1
|
Fu Y, Mao S, Liao T, Feng W. Simultaneous production of linear α-olefins and 2,5-furandicarboxylic acid by combining two recombinant enzymes OleT-ELP and HMFO-ELP. Enzyme Microb Technol 2025; 188:110637. [PMID: 40154140 DOI: 10.1016/j.enzmictec.2025.110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/03/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
The enzyme OleT can utilize H2O2 as the co-substrate, and this biocatalysis is an H2O2-driven enzymatic catalysis. In this work, OleT was recombinated by being fused to an elastin-like polypeptide (ELP). The recombinant enzyme OleT-ELP exhibits higher stability and resistance to H2O2 interference compared to native OleT. OleT-ELP showed improved catalytic efficiency in producing α-olefins via fatty acid decarboxylation. The recombinant 5-hydroxymethylfurfural oxidase (HMFO-ELP) catalyzes the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), generating H2O2 as a byproduct. Combining OleT-ELP with HMFO-ELP enabled simultaneous conversion of fatty acids and HMF. The in situ H2O2 generated by HMFO-ELP was transferred to OleT-ELP, enhancing catalytic efficiencies for both α-olefins and FDCA production.
Collapse
Affiliation(s)
- Yaqi Fu
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Siyu Mao
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Tianyue Liao
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Wei Feng
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
2
|
Gering HE, Manley OM, Holwerda AJ, Grant JL, Ratigan SC, Makris TM. Regulation of ferryl reactivity by the cytochrome P450 decarboxylase OleT. J Inorg Biochem 2025; 270:112912. [PMID: 40222261 DOI: 10.1016/j.jinorgbio.2025.112912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/22/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
The cytochrome P450 OleT catalyzes the decarboxylation of long-chain fatty acid substrates to produce terminal alkenes using hydrogen peroxide as a co-substrate. The facile activation of peroxide to form Compound I in the first step of the reaction, and subsequent CC bond cleavage mediated by Compound II, provides a unique opportunity to visualize both ferryl intermediates using transient kinetic approaches. Analysis of the Arrhenius behavior yields activation barriers of ∼6 kcal/mol and ∼ 18 kcal/mol for the decay of Compound I and Compound II respectively. The influence of the secondary coordination sphere, probed through site-directed mutagenesis approaches, suggests that restriction of the donor-acceptor distance contributes to the reactivity of Compound I. The reactivity of Compound II was further probed using kinetic solvent isotope effect approaches, confirming that the large barrier owes to a proton-gated mechanism in the decarboxylation reaction coordinate. Hydrogen-bonding to an active-site histidine (H85) in the distal pocket plays a key role in this process.
Collapse
Affiliation(s)
- Hannah E Gering
- Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Olivia M Manley
- Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Alexis J Holwerda
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Job L Grant
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Steven C Ratigan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Thomas M Makris
- Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, United States; Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
3
|
Generoso WC, Alvarenga AHS, Simões IT, Miyamoto RY, Melo RRD, Guilherme EPX, Mandelli F, Santos CA, Prata R, Santos CRD, Colombari FM, Morais MAB, Pimentel Fernandes R, Persinoti GF, Murakami MT, Zanphorlin LM. Coordinated conformational changes in P450 decarboxylases enable hydrocarbons production from renewable feedstocks. Nat Commun 2025; 16:945. [PMID: 39843428 PMCID: PMC11754895 DOI: 10.1038/s41467-025-56256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Fatty acid peroxygenases have emerged as promising biocatalysts for hydrocarbon biosynthesis due to their ability to perform C-C scission, producing olefins - key building blocks for sustainable materials and fuels. These enzymes operate through non-canonical and complex mechanisms that yield a bifurcated chemoselectivity between hydroxylation and decarboxylation. In this study, we elucidate structural features in P450 decarboxylases that enable the catalysis of unsaturated substrates, expanding the mechanistic pathways for decarboxylation reaction. Combining X-ray crystallography, molecular dynamics simulations, and machine learning, we have identified intricate molecular rearrangements within the active site that enable the Cβ atom of the substrate to approach the heme iron, thereby promoting oleate decarboxylation. Furthermore, we demonstrate that the absence of the aromatic residue in the Phe-His-Arg triad preserves chemoselectivity for alkenes, providing a distinct perspective on the molecular determinants of decarboxylation activity. Ultimately, these findings enable the sustainable production of biohydrocarbons from industrial feedstocks.
Collapse
Affiliation(s)
- Wesley Cardoso Generoso
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Alana Helen Santana Alvarenga
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Isabelle Taira Simões
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Renan Yuji Miyamoto
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Ricardo Rodrigues de Melo
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Ederson Paulo Xavier Guilherme
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Fernanda Mandelli
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Clelton Aparecido Santos
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Rafaela Prata
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Camila Ramos Dos Santos
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Felippe Mariano Colombari
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Mariana Abrahão Bueno Morais
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | | | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Mario Tyago Murakami
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Leticia Maria Zanphorlin
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil.
| |
Collapse
|
4
|
Zheng Z, Choi H, Liu HW. In Vitro Characterization of Kitasetaline Biosynthesis Reveals a Bifunctional P450 Decarboxylase and a Vinyl β-Carboline Intermediate Susceptible to Nonenzymatic Thiol Addition. J Am Chem Soc 2024:10.1021/jacs.4c11552. [PMID: 39361917 PMCID: PMC11965429 DOI: 10.1021/jacs.4c11552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Kitasetaline is one of the very few β-carbolines isolated from bacteria. It features a unique N-acetylcysteine moiety linked to the β-carboline core through a thioether bond. While earlier in vivo experiments identified the gene cluster and reported several putative biosynthetic intermediates, how the C-S bond linkage is constructed has remained elusive. Herein, in vitro reconstitution of kitasetaline biosynthesis reveals the involvement of a Pictet-Spenglerase (KslB) and a promiscuous dehydrogenase (KslA) that generate the characteristic β-carboline ring system. In addition, the P450 enzyme KslC was found to catalyze oxidative decarboxylation of 1-(2-carboxyethyl)-9H-pyrido[3,4-b]indole-3-carboxylic acid to yield the biosynthetic intermediate 1-vinyl-9H-pyrido[3,4-b]indole-3-carboxylic acid. KslC is also capable of catalyzing further oxidation of its product to yield an N-hydroxylated side product. Importantly, the vinyl intermediate was found to undergo nonenzymatic nucleophilic addition by N-acetyl-l-cysteine to generate the C-S bond leading directly to kitasetaline without the involvement of a mycothiolated intermediate proposed in a previous biosynthetic model. Thus, this work not only demonstrates that biosynthesis of β-carboline compounds is rich in unexpected chemistry but also adds to the growing realization that biological thiolation reactions are often nonenzymatic in nature, relying instead on enzymatic formation of reactive electrophiles.
Collapse
Affiliation(s)
- Ziyang Zheng
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Heewon Choi
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Molla M, Saha A, Barman SK, Mandal S. Monomeric Fe(III)-Hydroxo and Fe(III)-Aqua Complexes Display Oxidative Asynchronous Hydrogen Atom Abstraction Reactivity. Chemistry 2024; 30:e202401163. [PMID: 38953593 DOI: 10.1002/chem.202401163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
This paper presents the synthesis and characterization of a series of novel monomeric aqua-ligated iron(III) complexes, [FeIII(L5R)(OH2)]2+ (R=OMe, H, Cl, NO2), supported by an amide-containing pentadentate N5 donor ligand, L5R [HL5R=2-(((1-methyl-1H-imidazol-2-yl)methyl)(pyridin-2-yl-methyl)amino)-N-(5-R-quinolin-8-yl)acetamide]. The complexes were characterized by various spectroscopic and analytical techniques, including electrochemistry and magnetic measurements. The Fe(III)-hydroxo complexes, [FeIII(L5R)(OH)]1+, were generated in situ by deprotonating the corresponding aqua complexes in a pH ~7 aqueous medium. In another way, adding one equivalent of a base to a methanolic solution of the Fe(III)-aqua complexes also produced the Fe(III)-hydroxo complexes. The study uses linoleic fatty acid as a substrate to explore the hydrogen atom abstraction (HAA) reactivity of both hydroxo and aqua complexes. The investigation highlights the substitution effect of the L5R ligand on reactivity, revealing a higher rate when an electron-withdrawing group is present. Hammett analyses and(or) determination of the asynchronicity factor (η) suggest an oxidative asynchronous concerted proton-electron transfer (CPET) pathway for the HAA reactions. Aqua complexes exhibited a higher asynchronicity in CPET, resulting in higher reaction rates than their hydroxo analogs. Overall, the work provides insights into the beneficial role of a higher imbalance in electron-transfer-proton-transfer (ET-PT) contributions in HAA reactivity.
Collapse
Affiliation(s)
- Mofijul Molla
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Anannya Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, 140306, India
| | - Suman K Barman
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, 140306, India
| | - Sukanta Mandal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
6
|
Nguyen N, Forstater JH, McIntosh JA. Decarboxylation in Natural Products Biosynthesis. JACS AU 2024; 4:2715-2745. [PMID: 39211618 PMCID: PMC11350588 DOI: 10.1021/jacsau.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Decarboxylation reactions are frequently found in the biosynthesis of primary and secondary metabolites. Decarboxylase enzymes responsible for these transformations operate via diverse mechanisms and act on a large variety of substrates, making them appealing in terms of biotechnological applications. This Perspective focuses on the occurrence of decarboxylation reactions in natural product biosynthesis and provides a perspective on their applications in biocatalysis for fine chemicals and pharmaceuticals.
Collapse
|
7
|
Dhingra S, Zhang Z, Lohans CT, Brewitz L, Schofield CJ. Substitution of 2-oxoglutarate alters reaction outcomes of the Pseudomonas savastanoi ethylene-forming enzyme. J Biol Chem 2024; 300:107546. [PMID: 38992435 PMCID: PMC11345546 DOI: 10.1016/j.jbc.2024.107546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
In seeding plants, biosynthesis of the phytohormone ethylene, which regulates processes including fruit ripening and senescence, is catalyzed by 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase. The plant pathogen Pseudomonas savastanoi (previously classified as: Pseudomonas syringae) employs a different type of ethylene-forming enzyme (psEFE), though from the same structural superfamily as ACC oxidase, to catalyze ethylene formation from 2-oxoglutarate (2OG) in an arginine dependent manner. psEFE also catalyzes the more typical oxidation of arginine to give L-Δ1-pyrroline-5-carboxylate (P5C), a reaction coupled to oxidative decarboxylation of 2OG giving succinate and CO2. We report on the effects of C3 and/or C4 substituted 2OG derivatives on the reaction modes of psEFE. 1H NMR assays, including using the pure shift method, reveal that, within our limits of detection, none of the tested 2OG derivatives is converted to an alkene; some are converted to the corresponding β-hydroxypropionate or succinate derivatives, with only the latter being coupled to arginine oxidation. The NMR results reveal that the nature of 2OG derivatization can affect the outcome of the bifurcating reaction, with some 2OG derivatives exclusively favoring the arginine oxidation pathway. Given that some of the tested 2OG derivatives are natural products, the results are of potential biological relevance. There are also opportunities for therapeutic or biocatalytic regulation of the outcomes of reactions catalyzed by 2OG-dependent oxygenases by the use of 2OG derivatives.
Collapse
Affiliation(s)
- Siddhant Dhingra
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Zhihong Zhang
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Christopher T Lohans
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
8
|
Qin X, Wang Y, Ye Q, Hakenjos JM, Wang J, Teng M, Guo L, Tan Z, Young DW, MacKenzie KR, Li F. CYP3A Mediates an Unusual C(sp 2)-C(sp 3) Bond Cleavage via Ipso-Addition of Oxygen in Drug Metabolism. Angew Chem Int Ed Engl 2024; 63:e202405197. [PMID: 38574245 PMCID: PMC11126355 DOI: 10.1002/anie.202405197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Mammalian cytochrome P450 drug-metabolizing enzymes rarely cleave carbon-carbon (C-C) bonds and the mechanisms of such cleavages are largely unknown. We identified two unusual cleavages of non-polar, unstrained C(sp2)-C(sp3) bonds in the FDA-approved tyrosine kinase inhibitor pexidartinib that are mediated by CYP3A4/5, the major human phase I drug metabolizing enzymes. Using a synthetic ketone, we rule out the Baeyer-Villiger oxidation mechanism that is commonly invoked to address P450-mediated C-C bond cleavages. Our studies in 18O2 and H2 18O enriched systems reveal two unusual distinct mechanisms of C-C bond cleavage: one bond is cleaved by CYP3A-mediated ipso-addition of oxygen to a C(sp2) site of N-protected pyridin-2-amines, and the other occurs by a pseudo-retro-aldol reaction after hydroxylation of a C(sp3) site. This is the first report of CYP3A-mediated C-C bond cleavage in drug metabolism via ipso-addition of oxygen mediated mechanism. CYP3A-mediated ipso-addition is also implicated in the regioselective C-C cleavages of several pexidartinib analogs. The regiospecificity of CYP3A-catalyzed oxygen ipso-addition under environmentally friendly conditions may be attractive and inspire biomimetic or P450-engineering methods to address the challenging task of C-C bond cleavages.
Collapse
Affiliation(s)
- Xuan Qin
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Yong Wang
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Qiuji Ye
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - John M Hakenjos
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Mingxing Teng
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Lei Guo
- National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, Arkansas, USA
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Damian W Young
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Kevin R MacKenzie
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Feng Li
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| |
Collapse
|
9
|
Keshari K, Santra A, Velasco L, Sauvan M, Kaur S, Ugale AD, Munshi S, Marco JF, Moonshiram D, Paria S. Functional Model of Compound II of Cytochrome P450: Spectroscopic Characterization and Reactivity Studies of a Fe IV-OH Complex. JACS AU 2024; 4:1142-1154. [PMID: 38559734 PMCID: PMC10976569 DOI: 10.1021/jacsau.3c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Herein, we show that the reaction of a mononuclear FeIII(OH) complex (1) with N-tosyliminobenzyliodinane (PhINTs) resulted in the formation of a FeIV(OH) species (3). The obtained complex 3 was characterized by an array of spectroscopic techniques and represented a rare example of a synthetic FeIV(OH) complex. The reaction of 1 with the one-electron oxidizing agent was reported to form a ligand-oxidized FeIII(OH) complex (2). 3 revealed a one-electron reduction potential of -0.22 V vs Fc+/Fc at -15 °C, which was 150 mV anodically shifted than 2 (Ered = -0.37 V vs Fc+/Fc at -15 °C), inferring 3 to be more oxidizing than 2. 3 reacted spontaneously with (4-OMe-C6H4)3C• to form (4-OMe-C6H4)3C(OH) through rebound of the OH group and displayed significantly faster reactivity than 2. Further, activation of the hydrocarbon C-H and the phenolic O-H bond by 2 and 3 was compared and showed that 3 is a stronger oxidant than 2. A detailed kinetic study established the occurrence of a concerted proton-electron transfer/hydrogen atom transfer reaction of 3. Studying one-electron reduction of 2 and 3 using decamethylferrocene (Fc*) revealed a higher ket of 3 than 2. The study established that the primary coordination sphere around Fe and the redox state of the metal center is very crucial in controlling the reactivity of high-valent Fe-OH complexes. Further, a FeIII(OMe) complex (4) was synthesized and thoroughly characterized, including X-ray structure determination. The reaction of 4 with PhINTs resulted in the formation of a FeIV(OMe) species (5), revealing the presence of two FeIV species with isomer shifts of -0.11 mm/s and = 0.17 mm/s in the Mössbauer spectrum and showed FeIV/FeIII potential at -0.36 V vs Fc+/Fc couple in acetonitrile at -15 °C. The reactivity studies of 5 were investigated and compared with the FeIV(OH) complex (3).
Collapse
Affiliation(s)
- Kritika Keshari
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Aakash Santra
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Lucía Velasco
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Maxime Sauvan
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Simarjeet Kaur
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Ashok D. Ugale
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sandip Munshi
- School
of Chemical Science, Indian Association
for the Cultivation of Science, Raja S C Mulliick Road, Kolkata 700032, India
| | - J. F. Marco
- Instituto
de Quimica Fisica Blas Cabrera, Consejo
Superior de Investigaciones Científicas, C. de Serrano, 119, Serrano, Madrid 28006, Spain
| | - Dooshaye Moonshiram
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sayantan Paria
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
10
|
Amaya JA, Manley OM, Bian JC, Rutland CD, Leschinsky N, Ratigan SC, Makris TM. Enhancing ferryl accumulation in H 2O 2-dependent cytochrome P450s. J Inorg Biochem 2024; 252:112458. [PMID: 38141432 DOI: 10.1016/j.jinorgbio.2023.112458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
A facile strategy is presented to enhance the accumulation of ferryl (iron(IV)-oxo) species in H2O2 dependent cytochrome P450s (CYPs) of the CYP152 family. We report the characterization of a highly chemoselective CYP decarboxylase from Staphylococcus aureus (OleTSA) that is soluble at high concentrations. Examination of OleTSA Compound I (CpdI) accumulation with a variety of fatty acid substrates reveals a dependence on resting spin-state equilibrium. Alteration of this equilibrium through targeted mutagenesis of the proximal pocket favors the high-spin form, and as a result, enhances Cpd-I accumulation to nearly stoichiometric yields.
Collapse
Affiliation(s)
- Jose A Amaya
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America
| | - Olivia M Manley
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America; Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Julia C Bian
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America
| | - Cooper D Rutland
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America
| | - Nicholas Leschinsky
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America
| | - Steven C Ratigan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America
| | - Thomas M Makris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America; Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, United States of America; Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States of America.
| |
Collapse
|
11
|
Joy J, Schaefer AJ, Teynor MS, Ess DH. Dynamical Origin of Rebound versus Dissociation Selectivity during Fe-Oxo-Mediated C-H Functionalization Reactions. J Am Chem Soc 2024; 146:2452-2464. [PMID: 38241715 DOI: 10.1021/jacs.3c09891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
The mechanism of catalytic C-H functionalization of alkanes by Fe-oxo complexes is often suggested to involve a hydrogen atom transfer (HAT) step with the formation of a radical-pair intermediate followed by diverging pathways for radical rebound, dissociation, or desaturation. Recently, we showed that in some Fe-oxo reactions, the radical pair is a nonstatistical-type intermediate and dynamic effects control rebound versus dissociation pathway selectivity. However, the effect of the solvent cage on the stability and lifetime of the radical-pair intermediate has never been analyzed. Moreover, because of the extreme complexity of motion that occurs during dynamics trajectories, the underlying physical origin of pathway selectivity has not yet been determined. For the reaction between [(TQA_Cl)FeIVO]+ and cyclohexane, here, we report explicit solvent trajectories and machine learning analysis on transition-state sampled features (e.g., vibrational, velocity, and geometric) that identified the transferring hydrogen atom kinetic energy as the most important factor controlling rebound versus nonrebound dynamics trajectories, which provides an explanation for our previously proposed dynamic matching effect in fast rebound trajectories that bypass the radical-pair intermediate. Manual control of the reaction trajectories confirmed the importance of this feature and provides a mechanism to enhance or diminish selectivity for the rebound pathway. This led to a general catalyst design principle and proof-of-principle catalyst design that showcases how to control rebound versus dissociation reaction pathway selectivity.
Collapse
Affiliation(s)
- Jyothish Joy
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - Anthony J Schaefer
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - Matthew S Teynor
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| |
Collapse
|
12
|
Jiang Y, Li S. P450 fatty acid decarboxylase. Methods Enzymol 2023; 693:339-374. [PMID: 37977736 DOI: 10.1016/bs.mie.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
P450 fatty acid decarboxylases are able to utilize hydrogen peroxide as the sole cofactor to decarboxylate free fatty acids to produce α-olefins with abundant applications as drop-in biofuels and important chemical precursors. In this chapter, we review diverse approaches for discovery, characterization, engineering, and applications of P450 fatty acid decarboxylases. Information gained from structural data has been advancing our understandings of the unique mechanisms underlying alkene production, and providing important insights for exploring new activities. To build an efficient olefin-producing system, various engineering strategies have been proposed and applied to this unusual P450 catalytic system. Furthermore, we highlight a select number of applied examples of P450 fatty acid decarboxylases in enzyme cascades and metabolic engineering.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P.R. China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P.R. China.
| |
Collapse
|
13
|
Zhao Y, Hansen NL, Duan YT, Prasad M, Motawia MS, Møller BL, Pateraki I, Staerk D, Bak S, Miettinen K, Kampranis SC. Biosynthesis and biotechnological production of the anti-obesity agent celastrol. Nat Chem 2023; 15:1236-1246. [PMID: 37365337 DOI: 10.1038/s41557-023-01245-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
Obesity is a major health risk still lacking effective pharmacological treatment. A potent anti-obesity agent, celastrol, has been identified in the roots of Tripterygium wilfordii. However, an efficient synthetic method is required to better explore its biological utility. Here we elucidate the 11 missing steps for the celastrol biosynthetic route to enable its de novo biosynthesis in yeast. First, we reveal the cytochrome P450 enzymes that catalyse the four oxidation steps that produce the key intermediate celastrogenic acid. Subsequently, we show that non-enzymatic decarboxylation-triggered activation of celastrogenic acid leads to a cascade of tandem catechol oxidation-driven double-bond extension events that generate the characteristic quinone methide moiety of celastrol. Using this acquired knowledge, we have developed a method for producing celastrol starting from table sugar. This work highlights the effectiveness of combining plant biochemistry with metabolic engineering and chemistry for the scalable synthesis of complex specialized metabolites.
Collapse
Affiliation(s)
- Yong Zhao
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Nikolaj L Hansen
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Yao-Tao Duan
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Meera Prasad
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Mohammed S Motawia
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Birger L Møller
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Irini Pateraki
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Bak
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark.
| | - Karel Miettinen
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark.
| | - Sotirios C Kampranis
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
14
|
Rade LL, Generoso WC, Das S, Souza AS, Silveira RL, Avila MC, Vieira PS, Miyamoto RY, Lima ABB, Aricetti JA, de Melo RR, Milan N, Persinoti GF, Bonomi AMFLJ, Murakami MT, Makris TM, Zanphorlin LM. Dimer-assisted mechanism of (un)saturated fatty acid decarboxylation for alkene production. Proc Natl Acad Sci U S A 2023; 120:e2221483120. [PMID: 37216508 PMCID: PMC10235961 DOI: 10.1073/pnas.2221483120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The enzymatic decarboxylation of fatty acids (FAs) represents an advance toward the development of biological routes to produce drop-in hydrocarbons. The current mechanism for the P450-catalyzed decarboxylation has been largely established from the bacterial cytochrome P450 OleTJE. Herein, we describe OleTPRN, a poly-unsaturated alkene-producing decarboxylase that outrivals the functional properties of the model enzyme and exploits a distinct molecular mechanism for substrate binding and chemoselectivity. In addition to the high conversion rates into alkenes from a broad range of saturated FAs without dependence on high salt concentrations, OleTPRN can also efficiently produce alkenes from unsaturated (oleic and linoleic) acids, the most abundant FAs found in nature. OleTPRN performs carbon-carbon cleavage by a catalytic itinerary that involves hydrogen-atom transfer by the heme-ferryl intermediate Compound I and features a hydrophobic cradle at the distal region of the substrate-binding pocket, not found in OleTJE, which is proposed to play a role in the productive binding of long-chain FAs and favors the rapid release of products from the metabolism of short-chain FAs. Moreover, it is shown that the dimeric configuration of OleTPRN is involved in the stabilization of the A-A' helical motif, a second-coordination sphere of the substrate, which contributes to the proper accommodation of the aliphatic tail in the distal and medial active-site pocket. These findings provide an alternative molecular mechanism for alkene production by P450 peroxygenases, creating new opportunities for biological production of renewable hydrocarbons.
Collapse
Affiliation(s)
- Leticia L. Rade
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Wesley C. Generoso
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Suman Das
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC27695-7622
| | - Amanda S. Souza
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Rodrigo L. Silveira
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro21941-594, Brazil
| | - Mayara C. Avila
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Plinio S. Vieira
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Renan Y. Miyamoto
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Ana B. B. Lima
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro21941-594, Brazil
| | - Juliana A. Aricetti
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Ricardo R. de Melo
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Natalia Milan
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Gabriela F. Persinoti
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Antonio M. F. L. J. Bonomi
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Mario T. Murakami
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Thomas M. Makris
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC27695-7622
| | - Leticia M. Zanphorlin
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| |
Collapse
|
15
|
Jeong D, Selverstone Valentine J, Cho J. Bio-inspired mononuclear nonheme metal peroxo complexes: Synthesis, structures and mechanistic studies toward understanding enzymatic reactions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Joy J, Ess DH. Direct Dynamics Trajectories Demonstrate Dynamic Matching and Nonstatistical Radical Pair Intermediates during Fe-Oxo-Mediated C-H Functionalization Reactions. J Am Chem Soc 2023; 145:7628-7637. [PMID: 36952628 DOI: 10.1021/jacs.3c01196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The generally proposed mechanism for the reaction between non-heme Fe-oxo complexes and alkane C-H bonds involves a hydrogen atom transfer (HAT) reaction step with a radical pair intermediate that then has competitive radical rebound, dissociation, or desaturation pathways. Here, we report density functional theory-based quasiclassical direct dynamics trajectories that examine post-HAT reaction dynamics. Trajectories revealed that the radical pair intermediate can be a nonstatistical type intermediate without complete internal vibrational redistribution and post-HAT selectivity is generally determined by dynamic effects. Fast rebound trajectories occur through dynamic matching between the rotational motion of the newly formed Fe-OH bond and collision with the alkane radical, and all of this occurs through a nonsynchronous dynamically concerted process that circumvents the radical pair intermediate structure. For radical pair dissociation, trajectories proceeded to the radical pair intermediate for a very brief time, followed by complete dissociation. These trajectories provide a new viewpoint and model to understand the inherent reaction pathway selectivity for non-heme Fe-oxo-mediated C-H functionalization reactions.
Collapse
Affiliation(s)
- Jyothish Joy
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
17
|
Biosynthesis of alkanes/alkenes from fatty acids or derivatives (triacylglycerols or fatty aldehydes). Biotechnol Adv 2022; 61:108045. [DOI: 10.1016/j.biotechadv.2022.108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/27/2022]
|
18
|
Collins DP, Johnson E, Coulter ED, Beharry Z, Ballou DP, Dawson JH. Caught in the act: Monitoring OO bond cleavage in Acylperoxoferric cytochrome P450cam to form compound I in real time. J Inorg Biochem 2022; 236:111949. [PMID: 36028338 DOI: 10.1016/j.jinorgbio.2022.111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
While monitoring the reaction of ferric cytochrome P450cam (Cyp101) with substituted peroxybenzoic acids using rapid-scanning, stopped-flow (RSSF) spectroscopy, an intermediate appears en route to formation of the high-valent moiety known as Compound I [Fe(IV)=O/porphyrin radical cation] that is thought to be the key catalytic species for O-atom transfer to substrate. We have previously suggested (Spolitak, T., Dawson, J.H., Ballou, D.P., J. Biol. Chem.2005, 280, 20,300-20,309) that this species is an acylperoxo-ferric heme adduct that subsequently undergoes OO bond cleavage to generate Compound I. Singular value decomposition analysis of the RSSF data for formation of this intermediate shows that the energy of its Soret absorption peak is sensitive to the electron donor properties of the aryl substituents on the peracid. A linear Hammett correlation plot is seen for the energy of the Soret absorption peak vs. the Hammett σ constant. This correlation requires that the aryl substituents remain as part of the ligand bound to the heme iron, providing direct evidence that the adduct is indeed a ferric acylperoxo derivative. Linear Hammett correlation plots are also seen for both the rate of formation of the intermediate as well as for its conversion to Compound I. It is proposed that the electron donating/withdrawing properties of the aryl-bound substituents affect the electrophilic nature for binding substrate, changing the observed rate of formation for the acylperoxo intermediate, as well as the propensity and stability of the substituted benzoic acid to serve as the leaving group during OO bond cleavage yielding Compound I.
Collapse
Affiliation(s)
- Daniel P Collins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Emily Johnson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Eric D Coulter
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Zanna Beharry
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - David P Ballou
- Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, MI 48109, USA.
| | - John H Dawson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
19
|
Dutra M, McElhenney S, Manley O, Makris T, Rassolov V, Garashchuk S. Modeling the Ligand Effect on the Structure of CYP 450 Within the Density Functional Theory. J Phys Chem A 2022; 126:2818-2824. [PMID: 35500128 DOI: 10.1021/acs.jpca.2c01783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An improved understanding of the P450 structure is relevant to the development of biomimetic catalysts and inhibitors for controlled CH-bond activation, an outstanding challenge of synthetic chemistry. Motivated by the experimental findings of an unusually short Fe-S bond of 2.18 Å for the wild-type (WT) OleT P450 decarboxylase relative to a cysteine pocket mutant form (A369P), a computational model that captures the effect of the thiolate axial ligand on the iron-sulfur distance is presented. With the computational efficiency and streamlined analysis in mind, this model combines a cluster representation of the enzyme─40-110 atoms, depending on the heme and ligand truncation level─with a density functional theory (DFT) description of the electronic structure (ES) and is calibrated against the experimental data. The optimized Fe-S distances show a difference of 0.25 Å between the low and high spin states, in agreement with the crystallographic structures of the OleT WT and mutant forms. We speculate that this difference is attributable to the packing of the ligand; the mutant is bulkier due to an alanine-to-proline replacement, meaning that it is excluded from the energetically favored low-spin minimum because of steric constraints. The presence of pure spin-state pairs and the intersection of the low/high spin states for the enzyme model is indicative of the limitations of single-reference ES methods in such systems and emphasizes the significance of using the proper state when modeling the hydrogen atom transfer (HAT) reaction catalyzed by OleT. At the same time, the correct characterization of both the short and long Fe-S bonds within a small DFT-based model of 42 atoms paves the way for quantum dynamics modeling of the HAT step, which initiates the OleT decarboxylation reaction.
Collapse
Affiliation(s)
- Matthew Dutra
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Shannon McElhenney
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Olivia Manley
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Tom Makris
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Vitaly Rassolov
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sophya Garashchuk
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
20
|
Dutra M, Amaya JA, McElhenney S, Manley OM, Makris TM, Rassolov V, Garashchuk S. Experimental and Theoretical Examination of the Kinetic Isotope Effect in Cytochrome P450 Decarboxylase OleT. J Phys Chem B 2022; 126:3493-3504. [PMID: 35508080 DOI: 10.1021/acs.jpcb.1c10280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using a combination of experimental studies, theory, simulation, and modeling, we investigate the hydrogen atom transfer (HAT) reaction by the high-valent ferryl cytochrome P450 (CYP) intermediate known as Compound I, a species that is central to innumerable and important detoxification and biosynthetic reactions. The P450 decarboxylase known as OleT converts fatty acids, a sustainable biological feedstock, into terminal alkenes and thus is of high interest as a potential means to produce fungible biofuels. Previous experimental work has established the intermediacy of Compound I in the C─C scission reaction catalyzed by OleT and an unprecedented ability to monitor the HAT process in the presence of bound fatty acid substrates. Here, we leverage the kinetic simplicity of the OleT system to measure the activation barriers for CYP HAT and the temperature dependence of the substrate 2H kinetic isotope effect. Notably, neither measurement has been previously accessible for a CYP to date. Theoretical analysis alludes to the significance of substrate fatty acid coordination for generating the hydrogen donor/acceptor configurations that are most conducive for HAT to occur. The analysis of the two-dimensional potential energy surface, based on multireference electronic wave functions, illustrates the uncoupled character of the hydrogen motion. Quantum dynamics calculations along the hydrogen reaction path demonstrate that hydrogen tunneling is essential to qualitatively capture the experimental isotope effect, its temperature dependence, and appropriate activation energies. Overall, a more fundamental understanding of the OleT reaction coordinate contributes to the development of biomimetic catalysts for controlled C─H bond activation, an outstanding current challenge for (bio)synthetic chemistry.
Collapse
Affiliation(s)
- Matthew Dutra
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jose A Amaya
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Shannon McElhenney
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Olivia M Manley
- Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thomas M Makris
- Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Vitaly Rassolov
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sophya Garashchuk
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
21
|
Iqbal T, Chakraborty S, Murugan S, Das D. Metalloenzymes for Fatty Acid-Derived Hydrocarbon Biosynthesis: Nature's Cryptic Catalysts. Chem Asian J 2022; 17:e202200105. [PMID: 35319822 DOI: 10.1002/asia.202200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Indexed: 11/08/2022]
Abstract
Waning resources, massive energy consumption, everdeepening global warming crisis, and climate change have raised grave concerns regarding continued dependence on fossil fuels as the predominant source of energy and generated tremendous interest for developing biofuels, which are renewable. Hydrocarbon-based 'drop-in' biofuels can be a proper substitute for fossil fuels such as gasoline or jet fuel. In Nature, hydrocarbons are produced by diverse organisms such as insects, plants, bacteria, and cyanobacteria. Metalloenzymes play a crucial role in hydrocarbons biosynthesis, and the past decade has witnessed discoveries of a number of metalloenzymes catalyzing hydrocarbon biosynthesis from fatty acids and their derivatives employing unprecedented mechanisms. These discoveries elucidated the enigma related to the divergent chemistries involved in the catalytic mechanisms of these metalloenzymes. There is substantial diversity in the structure, mode of action, cofactor requirement, and substrate scope among these metalloenzymes. Detailed structural analysis along with mutational studies of some of these enzymes have contributed significantly to identifying the key amino acid residues that dictate substrate specificity and catalytic intricacy. In this Review, we discuss the metalloenzymes that catalyze fatty acid-derived hydrocarbon biosynthesis in various organisms, emphasizing the active site architecture, catalytic mechanism, cofactor requirements, and substrate specificity of these enzymes. Understanding such details is essential for successfully implementing these enzymes in emergent biofuel research through protein engineering and synthetic biology approaches.
Collapse
Affiliation(s)
- Tabish Iqbal
- Indian Institute of Science, Department of Inorganic and Physical Chemistry, INDIA
| | | | - Subhashini Murugan
- Indian Institute of Science, Department of Inorganic and Physical Chemistry, INDIA
| | - Debasis Das
- Indian Institute of Science, Inorganic and Physical Chemistry, CV Raman Rd, 560012, Bangalore, INDIA
| |
Collapse
|
22
|
Onoda H, Tanaka S, Watanabe Y, Shoji O. Exploring hitherto uninvestigated reactions of the fatty acid peroxygenase CYP152A1: catalase reaction and Compound I formation. Faraday Discuss 2022; 234:304-314. [PMID: 35179151 DOI: 10.1039/d1fd00065a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CYP152A1 (cytochrome P450BSβ) is a fatty acid peroxygenase, which specifically catalyses the oxidation of long-chain fatty acids using hydrogen peroxide as an oxidant. We have found that CYP152A1 possesses catalase activity, which competes with the hydroxylation of long-chain fatty acids, the oxidation of non-native substrates, and haem degradation. Using hydrogen peroxide, Compound I of CYP152A1 could not be observed, due to its swift decomposition via catalase activity, where Compound I reacts with another molecule of hydrogen peroxide to form O2. In contrast, a clear spectral change indicative of Compound I formation was observed when mCPBA was employed as the oxidant. This work presents valuable insights into an important role for the catalase activity of CYP152A1 in avoiding enzyme deactivation when no substrate is available for oxidation.
Collapse
Affiliation(s)
- Hiroki Onoda
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-0802, Japan. .,Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shota Tanaka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-0802, Japan.
| | - Yoshihito Watanabe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-0802, Japan.
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-0802, Japan.
| |
Collapse
|
23
|
Yadav S, Shaik S, Siddiqui SA, Kalita S, Dubey KD. Local Electric Fields Dictate Function: The Different Product Selectivities Observed for Fatty Acid Oxidation by Two Deceptively Very Similar P450-Peroxygenases OleT and BSβ. J Chem Inf Model 2022; 62:1025-1035. [PMID: 35129977 DOI: 10.1021/acs.jcim.1c01453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cytochrome P450 peroxygenases use hydrogen peroxide to hydroxylate long-chain fatty acids by bypassing the use of O2 and a redox partner. Among the peroxygenases, P450OleT uniquely performs decarboxylation of fatty acids and production of terminal olefins. This route taken by P450OleT is intriguing, and its importance is augmented by the practical importance of olefin production. As such, this mechanistic choice merits elucidation. To address this puzzle, we use hybrid QM/MM calculations and MD simulations for the OleT enzyme as well as for the structurally analogous enzyme, P450BSβ. The study of P450OleT reveals that the protonated His85 in the wild-type P450OleT plays a crucial role in steering decarboxylation activity by stabilizing the corresponding hydroxoiron(IV) intermediate (Cpd II). In contrast, for P450BSβ in which Q85 replaces H85, the respective Cpd II species is unstable and it reacts readily with the substrate radical by rebound, producing hydroxylation products. As shown, this single-site difference creates in P450OleT a local electric field (LEF), which is significantly higher than that in P450BSβ. In turn, these LEF differences are responsible for the different stabilities of the respective Cpd II/radical intermediates and hence for different functions of the two enzymes. P450BSβ uses the common rebound mechanism and leads to hydroxylation, whereas P450OleT proceeds via decarboxylation and generates terminal olefins. Olefin production projects the power of a single residue to alter the LEF and the enzyme's function.
Collapse
Affiliation(s)
- Shalini Yadav
- Department of Chemistry, School of Natural Science, Shiv Nadar University, Delhi-NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University, Edmond. J. Safra Campus, Givat Ram, Jerusalem 9190400, Israel
| | - Shakir Ali Siddiqui
- Department of Chemistry, School of Natural Science, Shiv Nadar University, Delhi-NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Surajit Kalita
- Department of Chemistry, School of Natural Science, Shiv Nadar University, Delhi-NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar University, Delhi-NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India.,Center for Informatics, Department of Chemistry, School of Natural Science, Shiv Nadar University, Delhi-NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
24
|
Mechanistic analysis of carbon-carbon bond formation by deoxypodophyllotoxin synthase. Proc Natl Acad Sci U S A 2022; 119:2113770119. [PMID: 34969844 PMCID: PMC8740726 DOI: 10.1073/pnas.2113770119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 11/18/2022] Open
Abstract
The completion of the tetracyclic core of etoposide, classified by the World Health Organization as an essential medicine, by the Fe/2OG oxygenase deoxypodophyllotoxin synthase follows a hybrid radical-polar pathway not previously seen in other members of this enzyme class. The implication of a substrate-based benzylic carbocation in this mechanism will inform ongoing efforts to create analogs of this important drug with improved or emergent properties and represents a new route for resolution of the initial substrate radical that is common to members of the class. This study adds to our understanding on a growing number of biochemical transformations in which carbocation intermediates are likely to be crucial. Deoxypodophyllotoxin contains a core of four fused rings (A to D) with three consecutive chiral centers, the last being created by the attachment of a peripheral trimethoxyphenyl ring (E) to ring C. Previous studies have suggested that the iron(II)- and 2-oxoglutarate–dependent (Fe/2OG) oxygenase, deoxypodophyllotoxin synthase (DPS), catalyzes the oxidative coupling of ring B and ring E to form ring C and complete the tetracyclic core. Despite recent efforts to deploy DPS in the preparation of deoxypodophyllotoxin analogs, the mechanism underlying the regio- and stereoselectivity of this cyclization event has not been elucidated. Herein, we report 1) two structures of DPS in complex with 2OG and (±)-yatein, 2) in vitro analysis of enzymatic reactivity with substrate analogs, and 3) model reactions addressing DPS’s catalytic mechanism. The results disfavor a prior proposal of on-pathway benzylic hydroxylation. Rather, the DPS-catalyzed cyclization likely proceeds by hydrogen atom abstraction from C7', oxidation of the benzylic radical to a carbocation, Friedel–Crafts-like ring closure, and rearomatization of ring B by C6 deprotonation. This mechanism adds to the known pathways for transformation of the carbon-centered radical in Fe/2OG enzymes and suggests what types of substrate modification are likely tolerable in DPS-catalyzed production of deoxypodophyllotoxin analogs.
Collapse
|
25
|
Farley GW, Siegler MA, Goldberg DP. Halogen Transfer to Carbon Radicals by High-Valent Iron Chloride and Iron Fluoride Corroles. Inorg Chem 2021; 60:17288-17302. [PMID: 34709780 DOI: 10.1021/acs.inorgchem.1c02666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
High-valent iron halide corroles were examined to determine their reactivity with carbon radicals and their ability to undergo radical rebound-like processes. Beginning with Fe(Cl)(ttppc) (1) (ttppc = 5,10,15-tris(2,4,6-triphenylphenyl)corrolato3-), the new iron corroles Fe(OTf)(ttppc) (2), Fe(OTf)(ttppc)(AgOTf) (3), and Fe(F)(ttppc) (4) were synthesized. Complexes 3 and 4 are the first iron triflate and iron fluoride corroles to be structurally characterized by single crystal X-ray diffraction. The structure of 3 reveals an AgI-pyrrole (η2-π) interaction. The Fe(Cl)(ttppc) and Fe(F)(ttppc) complexes undergo halogen transfer to triarylmethyl radicals, and kinetic analysis of the reaction between (p-OMe-C6H4)3C• and 1 gave k = 1.34(3) × 103 M-1 s-1 at 23 °C and 2.2(2) M-1 s-1 at -60 °C, ΔH⧧ = +9.8(3) kcal mol-1, and ΔS⧧ = -14(1) cal mol-1 K-1 through an Eyring analysis. Complex 4 is significantly more reactive, giving k = 1.16(6) × 105 M-1 s-1 at 23 °C. The data point to a concerted mechanism and show the trend X = F- > Cl- > OH- for Fe(X)(ttppc). This study provides mechanistic insights into halogen rebound for an iron porphyrinoid complex.
Collapse
Affiliation(s)
- Geoffrey W Farley
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
26
|
Jiang Y, Peng W, Li Z, You C, Zhao Y, Tang D, Wang B, Li S. Unexpected Reactions of α,β‐Unsaturated Fatty Acids Provide Insight into the Mechanisms of CYP152 Peroxygenases. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuanyuan Jiang
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences No. 189 Songling Road Qingdao Shandong 266101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhong Li
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences No. 189 Songling Road Qingdao Shandong 266101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Cai You
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
| | - Yue Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Dandan Tang
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Shengying Li
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao Shandong 266237 China
| |
Collapse
|
27
|
Jiang Y, Peng W, Li Z, You C, Zhao Y, Tang D, Wang B, Li S. Unexpected Reactions of α,β-Unsaturated Fatty Acids Provide Insight into the Mechanisms of CYP152 Peroxygenases. Angew Chem Int Ed Engl 2021; 60:24694-24701. [PMID: 34523786 DOI: 10.1002/anie.202111163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Indexed: 11/08/2022]
Abstract
CYP152 peroxygenases catalyze decarboxylation and hydroxylation of fatty acids using H2 O2 as cofactor. To understand the molecular basis for the chemo- and regioselectivity of these unique P450 enzymes, we analyze the activities of three CYP152 peroxygenases (OleTJE , P450SPα , P450BSβ ) towards cis- and trans-dodecenoic acids as substrate probes. The unexpected 6S-hydroxylation of the trans-isomer and 4R-hydroxylation of the cis-isomer by OleTJE , and molecular docking results suggest that the unprecedented selectivity is due to OleTJE 's preference of C2-C3 cis-configuration. In addition to the common epoxide products, undecanal is the unexpected major product of P450SPα and P450BSβ regardless of the cis/trans-configuration of substrates. The combined H2 18 O2 tracing experiments, MD simulations, and QM/MM calculations unravel an unusual mechanism for Compound I-mediated aldehyde formation in which the active site water derived from H2 O2 activation is involved in the generation of a four-membered ring lactone intermediate. These findings provide new insights into the unusual mechanisms of CYP152 peroxygenases.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China.,Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China.,Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cai You
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Yue Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Dandan Tang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| |
Collapse
|
28
|
Chen H, Huang M, Yan W, Bai WJ, Wang X. Enzymatic Regio- and Enantioselective C–H Oxyfunctionalization of Fatty Acids. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hao Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mengfei Huang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wenliang Yan
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wen-Ju Bai
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xiqing Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
29
|
Lin YT, de Visser SP. Product Distributions of Cytochrome P450 OleT JE with Phenyl-Substituted Fatty Acids: A Computational Study. Int J Mol Sci 2021; 22:7172. [PMID: 34281222 PMCID: PMC8269385 DOI: 10.3390/ijms22137172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
There are two types of cytochrome P450 enzymes in nature, namely, the monooxygenases and the peroxygenases. Both enzyme classes participate in substrate biodegradation or biosynthesis reactions in nature, but the P450 monooxygenases use dioxygen, while the peroxygenases take H2O2 in their catalytic cycle instead. By contrast to the P450 monooxygenases, the P450 peroxygenases do not require an external redox partner to deliver electrons during the catalytic cycle, and also no external proton source is needed. Therefore, they are fully self-sufficient, which affords them opportunities in biotechnological applications. One specific P450 peroxygenase, namely, P450 OleTJE, reacts with long-chain linear fatty acids through oxidative decarboxylation to form hydrocarbons and, as such, has been implicated as a suitable source for the biosynthesis of biofuels. Unfortunately, the reactions were shown to produce a considerable amount of side products originating from Cα and Cβ hydroxylation and desaturation. These product distributions were found to be strongly dependent on whether the substrate had substituents on the Cα and/or Cβ atoms. To understand the bifurcation pathways of substrate activation by P450 OleTJE leading to decarboxylation, Cα hydroxylation, Cβ hydroxylation and Cα-Cβ desaturation, we performed a computational study using 3-phenylpropionate and 2-phenylbutyrate as substrates. We set up large cluster models containing the heme, the substrate and the key features of the substrate binding pocket and calculated (using density functional theory) the pathways leading to the four possible products. This work predicts that the two substrates will react with different reaction rates due to accessibility differences of the substrates to the active oxidant, and, as a consequence, these two substrates will also generate different products. This work explains how the substrate binding pocket of P450 OleTJE guides a reaction to a chemoselectivity.
Collapse
Affiliation(s)
- Yen-Ting Lin
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK;
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK;
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
30
|
Zhang L, Ma D, Yin Y, Wang Q. Using Small Molecules to Enhance P450 OleT Enzyme Activity in Situ. Chemistry 2021; 27:8940-8945. [PMID: 33860584 DOI: 10.1002/chem.202100680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 11/09/2022]
Abstract
Cytochrome P450 OleT is a fatty acid decarboxylase that catalyzes the production of olefins with biofuel and synthetic applications. However, the relatively sluggish catalytic efficiency of the enzyme limits its applications. Here, we report the application of a novel class of benzene containing small molecules to improve the OleT activity. The UV-Vis spectroscopy study and molecular docking results confirmed the high proximity of the small molecules to the heme group of OleT. Up to 6-fold increase of product yield has been achieved in the small molecule-modulated enzymatic reactions. Our work thus sheds the light to the application of small molecules to increase the OleT catalytic efficiency, which could be potentially used for future olefin productions.
Collapse
Affiliation(s)
- Libo Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, 29205, Columbia, SC, USA
| | - Dumei Ma
- Department of Chemical and Biochemical Engineering, Xiamen University, Siming South Load 422, 361005, Xiamen, Fujian, P. R. China
| | - Yingwu Yin
- Department of Chemical and Biochemical Engineering, Xiamen University, Siming South Load 422, 361005, Xiamen, Fujian, P. R. China
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, 29205, Columbia, SC, USA
| |
Collapse
|
31
|
Ma D, Zhang L, Yin Y, Wang Q. Structure-based design, synthesis of novel probes for cytochrome P450 OleT. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Bagha UK, Satpathy JK, Mukherjee G, Sastri CV, de Visser SP. A comprehensive insight into aldehyde deformylation: mechanistic implications from biology and chemistry. Org Biomol Chem 2021; 19:1879-1899. [PMID: 33406196 DOI: 10.1039/d0ob02204g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aldehyde deformylation is an important reaction in biology, organic chemistry and inorganic chemistry and the process has been widely applied and utilized. For instance, in biology, the aldehyde deformylation reaction has wide differences in biological function, whereby cyanobacteria convert aldehydes into alkanes or alkenes, which are used as natural products for, e.g., defense mechanisms. By contrast, the cytochromes P450 catalyse the biosynthesis of hormones, such as estrogen, through an aldehyde deformylation reaction step. In organic chemistry, the aldehyde deformylation reaction is a common process for replacing functional groups on a molecule, and as such, many different synthetic methods and procedures have been reported that involve an aldehyde deformylation step. In bioinorganic chemistry, a variety of metal(iii)-peroxo complexes have been synthesized as biomimetic models and shown to react efficiently with aldehydes through deformylation reactions. This review paper provides an overview of the various aldehyde deformylation reactions in organic chemistry, biology and biomimetic model systems, and shows a broad range of different chemical reaction mechanisms for this process. Although a nucleophilic attack at the carbonyl centre is the consensus reaction mechanism, several examples of an alternative electrophilic reaction mechanism starting with hydrogen atom abstraction have been reported as well. There is still much to learn and to discover on aldehyde deformylation reactions, as deciphered in this review paper.
Collapse
Affiliation(s)
- Umesh Kumar Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | | | - Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Sam P de Visser
- Manchester Institute of Biotechnology and the Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
33
|
Chowdhury AS, Ali HS, Faponle AS, de Visser SP. How external perturbations affect the chemoselectivity of substrate activation by cytochrome P450 OleT JE. Phys Chem Chem Phys 2021; 22:27178-27190. [PMID: 33226036 DOI: 10.1039/d0cp05169a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytochrome P450 enzymes are versatile biocatalysts found in most forms of life. Generally, the cytochrome P450s react with dioxygen and hence are haem-based mono-oxygenases; however, in specific isozymes, H2O2 rather than O2 is used and these P450s act as peroxygenases. The P450 OleTJE is a peroxygenase that binds long to medium chain fatty acids and converts them to a range of products originating from Cα-hydroxylation, Cβ-hydroxylation, Cα-Cβ desaturation and decarboxylation of the substrate. There is still controversy regarding the details of the reaction mechanism of P450 OleTJE; how the products are formed and whether the product distributions can be influenced by external perturbations. To gain further insights into the structure and reactivity of P450 OleTJE, we set up a range of large active site model complexes as well as full enzymatic structures and did a combination of density functional theory studies and quantum mechanics/molecular mechanics calculations. In particular, the work focused on the mechanisms leading to these products under various reaction conditions. Thus, for a small cluster model, we find a highly selective Cα-hydroxylation pathway that is preferred over Cβ-H hydrogen atom abstraction by at least 10 kcal mol-1. Introduction of polar residues to the model, such as an active site protonated histidine residue or through external electric field effects, lowers the Cβ-H hydrogen atom abstraction barriers are lowered, while a full QM/MM model brings the Cα-H and Cβ-H hydrogen atom abstraction barriers within 1 kcal mol-1. Our studies; therefore, implicate that environmental effects in the second-coordination sphere can direct and guide selectivities in enzymatic reaction mechanisms.
Collapse
Affiliation(s)
- Ahmed Shahria Chowdhury
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | | | |
Collapse
|
34
|
Markel U, Lanvers P, Sauer DF, Wittwer M, Dhoke GV, Davari MD, Schiffels J, Schwaneberg U. A Photoclick-Based High-Throughput Screening for the Directed Evolution of Decarboxylase OleT. Chemistry 2021; 27:954-958. [PMID: 32955127 PMCID: PMC7839715 DOI: 10.1002/chem.202003637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/15/2020] [Indexed: 11/30/2022]
Abstract
Enzymatic oxidative decarboxylation is an up-and-coming reaction yet lacking efficient screening methods for the directed evolution of decarboxylases. Here, we describe a simple photoclick assay for the detection of decarboxylation products and its application in a proof-of-principle directed evolution study on the decarboxylase OleT. The assay was compatible with two frequently used OleT operation modes (directly using hydrogen peroxide as the enzyme's co-substrate or using a reductase partner) and the screening of saturation mutagenesis libraries identified two enzyme variants shifting the enzyme's substrate preference from long chain fatty acids toward styrene derivatives. Overall, this photoclick assay holds promise to speed-up the directed evolution of OleT and other decarboxylases.
Collapse
Affiliation(s)
- Ulrich Markel
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Pia Lanvers
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Daniel F. Sauer
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Malte Wittwer
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Gaurao V. Dhoke
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Mehdi D. Davari
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Johannes Schiffels
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| |
Collapse
|
35
|
Wang S, Jiang S, Chen H, Bai WJ, Wang X. Directed Evolution of a Hydroxylase into a Decarboxylase for Synthesis of 1-Alkenes from Fatty Acids. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuaibo Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shengsheng Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hao Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wen-Ju Bai
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xiqing Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
36
|
Bauer D, Zachos I, Sieber V. Production of Propene from n-Butanol: A Three-Step Cascade Utilizing the Cytochrome P450 Fatty Acid Decarboxylase OleT JE. Chembiochem 2020; 21:3273-3281. [PMID: 32656928 PMCID: PMC7754297 DOI: 10.1002/cbic.202000378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/09/2020] [Indexed: 11/22/2022]
Abstract
Propene is one of the most important starting materials in the chemical industry. Herein, we report an enzymatic cascade reaction for the biocatalytic production of propene starting from n-butanol, thus offering a biobased production from glucose. In order to create an efficient system, we faced the issue of an optimal cofactor supply for the fatty acid decarboxylase OleTJE , which is said to be driven by either NAD(P)H or H2 O2 . In the first system, we used an alcohol and aldehyde dehydrogenase coupled to OleTJE by the electron-transfer complex putidaredoxin reductase/putidaredoxin, allowing regeneration of the NAD+ cofactor. With the second system, we intended full oxidation of n-butanol to butyric acid, generating one equivalent of H2 O2 that can be used for the oxidative decarboxylation. As the optimal substrate is a long-chain fatty acid, we also tried to create an improved variant for the decarboxylation of butyric acid by using rational protein design. Within a mutational study with 57 designed mutants, we generated the mutant OleTV292I , which showed a 2.4-fold improvement in propene production in our H2 O2 -driven cascade system and reached total turnover numbers >1000.
Collapse
Affiliation(s)
- Daniel Bauer
- Chair of Chemistry of Biogenic ResourcesCampus Straubing for Biotechnology and SustainabilityTechnical University of MunichSchulgasse 1694315StraubingGermany
| | - Ioannis Zachos
- Chair of Chemistry of Biogenic ResourcesCampus Straubing for Biotechnology and SustainabilityTechnical University of MunichSchulgasse 1694315StraubingGermany
| | - Volker Sieber
- Chair of Chemistry of Biogenic ResourcesCampus Straubing for Biotechnology and SustainabilityTechnical University of MunichSchulgasse 1694315StraubingGermany
- TUM Catalysis Research CenterTechnical University of MunichErnst-Otto-Fischer-Straße 185748GarchingGermany
- Bio, Electro and Chemocatalysis BioCat, Straubing BranchFraunhofer Institute for Interfacial Engineering and Biotechnology IGBSchulgasse 11a94315StraubingGermany
- School of Chemistry and Molecular Biosciences, Chemistry Building 68The University of QueenslandCooper RoadSt. Lucia4072QueenslandAustralia
| |
Collapse
|
37
|
Zhang L, Manley OM, Ma D, Yin Y, Makris TM, Wang Q. Enhanced P450 fatty acid decarboxylase catalysis by glucose oxidase coupling and co-assembly for biofuel generation. BIORESOURCE TECHNOLOGY 2020; 311:123538. [PMID: 32485602 DOI: 10.1016/j.biortech.2020.123538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Cytochrome P450 OleT is a fatty acid decarboxylase that uses hydrogen peroxide (H2O2) to catalyze the production of terminal alkenes, which are industrially important chemicals with biofuel and synthetic applications. Despite its requirement for large turnover levels, high concentrations of H2O2 may cause heme group degradation, diminishing enzymatic activity and limiting broad application for synthesis. Here, we report an artificial enzyme cascade composed of glucose oxidase (GOx) and OleTSA from Staphylococcus aureus for efficient terminal alkene production. By adjusting the ratio of GOx to OleTSA, the GOx-based tandem catalysis shows significantly improved product yield compared to the H2O2 injection method. Moreover, the co-assembly of the GOx/OleTSA enzymes with a polymer, forming polymer-dual enzymes nanoparticles, displays improved activity compared to the free enzyme. This dual strategy provides a simple and efficient system to transform a naturally abundant feedstock to industrially important chemicals.
Collapse
Affiliation(s)
- Libo Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Olivia M Manley
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Dumei Ma
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA; Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yingwu Yin
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Thomas M Makris
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA.
| |
Collapse
|
38
|
Bioengineering of Cytochrome P450 OleT JE: How Does Substrate Positioning Affect the Product Distributions? Molecules 2020; 25:molecules25112675. [PMID: 32526971 PMCID: PMC7321372 DOI: 10.3390/molecules25112675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 02/04/2023] Open
Abstract
The cytochromes P450 are versatile enzymes found in all forms of life. Most P450s use dioxygen on a heme center to activate substrates, but one class of P450s utilizes hydrogen peroxide instead. Within the class of P450 peroxygenases, the P450 OleTJE isozyme binds fatty acid substrates and converts them into a range of products through the α-hydroxylation, β-hydroxylation and decarboxylation of the substrate. The latter produces hydrocarbon products and hence can be used as biofuels. The origin of these product distributions is unclear, and, as such, we decided to investigate substrate positioning in the active site and find out what the effect is on the chemoselectivity of the reaction. In this work we present a detailed computational study on the wild-type and engineered structures of P450 OleTJE using a combination of density functional theory and quantum mechanics/molecular mechanics methods. We initially explore the wild-type structure with a variety of methods and models and show that various substrate activation transition states are close in energy and hence small perturbations as through the protein may affect product distributions. We then engineered the protein by generating an in silico model of the double mutant Asn242Arg/Arg245Asn that moves the position of an active site Arg residue in the substrate-binding pocket that is known to form a salt-bridge with the substrate. The substrate activation by the iron(IV)-oxo heme cation radical species (Compound I) was again studied using quantum mechanics/molecular mechanics (QM/MM) methods. Dramatic differences in reactivity patterns, barrier heights and structure are seen, which shows the importance of correct substrate positioning in the protein and the effect of the second-coordination sphere on the selectivity and activity of enzymes.
Collapse
|
39
|
Soldatova AV, Spiro TG. Alternative modes of O 2 activation in P450 and NOS enzymes are clarified by DFT modeling and resonance Raman spectroscopy. J Inorg Biochem 2020; 207:111054. [PMID: 32217351 PMCID: PMC7247924 DOI: 10.1016/j.jinorgbio.2020.111054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/24/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
The functions of heme proteins are modulated by hydrogen bonds (H-bonds) directed at the heme-bound ligands by protein residues. When the gaseous ligands CO, NO, or O2 are bound, their activity is strongly influenced by H-bonds to their atoms. These H-bonds produce characteristic changes in the vibrational frequencies of the heme adduct, which can be monitored by resonance Raman spectroscopy and interpreted with density functional theory (DFT) computations. When the protein employs a cysteinate proximal ligand, bound O2 becomes particularly reactive, the course of the reaction being controlled by H-bonding and proton delivery. In this work, DFT modeling is used to examine the effects of H-bonding to either the terminal (Ot) or proximate (Op) atom of methylthiolate-Fe(II)porphine-O2, as well as to the thiolate S atom. H-bonds to Op produce a positive linear correlation between ν(Fe - O) and ν(O - O), because they increase the sp2 character of Op, weakening both the Fe - O and O - O bonds. H-bonds to Ot produce a negative correlation, because they increase Fe backbonding, strengthening the Fe - O but weakening the O - O bond. Available experimental data accommodate well to the computed pattern. In particular, this correspondence supports the interpretation of cytochrome P450 data by Kincaid and Sligar [M. Gregory, P.J. Mak, S.G. Sligar, J.R. Kincaid, Angew. Chem. Int. Ed. 125 (2013) 5450-5453], involving steering between hydroxylation and lyase reaction channels by differential H-bonds. Similar channeling between the first and second steps of the nitric oxide synthase reaction is likely.
Collapse
Affiliation(s)
- Alexandra V Soldatova
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, United States
| | - Thomas G Spiro
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, United States.
| |
Collapse
|
40
|
Biosynthesis of fatty acid-derived hydrocarbons: perspectives on enzymology and enzyme engineering. Curr Opin Biotechnol 2020; 62:7-14. [DOI: 10.1016/j.copbio.2019.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/07/2019] [Accepted: 07/21/2019] [Indexed: 02/01/2023]
|
41
|
Zaragoza JPT, Cummins DC, Mubarak MQE, Siegler MA, de Visser SP, Goldberg DP. Hydrogen Atom Abstraction by High-Valent Fe(OH) versus Mn(OH) Porphyrinoid Complexes: Mechanistic Insights from Experimental and Computational Studies. Inorg Chem 2019; 58:16761-16770. [PMID: 31804814 DOI: 10.1021/acs.inorgchem.9b02923] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High-valent metal-hydroxide species have been implicated as key intermediates in hydroxylation chemistry catalyzed by heme monooxygenases such as the cytochrome P450s. However, in some classes of P450s, a bifurcation from the typical oxygen rebound pathway is observed, wherein the FeIV(OH)(porphyrin) species carries out a net hydrogen atom transfer reaction to form alkene metabolites. In this work, we examine the hydrogen atom transfer (HAT) reactivity of FeIV(OH)(ttppc) (1), ttppc = 5,10,15-tris(2,4,6-triphenyl)-phenyl corrole, toward substituted phenol derivatives. The iron hydroxide complex 1 reacts with a series of para-substituted 2,6-di-tert-butylphenol derivatives (4-X-2,6-DTBP; X = OMe, Me, Et, H, Ac), with second-order rate constants k2 = 3.6(1)-1.21(3) × 104 M-1 s-1 and yielding linear Hammett and Marcus plot correlations. It is concluded that the rate-determining step for O-H cleavage occurs through a concerted HAT mechanism, based on mechanistic analyses that include a KIE = 2.9(1) and DFT calculations. Comparison of the HAT reactivity of 1 to the analogous Mn complex, MnIV(OH)(ttppc), where only the central metal ion is different, indicates a faster HAT reaction and a steeper Hammett slope for 1. The O-H bond dissociation energy (BDE) of the MIII(HO-H) complexes were estimated from a kinetic analysis to be 85 and 89 kcal mol-1 for Mn and Fe, respectively. These estimated BDEs are closely reproduced by DFT calculations and are discussed in the context of how they influence the overall H atom transfer reactivity.
Collapse
Affiliation(s)
- Jan Paulo T Zaragoza
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Daniel C Cummins
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - M Qadri E Mubarak
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom
| | - Maxime A Siegler
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom
| | - David P Goldberg
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
42
|
Sarkar MR, Houston SD, Savage GP, Williams CM, Krenske EH, Bell SG, De Voss JJ. Rearrangement-Free Hydroxylation of Methylcubanes by a Cytochrome P450: The Case for Dynamical Coupling of C–H Abstraction and Rebound. J Am Chem Soc 2019; 141:19688-19699. [DOI: 10.1021/jacs.9b08064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Md. Raihan Sarkar
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sevan D. Houston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - G. Paul Savage
- Ian Wark Laboratory, CSIRO Manufacturing, Melbourne, VIC 3168, Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen G. Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - James J. De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
43
|
Xu H, Liang W, Ning L, Jiang Y, Yang W, Wang C, Qi F, Ma L, Du L, Fourage L, Zhou YJ, Li S. Directed Evolution of P450 Fatty Acid Decarboxylases via High‐Throughput Screening towards Improved Catalytic Activity. ChemCatChem 2019. [DOI: 10.1002/cctc.201901347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Huifang Xu
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Shandong 266101 P. R. China
| | - Weinan Liang
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Shandong 266101 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Linlin Ning
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Shandong 266101 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuanyuan Jiang
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Shandong 266101 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenxia Yang
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Shandong 266101 P. R. China
| | - Cong Wang
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Shandong 266101 P. R. China
| | - Feifei Qi
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Shandong 266101 P. R. China
| | - Li Ma
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Shandong 266101 P. R. China
- State Key Laboratory of Microbial TechnologyShandong University Shandong 266237 P. R. China
| | - Lei Du
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Shandong 266101 P. R. China
| | | | - Yongjin J. Zhou
- Division of Biotechnology Dalian Institute of Chemical Physics (DICP)Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Shandong 266101 P. R. China
- State Key Laboratory of Microbial TechnologyShandong University Shandong 266237 P. R. China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and Technology Shandong 266237 P. R. China
| |
Collapse
|
44
|
Greule A, Stok JE, De Voss JJ, Cryle MJ. Unrivalled diversity: the many roles and reactions of bacterial cytochromes P450 in secondary metabolism. Nat Prod Rep 2019; 35:757-791. [PMID: 29667657 DOI: 10.1039/c7np00063d] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2000 up to 2018 The cytochromes P450 (P450s) are a superfamily of heme-containing monooxygenases that perform diverse catalytic roles in many species, including bacteria. The P450 superfamily is widely known for the hydroxylation of unactivated C-H bonds, but the diversity of reactions that P450s can perform vastly exceeds this undoubtedly impressive chemical transformation. Within bacteria, P450s play important roles in many biosynthetic and biodegradative processes that span a wide range of secondary metabolite pathways and present diverse chemical transformations. In this review, we aim to provide an overview of the range of chemical transformations that P450 enzymes can catalyse within bacterial secondary metabolism, with the intention to provide an important resource to aid in understanding of the potential roles of P450 enzymes within newly identified bacterial biosynthetic pathways.
Collapse
Affiliation(s)
- Anja Greule
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
45
|
Manley OM, Fan R, Guo Y, Makris TM. Oxidative Decarboxylase UndA Utilizes a Dinuclear Iron Cofactor. J Am Chem Soc 2019; 141:8684-8688. [DOI: 10.1021/jacs.9b02545] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Olivia M. Manley
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Thomas M. Makris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
46
|
Can multiscale simulations unravel the function of metallo-enzymes to improve knowledge-based drug discovery? Future Med Chem 2019; 11:771-791. [DOI: 10.4155/fmc-2018-0495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Metallo-enzymes are a large class of biomolecules promoting specialized chemical reactions. Quantum-classical quantum mechanics/molecular mechanics molecular dynamics, describing the metal site at quantum mechanics level, while accounting for the rest of system at molecular mechanics level, has an accessible time-scale limited by its computational cost. Hence, it must be integrated with classical molecular dynamics and enhanced sampling simulations to disentangle the functions of metallo-enzymes. In this review, we provide an overview of these computational methods and their capabilities. In particular, we will focus on some systems such as CYP19A1 a Fe-dependent enzyme involved in estrogen biosynthesis, and on Mg2+-dependent DNA/RNA processing enzymes/ribozymes and the spliceosome, a protein-directed ribozyme. This information may guide the discovery of drug-like molecules and genetic manipulation tools.
Collapse
|
47
|
Mittra K, Green MT. Reduction Potentials of P450 Compounds I and II: Insight into the Thermodynamics of C-H Bond Activation. J Am Chem Soc 2019; 141:5504-5510. [PMID: 30892878 DOI: 10.1021/jacs.9b00242] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present a mixed experimental/theoretical determination of the bond strengths and redox potentials that define the ground-state thermodynamics for C-H bond activation in cytochrome P450 catalysis. Using redox titrations with [Ir(IV)Cl6]2-, we have determined the compound II/ferric (or Fe(IV)OH/Fe(III)OH2) couple and its associated D(O-H)Ferric bond strength in CYP158. Knowledge of this potential as well as the compound II/ferric (or Fe(IV)O/Fe(III)OH) reduction potential in horseradish peroxidase and the two-electron compound I/ferric (or Fe(IV)O(Por•)/Fe(III)OH2(Por)) reduction potential in aromatic peroxidase has allowed us to gauge the accuracy of theoretically determined bond strengths. Using the restricted open shell (ROS) method as proposed by Wright and co-workers, we have obtained O-H bond strengths and associated redox potentials for charge-neutral H-atom reductions of these iron(IV)-hydroxo and -oxo porphyrin species that are within 1 kcal/mol of experimentally determined values, suggesting that the ROS method may provide accurate values for the P450-II O-H bond strength and P450-I reduction potential. The efforts detailed here indicate that the ground-state thermodynamics of C-H bond activation in P450 are best described as follows: E0'Comp-I = 1.22 V (at pH 7, vs NHE) with D(O-H)Comp-II = 95 kcal/mol and E0'Comp-II = 0.99 V (at pH 7, vs NHE) with D(O-H)Ferric = 90 kcal/mol.
Collapse
Affiliation(s)
- Kaustuv Mittra
- Department of Chemistry and Department of Molecular Biology and Biochemistry , University of California , Irvine , California 92697 , United States
| | - Michael T Green
- Department of Chemistry and Department of Molecular Biology and Biochemistry , University of California , Irvine , California 92697 , United States
| |
Collapse
|
48
|
Pickl M, Kurakin S, Cantú Reinhard FG, Schmid P, Pöcheim A, Winkler CK, Kroutil W, de Visser SP, Faber K. Mechanistic Studies of Fatty Acid Activation by CYP152 Peroxygenases Reveal Unexpected Desaturase Activity. ACS Catal 2019; 9:565-577. [PMID: 30637174 PMCID: PMC6323616 DOI: 10.1021/acscatal.8b03733] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/04/2018] [Indexed: 02/05/2023]
Abstract
![]()
The
majority of cytochrome P450 enzymes (CYPs) predominantly operate
as monooxygenases, but recently a class of P450 enzymes was discovered,
that can act as peroxygenases (CYP152). These enzymes convert fatty
acids through oxidative decarboxylation, yielding terminal alkenes,
and through α- and β-hydroxylation to yield hydroxy-fatty
acids. Bioderived olefins may serve as biofuels, and hence understanding
the mechanism and substrate scope of this class of enzymes is important.
In this work, we report on the substrate scope and catalytic promiscuity
of CYP OleTJE and two of its orthologues from the CYP152
family, utilizing α-monosubstituted branched carboxylic acids.
We identify α,β-desaturation as an unexpected dominant
pathway for CYP OleTJE with 2-methylbutyric acid. To rationalize
product distributions arising from α/β-hydroxylation,
oxidative decarboxylation, and desaturation depending on the substrate’s
structure and binding pattern, a computational study was performed
based on an active site complex of CYP OleTJE containing
the heme cofactor in the substrate binding pocket and 2-methylbutyric
acid as substrate. It is shown that substrate positioning determines
the accessibility of the oxidizing species (Compound I) to the substrate
and hence the regio- and chemoselectivity of the reaction. Furthermore,
the results show that, for 2-methylbutyric acid, α,β-desaturation
is favorable because of a rate-determining α-hydrogen atom abstraction,
which cannot proceed to decarboxylation. Moreover, substrate hydroxylation
is energetically impeded due to the tight shape and size of the substrate
binding pocket.
Collapse
Affiliation(s)
- Mathias Pickl
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Sara Kurakin
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Fabián G. Cantú Reinhard
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Philipp Schmid
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Alexander Pöcheim
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Christoph K. Winkler
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, A-8010 Graz, Austria
| | - Wolfgang Kroutil
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Sam P. de Visser
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Kurt Faber
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| |
Collapse
|
49
|
Jiang Y, Li Z, Wang C, Zhou YJ, Xu H, Li S. Biochemical characterization of three new α-olefin-producing P450 fatty acid decarboxylases with a halophilic property. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:79. [PMID: 30996734 PMCID: PMC6452516 DOI: 10.1186/s13068-019-1419-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/27/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND The CYP152 family member OleTJE from Jeotgalicoccus sp. ATCC 8456 has been well-known to catalyze the unusual one-step decarboxylation of free fatty acids towards the formation of terminal alkenes. Efforts to tune up its decarboxylation activity for better production of biological alkenes have been extensively explored via approaches such as site-directed mutagenesis and electron source engineering, but with limited success. To gain more insights into the decarboxylation mechanism and reaction bifurcation (decarboxylation versus hydroxylation), we turned to an alternative approach to explore the natural CYP152 resources for a better variety of enzyme candidates. RESULTS We biochemically characterized three new P450 fatty acid decarboxylases including OleTJH, OleTSQ and OleTSA, with respect to their substrate specificity, steady-state kinetics, and salt effects. These enzymes all act as an OleTJE-like fatty acid decarboxylase being able to decarboxylate a range of straight-chain saturated fatty acids (C8-C20) to various degrees. Site-directed mutagenesis analysis to the lower activity P450 enzyme OleTSA revealed a number of key amino acid residues within the substrate-binding pocket (T47F, I177L, V319A and L405I) that are important for delicate substrate positioning of different chain-length fatty acids and thus the decarboxylation versus hydroxylation chemoselectivity, in particular for the mid-chain fatty acids (C8-C12). In addition, the three new decarboxylases exhibited optimal catalytic activity and stability at a salt concentration of 0.5 M, and were thus classified as moderate halophilic enzymes. CONCLUSION The P450 fatty acid decarboxylases OleTJE, OleTJH, OleTSQ and OleTSA belong to a novel group of moderate halophilic P450 enzymes. OleTJH from Jeotgalicoccus halophilus shows the decarboxylation activity, kinetic parameters, as well as salt tolerance and stability that are comparable to OleTJE. Site-directed mutagenesis of several key amino acid residues near substrate-binding pocket provides important guidance for further engineering of these P450 fatty acid decarboxylases that hold promising application potential for production of α-olefin biohydrocarbons.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhong Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Cong Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong China
| | - Yongjin J. Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Huifang Xu
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong China
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 Shandong China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong China
| |
Collapse
|
50
|
Dangi B, Oh T. Bacterial
CYP
154C8 catalyzes carbon‐carbon bond cleavage in steroids. FEBS Lett 2018; 593:67-79. [DOI: 10.1002/1873-3468.13297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/26/2018] [Accepted: 11/04/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Bikash Dangi
- Department of Life Science and Biochemical Engineering SunMoon University Asan‐si Korea
| | - Tae‐Jin Oh
- Department of Life Science and Biochemical Engineering SunMoon University Asan‐si Korea
- Department of Pharmaceutical Engineering and Biotechnology SunMoon University Asan‐si Korea
- Genome‐based BioIT Convergence Institute Asan‐si Korea
| |
Collapse
|