaded with enoxaparin sodium (PMMA@ES) has been increasingly highlighted to affect the bone repair of bone defects, but the molecular mechanisms remain unclear. We addressed this issue by identifying possible molecular mechanisms of PMMA@ES involved in femoral defect regeneration based on bioinformatics analysis and network pharmacology analysis. METHODS The upregulated genes affecting the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were selected through bioinformatics analysis, followed by intersection with the genes of ES-induced differentiation of BMSCs identified by network pharmacology analysis. PMMA@ES was constructed. Rat primary BMSCs were isolated and cultured in vitro in the proliferation medium (PM) and osteogenic medium (OM) to measure alkaline phosphatase (ALP) activity, mineralization of the extracellular matrix, and the expression of RUNX2 and OCN using gain- or loss-of-function experiments. A rat femoral bone defect model was constructed to detect the new bone formation in rats. RESULTS ATF2 may be a key gene in differentiating BMSCs into osteoblasts. In vitro cell assays showed that PMMA@ES promoted the osteogenic differentiation of BMSCs by increasing ALP activity, extracellular matrix mineralization, and RUNX2 and OCN expression in PM and OM. In addition, ATF2 activated the transcription of miR-335-5p to target ERK1/2 and downregulate the expression of ERK1/2. PMMA@ES induced femoral defect regeneration and the repair of femoral defects in rats by regulating the ATF2/miR-335-5p/ERK1/2 axis. CONCLUSION The evidence provided by our study highlighted the ATF2-mediated mechanism of PMMA@ES in the facilitation of the osteogenic differentiation of BMSCs and femoral defect regeneration.
Collapse
Affiliation(s)
- Luobin Ding
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Department of Orthopedic Surgery, Third Hospital of Shijiazhuang, Shijiazhuang, 050000, People's Republic of China
| | - Kangning Hao
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Linchao Sang
- Department of Orthopedic Surgery, Third Hospital of Shijiazhuang, Shijiazhuang, 050000, People's Republic of China
| | - Xiaoyu Shen
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Ce Zhang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Dehao Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, People's Republic of China.
| | - Xiangbei Qi
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
| |
Collapse
|
23
|
Taniue K, Oda T, Hayashi T, Kamoshida Y, Takeda Y, Sugawara A, Shimoura Y, Negishi L, Nagashima T, Okada-Hatakeyama M, Kawamura Y, Goshima N, Akimitsu N, Akiyama T. LncRNA ZNNT1 induces p53 degradation by interfering with the interaction between p53 and the SART3-USP15 complex. PNAS NEXUS 2023; 2:pgad220. [PMID: 37448957 PMCID: PMC10337854 DOI: 10.1093/pnasnexus/pgad220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Mammalian genomes encode large number of long noncoding RNAs (lncRNAs) that play key roles in various biological processes, including proliferation, differentiation, and stem cell pluripotency. Recent studies have addressed that some lncRNAs are dysregulated in human cancers and may play crucial roles in tumor development and progression. Here, we show that the lncRNA ZNNT1 is required for the proliferation and tumorigenicity of colon cancer cells with wild-type p53. ZNNT1 knockdown leads to decreased ubiquitination and stabilization of p53 protein. Moreover, we demonstrate that ZNNT1 needs to interact with SART3 to destabilize p53 and to promote the proliferation and tumorigenicity of colon cancer cells. We further show that SART3 is associated with the ubiquitin-specific peptidase USP15 and that ZNNT1 may induce p53 destabilization by inhibiting this interaction. These results suggest that ZNNT1 interferes with the SART3-USP15 complex-mediated stabilization of p53 protein and thereby plays important roles in the proliferation and tumorigenicity of colon cancer cells. Our findings suggest that ZNNT1 may be a promising molecular target for the therapy of colon cancer.
Collapse
Affiliation(s)
- Kenzui Taniue
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Takeaki Oda
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Tomoatsu Hayashi
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuki Kamoshida
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yasuko Takeda
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Anzu Sugawara
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuki Shimoura
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Lumi Negishi
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Takeshi Nagashima
- Cellular Systems Biology Team, RIKEN Genome Sciences Center (GSC), Kanagawa 230-0045, Japan
- Present address: SCC Project Department, SRL Inc., Shizuoka 4111-8777, Japan
| | - Mariko Okada-Hatakeyama
- Cellular Systems Biology Team, RIKEN Genome Sciences Center (GSC), Kanagawa 230-0045, Japan
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yoshifumi Kawamura
- Research and Development Department, Fukushima Translational Research Foundation, Tokyo 103-0023, Japan
| | - Naoki Goshima
- Department of Human Science, Musashino University, Tokyo 135-8181, Japan
| | | | | |
Collapse
|
24
|
Costa PMDS, Sales SLA, Pinheiro DP, Pontes LQ, Maranhão SS, Pessoa CDÓ, Furtado GP, Furtado CLM. Epigenetic reprogramming in cancer: From diagnosis to treatment. Front Cell Dev Biol 2023; 11:1116805. [PMID: 36866275 PMCID: PMC9974167 DOI: 10.3389/fcell.2023.1116805] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Disruption of the epigenetic program of gene expression is a hallmark of cancer that initiates and propagates tumorigenesis. Altered DNA methylation, histone modifications and ncRNAs expression are a feature of cancer cells. The dynamic epigenetic changes during oncogenic transformation are related to tumor heterogeneity, unlimited self-renewal and multi-lineage differentiation. This stem cell-like state or the aberrant reprogramming of cancer stem cells is the major challenge in treatment and drug resistance. Given the reversible nature of epigenetic modifications, the ability to restore the cancer epigenome through the inhibition of the epigenetic modifiers is a promising therapy for cancer treatment, either as a monotherapy or in combination with other anticancer therapies, including immunotherapies. Herein, we highlighted the main epigenetic alterations, their potential as a biomarker for early diagnosis and the epigenetic therapies approved for cancer treatment.
Collapse
Affiliation(s)
- Pedro Mikael da Silva Costa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Biotechnology Northeastern Network of Biotechnology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Sarah Leyenne Alves Sales
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, FIOCRUZ-Ceará, Sector of Biotechnology, Eusebio, Ceará, Brazil,Postgraduation Program in Biotechnology and Natural Resources, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Sarah Sant’Anna Maranhão
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Claudia do Ó. Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Biotechnology Northeastern Network of Biotechnology, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, FIOCRUZ-Ceará, Sector of Biotechnology, Eusebio, Ceará, Brazil,Postgraduation Program in Biotechnology and Natural Resources, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cristiana Libardi Miranda Furtado
- Drug Research and Development Center, Postgraduate Program in Translational Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil,Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil,*Correspondence: Cristiana Libardi Miranda Furtado,
| |
Collapse
|
25
|
Zheng HC, Xue H, Zhang CY, Shi KH, Zhang R. The clinicopathological significances and related signal pathways of BTG3 mRNA expression in cancers: A bioinformatics analysis. Front Genet 2022; 13:1006582. [PMID: 36186486 PMCID: PMC9523479 DOI: 10.3389/fgene.2022.1006582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
B cell transposition gene 3 (BTG3) is reported to be a tumor suppressor and suppresses proliferation and cell cycle progression. This study aims to analyze the clinicopathological and prognostic significances, and signal pathways of BTG3 mRNA expression in human beings through bioinformatics analysis. We analyzed BTG3 expression using Oncomine, TCGA (the cancer genome atlas), Xiantao, UALCAN (The University of ALabama at Birmingham Cancer data analysis Portal) and Kaplan-Meier plotter databases. Down-regulated BTG3 expression was observed in lung and breast cancers, compared with normal tissues (p < 0.05), but not for gastric and ovarian cancer (p < 0.05). The methylation of BTG3 was shown to be adversely correlated with its mRNA expression (p < 0.05). BTG3 expression was higher in gastric intestinal-type than diffuse-type carcinomas, G1 than G3 carcinomas (p < 0.05), in female than male cancer patients, T1-2 than T3-4, and adenocarcinoma than squamous cell carcinoma of lung cancer (p < 0.05), in invasive ductal than lobular carcinoma, N0 than N1 and N3, TNBC (triple-negative breast cancer) than luminal and Her2+, and Her2+ than luminal cancer of breast cancer (p < 0.05), and G3 than G2 ovarian carcinoma (p < 0.05). BTG3 expression was positively related to the survival rate of gastric and ovarian cancer patients (p < 0.05), but not for breast cancer (p < 0.05). KEGG and PPI (protein-protein interaction) analysis showed that the BTG3 was involved in cell cycle and DNA replication, digestion and absorption of fat and protein, spliceosome and ribosome in cancer. BTG3 expression was positively linked to carcinogenesis, histogenesis, and aggressive behaviors, and was employed to evaluate the prognosis of cancers by regulating cell cycle, metabolism, splicing and translation of RNA.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-Chuan Zheng,
| | - Hang Xue
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-Yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Kai-Hang Shi
- Department of Dermatology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Shenyang, China
| |
Collapse
|
26
|
LncRNA MAFG-AS1 promotes the malignant phenotype of ovarian cancer by upregulating NFKB1-dependent IGF1. Cancer Gene Ther 2022; 29:277-291. [PMID: 34035482 DOI: 10.1038/s41417-021-00306-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 02/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) were recently recognized to vitally function in a variety of cancer cellular events, including epithelial-mesenchymal transition (EMT), invasion, and migration, particularly in ovarian cancer (OC). Herein, we sought to investigate the potential role of MAFG-AS1 in the malignant behaviors of OC cells. The binding affinity between MAFG-AS1, miR-339-5p, NFKB1 or IGF1 was characterized so as to identify the underlying mechanism of corresponding their interactions. We conducted MAFG-AS1 overexpression or knockdown along with NFKB1 and IGF1 silencing to examine their effects on the EMT, migration, and invasion of OC cells. Tumors were xenografted in nude mice to validate the in vitro findings. Our data showed significantly high expression pattern of MAFG-AS1 in the OC tissues and cells. Further mechanistic investigations revealed that MAFG-AS1 upregulated the IGF1 expression pattern through recruitment of NFKB1, whereas MAFG-AS1 upregulated the NFKB1 expression pattern through binding to miR-339-5p. Thus, MAFG-AS1 overexpression accelerated the EMT, invasion, and migration of OC cells, which could be annulled by silencing of IGF1 or NFKB1. Besides, our in vitro findings were successfully recapitulated in the xenograft mice. These results determined that MAFG-AS1 stimulated the OC malignant progression by upregulating the NFKB1-mediated IGF1 via miR-339-5p, thus highlighting a novel potential therapeutic target against OC.
Collapse
|
27
|
Lu S, Ding X, Wang Y, Hu X, Sun T, Wei M, Wang X, Wu H. The Relationship Between the Network of Non-coding RNAs-Molecular Targets and N6-Methyladenosine Modification in Colorectal Cancer. Front Cell Dev Biol 2021; 9:772542. [PMID: 34938735 PMCID: PMC8685436 DOI: 10.3389/fcell.2021.772542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Recent accumulating researches implicate that non-coding RNAs (ncRNAs) including microRNA (miRNA), circular RNA (circRNA), and long non-coding RNA (lncRNAs) play crucial roles in colorectal cancer (CRC) initiation and development. Notably, N6-methyladenosine (m6A) methylation, the critical posttranscriptional modulators, exerts various functions in ncRNA metabolism such as stability and degradation. However, the interaction regulation network among ncRNAs and the interplay with m6A-related regulators has not been well documented, particularly in CRC. Here, we summarize the interaction networks and sub-networks of ncRNAs in CRC based on a data-driven approach from the publications (IF > 6) in the last quinquennium (2016–2021). Further, we extend the regulatory pattern between the core m6A regulators and m6A-related ncRNAs in the context of CRC metastasis and progression. Thus, our review will highlight the clinical potential of ncRNAs and m6A modifiers as promising biomarkers and therapeutic targets for improving the diagnostic precision and treatment of CRC.
Collapse
Affiliation(s)
- Senxu Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xiangyu Ding
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yuanhe Wang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Shenyang Kangwei Medical Laboratory Analysis Co. Ltd., Liaoning, China
| | - Xiaobin Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
28
|
Takahashi K, Taniue K, Ono Y, Fujiya M, Mizukami Y, Okumura T. Long Non-Coding RNAs in Epithelial-Mesenchymal Transition of Pancreatic Cancer. Front Mol Biosci 2021; 8:717890. [PMID: 34820419 PMCID: PMC8606592 DOI: 10.3389/fmolb.2021.717890] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Non-coding RNAs (ncRNAs), or RNA molecules that do not code for proteins, are generally categorized as either small or long ncRNA (lncRNA) and are involved in the pathogenesis of several diseases including many cancers. Identification of a large number of ncRNAs could help to elucidate previously unknown mechanisms in phenotype regulation. Some ncRNAs are encapsulated by extracellular vesicles (EVs) and transferred to recipient cells to regulate cellular processes, including epigenetic and post-transcriptional regulations. Recent studies have uncovered novel molecular mechanisms and functions of lncRNAs in pancreatic ductal adenocarcinoma (PDAC), one of the most intractable cancers that is highly invasive and metastatic. As the epithelial-mesenchymal transition (EMT) triggers tumor cell invasion and migration, clarification of the roles of lncRNA in EMT and tumor cell stemness would be critical for improving diagnostic and therapeutic approaches in metastatic cancers. This review provides an overview of relevant studies on lncRNA and its involvement with EMT in PDAC. Emerging knowledge offers evidence for the dysregulated expression of lncRNAs and essential insights into the potential contribution of both lncRNAs and EVs in the pathogenesis of PDAC. Future directions and new clinical applications for PDAC are also discussed.
Collapse
Affiliation(s)
- Kenji Takahashi
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzui Taniue
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.,Isotope Science Center, The University of Tokyo, Bunkyo, Japan
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Mikihiro Fujiya
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Mizukami
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.,Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Toshikatsu Okumura
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
29
|
Chen S, Fang Y, Sun L, He R, He B, Zhang S. Long Non-Coding RNA: A Potential Strategy for the Diagnosis and Treatment of Colorectal Cancer. Front Oncol 2021; 11:762752. [PMID: 34778084 PMCID: PMC8578871 DOI: 10.3389/fonc.2021.762752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC), being one of the most commonly diagnosed cancers worldwide, endangers human health. Because the pathological mechanism of CRC is not fully understood, there are many challenges in the prevention, diagnosis, and treatment of this disease. Long non-coding RNAs (lncRNAs) have recently drawn great attention for their potential roles in the different stages of CRC formation, invasion, and progression, including regulation of molecular signaling pathways, apoptosis, autophagy, angiogenesis, tumor metabolism, immunological responses, cell cycle, and epithelial-mesenchymal transition (EMT). This review aims to discuss the potential mechanisms of several oncogenic lncRNAs, as well as several suppressor lncRNAs, in CRC occurrence and development to aid in the discovery of new methods for CRC diagnosis, treatment, and prognosis assessment.
Collapse
Affiliation(s)
- Shanshan Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Fang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingyu Sun
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruonan He
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Zhang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
30
|
Xie G, Dong P, Chen H, Xu L, Liu Y, Ma Y, Zheng Y, Yang J, Zhou Y, Chen L, Shen L. Decreased expression of ATF3, orchestrated by β-catenin/TCF3, miR-17-5p and HOXA11-AS, promoted gastric cancer progression via increased β-catenin and CEMIP. Exp Mol Med 2021; 53:1706-1722. [PMID: 34728784 PMCID: PMC8639750 DOI: 10.1038/s12276-021-00694-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
ATF3 has been reported to be dysregulated in various cancers and involved in various steps of tumorigenesis. However, the mechanisms underlying the abnormal expression of ATF3 and its biological function in gastric cancer (GC) have not been well investigated. Here, we report ATF3 as one of the key regulators of GC development and progression. Patients with low ATF3 expression had shorter survival and a poorer prognosis. In vitro and in vivo assays investigating ATF3 alterations revealed a complex integrated phenotype that affects cell growth and migration. Strikingly, high-throughput sequencing and microarray analysis of cells with ATF3 silencing or of ATF3-low GC tissues indicated alterations in the Wnt signaling pathway, focal adhesions and adherens junctions. Mechanistically, the expression of β-catenin and cell migration inducing hyaluronidase 1 (CEMIP) was significantly upregulated in GC cells with downregulated ATF3, which was synergistically repressed by the β-catenin/TCF3 signaling axis and noncoding RNA miR-17-5p and HOXA11-AS. In addition, we found that WDR5 expression was promoted by TCF3 and is involved in miR-17-5p and HOXA11-AS activation in GC cells. Taken together, our findings revealed the mechanism of ATF3 downregulation and its biological role in regulating the expression of Wnt signaling-related genes during GC progression, suggesting new informative biomarkers of malignancy and therapeutic directions for GC patients. New treatments for gastric cancer could involve controlling the activity of a regulatory gene and associated signaling pathway. Over-activation of the Wnt signaling pathway, which regulates many cellular functions, occurs in around half of gastric cancers. Further, the activating transcription factor 3 gene (ATF3) is thought to influence tumorigenesis, although its role in gastric cancer is unclear. Guohua Xie and co-workers at Shanghai Jiao Tong University, China, explored the function of ATF3 in human gastric cancer tissues. Patients with low ATF3 expression had poorer prognosis and shorter life expectancy. The team discovered that reduced expression of ATF3 triggered the increased expression of two of its target genes, which then altered Wnt signaling. Reduced ATF3 expression also boosted the invasiveness of gastric cancer cells. Initial results suggest that overexpression of ATF3 could suppress gastric cancer progression.
Collapse
Affiliation(s)
- Guohua Xie
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Xu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Liu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhui Ma
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingxia Zheng
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyao Yang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunlan Zhou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Faculty of Medical Laboratory Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
Li J, Li MH, Wang TT, Liu XN, Zhu XT, Dai YZ, Zhai KC, Liu YD, Lin JL, Ge RL, Sun SH, Wang F, Yuan JH. SLC38A4 functions as a tumour suppressor in hepatocellular carcinoma through modulating Wnt/β-catenin/MYC/HMGCS2 axis. Br J Cancer 2021; 125:865-876. [PMID: 34274945 DOI: 10.1038/s41416-021-01490-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Many molecular alterations are shared by embryonic liver development and hepatocellular carcinoma (HCC). Identifying the common molecular events would provide a novel prognostic biomarker and therapeutic target for HCC. METHODS Expression levels and clinical relevancies of SLC38A4 and HMGCS2 were investigated by qRT-PCR, western blot, TCGA and GEO datasets. The biological roles of SLC38A4 were investigated by functional assays. The downstream signalling pathway of SLC38A4 was investigated by qRT-PCR, western blot, immunofluorescence, luciferase reporter assay, TCGA and GEO datasets. RESULTS SLC38A4 silencing was identified as an oncofetal molecular event. DNA hypermethylation contributed to the downregulations of Slc38a4/SLC38A4 in the foetal liver and HCC. Low expression of SLC38A4 was associated with poor prognosis of HCC patients. Functional assays demonstrated that SLC38A4 depletion promoted HCC cellular proliferation, stemness and migration, and inhibited HCC cellular apoptosis in vitro, and further repressed HCC tumorigenesis in vivo. HMGCS2 was identified as a critical downstream target of SLC38A4. SLC38A4 increased HMGCS2 expression via upregulating AXIN1 and repressing Wnt/β-catenin/MYC axis. Functional rescue assays showed that HMGCS2 overexpression reversed the oncogenic roles of SLC38A4 depletion in HCC. CONCLUSIONS SLC38A4 downregulation was identified as a novel oncofetal event, and SLC38A4 was identified as a novel tumour suppressor in HCC.
Collapse
Affiliation(s)
- Jie Li
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Ming-Han Li
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Tian-Tian Wang
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Xiao-Ning Liu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ting Zhu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun-Zhang Dai
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Ke-Chao Zhai
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Yong-da Liu
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Jia-Li Lin
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Rui-Liang Ge
- The Second Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Shu-Han Sun
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Fang Wang
- Department of Medical Genetics, Naval Medical University, Shanghai, China.
| | - Ji-Hang Yuan
- Department of Medical Genetics, Naval Medical University, Shanghai, China.
| |
Collapse
|
32
|
Wee Y, Liu Y, Zhao M. Identification of consistent post-translational regulatory triplets related to oncogenic and tumour suppressive modulators in childhood acute lymphoblastic leukemia. PeerJ 2021; 9:e11803. [PMID: 34316412 PMCID: PMC8286060 DOI: 10.7717/peerj.11803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/26/2021] [Indexed: 11/24/2022] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is the most common type of childhood cancer. It can be caused by mutations that turn on oncogenes or turn off tumour suppressor genes. For instance, changes in certain genes including Rb and p53 are common in ALL cells. Oncogenes and TSGs may serve as a modulator gene to regulate the gene expression level via their respective target genes. To investigate the regulatory relationship between oncogenes, tumour suppressor genes and transcription factors at the post translational level in childhood ALL, we performed an integrative network analysis on the gene regulation in the post-translational level for childhood ALL based on many publicly available cancer gene expression data including TARGET and GEO database. Methods We collected 259 childhood ALL-related genes from the latest online leukemia database, Leukemia Gene Literature Database. These 259 genes were selected from a comprehensive systematic literature with experimental evidences. The identified and curated genes were also associated with patient survival cases and we incorporated this pediatric ALL-related gene list into our analysis. We extracted the known human TFs from the TRRUST database. Among 259 childhood ALL-related genes, 101 unique regulators were mapped to the list of oncogene and tumour suppressor genes (TSGs) from the ONGene and the TSGene databases, and these included 74 TSGs, 62 oncogenes and 46 TF genes. Results The resulted regulation was presented as a hierarchical regulatory network with transcription factors (TFs) as intermediate regulators connecting the top modulators (oncogene and TSGs) to the common target genes. Cross-validation was applied to the results from the TARGET dataset by identifying the consistent regulatory motifs based on three independent ALL expression datasets. A three-layer regulatory network of consistent positive modulators in childhood ALL was constructed in which 74 modulators (40 oncogenes, 34 TSGs) are considered as the most important regulators. The middle layer and the bottom layer contain 34 TFs and 176 target genes, respectively. Oncogenes mostly participated in positive regulation of gene expression and the transcription process of RNA II polymerase, while TSGs were mainly involved in the negative regulation of gene expression. In addition, the oncogene-specific targets were enriched with regulators of the MAPK cascade while tumour suppressor-specific targets were associated with cell death. Conclusion The results revealed that oncogenes and TSGs possess a different functional regulatory pattern with regard to not only their biological functions but also their specific target genes in childhood ALL cancer progression. Taken together, our findings could contribute to a better understanding of the important regulatory mechanisms and this method could be used to analyse the targeted genes at the post-translational level in childhood ALL through integrative network analysis.
Collapse
Affiliation(s)
- YongKiat Wee
- School of Science and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Min Zhao
- School of Science and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| |
Collapse
|
33
|
Shirahama S, Taniue K, Mitsutomi S, Tanaka R, Kaburaki T, Sato T, Takeuchi M, Kawashima H, Urade Y, Aihara M, Akimitsu N. Human U90926 orthologous long non-coding RNA as a novel biomarker for visual prognosis in herpes simplex virus type-1 induced acute retinal necrosis. Sci Rep 2021; 11:12164. [PMID: 34108530 PMCID: PMC8190147 DOI: 10.1038/s41598-021-91340-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/25/2021] [Indexed: 11/08/2022] Open
Abstract
Acute retinal necrosis (ARN) is a form of infectious uveitis caused by alpha herpesviruses, including herpes simplex virus type 1 (HSV-1). We previously found that the long non-coding RNA (lncRNA) U90926 is upregulated in murine retinal photoreceptor cells following HSV-1 infection, leading to host cell death. However, to date, an orthologous transcript has not been identified in humans. We investigated U90926 orthologous transcript in humans and examined its utility as a prognostic marker for visual acuity in patients with ARN. We identified two human orthologous transcripts (1955 and 592 bases) of lncRNA U90926. The amount of the longer human U90926 transcript was approximately 30- and 40-fold higher in the vitreous fluid of patients with ARN than in those with sarcoidosis and intraocular lymphoma, respectively. Furthermore, the expression of the longer human U90926 transcript in the vitreous fluid was highly correlated with the final best-corrected logarithm of the minimum angle of resolution visual acuity in patients with ARN (r = 0.7671, p = 0.0079). This suggests higher expression of the longer human U90926 transcript in the vitreous fluid results in worse visual prognosis; therefore, expression of the longer human U90926 transcript is a potential negative prognostic marker for visual acuity in patients with ARN.
Collapse
Affiliation(s)
- Shintaro Shirahama
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | | | - Rie Tanaka
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshikatsu Kaburaki
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Ophthalmology, Jichi Medical University Saitama Medical Centre, Saitama, Japan
| | - Tomohito Sato
- Department of Ophthalmology, National Defense Medical College, Saitama, Japan
| | - Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, Saitama, Japan
| | | | - Yoshihiro Urade
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
- Daiichi University of Pharmacy, Fukuoka, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
34
|
Zheng L, Cao J, Liu L, Xu H, Chen L, Kang L, Gao L. Long noncoding RNA LINC00982 upregulates CTSF expression to inhibit gastric cancer progression via the transcription factor HEY1. Am J Physiol Gastrointest Liver Physiol 2021; 320:G816-G828. [PMID: 33236952 DOI: 10.1152/ajpgi.00209.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Upregulating the expression of long noncoding RNA LINC00982 controlled cell proliferation in gastric cancer, but the regulatory molecular mechanisms are yet to be expounded. We here aimed to elaborate how LINC00982 regulated the malignancy of gastric cancer cells. RT-qPCR and Western blot analysis were used to detect the expression of LINC00982 and cathepsin F (CTSF) in gastric cancer tissues and cells. Modulatory effect of LINC00982 on gastric cancer cells was assessed by CCK-8, colony formation, Transwell migration, and invasion assays. The relationship between LINC00982, YRPW motif 1 (HEY1), and CTSF was examined by RNA-binding protein immunoprecipitation, luciferase assay, and chromatin immunoprecipitation, and their interaction in the regulation of gastric cancer cellular functions was analyzed by performing gain-of-function and rescue assays. The nude mouse model of tumor formation was developed to examine the effects of LINC00982 on tumorigenesis. LINC00982 was lowly expressed in gastric cancer tissues, whereas its overexpression impaired the proliferative, migratory, and invasive properties of gastric cancer cells. Furthermore, LINC00982 could bind to transcription factor HEY1 and inhibited its expression. Through blocking the binding of HEY1 to CTSF promoter, LINC00982 promoted the expression of CTSF. Overexpression of HEY1 or inhibition of CTSF could reverse the antitumor effects of LINC00982 on gastric cancer, which were further demonstrated in vivo. All these taken together, LINC00982 acted as a tumor suppressor in gastric cancer, which is therefore suggested to be a potential antitumor target for gastric cancer.NEW & NOTEWORTHY We identified LINC00982 as a promising antitumor target for the treatment of patients with gastric cancer. We also determined a regulatory network involved in the pathophysiology of gastric cancer wherein LINC00982 could bind to HEY1 to impair its binding to cathepsin F (CTSF) promoter and hence promote CTSF expression, which aids in better understanding of molecular mechanisms related to gastric tumorigenesis.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Oncology, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Junlin Cao
- Department of Oncology, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Lijie Liu
- Department of Oncology, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Hongmei Xu
- Department of Oncology, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Lanlan Chen
- Department of Oncology, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Liying Kang
- Department of Oncology, Wuqing People's Hospital, Tianjin, China
| | - Liming Gao
- Department of Oncology, the First Hospital of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
35
|
Taniue K, Akimitsu N. Fusion Genes and RNAs in Cancer Development. Noncoding RNA 2021; 7:10. [PMID: 33557176 PMCID: PMC7931065 DOI: 10.3390/ncrna7010010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Fusion RNAs are a hallmark of some cancers. They result either from chromosomal rearrangements or from splicing mechanisms that are non-chromosomal rearrangements. Chromosomal rearrangements that result in gene fusions are particularly prevalent in sarcomas and hematopoietic malignancies; they are also common in solid tumors. The splicing process can also give rise to more complex RNA patterns in cells. Gene fusions frequently affect tyrosine kinases, chromatin regulators, or transcription factors, and can cause constitutive activation, enhancement of downstream signaling, and tumor development, as major drivers of oncogenesis. In addition, some fusion RNAs have been shown to function as noncoding RNAs and to affect cancer progression. Fusion genes and RNAs will therefore become increasingly important as diagnostic and therapeutic targets for cancer development. Here, we discuss the function, biogenesis, detection, clinical relevance, and therapeutic implications of oncogenic fusion genes and RNAs in cancer development. Further understanding the molecular mechanisms that regulate how fusion RNAs form in cancers is critical to the development of therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Cancer Genomics and Precision Medicine, Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
36
|
Taniue K, Akimitsu N. The Functions and Unique Features of LncRNAs in Cancer Development and Tumorigenesis. Int J Mol Sci 2021; 22:E632. [PMID: 33435206 PMCID: PMC7826647 DOI: 10.3390/ijms22020632] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Over the past decades, research on cancer biology has focused on the involvement of protein-coding genes in cancer development. Long noncoding RNAs (lncRNAs), which are transcripts longer than 200 nucleotides that lack protein-coding potential, are an important class of RNA molecules that are involved in a variety of biological functions. Although the functions of a majority of lncRNAs have yet to be clarified, some lncRNAs have been shown to be associated with human diseases such as cancer. LncRNAs have been shown to contribute to many important cancer phenotypes through their interactions with other cellular macromolecules including DNA, protein and RNA. Here we describe the literature regarding the biogenesis and features of lncRNAs. We also present an overview of the current knowledge regarding the roles of lncRNAs in cancer from the view of various aspects of cellular homeostasis, including proliferation, survival, migration and genomic stability. Furthermore, we discuss the methodologies used to identify the function of lncRNAs in cancer development and tumorigenesis. Better understanding of the molecular mechanisms involving lncRNA functions in cancer is critical for the development of diagnostic and therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Cancer Genomics and Precision Medicine, Division of Gastroenterology and Hematology-Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa 078-8510, Hokkaido, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
37
|
Liu S, Harmston N, Glaser TL, Wong Y, Zhong Z, Madan B, Virshup DM, Petretto E. Wnt-regulated lncRNA discovery enhanced by in vivo identification and CRISPRi functional validation. Genome Med 2020; 12:89. [PMID: 33092630 PMCID: PMC7580003 DOI: 10.1186/s13073-020-00788-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Wnt signaling is an evolutionarily conserved developmental pathway that is frequently hyperactivated in cancer. While multiple protein-coding genes regulated by Wnt signaling are known, the functional lncRNAs regulated by Wnt signaling have not been systematically characterized. METHODS We comprehensively mapped Wnt-regulated lncRNAs from an orthotopic Wnt-addicted pancreatic cancer model and examined the response of lncRNAs to Wnt inhibition between in vivo and in vitro cancer models. We further annotated and characterized these Wnt-regulated lncRNAs using existing genomic classifications (using data from FANTOM5) in the context of Wnt signaling and inferred their role in cancer pathogenesis (using GWAS and expression data from the TCGA). To functionally validate Wnt-regulated lncRNAs, we performed CRISPRi screens to assess their role in cancer cell proliferation both in vivo and in vitro. RESULTS We identified 3633 lncRNAs, of which 1503 were regulated by Wnt signaling in an orthotopic Wnt-addicted pancreatic cancer model. These lncRNAs were much more sensitive to changes in Wnt signaling in xenografts than in cultured cells. Our analysis suggested that Wnt signaling inhibition could influence the co-expression relationship of Wnt-regulated lncRNAs and their eQTL-linked protein-coding genes. Wnt-regulated lncRNAs were also implicated in specific gene networks involved in distinct biological processes that contribute to the pathogenesis of cancers. Consistent with previous genome-wide lncRNA CRISPRi screens, around 1% (13/1503) of the Wnt-regulated lncRNAs were found to modify cancer cell growth in vitro. This included CCAT1 and LINC00263, previously reported to regulate cancer growth. Using an in vivo CRISPRi screen, we doubled the discovery rate, identifying twice as many Wnt-regulated lncRNAs (25/1503) that had a functional effect on cancer cell growth. CONCLUSIONS Our study demonstrates the value of studying lncRNA functions in vivo, provides a valuable resource of lncRNAs regulated by Wnt signaling, and establishes a framework for systematic discovery of functional lncRNAs.
Collapse
Affiliation(s)
- Shiyang Liu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | | | - Trudy Lee Glaser
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Yunka Wong
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Zheng Zhong
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Enrico Petretto
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
- MRC London Institute of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
38
|
Motalebzadeh J, Eskandari E. Syntrophin beta 1 (SNTB1): Candidate as a new marker for colorectal cancer metastasis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Liu W, Liu P, Gao H, Wang X, Yan M. Long non-coding RNA PGM5-AS1 promotes epithelial-mesenchymal transition, invasion and metastasis of osteosarcoma cells by impairing miR-140-5p-mediated FBN1 inhibition. Mol Oncol 2020; 14:2660-2677. [PMID: 32412676 PMCID: PMC7530781 DOI: 10.1002/1878-0261.12711] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/14/2020] [Accepted: 05/11/2020] [Indexed: 01/31/2023] Open
Abstract
Osteosarcoma is an uncommon tumor occurring in bone, accompanied by elevated incidence and reduced rate of healing. Epithelial‐to‐mesenchymal transition (EMT) serves as a conceptual paradigm to explain the invasion and metastasis of osteosarcoma and other cancers. Hence, developing effective therapeutic strategy to treat the EMT of osteosarcoma is essential. Here, we identified the molecular mechanism of long noncoding RNA (lncRNA) PGM5‐AS1 in EMT and progression of osteosarcoma. Microarray‐based analysis was employed to screen the osteosarcoma‐related differentially expressed lncRNAs. The levels of PGM5‐AS1 as well as microRNA‐140‐5p (miR‐140‐5p) and fibrillin‐1 (FBN1) in osteosarcoma tissues and cells were determined. Dual‐luciferase reporter gene assay, RNA pull‐down assay, and RNA immunoprecipitation assay were conducted to validate the relationship among PGM5‐AS1, miR‐140‐5p, and FBN1. Expression of PGM5‐AS1, miR‐140‐5p, and FBN1 was altered by overexpression, shRNA, mimic, or inhibitors in order to investigate how they regulated migration, invasion, and EMT of osteosarcoma cells in vitro. Loss‐ and gain‐of‐function approaches were employed in nude mice to detect their roles in tumorigenesis in vivo. Osteosarcoma tissues and cells exhibited low expression of miR‐140‐5p, but high expression of PGM5‐AS1 and FBN1. PGM5‐AS1 competitively bound to miR‐140‐5p to upregulate FBN1. Furthermore, hindering PGM5‐AS1 and FBN1 or overexpressing miR‐140‐5p dampened migration, invasion, and EMT of osteosarcoma cells in vitro. Furthermore, silencing PGM5‐AS1 or FBN1, or overexpressing miR‐140‐5p markedly inhibited tumorigenesis in nude mice in vivo. Taken together, PGM5‐AS1 depletion causes FBN1 reduction to retard osteosarcoma processes by negatively modulating miR‐140‐5p.
Collapse
Affiliation(s)
- Wei Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Pengcheng Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hang Gao
- Department of Bone and Joint Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ming Yan
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Mastrogamvraki N, Zaravinos A. Signatures of co-deregulated genes and their transcriptional regulators in colorectal cancer. NPJ Syst Biol Appl 2020; 6:23. [PMID: 32737302 PMCID: PMC7395738 DOI: 10.1038/s41540-020-00144-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
The deregulated genes in colorectal cancer (CRC) vary significantly across different studies. Thus, a systems biology approach is needed to identify the co-deregulated genes (co-DEGs), explore their molecular networks, and spot the major hub proteins within these networks. We reanalyzed 19 GEO gene expression profiles to identify and annotate CRC versus normal signatures, single-gene perturbation, and single-drug perturbation signatures. We identified the co-DEGs across different studies, their upstream regulating kinases and transcription factors (TFs). Connectivity Map was used to identify likely repurposing drugs against CRC within each group. The functional changes of the co-upregulated genes in the first category were mainly associated with negative regulation of transforming growth factor β production and glomerular epithelial cell differentiation; whereas the co-downregulated genes were enriched in cotranslational protein targeting to the membrane. We identified 17 hub proteins across the co-upregulated genes and 18 hub proteins across the co-downregulated genes, composed of well-known TFs (MYC, TCF3, PML) and kinases (CSNK2A1, CDK1/4, MAPK14), and validated most of them using GEPIA2 and HPA, but also through two signature gene lists composed of the co-up and co-downregulated genes. We further identified a list of repurposing drugs that can potentially target the co-DEGs in CRC, including camptothecin, neostigmine bromide, emetine, remoxipride, cephaeline, thioridazine, and omeprazole. Similar analyses were performed in the co-DEG signatures in single-gene or drug perturbation experiments in CRC. MYC, PML, CDKs, CSNK2A1, and MAPKs were common hub proteins among all studies. Overall, we identified the critical genes in CRC and we propose repurposing drugs that could be used against them.
Collapse
Affiliation(s)
- Natalia Mastrogamvraki
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516, Nicosia, Cyprus
| | - Apostolos Zaravinos
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
41
|
Javed Z, Khan K, Sadia H, Raza S, Salehi B, Sharifi-Rad J, Cho WC. LncRNA & Wnt signaling in colorectal cancer. Cancer Cell Int 2020; 20:326. [PMID: 32699525 PMCID: PMC7372757 DOI: 10.1186/s12935-020-01412-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
The outlook for new therapeutic approaches is pivotal to ameliorate the deterioration caused by the abrogated Wnt signaling. Long non-coding RNAs (lncRNAs) are tiny molecules that have begun emerging as vital molecular manager for the regulation of various cellular processes at transcription and translation levels in the colorectal cancer (CRC). Targeting Wnt pathway with lncRNA seems a promising approach to eradicate CRC. However, little is known of their active role in commencing both apoptosis and proliferation in CRC. This article reviews the importance of these molecules in the pathogenesis of CRC and also emphasizes on the development of new therapeutic strategies to cope with the Wnt mediated CRC.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Sector-C, Phase VI, DHA, Lahore, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Shahid Raza
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| |
Collapse
|
42
|
Yeh SJ, Chen SW, Chen BS. Investigation of the Genome-Wide Genetic and Epigenetic Networks for Drug Discovery Based on Systems Biology Approaches in Colorectal Cancer. Front Genet 2020; 11:117. [PMID: 32211020 PMCID: PMC7068214 DOI: 10.3389/fgene.2020.00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/31/2020] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed type of cancer worldwide. The mechanisms leading to the progression of CRC are involved in both genetic and epigenetic regulations. In this study, we applied systems biology methods to identify potential biomarkers and conduct drug discovery in a computational approach. Using big database mining, we constructed a candidate protein-protein interaction network and a candidate gene regulatory network, combining them into a genome-wide genetic and epigenetic network (GWGEN). With the assistance of system identification and model selection approaches, we obtain real GWGENs for early-stage, mid-stage, and late-stage CRC. Subsequently, we extracted core GWGENs for each stage of CRC from their real GWGENs through a principal network projection method, and projected them to the Kyoto Encyclopedia of Genes and Genomes pathways for further analysis. Finally, we compared these core pathways resulting in different molecular mechanisms in each stage of CRC and identified carcinogenic biomarkers for the design of multiple-molecule drugs to prevent the progression of CRC. Based on the identified gene expression signatures, we suggested potential compounds combined with known CRC drugs to prevent the progression of CRC with querying Connectivity Map (CMap).
Collapse
Affiliation(s)
- Shan-Ju Yeh
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan.,Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Shuo-Wei Chen
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
43
|
UHRF1-KAT7-mediated regulation of TUSC3 expression via histone methylation/acetylation is critical for the proliferation of colon cancer cells. Oncogene 2019; 39:1018-1030. [PMID: 31582837 DOI: 10.1038/s41388-019-1032-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 01/24/2023]
Abstract
The epigenetic factor UHRF1 regulates transcription by modulating DNA methylation and histone modification, and plays critical roles in proliferation, development, and tumorigenesis. Here, we show that Wnt/c-Myc signaling upregulates UHRF1, which in turn downregulates TUSC3, a candidate tumor suppressor gene that is frequently deleted or downregulated in several cancers. We also show that UHRF1-mediated downregulation of TUSC3 is required for the proliferation of colon cancer cells. Furthermore, we demonstrate that UHRF1 suppresses TUSC3 expression by interacting with methylated H3K14 and thereby suppressing the acetylation of H3K14 by the histone acetyltransferase KAT7. Our study provides evidence for the significance of UHRF1-KAT7-mediated regulation of histone methylation/acetylation in the proliferation of tumor cells and in a diverse set of biological processes controlled by Wnt/c-Myc signaling.
Collapse
|
44
|
Uddin MN, Li M, Wang X. Identification of Transcriptional Markers and microRNA-mRNA Regulatory Networks in Colon Cancer by Integrative Analysis of mRNA and microRNA Expression Profiles in Colon Tumor Stroma. Cells 2019; 8:cells8091054. [PMID: 31500382 PMCID: PMC6769865 DOI: 10.3390/cells8091054] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
The aberrant expression of microRNAs (miRNAs) and genes in tumor microenvironment (TME) has been associated with the pathogenesis of colon cancer. An integrative exploration of transcriptional markers (gene signatures) and miRNA–mRNA regulatory networks in colon tumor stroma (CTS) remains lacking. Using two datasets of mRNA and miRNA expression profiling in CTS, we identified differentially expressed miRNAs (DEmiRs) and differentially expressed genes (DEGs) between CTS and normal stroma. Furthermore, we identified the transcriptional markers which were both gene targets of DEmiRs and hub genes in the protein–protein interaction (PPI) network of DEGs. Moreover, we investigated the associations between the transcriptional markers and tumor immunity in colon cancer. We identified 17 upregulated and seven downregulated DEmiRs in CTS relative to normal stroma based on a miRNA expression profiling dataset. Pathway analysis revealed that the downregulated DEmiRs were significantly involved in 25 KEGG pathways (such as TGF-β, Wnt, cell adhesion molecules, and cytokine–cytokine receptor interaction), and the upregulated DEmiRs were involved in 10 pathways (such as extracellular matrix (ECM)-receptor interaction and proteoglycans in cancer). Moreover, we identified 460 DEGs in CTS versus normal stroma by a meta-analysis of two gene expression profiling datasets. Among them, eight upregulated DEGs were both hub genes in the PPI network of DEGs and target genes of the downregulated DEmiRs. We found that three of the eight DEGs were negative prognostic factors consistently in two colon cancer cohorts, including COL5A2, EDNRA, and OLR1. The identification of transcriptional markers and miRNA–mRNA regulatory networks in CTS may provide insights into the mechanism of tumor immune microenvironment regulation in colon cancer.
Collapse
Affiliation(s)
- Md Nazim Uddin
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| | - Mengyuan Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
45
|
Long non-coding RNAs as regulators of Wnt/β catenin pathway. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Liang C, Zhao T, Li H, He F, Zhao X, Zhang Y, Chu X, Hua C, Qu Y, Duan Y, Ming L, Guo J. Long Non-coding RNA ITIH4-AS1 Accelerates the Proliferation and Metastasis of Colorectal Cancer by Activating JAK/STAT3 Signaling. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:183-193. [PMID: 31557619 PMCID: PMC6796638 DOI: 10.1016/j.omtn.2019.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 01/18/2023]
Abstract
Accumulating evidence has uncovered long non-coding RNAs (lncRNAs) as central regulators in the pathogenesis of diverse human cancers including colorectal cancer (CRC). The present study discovered that a novel lncRNA ITIH4 antisense RNA 1 (ITHI4-AS1) was frequently under-expressed in most normal human tissues, including colon tissues. Therefore, we aimed to investigate the role of ITHI4-AS1 in CRC. Interestingly, a significant overexpression of ITIH4-AS1 was observed in CRC cell lines relative to normal NCM460 cells. Also, we investigated the facilitating role of ITIH4-AS1 in CRC cell growth and metastasis both in vitro and in vivo. Additionally, we explained that ITIH4-AS1 upregulation in CRC was attributed to downregulation or even depletion of RE1 silencing transcription factor (REST), a presently identified transcriptional repressor for ITIH4-AS1. Meanwhile, the contribution of ITIH4-AS1 to CRC development was validated to rely on the activation of the JAK/STAT3 pathway. More importantly, we verified that FUS interacted with both ITIH4-AS1 and STAT3, and that ITIH4-AS1 evoked nuclear translocation of phosphorylated (p)-STAT3 in CRC through recruiting FUS. In summary, our findings unveiled for the first time that REST downregulation-enhanced ITIH4-AS1 exerts pro-tumor functions in CRC through FUS-dependent activation of the JAK/STAT3 pathway, implying that targeting ITIH4-AS1 may be a novel effective strategy for CRC therapy.
Collapse
Affiliation(s)
- Chaojie Liang
- Department of General Surgery, First Hospital/First Clinical College of Shanxi Medical University, No. 85, Jiefangnan Road, Yingze District, Taiyuan 030001, Shanxi, China
| | - Tuanjie Zhao
- Department of Colorectal and Anal Surgery, Beijing Er Long Lu Hospital, Beijing 100032, China
| | - Haijun Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Fucheng He
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xin Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xi Chu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chunlan Hua
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yunhui Qu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yu Duan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Jiansheng Guo
- Department of General Surgery, First Hospital/First Clinical College of Shanxi Medical University, No. 85, Jiefangnan Road, Yingze District, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
47
|
Zhu Y, He D, Bo H, Liu Z, Xiao M, Xiang L, Zhou J, Liu Y, Liu X, Gong L, Ma Y, Zhou Y, Zhou M, Xiong W, Yang F, Xing X, Li R, Li W, Cao K. The MRVI1-AS1/ATF3 signaling loop sensitizes nasopharyngeal cancer cells to paclitaxel by regulating the Hippo–TAZ pathway. Oncogene 2019; 38:6065-6081. [DOI: 10.1038/s41388-019-0858-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
|
48
|
Shi X, Jiang X, Yuan B, Liu T, Tang Y, Che Y, Shi Y, Ai Q. LINC01093 Upregulation Protects against Alcoholic Hepatitis through Inhibition of NF-κB Signaling Pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:791-803. [PMID: 31450097 PMCID: PMC6716105 DOI: 10.1016/j.omtn.2019.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
The long noncoding RNAs (lncRNAs) have been proven to be involved in the development of alcoholic hepatitis (AH), which has been regarded as a severe form of acute liver injury with a high mortality rate. Through the GEO database, the differentially expressed LINC01093 and intercellular cell adhesion molecule-1 (ICAM-1) were identified in AH. Then, to clarify their specific role and underlying mechanism in AH, we constructed an AH mouse model by using Lieber-Decarli alcoholic feed. It was found that LINC01093 was poorly expressed and ICAM-1 was highly expressed in AH mice. After that, the interactions among LINC01093, ICAM-1, and NF-κB signaling pathway were explored, which verified that LINC01093 could target ICAM-1 and inhibit the NF-κB signaling pathway. Finally, after the hepatocytes were isolated from AH mice, the expression of LINC01093 was up- or downregulated or that of ICAM-1 was silenced to evaluate their effect on cell viability and apoptosis. The corresponding results demonstrated that after overexpression of LINC01093 or silencing of ICAM-1, cell viability was increased and cell apoptosis was reduced in the hepatocytes of AH mice. Moreover, the silencing of LINC01093 was observed to inhibit the viability and promote the apoptosis of hepatocytes of AH mice. Altogether, these results provide evidence that overexpression of LINC01093 could effectively suppress hepatocyte apoptosis and promote proliferation by inhibiting the ICAM-1-mediated NF-κB signaling pathway, thus playing a functional role in AH and hepatic fibrosis.
Collapse
Affiliation(s)
- Xu Shi
- Clinical Laboratory, the First Hospital of Jilin University, Changchun 130000, China
| | - Xiaoming Jiang
- Department of Emergency, the First Hospital of Jilin University, Changchun 130000, China
| | - Baoshan Yuan
- Clinical Laboratory, the First Hospital of Jilin University, Changchun 130000, China
| | - Tianming Liu
- Clinical Laboratory, the First Hospital of Jilin University, Changchun 130000, China
| | - Ying Tang
- Department of Respiration, the First Hospital of Jilin University, Changchun 130000, China
| | - Yuanyuan Che
- Clinical Laboratory, the First Hospital of Jilin University, Changchun 130000, China
| | - Ying Shi
- Department of Hepatology, the First Hospital of Jilin University, Changchun 130000, China.
| | - Qing Ai
- Clinical Laboratory, the First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
49
|
Identification of Transcriptional Signatures of Colon Tumor Stroma by a Meta-Analysis. JOURNAL OF ONCOLOGY 2019; 2019:8752862. [PMID: 31186640 PMCID: PMC6521457 DOI: 10.1155/2019/8752862] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/31/2019] [Indexed: 12/24/2022]
Abstract
Background The tumor stroma plays pivotal roles in influencing tumor growth, invasion, and metastasis. Transcriptional signatures of colon tumor stroma (CTS) are significantly associated with prognosis of colon cancer. Thus, identification of the CTS transcriptional features could be useful for colon cancer diagnosis and therapy. Methods By a meta-analysis of three CTS gene expression profiles datasets, we identified differentially expressed genes (DEGs) between CTS and colon normal stroma. Furthermore, we identified the pathways, upstream regulators, and protein-protein interaction (PPI) network that were significantly associated with the DEGs. Moreover, we analyzed the enrichment levels of immune signatures in CTS. Finally, we identified CTS-associated gene signatures whose expression was significantly associated with prognosis in colon cancer. Results We identified numerous significantly upregulated genes (such as CTHRC1, NFE2L3, SULF1, SOX9, ENC1, and CCND1) and significantly downregulated genes (such as MYOT, ASPA, KIAA2022, ARHGEF37, BCL-2, and PPARGC1A) in CTS versus colon normal stroma. Furthermore, we identified significantly upregulated pathways in CTS that were mainly involved in cellular development, immune regulation, and metabolism, as well as significantly downregulated pathways in CTS that were mostly metabolism-related. Moreover, we identified upstream TFs (such as SUZ12, NFE2L2, RUNX1, STAT3, and SOX2), kinases (such as MAPK14, CSNK2A1, CDK1, CDK2, and CDK4), and master metabolic transcriptional regulators (MMTRs) (such as HNF1A, NFKB1, ZBTB7A, GATA2, and GATA5) regulating the DEGs. We found that CD8+ T cells were more enriched in CTS than in colon normal stroma. Interestingly, we found that many of the DEGs and their regulators were prognostic markers for colon cancer, including CEBPB, PPARGC1, STAT3, MTOR, BCL2, JAK2, and CDK1. Conclusions The identification of CTS-specific transcriptional signatures may provide insights into the tumor microenvironment that mediates the development of colon cancer and has potential clinical implications for colon cancer diagnosis and treatment.
Collapse
|
50
|
Wu Y, Yang X, Chen Z, Tian L, Jiang G, Chen F, Li J, An P, Lu L, Luo N, Du J, Shan H, Liu H, Wang H. m 6A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol Cancer 2019; 18:87. [PMID: 30979372 PMCID: PMC6461827 DOI: 10.1186/s12943-019-1014-2] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/26/2019] [Indexed: 02/08/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have emerged as critical players in cancer progression, but their functions in colorectal cancer (CRC) metastasis have not been systematically clarified. Methods lncRNA expression profiles in matched normal and CRC tissue were checked using microarray analysis. The biological roles of a novel lncRNA, namely RP11-138 J23.1 (RP11), in development of CRC were checked both in vitro and in vivo. Its association with clinical progression of CRC was further analyzed. Results RP11 was highly expressed in CRC tissues, and its expression increased with CRC stage in patients. RP11 positively regulated the migration, invasion and epithelial mesenchymal transition (EMT) of CRC cells in vitro and enhanced liver metastasis in vivo. Post-translational upregulation of Zeb1, an EMT-related transcription factor, was essential for RP11-induced cell dissemination. Mechanistically, the RP11/hnRNPA2B1/mRNA complex accelerated the mRNA degradation of two E3 ligases, Siah1 and Fbxo45, and subsequently prevented the proteasomal degradation of Zeb1. m6A methylation was involved in the upregulation of RP11 by increasing its nuclear accumulation. Clinical analysis showed that m6A can regulate the expression of RP11, further, RP11 regulated Siah1-Fbxo45/Zeb1 was involved in the development of CRC. Conclusions m6A-induced lncRNA RP11 can trigger the dissemination of CRC cells via post-translational upregulation of Zeb1. Considering the high and specific levels of RP11 in CRC tissues, our present study paves the way for further investigations of RP11 as a predictive biomarker or therapeutic target for CRC. Electronic supplementary material The online version of this article (10.1186/s12943-019-1014-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yingmin Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Xiangling Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Zhuojia Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Lin Tian
- Department of Pharmacy, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Feng Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jiexin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Panpan An
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Linlin Lu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Nan Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jun Du
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Hong Shan
- Key Laboratory of Biomedical Imaging of Guangdong Province, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Huanliang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China. .,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
| | - Hongsheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|