1
|
Fuller MJ, Andrys NRR, Gupta SC, Ghobbeh A, Kreple CJ, Fan R, Taugher-Hebl RJ, Radley JJ, Lalumiere RT, Wemmie JA. The Role of Acid-Sensing Ion Channel 1A (ASIC1A) in the Behavioral and Synaptic Effects of Oxycodone and Other Opioids. Int J Mol Sci 2024; 25:11584. [PMID: 39519136 PMCID: PMC11545886 DOI: 10.3390/ijms252111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Opioid-seeking behaviors depend on glutamatergic plasticity in the nucleus accumbens core (NAcc). Here we investigated whether the behavioral and synaptic effects of opioids are influenced by acid-sensing ion channel 1A (ASIC1A). We tested the effects of ASIC1A on responses to several opioids and found that Asic1a-/- mice had elevated behavioral responses to acute opioid administration as well as opioid seeking behavior in conditioned place preference (CPP). Region-restricted restoration of ASIC1A in NAcc was sufficient to reduce opioid CPP, suggesting NAcc is an important site of action. We next tested the effects of oxycodone withdrawal on dendritic spines in NAcc. We found effects of oxycodone and ASIC1A that contrasted with changes previously described following cocaine withdrawal. Finally, we examined α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated and N-methyl-D-aspartic acid (NMDA) receptor-mediated synaptic currents in NAcc. Oxycodone withdrawal, like morphine withdrawal, increased the AMPAR/NMDAR ratio in Asic1a+/+ mice, whereas oxycodone withdrawal reduced the AMPAR/NMDAR ratio in Asic1a-/- mice. A single dose of oxycodone was sufficient to induce this paradoxical effect in Asic1a-/- mice, suggesting an increased sensitivity to oxycodone. We conclude that ASIC1A plays an important role in the behavioral and synaptic effects of opioids and may constitute a potential future target for developing novel therapies.
Collapse
Affiliation(s)
- Margaret J. Fuller
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
| | - Noah R. R. Andrys
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Subhash C. Gupta
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Ali Ghobbeh
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Collin J. Kreple
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Rong Fan
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Rebecca J. Taugher-Hebl
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Jason J. Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; (J.J.R.); (R.T.L.)
| | - Ryan T. Lalumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; (J.J.R.); (R.T.L.)
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Horton S, Mastrolia V, Jackson RE, Kemlo S, Pereira Machado PM, Carbajal MA, Hindges R, Fleck RA, Aguiar P, Neves G, Burrone J. Excitatory and inhibitory synapses show a tight subcellular correlation that weakens over development. Cell Rep 2024; 43:114361. [PMID: 38900634 DOI: 10.1016/j.celrep.2024.114361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024] Open
Abstract
Neurons receive correlated levels of excitation and inhibition, a feature that is important for proper brain function. However, how this relationship between excitatory and inhibitory inputs is established during the dynamic period of circuit wiring remains unexplored. Using multiple techniques, including in utero electroporation, electron microscopy, and electrophysiology, we reveal a tight correlation in the distribution of excitatory and inhibitory synapses along the dendrites of developing CA1 hippocampal neurons. This correlation was present within short dendritic stretches (<20 μm) and, surprisingly, was most pronounced during early development, sharply declining with maturity. The tight matching between excitation and inhibition was unexpected, as inhibitory synapses lacked an active zone when formed and exhibited compromised evoked release. We propose that inhibitory synapses form as a stabilizing scaffold to counterbalance growing excitation levels. This relationship diminishes over time, suggesting a critical role for a subcellular balance in early neuronal function and circuit formation.
Collapse
Affiliation(s)
- Sally Horton
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Vincenzo Mastrolia
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Rachel E Jackson
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Sarah Kemlo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Pedro M Pereira Machado
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Maria Alejandra Carbajal
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Robert Hindges
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Roland A Fleck
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Paulo Aguiar
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Guilherme Neves
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| | - Juan Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
3
|
Rigby M, Grillo FW, Compans B, Neves G, Gallinaro J, Nashashibi S, Horton S, Pereira Machado PM, Carbajal MA, Vizcay-Barrena G, Levet F, Sibarita JB, Kirkland A, Fleck RA, Clopath C, Burrone J. Multi-synaptic boutons are a feature of CA1 hippocampal connections in the stratum oriens. Cell Rep 2023; 42:112397. [PMID: 37074915 PMCID: PMC10695768 DOI: 10.1016/j.celrep.2023.112397] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/21/2023] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
Excitatory synapses are typically described as single synaptic boutons (SSBs), where one presynaptic bouton contacts a single postsynaptic spine. Using serial section block-face scanning electron microscopy, we found that this textbook definition of the synapse does not fully apply to the CA1 region of the hippocampus. Roughly half of all excitatory synapses in the stratum oriens involved multi-synaptic boutons (MSBs), where a single presynaptic bouton containing multiple active zones contacted many postsynaptic spines (from 2 to 7) on the basal dendrites of different cells. The fraction of MSBs increased during development (from postnatal day 22 [P22] to P100) and decreased with distance from the soma. Curiously, synaptic properties such as active zone (AZ) or postsynaptic density (PSD) size exhibited less within-MSB variation when compared with neighboring SSBs, features that were confirmed by super-resolution light microscopy. Computer simulations suggest that these properties favor synchronous activity in CA1 networks.
Collapse
Affiliation(s)
- Mark Rigby
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Federico W Grillo
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Benjamin Compans
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Guilherme Neves
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| | - Julia Gallinaro
- Bioengineering Department, Imperial College London, London, UK
| | - Sophie Nashashibi
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Sally Horton
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Pedro M Pereira Machado
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Maria Alejandra Carbajal
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Florian Levet
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France; University Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR3420, US 4, 33000 Bordeaux, France
| | - Jean-Baptiste Sibarita
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Angus Kirkland
- The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| | - Roland A Fleck
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, UK
| | - Juan Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
4
|
Parnell E, Voorn RA, Martin-de-Saavedra MD, Loizzo DD, Dos Santos M, Penzes P. A developmental delay linked missense mutation in Kalirin-7 disrupts protein function and neuronal morphology. Front Mol Neurosci 2022; 15:994513. [PMID: 36533124 PMCID: PMC9751355 DOI: 10.3389/fnmol.2022.994513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/28/2022] [Indexed: 07/30/2023] Open
Abstract
The Rac1 guanine exchange factor Kalirin-7 is a key regulator of dendritic spine morphology, LTP and dendritic arborization. Kalirin-7 dysfunction and genetic variation has been extensively linked to various neurodevelopmental and neurodegenerative disorders. Here we characterize a Kalirin-7 missense mutation, glu1577lys (E1577K), identified in a patient with severe developmental delay. The E1577K point mutation is located within the catalytic domain of Kalirin-7, and results in a robust reduction in Kalirin-7 Rac1 Guanosine exchange factor activity. In contrast to wild type Kalirin-7, the E1577K mutant failed to drive dendritic arborization, spine density, NMDAr targeting to, and activity within, spines. Together these results indicate that reduced Rac1-GEF activity as result of E1577K mutation impairs neuroarchitecture, connectivity and NMDAr activity, and is a likely contributor to impaired neurodevelopment in a patient with developmental delay.
Collapse
Affiliation(s)
- Euan Parnell
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Roos A. Voorn
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - M. Dolores Martin-de-Saavedra
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Madrid, Spain
| | - Daniel D. Loizzo
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Marc Dos Santos
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Peter Penzes
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Centre for Autism and Neurodevelopment, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
5
|
Murphy JG, Gutzmann JJ, Lin L, Hu J, Petralia RS, Wang YX, Hoffman DA. R-type voltage-gated Ca 2+ channels mediate A-type K + current regulation of synaptic input in hippocampal dendrites. Cell Rep 2022; 38:110264. [PMID: 35045307 PMCID: PMC10496648 DOI: 10.1016/j.celrep.2021.110264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 01/22/2023] Open
Abstract
The subthreshold voltage-gated transient K+ current (IA) carried by pore-forming Kv4.2 subunits regulates the propagation of synaptic input, dendritic excitability, and synaptic plasticity in CA1 pyramidal neuron dendrites of the hippocampus. We report that the Ca2+ channel subunit Cav2.3 regulates IA in this cell type. We initially identified Cav2.3 as a Kv4.2-interacting protein in a proteomic screen and we confirmed Cav2.3-Kv4.2 complex association using multiple techniques. Functionally, Cav2.3 Ca2+-entry increases Kv4.2-mediated whole-cell current due to an increase in Kv4.2 surface expression. Using pharmacology and Cav2.3 knockout mice, we show that Cav2.3 regulates the dendritic gradient of IA. Furthermore, the loss of Cav2.3 function leads to the enhancement of AMPA receptor-mediated synaptic currents and NMDA receptor-mediated spine Ca2+ influx. These results propose that Cav2.3 and Kv4.2 are integral constituents of an ion channel complex that affects synaptic function in the hippocampus.
Collapse
Affiliation(s)
- Jonathan G Murphy
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jakob J Gutzmann
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lin Lin
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiahua Hu
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dax A Hoffman
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Genetically encoded intrabodies as high-precision tools to visualize and manipulate neuronal function. Semin Cell Dev Biol 2021; 126:117-124. [PMID: 34782184 DOI: 10.1016/j.semcdb.2021.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022]
Abstract
Basic neuroscience research employs numerous forms of antibodies as key reagents in diverse applications. While the predominant use of antibodies is as immunolabeling reagents, neuroscientists are making increased use of intracellular antibodies or intrabodies. Intrabodies are recombinant antibodies genetically encoded for expression within neurons. These can be used to target various cargo (fluorescent proteins, reporters, enzymes, etc.) to specific molecules and subcellular domains to report on and manipulate neuronal function with high precision. Intrabodies have the advantages inherent in all genetically encoded recombinant antibodies but represent a distinct subclass in that their structure allows for their expression and function within cells. The high precision afforded by the ability to direct their expression to specific cell types, and the selective binding of intrabodies to targets within these allows intrabodies to offer unique advantages for neuroscience research, given the tremendous molecular, cellular and morphological complexity of brain neurons. Intrabodies expressed within neurons have been used for a variety of purposes in basic neuroscience research. Here I provide a general background to intrabodies and their development, and examples of their emerging utility as valuable basic neuroscience research tools.
Collapse
|
7
|
Doostdar N, Airey J, Radulescu CI, Melgosa-Ecenarro L, Zabouri N, Pavlidi P, Kopanitsa M, Saito T, Saido T, Barnes SJ. Multi-scale network imaging in a mouse model of amyloidosis. Cell Calcium 2021; 95:102365. [PMID: 33610083 DOI: 10.1016/j.ceca.2021.102365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023]
Abstract
The adult neocortex is not hard-wired but instead retains the capacity to reorganise across multiple spatial scales long into adulthood. Plastic reorganisation occurs at the level of mesoscopic sensory maps, functional neuronal assemblies and synaptic ensembles and is thought to be a critical feature of neuronal network function. Here, we describe a series of approaches that use calcium imaging to measure network reorganisation across multiple spatial scales in vivo. At the mesoscopic level, we demonstrate that sensory activity can be measured in animals undergoing longitudinal behavioural assessment involving automated touchscreen tasks. At the cellular level, we show that network dynamics can be longitudinally measured at both stable and transient functional assemblies. At the level of single synapses, we show that functional subcellular calcium imaging approaches can be used to measure synaptic ensembles of dendritic spines in vivo. Finally, we demonstrate that all three levels of imaging can be spatially related to local pathology in a preclinical rodent model of amyloidosis. We propose that multi-scale in vivo calcium imaging can be used to measure parallel plasticity processes operating across multiple spatial scales in both the healthy brain and preclinical models of disease.
Collapse
Affiliation(s)
- Nazanin Doostdar
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Joseph Airey
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Carola I Radulescu
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Leire Melgosa-Ecenarro
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Nawal Zabouri
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Pavlina Pavlidi
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Maksym Kopanitsa
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Aichi, 467-8601, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Centre for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Samuel J Barnes
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom.
| |
Collapse
|
8
|
Trimmer JS. Recombinant Antibodies in Basic Neuroscience Research. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e106. [PMID: 33151027 PMCID: PMC7665837 DOI: 10.1002/cpns.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Basic neuroscience research employs antibodies as key reagents to label, capture, and modulate the function of proteins of interest. Antibodies are immunoglobulin proteins. Recombinant antibodies are immunoglobulin proteins whose nucleic acid coding regions, or fragments thereof, have been cloned into expression plasmids that allow for unlimited production. Recombinant antibodies offer many advantages over conventional antibodies including their unambiguous identification and digital archiving via DNA sequencing, reliable expression, ease and reliable distribution as DNA sequences and as plasmids, and the opportunity for numerous forms of engineering to enhance their utility. Recombinant antibodies exist in many different forms, each of which offers potential advantages and disadvantages for neuroscience research applications. I provide an overview of recombinant antibodies and their development. Examples of their emerging use as valuable reagents in basic neuroscience research are also discussed. Many of these examples employ recombinant antibodies in innovative experimental approaches that cannot be pursued with conventional antibodies. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- James S Trimmer
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, California
| |
Collapse
|
9
|
Geometry and the Organizational Principle of Spine Synapses along a Dendrite. eNeuro 2020; 7:ENEURO.0248-20.2020. [PMID: 33109633 PMCID: PMC7772515 DOI: 10.1523/eneuro.0248-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Precise information on synapse organization in a dendrite is crucial to understanding the mechanisms underlying voltage integration and the variability in the strength of synaptic inputs across dendrites of different complex morphologies. Here, we used focused ion beam/scanning electron microscope (FIB/SEM) to image the dendritic spines of mice in the hippocampal CA1 region, CA3 region, somatosensory cortex, striatum, and cerebellum (CB). Our results show that the spine geometry and dimensions differ across neuronal cell types. Despite this difference, dendritic spines were organized in an orchestrated manner such that the postsynaptic density (PSD) area per unit length of dendrite scaled positively with the dendritic diameter in CA1 proximal stratum radiatum (PSR), cortex, and CB. The ratio of the PSD area to neck length was kept relatively uniform across dendrites of different diameters in CA1 PSR. Computer simulation suggests that a similar level of synaptic strength across different dendrites in CA1 PSR enables the effective transfer of synaptic inputs from the dendrites toward soma. Excitatory postsynaptic potentials (EPSPs), evoked at single spines by glutamate uncaging and recorded at the soma, show that the neck length is more influential than head width in regulating the EPSP magnitude at the soma. Our study describes thorough morphologic features and the organizational principles of dendritic spines in different brain regions.
Collapse
|
10
|
Distance-dependent regulation of NMDAR nanoscale organization along hippocampal neuron dendrites. Proc Natl Acad Sci U S A 2020; 117:24526-24533. [PMID: 32929031 PMCID: PMC7533699 DOI: 10.1073/pnas.1922477117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hippocampal pyramidal neurons are characterized by a unique arborization subdivided in segregated dendritic domains receiving distinct excitatory synaptic inputs with specific properties and plasticity rules that shape their respective contributions to synaptic integration and action potential firing. Although the basal regulation and plastic range of proximal and distal synapses are known to be different, the composition and nanoscale organization of key synaptic proteins at these inputs remains largely elusive. Here we used superresolution imaging and single nanoparticle tracking in rat hippocampal neurons to unveil the nanoscale topography of native GluN2A- and GluN2B-NMDA receptors (NMDARs)-which play key roles in the use-dependent adaptation of glutamatergic synapses-along the dendritic arbor. We report significant changes in the nanoscale organization of GluN2B-NMDARs between proximal and distal dendritic segments, whereas the topography of GluN2A-NMDARs remains similar along the dendritic tree. Remarkably, the nanoscale organization of GluN2B-NMDARs at proximal segments depends on their interaction with calcium/calmodulin-dependent protein kinase II (CaMKII), which is not the case at distal segments. Collectively, our data reveal that the nanoscale organization of NMDARs changes along dendritic segments in a subtype-specific manner and is shaped by the interplay with CaMKII at proximal dendritic segments, shedding light on our understanding of the functional diversity of hippocampal glutamatergic synapses.
Collapse
|
11
|
Bensussen S, Shankar S, Ching KH, Zemel D, Ta TL, Mount RA, Shroff SN, Gritton HJ, Fabris P, Vanbenschoten H, Beck C, Man HY, Han X. A Viral Toolbox of Genetically Encoded Fluorescent Synaptic Tags. iScience 2020; 23:101330. [PMID: 32674057 PMCID: PMC7363701 DOI: 10.1016/j.isci.2020.101330] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 04/18/2020] [Accepted: 06/26/2020] [Indexed: 01/16/2023] Open
Abstract
Fibronectin intrabodies generated with mRNA display (FingRs) are a recently developed tool for labeling excitatory or inhibitory synapses, with the benefit of not altering endogenous synaptic protein expression levels or synaptic transmission. Here, we generated a viral vector FingR toolbox that allows for multi-color, neuron-type-specific labeling of excitatory or inhibitory synapses in multiple brain regions. We screened various fluorophores, FingR fusion configurations, and transcriptional control regulations in adeno-associated virus (AAV) and retrovirus vector designs. We report the development of a red FingR variant and demonstrated dual labeling of excitatory and inhibitory synapses in the same cells. Furthermore, we developed cre-inducible FingR AAV variants and demonstrated their utility, finding that the density of inhibitory synapses in aspiny striatal cholinergic interneurons remained unchanged in response to dopamine depletion. Finally, we generated FingR retroviral vectors, which enabled us to track the development of excitatory and inhibitory synapses in hippocampal adult-born granule cells.
Collapse
Affiliation(s)
- Seth Bensussen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sneha Shankar
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Kimberley H Ching
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Dana Zemel
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Tina L Ta
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Rebecca A Mount
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sanaya N Shroff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Howard J Gritton
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Pierre Fabris
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | - Connor Beck
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
12
|
Sanderson TM, Georgiou J, Collingridge GL. Illuminating Relationships Between the Pre- and Post-synapse. Front Neural Circuits 2020; 14:9. [PMID: 32308573 PMCID: PMC7146027 DOI: 10.3389/fncir.2020.00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Excitatory synapses in the mammalian cortex are highly diverse, both in terms of their structure and function. However, relationships between synaptic features indicate they are highly coordinated entities. Imaging techniques, that enable physiology at the resolution of individual synapses to be investigated, have allowed the presynaptic activity level of the synapse to be related to postsynaptic function. This approach has revealed that neuronal activity induces the pre- and post-synapse to be functionally correlated and that subsets of synapses are more susceptible to certain forms of synaptic plasticity. As presynaptic function is often examined in isolation from postsynaptic properties, the effect it has on the post-synapse is not fully understood. However, since postsynaptic receptors at excitatory synapses respond to release of glutamate, it follows that they may be differentially regulated depending on the frequency of its release. Therefore, examining postsynaptic properties in the context of presynaptic function may be a useful way to approach a broad range of questions on synaptic physiology. In this review, we focus on how optophysiology tools have been utilized to study relationships between the pre- and the post-synapse. Multiple imaging techniques have revealed correlations in synaptic properties from the submicron to the dendritic level. Optical tools together with advanced imaging techniques are ideally suited to illuminate this area further, due to the spatial resolution and control they allow.
Collapse
Affiliation(s)
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, Department of Physiology, University of Toronto, Toronto, ON, Canada.,Glutamate Research Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
13
|
Iacobucci GJ, Popescu GK. Spatial Coupling Tunes NMDA Receptor Responses via Ca 2+ Diffusion. J Neurosci 2019; 39:8831-8844. [PMID: 31519826 PMCID: PMC6832682 DOI: 10.1523/jneurosci.0901-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/11/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
In the CNS, NMDA receptors generate large and highly regulated Ca2+ signals, which are critical for synaptic development and plasticity. They are highly clustered at postsynaptic sites and along dendritic arbors, but whether this spatial arrangement affects their output is unknown. Synaptic NMDA receptor currents are subject to Ca2+-dependent inactivation (CDI), a type of activity-dependent inhibition that requires intracellular Ca2+ and calmodulin (CaM). We asked whether Ca2+ influx through a single NMDA receptor influences the activity of nearby NMDA receptors, as a possible coupling mechanism. Using cell-attached unitary current recordings from GluN1-2a/GluN2A receptors expressed in human HEK293 cells and from NMDA receptors native to hippocampal neurons from male and female rats, we recorded unitary currents from multichannel patches and used a coupled Markov model to determine the extent of signal coupling (κ). In the absence of extracellular Ca2+, we observed no cooperativity (κ < 0.1), whereas in 1.8 mm external Ca2+, both recombinant and native channels showed substantial negative cooperativity (κ = 0.27). Intracellular Ca2+ chelation or overexpression of a Ca2+-insensitive CaM mutant, reduced coupling, which is consistent with CDI representing the coupling mechanism. In contrast, cooperativity increased substantially (κ = 0.68) when overexpressing the postsynaptic scaffolding protein PSD-95, which increased receptor clustering. Together, these new results demonstrate that NMDA receptor currents are negatively coupled through CDI, and the degree of coupling can be tuned by the distance between receptors. Therefore, channel clustering can influence the activity-dependent reduction in NMDA receptor currents.SIGNIFICANCE STATEMENT At central synapses, NMDA receptors are a major class of excitatory glutamate-gated channels and a source of activity-dependent Ca2+ influx. In turn, fluxed Ca2+ ions bind to calmodulin-primed receptors and reduce further entry, through an autoinhibitory mechanism known as Ca2+ -dependent inactivation (CDI). Here, we show that the diffusion of fluxed Ca2+ between active channels situated within submicroscopic distances amplified receptor inactivation. Thus, calmodulin-mediated gating modulation, an evolutionarily conserved regulatory mechanism, endows synapses with sensitivity to both the temporal sequence and spatial distribution of Ca2+ signals. Perturbations in this mechanism, which coordinates the activity of NMDA receptors within a cluster, may cause signaling alterations that contribute to neuropsychiatric conditions.
Collapse
Affiliation(s)
- Gary J Iacobucci
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14206
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14206
| |
Collapse
|
14
|
Metzbower SR, Joo Y, Benavides DR, Blanpied TA. Properties of Individual Hippocampal Synapses Influencing NMDA-Receptor Activation by Spontaneous Neurotransmission. eNeuro 2019; 6:ENEURO.0419-18.2019. [PMID: 31110134 PMCID: PMC6541874 DOI: 10.1523/eneuro.0419-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/05/2019] [Accepted: 05/12/2019] [Indexed: 12/14/2022] Open
Abstract
NMDA receptor (NMDAR) activation is critical for maintenance and modification of synapse strength. Specifically, NMDAR activation by spontaneous glutamate release has been shown to mediate some forms of synaptic plasticity as well as synaptic development. Interestingly, there is evidence that within individual synapses each release mode may be segregated such that postsynaptically there are distinct pools of responsive receptors. To examine potential regulators of NMDAR activation because of spontaneous glutamate release in cultured hippocampal neurons, we used GCaMP6f imaging at single synapses in concert with confocal and super-resolution imaging. Using these single-spine approaches, we found that Ca2+ entry activated by spontaneous release tends to be carried by GluN2B-NMDARs. Additionally, the amount of NMDAR activation varies greatly both between synapses and within synapses, and is unrelated to spine and synapse size, but does correlate loosely with synapse distance from the soma. Despite the critical role of spontaneous activation of NMDARs in maintaining synaptic function, their activation seems to be controlled factors other than synapse size or synapse distance from the soma. It is most likely that NMDAR activation by spontaneous release influenced variability in subsynaptic receptor position, release site position, vesicle content, and channel properties. Therefore, spontaneous activation of NMDARs appears to be regulated distinctly from other receptor types, notably AMPARs, within individual synapses.
Collapse
Affiliation(s)
| | - Yuyoung Joo
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - David R Benavides
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | | |
Collapse
|
15
|
Hiester BG, Becker MI, Bowen AB, Schwartz SL, Kennedy MJ. Mechanisms and Role of Dendritic Membrane Trafficking for Long-Term Potentiation. Front Cell Neurosci 2018; 12:391. [PMID: 30425622 PMCID: PMC6218485 DOI: 10.3389/fncel.2018.00391] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/11/2018] [Indexed: 01/19/2023] Open
Abstract
Long-term potentiation (LTP) of excitatory synapses is a major form of plasticity for learning and memory in the central nervous system. While the molecular mechanisms of LTP have been debated for decades, there is consensus that LTP induction activates membrane trafficking pathways within dendrites that are essential for synapse growth and strengthening. Current models suggest that key molecules for synaptic potentiation are sequestered within intracellular organelles, which are mobilized by synaptic activity to fuse with the plasma membrane following LTP induction. While the identity of the factors mobilized to the plasma membrane during LTP remain obscure, the field has narrowly focused on AMPA-type glutamate receptors. Here, we review recent literature and present new experimental data from our lab investigating whether AMPA receptors trafficked from intracellular organelles directly contribute to synaptic strengthening during LTP. We propose a modified model where membrane trafficking delivers distinct factors that are required to maintain synapse growth and AMPA receptor incorporation following LTP. Finally, we pose several fundamental questions that may guide further inquiry into the role of membrane trafficking for synaptic plasticity.
Collapse
Affiliation(s)
- Brian G Hiester
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Matthew I Becker
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aaron B Bowen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Samantha L Schwartz
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
16
|
Grillo FW, Neves G, Walker A, Vizcay-Barrena G, Fleck RA, Branco T, Burrone J. A Distance-Dependent Distribution of Presynaptic Boutons Tunes Frequency-Dependent Dendritic Integration. Neuron 2018; 99:275-282.e3. [PMID: 29983327 PMCID: PMC6078905 DOI: 10.1016/j.neuron.2018.06.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 03/23/2018] [Accepted: 06/08/2018] [Indexed: 11/28/2022]
Abstract
How presynaptic inputs and neurotransmitter release dynamics are distributed along a dendritic tree is not well established. Here, we show that presynaptic boutons that form onto basal dendrites of CA1 pyramidal neurons display a decrease in active zone (AZ) size with distance from the soma, resulting in a distance-dependent increase in short-term facilitation. Our findings suggest that the spatial distribution of short-term facilitation serves to compensate for the electrotonic attenuation of subthreshold distal inputs during repeated stimulation and fine-tunes the preferred input frequency of dendritic domains. Presynaptic inputs decrease in size with distance along CA1 basal dendrites Release probability decreases with distance along basal dendrites Short-term facilitation increases with distance along basal dendrites Increased synaptic facilitation offsets passive decay and boosts supralinear events
Collapse
Affiliation(s)
- Federico W Grillo
- Centre for Developmental Neurobiology, Kings College London, New Hunts House, Guys Hospital Campus, London, SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, Kings College London, New Hunts House, Guys Hospital Campus, London, SE1 1UL, UK
| | - Guilherme Neves
- Centre for Developmental Neurobiology, Kings College London, New Hunts House, Guys Hospital Campus, London, SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, Kings College London, New Hunts House, Guys Hospital Campus, London, SE1 1UL, UK
| | - Alison Walker
- Centre for Developmental Neurobiology, Kings College London, New Hunts House, Guys Hospital Campus, London, SE1 1UL, UK
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London, SE1 1UL, UK
| | - Roland A Fleck
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London, SE1 1UL, UK
| | - Tiago Branco
- The Sainsbury Wellcome Centre, University College London, 25 Howland Street, London, W1T 4JG, UK
| | - Juan Burrone
- Centre for Developmental Neurobiology, Kings College London, New Hunts House, Guys Hospital Campus, London, SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, Kings College London, New Hunts House, Guys Hospital Campus, London, SE1 1UL, UK.
| |
Collapse
|
17
|
Verstraelen P, Van Dyck M, Verschuuren M, Kashikar ND, Nuydens R, Timmermans JP, De Vos WH. Image-Based Profiling of Synaptic Connectivity in Primary Neuronal Cell Culture. Front Neurosci 2018; 12:389. [PMID: 29997468 PMCID: PMC6028601 DOI: 10.3389/fnins.2018.00389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/22/2018] [Indexed: 12/04/2022] Open
Abstract
Neurological disorders display a broad spectrum of clinical manifestations. Yet, at the cellular level, virtually all these diseases converge into a common phenotype of dysregulated synaptic connectivity. In dementia, synapse dysfunction precedes neurodegeneration and cognitive impairment by several years, making the synapse a crucial entry point for the development of diagnostic and therapeutic strategies. Whereas high-resolution imaging and biochemical fractionations yield detailed insight into the molecular composition of the synapse, standardized assays are required to quickly gauge synaptic connectivity across large populations of cells under a variety of experimental conditions. Such screening capabilities have now become widely accessible with the advent of high-throughput, high-content microscopy. In this review, we discuss how microscopy-based approaches can be used to extract quantitative information about synaptic connectivity in primary neurons with deep coverage. We elaborate on microscopic readouts that may serve as a proxy for morphofunctional connectivity and we critically analyze their merits and limitations. Finally, we allude to the potential of alternative culture paradigms and integrative approaches to enable comprehensive profiling of synaptic connectivity.
Collapse
Affiliation(s)
- Peter Verstraelen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Michiel Van Dyck
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Rony Nuydens
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Cell Systems and Imaging, Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Avila J, Llorens-Martín M, Pallas-Bazarra N, Bolós M, Perea JR, Rodríguez-Matellán A, Hernández F. Cognitive Decline in Neuronal Aging and Alzheimer's Disease: Role of NMDA Receptors and Associated Proteins. Front Neurosci 2017; 11:626. [PMID: 29176942 PMCID: PMC5687061 DOI: 10.3389/fnins.2017.00626] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/26/2017] [Indexed: 01/01/2023] Open
Abstract
Molecular changes associated with neuronal aging lead to a decrease in cognitive capacity. Here we discuss these alterations at the level of brain regions, brain cells, and brain membrane and cytoskeletal proteins with an special focus in NMDA molecular changes through aging and its effect in cognitive decline and Alzheimer disease. Here, we propose that some neurodegenerative disorders, like Alzheimer's disease (AD), are characterized by an increase and acceleration of some of these changes.
Collapse
Affiliation(s)
- Jesús Avila
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Llorens-Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Noemí Pallas-Bazarra
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marta Bolós
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan R Perea
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Alberto Rodríguez-Matellán
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|