1
|
Dort EN, Feau N, Hamelin RC. Novel application of ribonucleoprotein-mediated CRISPR-Cas9 gene editing in plant pathogenic oomycete species. Microbiol Spectr 2025; 13:e0301224. [PMID: 40014012 PMCID: PMC11960053 DOI: 10.1128/spectrum.03012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
CRISPR-Cas9 gene editing has become an important tool for the study of plant pathogens, allowing researchers to functionally characterize specific genes involved in phytopathogenicity, virulence, and fungicide resistance. Protocols for CRISPR-Cas9 gene editing have already been developed for Phytophthoras, an important group of oomycete plant pathogens; however, these efforts have exclusively focused on agricultural pathosystems, with research lacking for forest pathosystems. We sought to develop CRISPR-Cas9 gene editing in two forest pathogenic Phytophthoras, Phytophthora cactorum and P. ramorum, using a plasmid-ribonucleoprotein (RNP) co-transformation approach. Our gene target in both species was the ortholog of PcORP1, which encodes an oxysterol-binding protein that is the target of the fungicide oxathiapiprolin in the agricultural pathogen P. capsici. We delivered liposome complexes, each containing plasmid DNA and CRISPR-Cas9 RNPs, to Phytophthora protoplasts using a polyethylene glycol-mediated transformation protocol. We obtained two ORP1 mutants in P. cactorum but were unable to obtain any mutants in P. ramorum. The two P. cactorum mutants exhibited decreased resistance to oxathiapiprolin, as measured by their radial growth relative to wild-type cultures on oxathiapiprolin-supplemented medium. Our results demonstrate the potential for RNP-mediated CRISPR-Cas9 gene editing in P. cactorum and provide a foundation for future optimization of our protocol in other forest pathogenic Phytophthora species.IMPORTANCECRISPR-Cas9 gene editing has become a valuable tool for characterizing the genetics driving virulence and pathogenicity in plant pathogens. CRISPR-Cas9 protocols are now well-established in several Phytophthora species, an oomycete genus with significant economic and ecological impact globally. These protocols, however, have been developed for agricultural Phytophthora pathogens only; CRISPR-Cas9 systems have not yet been developed for any forest pathogenic Phytophthoras. In this study, we sought to establish CRISPR-Cas9 gene editing in two forest Phytophthora pathogens that cause widespread tree mortality: P. cactorum and P. ramorum. We successfully obtained gene mutations in P. cactorum and demonstrated a decrease in fungicide resistance, a trait that could impact the pathogen's ability to cause disease. However, the same protocol did not yield any mutants in P. ramorum. The results of our study will serve as a baseline for the development of CRISPR-Cas9 gene editing in forest Phytophthoras and other oomycetes.
Collapse
Affiliation(s)
- Erika N. Dort
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicolas Feau
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia, Canada
| | - Richard C. Hamelin
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
- Département des Sciences du bois et de la Forêt, Faculté de Foresterie et Géographie, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
2
|
Greitens C, Leroux JC, Burger M. The intracellular visualization of exogenous DNA in fluorescence microscopy. Drug Deliv Transl Res 2024; 14:2242-2261. [PMID: 38526634 PMCID: PMC11208204 DOI: 10.1007/s13346-024-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
In the development of non-viral gene delivery vectors, it is essential to reliably localize and quantify transfected DNA inside the cell. To track DNA, fluorescence microscopy methods are commonly applied. These mostly rely on fluorescently labeled DNA, DNA binding proteins fused to a fluorescent protein, or fluorescence in situ hybridization (FISH). In addition, co-stainings are often used to determine the colocalization of the DNA in specific cellular compartments, such as the endolysosomes or the nucleus. We provide an overview of these DNA tracking methods, advice on how they should be combined, and indicate which co-stainings or additional methods are required to draw precise conclusions from a DNA tracking experiment. Some emphasis is given to the localization of exogenous DNA inside the nucleus, which is the last step of DNA delivery. We argue that suitable tools which allow for the nuclear detection of faint signals are still missing, hampering the rational development of more efficient non-viral transfection systems.
Collapse
Affiliation(s)
- Christina Greitens
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
3
|
Holmberg JC, Riley VA, Sokolov AM, Mukherjee S, Feliciano DM. Protocol for electroporating and isolating murine (sub)ventricular zone cells for single-nuclei omics. STAR Protoc 2024; 5:103095. [PMID: 38823010 PMCID: PMC11179414 DOI: 10.1016/j.xpro.2024.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024] Open
Abstract
In vivo genetic modification of neural stem cells is necessary to model the origins and pathogenesis of neurological disorders. Electroporation is a technique that applies a transient electrical field to direct charged molecules into living cells to genetically modify the mouse brain. Here, we provide a protocol to electroporate the neural stem cells surrounding the neonatal ventricles. We describe subsequent steps to isolate and prepare nuclei from the cells and their cellular progeny for single-nuclei omics. For complete details on the use and execution of this protocol, please refer to Riley et al.1.
Collapse
Affiliation(s)
- Jennie C Holmberg
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA.
| | - Victoria A Riley
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA
| | - Aidan M Sokolov
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA
| | - Sulagna Mukherjee
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA
| | - David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA; Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA.
| |
Collapse
|
4
|
Kamath ND, Matreyek KA. Multiplex Functional Characterization of Protein Variant Libraries in Mammalian Cells with Single-Copy Genomic Integration and High-Throughput DNA Sequencing. Methods Mol Biol 2024; 2774:135-152. [PMID: 38441763 DOI: 10.1007/978-1-0716-3718-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Sequencing-based, massively parallel genetic assays have enabled simultaneous characterization of the genotype-phenotype relationships for libraries encoding thousands of unique protein variants. Since plasmid transfection and lentiviral transduction have characteristics that limit multiplexing with pooled libraries, we developed a mammalian synthetic biology platform that harnesses the Bxb1 bacteriophage DNA recombinase to insert single promoterless plasmids encoding a transgene of interest into a pre-engineered "landing pad" site within the cell genome. The transgene is expressed behind a genomically integrated promoter, ensuring only one transgene is expressed per cell, preserving a strict genotype-phenotype link. Upon selecting cells based on a desired phenotype, the transgene can be sequenced to ascribe each variant a phenotypic score. We describe how to create and utilize landing pad cells for large-scale, library-based genetic experiments. Using the provided examples, the experimental template can be adapted to explore protein variants in diverse biological problems within mammalian cells.
Collapse
Affiliation(s)
- Nisha D Kamath
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kenneth A Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
5
|
Schenkel L, Wang X, Le N, Burger M, Kroschewski R. A dedicated cytoplasmic container collects extrachromosomal DNA away from the mammalian nucleus. Mol Biol Cell 2023; 34:ar105. [PMID: 37556227 PMCID: PMC10559310 DOI: 10.1091/mbc.e23-04-0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Expression from transfected plasmid DNA is generally transient, but it is unclear what process terminates it. We show that DNA entering mammalian cells is rapidly surrounded by a double membrane in the cytoplasm, in some cases after leaving the nucleus. This cytoplasmic container, termed exclusome, frequently also contains extrachromosomal telomeric DNA, and is maintained by the cell over several division cycles. The exclusome envelope contains endoplasmic reticulum proteins and the inner-nuclear membrane proteins Lap2β and Emerin, but differs from the nuclear envelope by its fenestrations and the absence of the Lamin B Receptor and nuclear pore complexes. Reduction of exclusome frequency upon overexpressing Emerin's LEM-domain suggests a role for Emerin in plasmid DNA compartmentalization. Thus, cells distinguish extrachromosomal DNA and chromosomes and wrap them into similar yet distinct envelopes keeping the former in the exclusome but the latter in the nucleus, where transcription occurs.
Collapse
Affiliation(s)
- Laura Schenkel
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- Molecular Life Science PhD Program, Life Science Zurich Graduate School, 8057 Zurich, Switzerland
| | - Xuan Wang
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- Molecular Life Science PhD Program, Life Science Zurich Graduate School, 8057 Zurich, Switzerland
| | - Nhung Le
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- Molecular Life Science PhD Program, Life Science Zurich Graduate School, 8057 Zurich, Switzerland
| | - Michael Burger
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Ruth Kroschewski
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Abstract
Human cytomegalovirus (HCMV) is a prevalent herpesvirus, infecting the majority of the human population. Like other herpesviruses, it causes lifelong infection through the establishment of latency. Although reactivation from latency can cause significant morbidity and mortality in immunocompromised hosts, our understanding of HCMV latency and how it is maintained remains limited. Here, we discuss the characterized latency reservoir in hematopoietic cells in the bone marrow and the gaps in our knowledge of mechanisms that facilitate HCMV genome maintenance in dividing cells. We further review clinical evidence that strongly suggests the tissue origin of HCMV reactivation, and we outline similarities to murine cytomegalovirus where latency in tissue-resident cells has been demonstrated. Overall, we think these observations call for a rethinking of HCMV latency reservoirs and point to potential sources of HCMV latency that reside in tissues.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Yu T, Zhang M, Zhang H, Zheng J, Shen C, Jiang N, Zou L, Wang J, Yu Y, Zhang Q, Yu S, Huang Y, Huang Y, Zhang J, Qiu C, Zhang W, Meng Z. Evidence of Residual Ongoing Viral Replication in Chronic Hepatitis B Patients Successfully Treated With Nucleos(t)ide Analogues. J Infect Dis 2023; 227:675-685. [PMID: 36546708 DOI: 10.1093/infdis/jiac493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/17/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chronic hepatitis B is usually treated with nucleos(t)ide analogues (NAs). However, a cure is rarely achieved, even with years of treatment. Here, we investigated whether viral replication is completely halted and how long covalently closed circular DNA (cccDNA) persists in patients successfully treated with NAs. METHODS A series of longitudinal serum samples and a collection of cross-sectional liver biopsies were obtained from patients successfully treated with NAs. Viral variants in serum HBV RNA were enumerated by deep sequencing. Viral replication intermediates in hepatocytes were directly visualized by in situ hybridization. The apparent half-life of each cccDNA was estimated. RESULTS Three of 6 successfully treated patients demonstrated clear evidence of a small proportion of virus evolution, although the overwhelming proportion of variants were identical or possessed a similar degree of divergence through time. The apparent half-life of variants was estimated to be from approximately 7.42 weeks to infinite. Hepatocytes remained positive for cytoplasmic nucleocapsids-associated relaxed circular DNA in 4 of 7 liver needle biopsies. CONCLUSIONS We conclude that even after prolonged treatment, a small proportion of the cccDNA reservoir is constantly replenished by continued low-level HBV replication, whereas a large proportion of the cccDNA reservoir persists over time.
Collapse
Affiliation(s)
- Tong Yu
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Miaoqu Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Hanyue Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Jianming Zheng
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan Shen
- Department of Infectious Disease, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
- Clinical Research Center for Infectious Disease of Hebei Province, Shijiazhuang, China
| | - Ning Jiang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Zou
- Department of Infectious Disease, Yancheng Second People's Hospital, Yancheng, China
| | - Jing Wang
- Department of Infectious Disease, Jingan District Central Hospital of Shanghai, Shanghai, China
| | - Yiqi Yu
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Qiran Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Shuili Yu
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Yanfang Huang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxian Huang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Jiming Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Qiu
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Zhefeng Meng
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Hannaford MR, Liu R, Billington N, Swider ZT, Galletta BJ, Fagerstrom CJ, Combs C, Sellers JR, Rusan NM. Pericentrin interacts with Kinesin-1 to drive centriole motility. J Cell Biol 2022; 221:e202112097. [PMID: 35929834 PMCID: PMC9361567 DOI: 10.1083/jcb.202112097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/02/2022] [Accepted: 07/12/2022] [Indexed: 12/23/2022] Open
Abstract
Centrosome positioning is essential for their function. Typically, centrosomes are transported to various cellular locations through the interaction of centrosomal microtubules (MTs) with motor proteins anchored at the cortex or the nuclear surface. However, it remains unknown how centrioles migrate in cellular contexts in which they do not nucleate MTs. Here, we demonstrate that during interphase, inactive centrioles move directly along the interphase MT network as Kinesin-1 cargo. We identify Pericentrin-Like-Protein (PLP) as a novel Kinesin-1 interacting molecule essential for centriole motility. In vitro assays show that PLP directly interacts with the cargo binding domain of Kinesin-1, allowing PLP to migrate on MTs. Binding assays using purified proteins revealed that relief of Kinesin-1 autoinhibition is critical for its interaction with PLP. Finally, our studies of neural stem cell asymmetric divisions in the Drosophila brain show that the PLP-Kinesin-1 interaction is essential for the timely separation of centrioles, the asymmetry of centrosome activity, and the age-dependent centrosome inheritance.
Collapse
Affiliation(s)
- Matthew R. Hannaford
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Rong Liu
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Neil Billington
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Zachary T. Swider
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Brian J. Galletta
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Carey J. Fagerstrom
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Christian Combs
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - James R. Sellers
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Dionisi S, Piera K, Baumschlager A, Khammash M. Implementation of a Novel Optogenetic Tool in Mammalian Cells Based on a Split T7 RNA Polymerase. ACS Synth Biol 2022; 11:2650-2661. [PMID: 35921263 PMCID: PMC9396705 DOI: 10.1021/acssynbio.2c00067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Optogenetic tools are widely used to control gene expression
dynamics
both in prokaryotic and eukaryotic cells. These tools are used in
a variety of biological applications from stem cell differentiation
to metabolic engineering. Despite some tools already available in
bacteria, no light-inducible system currently exists to control gene
expression independently from mammalian transcriptional and/or translational
machineries thus working orthogonally to endogenous regulatory mechanisms.
Such a tool would be particularly important in synthetic biology,
where orthogonality is advantageous to achieve robust activation of
synthetic networks. Here we implement, characterize, and optimize
a new optogenetic tool in mammalian cells based on a previously published
system in bacteria called Opto-T7RNAPs. The tool is orthogonal to
the cellular machinery for transcription and consists of a split T7
RNA polymerase coupled with the blue light-inducible magnets system
(mammalian OptoT7–mOptoT7). In our study we exploited the T7
polymerase’s viral origins to tune our system’s expression
level, reaching up to an almost 20-fold change activation over the
dark control. mOptoT7 is used here to generate mRNA for protein expression,
shRNA for protein inhibition, and Pepper aptamer for RNA visualization.
Moreover, we show that mOptoT7 can mitigate the gene expression burden
when compared to another optogenetic construct. These properties make
mOptoT7 a powerful new tool to use when orthogonality and viral RNA
species (that lack endogenous RNA modifications) are desired.
Collapse
Affiliation(s)
- Sara Dionisi
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Karol Piera
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Armin Baumschlager
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
10
|
Ferrandiz N, Downie L, Starling GP, Royle SJ. Endomembranes promote chromosome missegregation by ensheathing misaligned chromosomes. J Cell Biol 2022; 221:e202203021. [PMID: 35486148 PMCID: PMC9066052 DOI: 10.1083/jcb.202203021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 01/29/2023] Open
Abstract
Errors in mitosis that cause chromosome missegregation lead to aneuploidy and micronucleus formation, which are associated with cancer. Accurate segregation requires the alignment of all chromosomes by the mitotic spindle at the metaphase plate, and any misalignment must be corrected before anaphase is triggered. The spindle is situated in a membrane-free "exclusion zone"; beyond this zone, endomembranes (mainly endoplasmic reticulum) are densely packed. We investigated what happens to misaligned chromosomes localized beyond the exclusion zone. Here we show that such chromosomes become ensheathed in multiple layers of endomembranes. Chromosome ensheathing delays mitosis and increases the frequency of chromosome missegregation and micronucleus formation. We use an induced organelle relocalization strategy in live cells to show that clearance of endomembranes allows for the rescue of chromosomes that were destined for missegregation. Our findings indicate that endomembranes promote the missegregation of misaligned chromosomes that are outside the exclusion zone and therefore constitute a risk factor for aneuploidy.
Collapse
Affiliation(s)
- Nuria Ferrandiz
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry, UK
| | - Laura Downie
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry, UK
| | | | - Stephen J. Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry, UK
| |
Collapse
|
11
|
Bianca C, Sidhartha E, Tiribelli C, El-Khobar KE, Sukowati CHC. Role of hepatitis B virus in development of hepatocellular carcinoma: Focus on covalently closed circular DNA. World J Hepatol 2022; 14:866-884. [PMID: 35721287 PMCID: PMC9157711 DOI: 10.4254/wjh.v14.i5.866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) remains a major global health problem, especially in developing countries. It may lead to prolonged liver damage, fibrosis, cirrhosis, and hepatocellular carcinoma. Persistent chronic HBV infection is related to host immune response and the stability of the covalently closed circular DNA (cccDNA) in human hepatocytes. In addition to being essential for viral transcription and replication, cccDNA is also suspected to play a role in persistent HBV infections or hepatitis relapses since cccDNA is very stable in non-dividing human hepatocytes. Understanding the pathogenicity and oncogenicity of HBV components would be essential in the development of new diagnostic tools and treatment strategies. This review summarizes the role and molecular mechanisms of HBV cccDNA in hepatocyte transformation and hepatocarcinogenesis and current efforts to its detection and targeting.
Collapse
Affiliation(s)
- Claryssa Bianca
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta 13210, Indonesia
| | - Elizabeth Sidhartha
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta 13210, Indonesia
| | - Claudio Tiribelli
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
| | - Korri Elvanita El-Khobar
- Eijkman Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Caecilia H C Sukowati
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
- Eijkman Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia.
| |
Collapse
|
12
|
Berry S, Müller M, Rai A, Pelkmans L. Feedback from nuclear RNA on transcription promotes robust RNA concentration homeostasis in human cells. Cell Syst 2022; 13:454-470.e15. [PMID: 35613616 DOI: 10.1016/j.cels.2022.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/13/2021] [Accepted: 04/21/2022] [Indexed: 12/18/2022]
Abstract
RNA concentration homeostasis involves coordinating RNA abundance and synthesis rates with cell size. Here, we study this in human cells by combining genome-wide perturbations with quantitative single-cell measurements. Despite relative ease in perturbing RNA synthesis, we find that RNA concentrations generally remain highly constant. Perturbations that would be expected to increase nuclear mRNA levels, including those targeting nuclear mRNA degradation or export, result in downregulation of RNA synthesis. This is associated with reduced abundance of transcription-associated proteins and protein states that are normally coordinated with RNA production in single cells, including RNA polymerase II (RNA Pol II) itself. Acute perturbations, elevation of nuclear mRNA levels, and mathematical modeling indicate that mammalian cells achieve robust mRNA concentration homeostasis by the mRNA-based negative feedback on transcriptional activity in the nucleus. This ultimately acts to coordinate RNA Pol II abundance with nuclear mRNA degradation and export rates and may underpin the scaling of mRNA abundance with cell size.
Collapse
Affiliation(s)
- Scott Berry
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| | - Micha Müller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Arpan Rai
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Bustamante-Jaramillo LF, Fingal J, Blondot ML, Rydell GE, Kann M. Imaging of Hepatitis B Virus Nucleic Acids: Current Advances and Challenges. Viruses 2022; 14:v14030557. [PMID: 35336964 PMCID: PMC8950347 DOI: 10.3390/v14030557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/30/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatitis B virus infections are the main reason for hepatocellular carcinoma development. Current treatment reduces the viral load but rarely leads to virus elimination. Despite its medical importance, little is known about infection dynamics on the cellular level not at least due to technical obstacles. Regardless of infections leading to extreme viral loads, which may reach 1010 virions per mL serum, hepatitis B viruses are of low abundance and productivity in individual cells. Imaging of the infections in cells is thus a particular challenge especially for cccDNA that exists only in a few copies. The review describes the significance of microscopical approaches on genome and transcript detection for understanding hepatitis B virus infections, implications for understanding treatment outcomes, and recent microscopical approaches, which have not been applied in HBV research.
Collapse
Affiliation(s)
- Luisa F. Bustamante-Jaramillo
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
| | - Joshua Fingal
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
| | - Marie-Lise Blondot
- Microbiologie Fondamentale et Pathogénicité (MFP), CNRS UMR 5234, University of Bordeaux, 33076 Bordeaux, France;
| | - Gustaf E. Rydell
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
| | - Michael Kann
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
- Region Västra Götaland, Department of Clinical Microbiology, Sahlgrenska University Hospital, 405 30 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
14
|
Burger M, Kaelin S, Leroux J. The TFAMoplex-Conversion of the Mitochondrial Transcription Factor A into a DNA Transfection Agent. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104987. [PMID: 35038234 PMCID: PMC8922101 DOI: 10.1002/advs.202104987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Non-viral gene delivery agents, such as cationic lipids, polymers, and peptides, mainly rely on charge-based and hydrophobic interactions for the condensation of DNA molecules into nanoparticles. The human protein mitochondrial transcription factor A (TFAM), on the other hand, has evolved to form nanoparticles with DNA through highly specific protein-protein and protein-DNA interactions. Here, the properties of TFAM are repurposed to create a DNA transfection agent by means of protein engineering. TFAM is covalently fused to Listeria monocytogenes phospholipase C (PLC), an enzyme that lyses lipid membranes under acidic conditions, to enable endosomal escape and human vaccinia-related kinase 1 (VRK1), which is intended to protect the DNA from cytoplasmic defense mechanisms. The TFAM/DNA complexes (TFAMoplexes) are stabilized by cysteine point mutations introduced rationally in the TFAM homodimerization site, resulting in particles, which show maximal activity when formed in 80% serum and transfect HeLa cells in vitro after 30 min of incubation under challenging cell culture conditions. The herein developed TFAM-based DNA scaffolds combine interesting characteristics in an easy-to-use system and can be readily expanded with further protein factors. This makes the TFAMoplex a promising tool in protein-based gene delivery.
Collapse
Affiliation(s)
- Michael Burger
- Swiss Federal Institute of Technology Zurich (ETHZ)Department of Chemistry and Applied BiosciencesInstitute of Pharmaceutical SciencesVladimir‐Prelog‐Weg 3Zurich8093Switzerland
| | - Seraina Kaelin
- Swiss Federal Institute of Technology Zurich (ETHZ)Department of Chemistry and Applied BiosciencesInstitute of Pharmaceutical SciencesVladimir‐Prelog‐Weg 3Zurich8093Switzerland
| | - Jean‐Christophe Leroux
- Swiss Federal Institute of Technology Zurich (ETHZ)Department of Chemistry and Applied BiosciencesInstitute of Pharmaceutical SciencesVladimir‐Prelog‐Weg 3Zurich8093Switzerland
| |
Collapse
|
15
|
Transfected plasmid DNA is incorporated into the nucleus via nuclear envelope reformation at telophase. Commun Biol 2022; 5:78. [PMID: 35058555 PMCID: PMC8776997 DOI: 10.1038/s42003-022-03021-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
AbstractDNA transfection is an important technology in life sciences, wherein nuclear entry of DNA is necessary to express exogenous DNA. Non-viral vectors and their transfection reagents are useful as safe transfection tools. However, they have no effect on the transfection of non-proliferating cells, the reason for which is not well understood. This study elucidates the mechanism through which transfected DNA enters the nucleus for gene expression. To monitor the behavior of transfected DNA, we introduce plasmid bearing lacO repeats and RFP-coding sequences into cells expressing GFP-LacI and observe plasmid behavior and RFP expression in living cells. RFP expression appears only after mitosis. Electron microscopy reveals that plasmids are wrapped with nuclear envelope (NE)‒like membranes or associated with chromosomes at telophase. The depletion of BAF, which is involved in NE reformation, delays plasmid RFP expression. These results suggest that transfected DNA is incorporated into the nucleus during NE reformation at telophase.
Collapse
|
16
|
Dekevic G, Tasto L, Czermak P, Salzig D. Statistical experimental designs to optimize the transient transfection of HEK 293 T cells and determine a transfer criterion from adherent cells to larger-scale cell suspension cultures. J Biotechnol 2022; 346:23-34. [DOI: 10.1016/j.jbiotec.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/20/2021] [Accepted: 01/15/2022] [Indexed: 02/04/2023]
|
17
|
Abbas G, Tang S, Noble J, Lane RP. Olfactory receptor coding sequences cause silencing of episomal constructs in multiple cell lines. Mol Cell Neurosci 2021; 117:103681. [PMID: 34742908 PMCID: PMC8669572 DOI: 10.1016/j.mcn.2021.103681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022] Open
Abstract
The mammalian olfactory system consists of sensory neurons with specialized odorant-binding capability accomplished by mutually exclusive odorant receptor (OR) expression. Mutually exclusive OR expression is a complex multi-step process regulated by a number of cis and trans factors, including pan-silencing of all OR genes preceding the robust and stable expression of the one OR selected in each sensory neuron. We transfected two olfactory-placode-derived cell lines modeling immature odorant sensory neurons, as well as the GD25 fibroblast cell line, with episomes containing CMV-driven GFP and TK-driven hygromycin reporter genes. We inserted various coding sequences, along with an IRES, immediately upstream of the GFP gene to produce bicistronic mRNAs driven from the local CMV promoter. We found that the presence of several OR coding sequences resulted in significantly diminished episomal expression of GFP in all three cell lines. These findings suggest that OR coding sequences have intrinsic self-silencing capability that might facilitate mutually exclusive OR expression in olfactory sensory neurons by making it less likely that multiple ORs acquire an above-threshold level of expression at once.
Collapse
Affiliation(s)
- Ghazia Abbas
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Spencer Tang
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Joyce Noble
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Robert P Lane
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA.
| |
Collapse
|
18
|
Abstract
The centrosome is a unique organelle: the semi-conservative nature of its duplication generates an inherent asymmetry between ‘mother’ and ‘daughter’ centrosomes, which differ in their age. This asymmetry has captivated many cell biologists, but its meaning has remained enigmatic. In the last two decades, many stem cell types have been shown to display stereotypical inheritance of either the mother or daughter centrosome. These observations have led to speculation that the mother and daughter centrosomes bear distinct information, contributing to differential cell fates during asymmetric cell divisions. This review summarizes recent progress and discusses how centrosome asymmetry may promote asymmetric fates during stem cell divisions.
Collapse
Affiliation(s)
- Cuie Chen
- Life Sciences Institute, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yukiko M Yamashita
- Life Sciences Institute, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
19
|
Royall LN, Jessberger S. How stem cells remember their past. Curr Opin Cell Biol 2021; 69:17-22. [PMID: 33429112 DOI: 10.1016/j.ceb.2020.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022]
Abstract
Somatic stem cells are required for tissue development, homeostasis, and repair. Recent data suggested that previous biographical experiences of individual stem cells influence their behavior in the context of tissue formation and govern stem cell responses to external stimuli. Here we provide a concise review how a cell's biography, for example, previous rounds of cell divisions or the age-dependent accumulation of cellular damage, is remembered in stem cells and how previous experiences affect the segregation of cellular components, thus guiding cellular behavior in vertebrate stem cells. Further, we suggest future directions of research that may help to unravel the molecular underpinnings of how past experiences guide future cellular behavior.
Collapse
Affiliation(s)
- Lars N Royall
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
20
|
Lijster T, Åberg C. Asymmetry of nanoparticle inheritance upon cell division: Effect on the coefficient of variation. PLoS One 2020; 15:e0242547. [PMID: 33201918 PMCID: PMC7671523 DOI: 10.1371/journal.pone.0242547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/04/2020] [Indexed: 11/28/2022] Open
Abstract
Several previous studies have shown that when a cell that has taken up nanoparticles divides, the nanoparticles are inherited by the two daughter cells in an asymmetrical fashion, with one daughter cell receiving more nanoparticles than the other. This interesting observation is typically demonstrated either indirectly using mathematical modelling of high-throughput experimental data or more directly by imaging individual cells as they divide. Here we suggest that measurements of the coefficient of variation (standard deviation over mean) of the number of nanoparticles per cell over the cell population is another means of assessing the degree of asymmetry. Using simulations of an evolving cell population, we show that the coefficient of variation is sensitive to the degree of asymmetry and note its characteristic evolution in time. As the coefficient of variation is readily measurable using high-throughput techniques, this should allow a more rapid experimental assessment of the degree of asymmetry.
Collapse
Affiliation(s)
- Tim Lijster
- Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Christoffer Åberg
- Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
21
|
DNA unchained: two assays to discover and study inhibitors of the DNA clustering function of barrier-to-autointegration factor. Sci Rep 2020; 10:12301. [PMID: 32704141 PMCID: PMC7378220 DOI: 10.1038/s41598-020-69246-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022] Open
Abstract
The protein barrier-to-autointegration factor (BAF) and its interaction partners, the LEM (LAP2B, emerin, MAN1)-domain proteins, constitute a powerful cytoplasmic DNA defense mechanism. Invading DNA molecules are quickly bound by the BAF system and trapped in membrane compartments. This decreases the nuclear uptake of DNA from the cytoplasm. Inhibition of the BAF system is therefore expected to enhance the efficacy of non-viral DNA transfection agents. In this study, we introduced a protocol for the recombinant expression of soluble BAF and developed two ELISA-type assays to discover small molecule inhibitors of BAF-dependent DNA retention by high throughput screening (HTS). The proton pump inhibitor rabeprazole as well as three compounds of the Maybridge library were identified as inhibitors of the LEM-BAF-DNA interaction chain. The inhibition was based on adduct formation with BAF cysteine residues. An enhancing effect of the compounds on cell culture transfection, however, was not observed, which may be attributed to the reducing environment of the cytoplasm that prevents the adduct formation with BAF cysteine residues. The novel assays developed here can provide new tools to further study the biological functions of the BAF system, and may lead to the identification of suitable BAF inhibitors in future HTS campaigns.
Collapse
|
22
|
Goudy J, Henley T, Méndez HG, Bressan M. Simplified platform for mosaic in vivo analysis of cellular maturation in the developing heart. Sci Rep 2019; 9:10716. [PMID: 31341189 PMCID: PMC6656758 DOI: 10.1038/s41598-019-47009-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
Cardiac cells develop within an elaborate electro-mechanical syncytium that continuously generates and reacts to biophysical force. The complexity of the cellular interactions, hemodynamic stresses, and electrical circuitry within the forming heart present significant challenges for mechanistic research into the cellular dynamics of cardiomyocyte maturation. Simply stated, it is prohibitively difficult to replicate the native electro-mechanical cardiac microenvironment in tissue culture systems favorable to high-resolution cellular/subcellular analysis, and current transgenic models of higher vertebrate heart development are limited in their ability to manipulate and assay the behavior of individual cells. As such, cardiac research currently lacks a simple experimental platform for real-time evaluation of cellular function under conditions that replicate native development. Here we report the design and validation of a rapid, low-cost system for stable in vivo somatic transgenesis that allows for individual cells to be genetically manipulated, tracked, and examined at subcellular resolution within the forming four-chambered heart. This experimental platform has several advantages over current technologies, chief among these being that mosaic cellular perturbations can be conducted without globally altering cardiac function. Consequently, direct analysis of cellular behavior can be interrogated in the absence of the organ level adaptions that often confound data interpretation in germline transgenic model organisms.
Collapse
Affiliation(s)
- Julie Goudy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, USA.,McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Trevor Henley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, USA.,McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Hernán G Méndez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Michael Bressan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, USA. .,McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|
23
|
Denoth-Lippuner A, Jessberger S. Mechanisms of cellular rejuvenation. FEBS Lett 2019; 593:3381-3392. [PMID: 31197818 DOI: 10.1002/1873-3468.13483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 01/15/2023]
Abstract
Aging leads to changes on an organismal but also cellular level. However, the exact mechanisms of cellular aging in mammals remain poorly understood and the identity and functional role of aging factors, some of which have previously been defined in model organisms such as Saccharomyces cerevisiae, remain elusive. Remarkably, during cellular reprogramming most if not all aging hallmarks are erased, offering a novel entry point to study aging and rejuvenation on a cellular level. On the other hand, direct reprogramming of old cells into cells of a different fate preserves many aging signs. Therefore, investigating the process of reprogramming and comparing it to direct reprogramming may yield novel insights about the clearing of aging factors, which is the basis of rejuvenation. Here, we discuss how reprogramming might lead to rejuvenation of a cell, an organ, or even the whole organism.
Collapse
Affiliation(s)
- Annina Denoth-Lippuner
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Switzerland
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Switzerland
| |
Collapse
|
24
|
Asymmetric division events promote variability in cell cycle duration in animal cells and Escherichia coli. Nat Commun 2019; 10:1901. [PMID: 31015409 PMCID: PMC6478688 DOI: 10.1038/s41467-019-09413-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 03/08/2019] [Indexed: 11/29/2022] Open
Abstract
Asymmetric cell division is a major mechanism generating cell diversity. As cell cycle duration varies among cells in mammalian tissue culture cells, we asked whether their division asymmetry contributes to this variability. We identify among sibling cells an outlier using hierarchical clustering on cell cycle durations of granddaughter cells obtained by lineage tracking of single histone2B-labelled MDCKs. Remarkably, divisions involving outlier cells are not uniformly distributed in lineages, as shown by permutation tests, but appear to emerge from asymmetric divisions taking place at non-stochastic levels: a parent cell influences with 95% confidence and 0.5% error the unequal partitioning of the cell cycle duration in its two progenies. Upon ninein downregulation, this variability propagation is lost, and outlier frequency and variability in cell cycle durations in lineages is reduced. As external influences are not detectable, we propose that a cell-autonomous process, possibly involved in cell specialisation, determines cell cycle duration variability. We know that variations in cell cycle duration between cells naturally occur but the mechanisms are largely unknown. Here, using lineage tracking, hierarchical clustering and Monte Carlo methods, the authors show that large differences in granddaughter cell cycle duration are driven by asymmetric divisions.
Collapse
|
25
|
Møller HD, Lin L, Xiang X, Petersen TS, Huang J, Yang L, Kjeldsen E, Jensen UB, Zhang X, Liu X, Xu X, Wang J, Yang H, Church GM, Bolund L, Regenberg B, Luo Y. CRISPR-C: circularization of genes and chromosome by CRISPR in human cells. Nucleic Acids Res 2018; 46:e131. [PMID: 30551175 PMCID: PMC6294522 DOI: 10.1093/nar/gky767] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/28/2018] [Accepted: 08/20/2018] [Indexed: 12/18/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) and ring chromosomes are genetic alterations found in humans with genetic disorders. However, there is a lack of genetic engineering tools to recapitulate and study the biogenesis of eccDNAs. Here, we created a dual-fluorescence biosensor cassette, which upon the delivery of pairs of CRISPR/Cas9 guide RNAs, CRISPR-C, allows us to study the biogenesis of a specific fluorophore expressing eccDNA in human cells. We show that CRISPR-C can generate functional eccDNA, using the novel eccDNA biosensor system. We further reveal that CRISPR-C also can generate eccDNAs from intergenic and genic loci in human embryonic kidney 293T cells and human mammary fibroblasts. EccDNAs mainly forms by end-joining mediated DNA-repair and we show that CRISPR-C is able to generate endogenous eccDNAs in sizes from a few hundred base pairs and ranging up to 207 kb. Even a 47.4 megabase-sized ring chromosome 18 can be created by CRISPR-C. Our study creates a new territory for CRISPR gene editing and highlights CRISPR-C as a useful tool for studying the cellular impact, persistence and function of eccDNAs.
Collapse
MESH Headings
- Base Sequence
- Biosensing Techniques
- CRISPR-Associated Protein 9/genetics
- CRISPR-Associated Protein 9/metabolism
- CRISPR-Cas Systems
- Cell Line
- Chromosomes, Human, Pair 18/chemistry
- Chromosomes, Human, Pair 18/metabolism
- Clustered Regularly Interspaced Short Palindromic Repeats
- DNA End-Joining Repair
- DNA, Circular/genetics
- DNA, Circular/metabolism
- Fibroblasts
- Fluorescent Dyes/chemistry
- Fluorescent Dyes/metabolism
- Gene Editing/methods
- Genes, Reporter
- Genetic Loci
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Genome, Human
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- HEK293 Cells
- Humans
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
Collapse
Affiliation(s)
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Denmark
| | - Xi Xiang
- Department of Biomedicine, Aarhus University, Denmark
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Qingdao, Qingdao 266555, China
| | | | - Jinrong Huang
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
- BGI-Qingdao, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Luhan Yang
- eGenesis, Inc., Cambridge, MA 02139, USA
| | - Eigil Kjeldsen
- Department of Clinical Medicine, Aarhus University, Denmark
| | - Uffe Birk Jensen
- Department of Biomedicine, Aarhus University, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
| | - Xiuqing Zhang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Xin Liu
- BGI-Qingdao, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Xun Xu
- BGI-Qingdao, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jian Wang
- BGI-Qingdao, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
- James D. Watson Institute of Genome Science, 310008 Hangzhou, China
| | - Huanming Yang
- BGI-Qingdao, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
- James D. Watson Institute of Genome Science, 310008 Hangzhou, China
| | - George M Church
- eGenesis, Inc., Cambridge, MA 02139, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, Denmark
- BGI-Qingdao, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Birgitte Regenberg
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Denmark
- BGI-Qingdao, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| |
Collapse
|
26
|
Caballero A, Tabernero D, Buti M, Rodriguez-Frias F. Hepatitis B virus: The challenge of an ancient virus with multiple faces and a remarkable replication strategy. Antiviral Res 2018; 158:34-44. [PMID: 30059722 DOI: 10.1016/j.antiviral.2018.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
Abstract
The hepatitis B virus (HBV) is the prototype member of the Hepadnaviridae, an ancient family of hepatotropic DNA viruses, which may have originated from 360 to 430 million years ago and with evidence of endogenization in reptilian genomes >200 million years ago. The virus is currently estimated to infect more than 250 million humans. The extremely successful spread of this pathogen among the human population is explained by its multiple particulate forms, effective transmission strategies (particularly perinatal transmission), long induction period and low associated mortality. These characteristics confer selective advantages, enabling the virus to persist in small, disperse populations and spread worldwide, with high prevalence rates in many countries. The HBV replication strategy is remarkably complex and includes a multiplicity of particulate structures. In addition to the common virions containing DNA in a relaxed circular (rcDNA) or double-stranded linear (dslDNA) forms, the viral population includes virion-like particles containing RNA or "empty" (viral envelopes and capsids without genomes), subviral particles (only an envelope) and even naked capsids. Consequently, several forms of the genome coexist in a single infection: (i) the "traveler" forms found in serum, including rcDNA and dslDNA, which originate from retrotranscription of a messenger RNA (the pregenomic RNA, another form of the viral genome itself) and (ii) forms confined to the host cell nucleus, including covalently closed circular DNA (cccDNA), which leads to a minichromosome form associated with histones and viral proteins, and double-stranded DNA integrated into the host genome. This complex composition lends HBV a kind of "multiple personality". Are these additional particles and genomic forms simple intermediaries/artifacts or do they play a role in the viral life cycle?
Collapse
Affiliation(s)
- Andrea Caballero
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, Clinical Laboratories, 08035 Barcelona, Spain.
| | - David Tabernero
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, Clinical Laboratories, 08035 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 3-5 Avenida Monforte de Lemos, pavilion 11, 28029 Madrid, Spain.
| | - Maria Buti
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 3-5 Avenida Monforte de Lemos, pavilion 11, 28029 Madrid, Spain; Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, General Hospital, Internal Medicine 2, 08035 Barcelona, Spain.
| | - Francisco Rodriguez-Frias
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, Clinical Laboratories, 08035 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 3-5 Avenida Monforte de Lemos, pavilion 11, 28029 Madrid, Spain.
| |
Collapse
|
27
|
Allweiss L, Volz T, Giersch K, Kah J, Raffa G, Petersen J, Lohse AW, Beninati C, Pollicino T, Urban S, Lütgehetmann M, Dandri M. Proliferation of primary human hepatocytes and prevention of hepatitis B virus reinfection efficiently deplete nuclear cccDNA in vivo. Gut 2018; 67:542-552. [PMID: 28428345 DOI: 10.1136/gutjnl-2016-312162] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The stability of the covalently closed circular DNA (cccDNA) in nuclei of non-dividing hepatocytes represents a key determinant of HBV persistence. Contrarily, studies with animal hepadnaviruses indicated that hepatocyte turnover can reduce cccDNA loads but knowledge on the proliferative capacity of HBV-infected primary human hepatocytes (PHHs) in vivo and the fate of cccDNA in dividing PHHs is still lacking. This study aimed to determine the impact of human hepatocyte division on cccDNA stability in vivo. METHODS PHH proliferation was triggered by serially transplanting hepatocytes from HBV-infected humanised mice into naïve recipients. Cell proliferation and virological changes were assessed by quantitative PCR, immunofluorescence and RNA in situ hybridisation. Viral integrations were analysed by gel separation and deep sequencing. RESULTS PHH proliferation strongly reduced all infection markers, including cccDNA (median 2.4 log/PHH). Remarkably, cell division appeared to cause cccDNA dilution among daughter cells and intrahepatic cccDNA loss. Nevertheless, HBV survived in sporadic non-proliferating human hepatocytes, so that virological markers rebounded as hepatocyte expansion relented. This was due to reinfection of quiescent PHHs since treatment with the entry inhibitor myrcludex-B or nucleoside analogues blocked viral spread and intrahepatic cccDNA accumulation. Viral integrations were detected both in donors and recipient mice but did not appear to contribute to antigen production. CONCLUSIONS We demonstrate that human hepatocyte division even without involvement of cytolytic mechanisms triggers substantial cccDNA loss. This process may be fundamental to resolve self-limiting acute infection and should be considered in future therapeutic interventions along with entry inhibition strategies.
Collapse
Affiliation(s)
- Lena Allweiss
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Giersch
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janine Kah
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giuseppina Raffa
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Joerg Petersen
- IFI Institute for Interdisciplinary Medicine at Asklepios Clinic St. Georg, Hamburg, Germany
| | - Ansgar W Lohse
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner Sites, Hamburg, Germany
| | - Concetta Beninati
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Teresa Pollicino
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Stephan Urban
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner Sites, Hamburg, Germany.,Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marc Lütgehetmann
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maura Dandri
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner Sites, Hamburg, Germany
| |
Collapse
|
28
|
Vertii A, Kaufman PD, Hehnly H, Doxsey S. New dimensions of asymmetric division in vertebrates. Cytoskeleton (Hoboken) 2018; 75:87-102. [DOI: 10.1002/cm.21434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Anastassiia Vertii
- Department of MolecularCell and Cancer Biology University of Massachusetts Medical SchoolWorcester Massachusetts
| | - Paul D. Kaufman
- Department of MolecularCell and Cancer Biology University of Massachusetts Medical SchoolWorcester Massachusetts
| | - Heidi Hehnly
- Department of Cell and Developmental BiologySUNY Upstate Medical UniversitySyracuse New York13210
| | - Stephen Doxsey
- Program in Molecular Medicine University of Massachusetts Medical SchoolWorcester Massachusetts
| |
Collapse
|
29
|
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a major health burden worldwide; it can cause various degrees of liver damage and is strongly associated with the development of liver cirrhosis and hepatocellular carcinoma. The molecular mechanisms determining HBV persistence are not fully understood, but these appear to be multifactorial and the unique replication strategy employed by HBV enables its maintenance in infected hepatocytes. Both the stability of the HBV genome, which forms a stable minichromosome, the covalently closed circular DNA (cccDNA) in the hepatocyte nucleus, and the inability of the immune system to resolve chronic HBV infection are believed to be key mechanisms of HBV chronicity. Since a true cure of HBV requires clearance of intranuclear cccDNA from infected hepatocytes, understanding the mechanisms involved in cccDNA biogenesis, regulation and stability is mandatory to achieve HBV eradication. This review will summarize the state of knowledge on these mechanisms including the impact of current treatments on the cccDNA stability and activity. We will focus on events challenging cccDNA persistence in dividing hepatocytes.
Collapse
|