1
|
Giaimo BD, Ferrante F, Borggrefe T. Lysine and arginine methylation of transcription factors. Cell Mol Life Sci 2024; 82:5. [PMID: 39680066 DOI: 10.1007/s00018-024-05531-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Post-translational modifications (PTMs) are implicated in many biological processes including receptor activation, signal transduction, transcriptional regulation and protein turnover. Lysine's side chain is particularly notable, as it can undergo methylation, acetylation, SUMOylation and ubiquitination. Methylation affects not only lysine but also arginine residues, both of which are implicated in epigenetic regulation. Beyond histone-tails as substrates, dynamic methylation of transcription factors has been described. The focus of this review is on these non-histone substrates providing a detailed discussion of what is currently known about methylation of hypoxia-inducible factor (HIF), P53, nuclear receptors (NRs) and RELA. The role of methylation in regulating protein stability and function by acting as docking sites for methyl-reader proteins and via their crosstalk with other PTMs is explored.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
| | - Francesca Ferrante
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
| |
Collapse
|
2
|
Wu X, Sun G, Fan R, Liu K, Duan C, Mao X, Wu H, Yao X, Li B, Chen K, Zhang Y, Chen Z. CircSP3 encodes SP3-461aa to promote ccRCC progression via stabilizing MYH9 and activating the PI3K-Akt signaling pathway. J Cancer 2024; 15:5876-5896. [PMID: 39440063 PMCID: PMC11493002 DOI: 10.7150/jca.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/31/2024] [Indexed: 10/25/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a primary kidney cancer with high aggressive phenotype and extremely poor prognosis. Accumulating evidence suggests that circular RNAs (circRNAs) play pivotal roles in the occurrence and development of various human cancers. However, the expression, clinical significance and regulatory role of circRNAs in ccRCC remain largely unclear. Here we report that circSP3 to be increased in tissues from ccRCC patients and ccRCC cells, and to positively correlate with ccRCC malignant features. Knockdown of circSP3 inhibits proliferation, triggers apoptosis, and reduces migration and invasion in different ccRCC cells in vitro. Correspondingly, circSP3 overexpression Promote ccRCC tumorigenicity in a mouse xenograft model. Mechanistically, circSP3 could bind with the ribosome to initiate the translation process to encodes a novel 461-amino acid peptide referred to as SP3-461aa, which protects the MYH9 protein from proteasomal degradation. SP3-461aa played a pivotal role in mediating the oncogenic effects of circSP3 by interacting with the MYH9 protein and activating the PI3K-Akt signaling pathway. These findings suggested that circSP3 plays an important role in ccRCC development and could be a potential biomarker for the treatment and prognosis of ccRCC.
Collapse
Affiliation(s)
- Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Guoliang Sun
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Ruixin Fan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Kai Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Chen Duan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Xiongmin Mao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Huahui Wu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Xiangyang Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Bo Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Yangjun Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| |
Collapse
|
3
|
Li Y, Gao Z, Wang Y, Pang B, Zhang B, Hu R, Wang Y, Liu C, Zhang X, Yang J, Mei M, Wang Y, Zhou X, Li M, Ren Y. Lysine methylation promotes NFAT5 activation and determines temozolomide efficacy in glioblastoma. Nat Commun 2023; 14:4062. [PMID: 37429858 DOI: 10.1038/s41467-023-39845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
Temozolomide (TMZ) therapy offers minimal clinical benefits in patients with glioblastoma multiforme (GBM) with high EGFR activity, underscoring the need for effective combination therapy. Here, we show that tonicity-responsive enhancer binding protein (NFAT5) lysine methylation, is a determinant of TMZ response. Mechanistically, EGFR activation induces phosphorylated EZH2 (Ser21) binding and triggers NFAT5 methylation at K668. Methylation prevents NFAT5 cytoplasm interaction with E3 ligase TRAF6, thus blocks NFAT5 lysosomal degradation and cytosol localization restriction, which was mediated by TRAF6 induced K63-linked ubiquitination, resulting in NFAT5 protein stabilization, nuclear accumulation and activation. Methylated NFAT5 leads to the upregulation of MGMT, a transcriptional target of NFAT5, which is responsible for unfavorable TMZ response. Inhibition of NFAT5 K668 methylation improved TMZ efficacy in orthotopic xenografts and patient-derived xenografts (PDX) models. Notably, NFAT5 K668 methylation levels are elevated in TMZ-refractory specimens and confer poor prognosis. Our findings suggest targeting NFAT5 methylation is a promising therapeutic strategy to improve TMZ response in tumors with EGFR activation.
Collapse
Affiliation(s)
- Yatian Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhenyue Gao
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuhong Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bo Pang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Binbin Zhang
- Department of Neuro-oncology, Tianjin Huanhu Hospital, Tianjin, China
| | - Ruxin Hu
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuqing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Xuebin Zhang
- Department of Pathology, Tianjin Huanhu Hospital, Tianjin, China
| | - Jingxuan Yang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Yongzhi Wang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China.
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Yu Ren
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Sergeeva A, Davydova K, Perenkov A, Vedunova M. Mechanisms of human DNA methylation, alteration of methylation patterns in physiological processes and oncology. Gene 2023:147487. [PMID: 37211289 DOI: 10.1016/j.gene.2023.147487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
DNA methylation is one of the epigenetic modifications of the genome, the essence of which is the attachment of a methyl group to nitrogenous bases. In the eukaryote genome, cytosine is methylated in the vast majority of cases. About 98% of cytosines are methylated as part of CpG dinucleotides. They, in turn, form CpG islands, which are clusters of these dinucleotides. Islands located in the regulatory elements of genes are in particular interest. They are assumed to play an important role in the regulation of gene expression in humans. Besides that, cytosine methylation serves the functions of genomic imprinting, transposon suppression, epigenetic memory maintenance, X- chromosome inactivation, and embryonic development. Of particular interest are the enzymatic processes of methylation and demethylation. The methylation process always depends on the work of enzymatic complexes and is very precisely regulated. The methylation process largely depends on the functioning of three groups of enzymes: writers, readers and erasers. Writers include proteins of the DNMT family, readers are proteins containing the MBD, BTB/POZ or SET- and RING-associated domains and erasers are proteins of the TET family. Whereas demethylation can be performed not only by enzymatic complexes, but also passively during DNA replication. Hence, the maintenance of DNA methylation is important. Changes in methylation patterns are observed during embryonic development, aging, and cancers. In both aging and cancer, massive hypomethylation of the genome with local hypermethylation is observed. In this review, we will review the current understanding of the mechanisms of DNA methylation and demethylation in humans, the structure and distribution of CpG islands, the role of methylation in the regulation of gene expression, embryogenesis, aging, and cancer development.
Collapse
Affiliation(s)
- A Sergeeva
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - K Davydova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - A Perenkov
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - M Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
5
|
Control of protein stability by post-translational modifications. Nat Commun 2023; 14:201. [PMID: 36639369 PMCID: PMC9839724 DOI: 10.1038/s41467-023-35795-8] [Citation(s) in RCA: 253] [Impact Index Per Article: 126.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Post-translational modifications (PTMs) can occur on specific amino acids localized within regulatory domains of target proteins, which control a protein's stability. These regions, called degrons, are often controlled by PTMs, which act as signals to expedite protein degradation (PTM-activated degrons) or to forestall degradation and stabilize a protein (PTM-inactivated degrons). We summarize current knowledge of the regulation of protein stability by various PTMs. We aim to display the variety and breadth of known mechanisms of regulation as well as highlight common themes in PTM-regulated degrons to enhance potential for identifying novel drug targets where druggable targets are currently lacking.
Collapse
|
6
|
Hoyos D, Greenbaum B, Levine AJ. The genotypes and phenotypes of missense mutations in the proline domain of the p53 protein. Cell Death Differ 2022; 29:938-945. [PMID: 35383292 PMCID: PMC9090814 DOI: 10.1038/s41418-022-00980-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
The p53 protein is structurally and functionally divided into five domains. The proline-rich domain is localized at amino acids 55-100. 319 missense mutations were identified solely in the proline domain from human cancers. Six hotspot mutations were identified at amino acids 72, 73, 82, 84, 89, and 98. Codon 72 contains a polymorphism that changes from proline (and African descent) to arginine (with Caucasian descent) with increasing latitudes northward and is under natural selection for pigmentation and protection from UV light exposure. Cancers associated with mutations in the proline domain were considerably enriched for melanomas and skin cancers compared to mutations in other p53 domains. These hotspot mutations are enriched at UV mutational signatures disrupting amino acid signals for binding SH-3-containing proteins important for p53 function. Among the protein-protein interaction sites identified by hotspot mutations were MDM-2, a negative regulator of p53, XAF-1, promoting p53 mediated apoptosis, and PIN-1, a proline isomerase essential for structural folding of this domain.
Collapse
Affiliation(s)
- David Hoyos
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Benjamin Greenbaum
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Arnold J Levine
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA.
| |
Collapse
|
7
|
Marques MA, de Andrade GC, Silva JL, de Oliveira GAP. Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Front Mol Biosci 2022; 9:944955. [PMID: 36090037 PMCID: PMC9452956 DOI: 10.3389/fmolb.2022.944955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
The p53 protein is a pleiotropic regulator working as a tumor suppressor and as an oncogene. Depending on the cellular insult and the mutational status, p53 may trigger opposing activities such as cell death or survival, senescence and cell cycle arrest or proliferative signals, antioxidant or prooxidant activation, glycolysis, or oxidative phosphorylation, among others. By augmenting or repressing specific target genes or directly interacting with cellular partners, p53 accomplishes a particular set of activities. The mechanism in which p53 is activated depends on increased stability through post-translational modifications (PTMs) and the formation of higher-order structures (HOS). The intricate cell death and metabolic p53 response are reviewed in light of gaining stability via PTM and HOS formation in health and disease.
Collapse
Affiliation(s)
- Mayra A. Marques
- *Correspondence: Mayra A. Marques, ; Guilherme A. P. de Oliveira,
| | | | | | | |
Collapse
|
8
|
Nagpal I, Yuan ZM. The Basally Expressed p53-Mediated Homeostatic Function. Front Cell Dev Biol 2021; 9:775312. [PMID: 34888311 PMCID: PMC8650216 DOI: 10.3389/fcell.2021.775312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Apart from mutations in the p53 gene, p53 functions can be alternatively compromised by a decrease in nuclear p53 protein levels or activities. In accordance, enhanced p53 protein turnover due to elevated expression of the critical p53 E3 ligase MDM2 or MDM2/MDMX is found in many human cancers. Likewise, the HPV viral E6 protein-mediated p53 degradation critically contributes to the tumorigenesis of cervical cancer. In addition, growth-promoting signaling-induced cell proliferation is accompanied by p53 downregulation. Animal studies have also shown that loss of p53 is essential for oncogenes to drive malignant transformation. The close association between p53 downregulation and carcinogenesis implicates a critical role of basally expressed p53. In accordance, available evidence indicates that a reduced level of basal p53 is usually associated with disruption of homeostasis, suggesting a homeostatic function mediated by basal p53. However, basally expressed p53 under non-stress conditions is maintained at a relatively low abundance with little transcriptional activity, raising the question of how basal p53 could protect homeostasis. In this review, we summarize the findings pertinent to basal p53-mediated activities in the hope of developing a model in which basally expressed p53 functions as a barrier to anabolic metabolism to preserve homeostasis. Future investigation is necessary to characterize basal p53 functionally and to obtain an improved understanding of p53 homeostatic function, which would offer novel insight into the role of p53 in tumor suppression.
Collapse
Affiliation(s)
- Isha Nagpal
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Zhi-Min Yuan
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
9
|
Rueda-Robles A, Audano M, Álvarez-Mercado AI, Rubio-Tomás T. Functions of SMYD proteins in biological processes: What do we know? An updated review. Arch Biochem Biophys 2021; 712:109040. [PMID: 34555372 DOI: 10.1016/j.abb.2021.109040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Epigenetic modifiers, such as methyltransferases, play crucial roles in the regulation of many biological processes, including development, cancer and multiple physiopathological conditions. SUMMARY The Su(Var)3-9, Enhancer-of-zeste and Trithorax (SET) and Myeloid, Nervy, and DEAF-1 (MYND) domain-containing (SMYD) protein family consists of five members in humans and mice (i.e. SMYD1, SMYD2, SMYD3, SMYD4 and SMYD5), which are known or predicted to have methyltransferase activity on histone and non-histone substrates. The abundance of information concerning SMYD2 and SMYD3 is of note, whereas the other members of the SMYD family have not been so thoroughly studied CONCLUSION: Here we review the literature regarding SMYD proteins published in the last five years, including basic molecular biology mechanistic studies using in vitro systems and animal models, as well as human studies with a more translational or clinical approach.
Collapse
Affiliation(s)
- Ascensión Rueda-Robles
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ana I Álvarez-Mercado
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, 18014, Spain.
| | - Teresa Rubio-Tomás
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; School of Medicine, University of Crete, 70013, Herakleion, Crete, Greece.
| |
Collapse
|
10
|
Ottaviano M, Giunta EF, Rescigno P, Pereira Mestre R, Marandino L, Tortora M, Riccio V, Parola S, Casula M, Paliogiannis P, Cossu A, Vogl UM, Bosso D, Rosanova M, Mazzola B, Daniele B, Palmieri G, Palmieri G. The Enigmatic Role of TP53 in Germ Cell Tumours: Are We Missing Something? Int J Mol Sci 2021; 22:7160. [PMID: 34281219 PMCID: PMC8267694 DOI: 10.3390/ijms22137160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
The cure rate of germ cell tumours (GCTs) has significantly increased from the late 1970s since the introduction of cisplatin-based therapy, which to date remains the milestone for GCTs treatment. The exquisite cisplatin sensitivity has been mainly explained by the over-expression in GCTs of wild-type TP53 protein and the lack of TP53 somatic mutations; however, several other mechanisms seem to be involved, many of which remain still elusive. The findings about the role of TP53 in platinum-sensitivity and resistance, as well as the reported evidence of second cancers (SCs) in GCT patients treated only with surgery, suggesting a spectrum of cancer predisposing syndromes, highlight the need for a deepened understanding of the role of TP53 in GCTs. In the following report we explore the complex role of TP53 in GCTs cisplatin-sensitivity and resistance mechanisms, passing through several recent genomic studies, as well as its role in GCT patients with SCs, going through our experience of Center of reference for both GCTs and cancer predisposing syndromes.
Collapse
Affiliation(s)
- Margaret Ottaviano
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (D.B.); (M.R.); (B.D.)
- CRCTR Coordinating Rare Tumors Reference Center of Campania Region, 80131 Naples, Italy; (M.T.); (G.P.)
- IOSI (Oncology Institute of Southern Switzerland), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (R.P.M.); (L.M.); (U.M.V.)
| | - Emilio Francesco Giunta
- Oncology Unit, Department of Precision Medicine, Università Degli Studi Della Campania Luigi Vanvitelli, 80131 Naples, Italy;
| | - Pasquale Rescigno
- Interdisciplinary Group for Translational Research and Clinical Trials, Urological Cancers (GIRT-Uro), Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10160 Turin, Italy;
| | - Ricardo Pereira Mestre
- IOSI (Oncology Institute of Southern Switzerland), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (R.P.M.); (L.M.); (U.M.V.)
| | - Laura Marandino
- IOSI (Oncology Institute of Southern Switzerland), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (R.P.M.); (L.M.); (U.M.V.)
| | - Marianna Tortora
- CRCTR Coordinating Rare Tumors Reference Center of Campania Region, 80131 Naples, Italy; (M.T.); (G.P.)
| | - Vittorio Riccio
- Department of Clinical Medicine and Surgery, Università degli studi di Napoli Federico II, 80131 Naples, Italy; (V.R.); (S.P.)
| | - Sara Parola
- Department of Clinical Medicine and Surgery, Università degli studi di Napoli Federico II, 80131 Naples, Italy; (V.R.); (S.P.)
| | - Milena Casula
- Institute of Genetics and Biomedical Research (IRGB), National Research Council (CNR), 07100 Sassari, Italy; (M.C.); (G.P.)
| | - Panagiotis Paliogiannis
- Departments of Biomedical Sciences and Medical, Surgical, Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.P.); (A.C.)
| | - Antonio Cossu
- Departments of Biomedical Sciences and Medical, Surgical, Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.P.); (A.C.)
| | - Ursula Maria Vogl
- IOSI (Oncology Institute of Southern Switzerland), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (R.P.M.); (L.M.); (U.M.V.)
| | - Davide Bosso
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (D.B.); (M.R.); (B.D.)
| | - Mario Rosanova
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (D.B.); (M.R.); (B.D.)
| | - Brunello Mazzola
- Department of Urology, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland;
| | - Bruno Daniele
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (D.B.); (M.R.); (B.D.)
| | - Giuseppe Palmieri
- Institute of Genetics and Biomedical Research (IRGB), National Research Council (CNR), 07100 Sassari, Italy; (M.C.); (G.P.)
- Departments of Biomedical Sciences and Medical, Surgical, Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.P.); (A.C.)
| | - Giovannella Palmieri
- CRCTR Coordinating Rare Tumors Reference Center of Campania Region, 80131 Naples, Italy; (M.T.); (G.P.)
| |
Collapse
|
11
|
Liu Y, Zhang P, Huang W, Liu F, Long D, Peng W, Dang X, Zeng X, Zhou R. p53 Promotes Differentiation of Cardiomyocytes from hiPSC through Wnt Signaling-Mediated Mesendodermal Differentiation. Int J Stem Cells 2021; 14:410-422. [PMID: 34158418 PMCID: PMC8611312 DOI: 10.15283/ijsc21051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives Manipulating different signaling pathways via small molecules could efficiently induce cardiomyocytes from human induced pluripotent stem cells (hiPSC). However, the effect of transcription factors on the hiPSC-directed cardiomyocytes differentiation remains unclear. Transcription factor, p53 has been demonstrated indispensable for the early embryonic development and mesendodermal differentiation of embryonic stem cells (ESC). We tested the hypothesis that p53 promotes cardiomyocytes differentiation from human hiPSC. Methods and Results Using the well-characterized GiWi protocol that cardiomyocytes are generated from hiPSC via temporal modulation of Wnt signaling pathway by small molecules, we demonstrated that forced expression of p53 in hiPSC remarkably improved the differentiation efficiency of cardiomyocytes from hiPSC, whereas knockdown endogenous p53 decreased the yield of cardiomyocytes. This p53-mediated increased cardiomyocyte differentiation was mediated through WNT3, as evidenced by that overexpression of p53 upregulated the expression of WNT3, and knockdown of p53 decreased the WNT3 expression. Mechanistic analysis showed that the increased cardiomyocyte differentiation partially depended on the amplified mesendodermal specification resulted from p53-mediated activation of WNT3-mediated Wnt signaling. Consistently, endogenous WNT3 knockdown significantly ameliorated mesendodermal specification and subsequent cardiomyocyte differentiation. Conclusions These results provide a novel insight into the potential effect of p53 on the development and differentiation of cardiomyocyte during embryogenesis.
Collapse
Affiliation(s)
- Yuanshu Liu
- The Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Insti
| | - Peng Zhang
- Department of Anesthesiology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjun Huang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Insti.,Shaanxi Institute for Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Department of Cardiology, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong
| | - Feng Liu
- The Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Insti
| | - Dandan Long
- The Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Insti
| | - Wanling Peng
- The Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Insti
| | - Xitong Dang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Insti
| | - Xiaorong Zeng
- The Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Insti
| | - Rui Zhou
- The Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Insti.,Shaanxi Institute for Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Department of Cardiology, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong
| |
Collapse
|
12
|
Al-Ghabkari A, Narendran A. Targeting EZH2-mediated methylation of histone 3 inhibits proliferation of pediatric acute monocytic leukemia cells in vitro. Cancer Biol Ther 2021; 22:333-344. [PMID: 33978549 DOI: 10.1080/15384047.2021.1902913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and a catalytic subunit of the polycomb repressive complex 2 (PRC2) that catalyzes the mono-, di-, and tri-methylation of histone H3 at Lys 27 (H3K27me3) to facilitate chromatin-remodeling and gene-silencing functions. Previous reports showed a significant association of EZH2 aberrations in pediatric cancers, such as soft tissue sarcomas and glioblastoma. Recent reports in human subjects and animal models have also suggested a central role of EZH2 in the induction and progression of acute myeloid leukemia. In this study, we aimed to investigate the molecular status of EZH in cell lines derived from distinct pediatric leukemia to assess the efficacy of targeting EZH2 to suppress cancer cell survival and proliferation. Our results showed that EZH2 protein is overexpressed in the pediatric monocytic cell-line THP-1, but not in other leukemia-derived cell lines MV4;11 and SEM. Screening a panel of methyltransferase inhibitors revealed that three inhibitors; GSK126, UNC1999 and EPZ-5687 are the most potent inhibitors that suppressed EZH2 activity selectively on lysine 27 which resulted in increased apoptosis and inhibition of AKT and ERK protein phosphorylation in THP-1 cells. Our data demonstrated a significant increase in apoptosis in cells treated with drug combination (EZH2i and selinexor) compared to EZH2i inhibitors alone. Taken together, our data provide initial evidence that targeting EZH2 is a promising therapeutic strategy for the treatment of subtypes of pediatric AML. Also, combining EZH2 inhibitors with selinexor may increase the treatment efficacy in these patients.
Collapse
Affiliation(s)
- Abdulhameed Al-Ghabkari
- Departments of Pediatrics, Oncology and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aru Narendran
- Departments of Pediatrics, Oncology and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Abstract
The p53 protein is a transcription factor that prevents tumors from developing. In spontaneous and inherited cancers there are many different missense mutations in the DNA binding domain of the TP53 gene that contributes to tumor formation. These mutations produce a wide distribution in the transcriptional capabilities of the mutant p53 proteins with over four logs differences in the efficiencies of forming cancers in many diverse tissue types. These inherited and spontaneous TP53 mutations produce proteins that interact with both genetic and epigenetic cellular modifiers of p53 function and their inherited polymorphisms to produce a large number of diverse phenotypes in individual patients. This manuscript reviews these variables and discusses how the combinations of TP53 genetic alterations interact with genetic polymorphisms, epigenetic alterations, and environmental factors to begin predicting and modifying patient outcomes and provide a better understanding for new therapeutic opportunities.
Collapse
Affiliation(s)
- Arnold J. Levine
- grid.78989.370000 0001 2160 7918Institute for Advanced Study, Princeton, NJ USA
| |
Collapse
|
14
|
Dasgupta A, Bakshi A, Chowdhury N, De RK. A control theoretic three timescale model for analyzing energy management in mammalian cancer cells. Comput Struct Biotechnol J 2020; 19:477-508. [PMID: 33510857 PMCID: PMC7809419 DOI: 10.1016/j.csbj.2020.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
Interaction among different pathways, such as metabolic, signaling and gene regulatory networks, of cellular system is responsible to maintain homeostasis in a mammalian cell. Malfunctioning of this cooperation may lead to many complex diseases, such as cancer and type 2 diabetes. Timescale differences among these pathways make their integration a daunting task. Metabolic, signaling and gene regulatory networks have three different timescales, such as, ultrafast, fast and slow respectively. The article deals with this problem by developing a support vector regression (SVR) based three timescale model with the application of genetic algorithm based nonlinear controller. The proposed model can successfully capture the nonlinear transient dynamics and regulations of such integrated biochemical pathway under consideration. Besides, the model is quite capable of predicting the effects of certain drug targets for many types of complex diseases. Here, energy and cell proliferation management of mammalian cancer cells have been explored and analyzed with the help of the proposed novel approach. Previous investigations including in silico/in vivo/in vitro experiments have validated the results (the regulations of glucose transporter 1 (glut1), hexokinase (HK), and hypoxia-inducible factor-1 α (HIF-1 α ) among others, and the switching of pyruvate kinase (M2 isoform) between dimer and tetramer) generated by this model proving its effectiveness. Subsequently, the model predicts the effects of six selected drug targets, such as, the deactivation of transketolase and glucose-6-phosphate isomerase among others, in the case of mammalian malignant cells in terms of growth, proliferation, fermentation, and energy supply in the form of adenosine triphosphate (ATP).
Collapse
Affiliation(s)
- Abhijit Dasgupta
- Department of Data Science, School of Interdisciplinary Studies, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Abhisek Bakshi
- Department of Information Technology, Bengal Institute of Technology, Basanti Highway, Kolkata 700150, India
| | - Nirmalya Chowdhury
- Department of Computer Science & Engineering, Jadavpur University, Kolkata 700032, India
| | - Rajat K. De
- Machine Intelligence Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, India
| |
Collapse
|
15
|
Ugai K, Matsuda S, Mikami H, Shimada A, Misawa T, Nakamura H, Tatsumi K, Hatano M, Murayama T, Kasuya Y. Inhibition of the SET8 Pathway Ameliorates Lung Fibrosis Even Through Fibroblast Dedifferentiation. Front Mol Biosci 2020; 7:192. [PMID: 32850975 PMCID: PMC7419601 DOI: 10.3389/fmolb.2020.00192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease of unknown etiopathogenesis. The activation of extracellular matrix (ECM)-producing myofibroblasts plays a key role in fibrotic tissue remodeling. The dedifferentiation of myofibroblasts has attracted considerable attention as a promising target for the development of effective therapeutic interventions against IPF. Here, we screened a small library of epigenetics-related inhibitors using dedifferentiation assay of lung myofibroblasts prepared from a patient at the terminal stages of IPF and chose UNC0379. The inhibition of SET8, a histone H4 lysine 20 (H4K20) monomethyltransferase, by UNC0379 markedly suppressed the expression of α-smooth muscle actin (SMA) and ED-A-fibronectin in myofibroblasts. In IPF myofibroblasts, SET8 expression and H4K20 monomethylation (H4K20me1) levels, which were significantly higher than those in normal human lung fibroblasts, were reduced upon treatment with UNC0379. Hence, the changes in the expression of the two fibrotic markers clearly correlated with those in SET8 expression and H4K20me1 level. Furthermore, in a mouse model of bleomycin (BLM)-induced lung fibrosis, the intratracheal administration of UNC0379 at an early fibrotic stage markedly ameliorated the histopathological changes associated with collagen deposition in the lungs. However, treatment with UNC0379 did not significantly affect the number of proinflammatory cells or cytokine production in the bronchoalveolar lavage fluids from mice treated with BLM. In the BLM-injured lung, SET8 was predominantly localized to the nuclei of α-SMA-positive cells, which colocalized with H4K20me1. Taken together, our results indicate that the inhibition of SET8 resulting in myofibroblast dedifferentiation may partly mitigate lung fibrosis without affecting the inflammatory responses.
Collapse
Affiliation(s)
- Keita Ugai
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba, Japan
| | - Shuichi Matsuda
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Mikami
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ayako Shimada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoko Misawa
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba, Japan
| | - Yoshitoshi Kasuya
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
16
|
Levine AJ. The many faces of p53: something for everyone. J Mol Cell Biol 2020; 11:524-530. [PMID: 30925588 PMCID: PMC6736316 DOI: 10.1093/jmcb/mjz026] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 11/20/2022] Open
|
17
|
Cisplatin Resistance in Testicular Germ Cell Tumors: Current Challenges from Various Perspectives. Cancers (Basel) 2020; 12:cancers12061601. [PMID: 32560427 PMCID: PMC7352163 DOI: 10.3390/cancers12061601] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Testicular germ cell tumors share a marked sensitivity to cisplatin, contributing to their overall good prognosis. However, a subset of patients develop resistance to platinum-based treatments, by still-elusive mechanisms, experiencing poor quality of life due to multiple (often ineffective) interventions and, eventually, dying from disease. Currently, there is a lack of defined treatment opportunities for these patients that tackle the mechanism(s) underlying the emergence of resistance. Herein, we aim to provide a multifaceted overview of cisplatin resistance in testicular germ cell tumors, from the clinical perspective, to the pathobiology (including mechanisms contributing to induction of the resistant phenotype), to experimental models available for studying this occurrence. We provide a systematic summary of pre-target, on-target, post-target, and off-target mechanisms putatively involved in cisplatin resistance, providing data from preclinical studies and from those attempting validation in clinical samples, including those exploring specific alterations as therapeutic targets, some of them included in ongoing clinical trials. We briefly discuss the specificities of resistance related to teratoma (differentiated) phenotype, including the phenomena of growing teratoma syndrome and development of somatic-type malignancy. Cisplatin resistance is most likely multifactorial, and a combination of therapeutic strategies will most likely produce the best clinical benefit.
Collapse
|
18
|
de Vries G, Rosas-Plaza X, van Vugt MATM, Gietema JA, de Jong S. Testicular cancer: Determinants of cisplatin sensitivity and novel therapeutic opportunities. Cancer Treat Rev 2020; 88:102054. [PMID: 32593915 DOI: 10.1016/j.ctrv.2020.102054] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/23/2022]
Abstract
Testicular cancer (TC) is the most common solid tumor among men aged between 15 and 40 years. TCs are highly aneuploid and the 12p isochromosome is the most frequent chromosomal abnormality. The mutation rate is of TC is low, with recurrent mutations in KIT and KRAS observed only at low frequency in seminomas. Overall cure rates are high, even in a metastatic setting, resulting from excellent cisplatin sensitivity of TCs. Factors contributing to the observed cisplatin sensitivity include defective DNA damage repair and a hypersensitive apoptotic response to DNA damage. Nonetheless, around 10-20% of TC patients with metastatic disease cannot be cured by cisplatin-based chemotherapy. Resistance mechanisms include downregulation of OCT4 and failure to induce PUMA and NOXA, elevated levels of MDM2, and hyperactivity of the PI3K/AKT/mTOR pathway. Several pre-clinical approaches have proven successful in overcoming cisplatin resistance, including specific targeting of PARP, MDM2 or AKT/mTOR combined with cisplatin. Finally, patient-derived xenograft models hold potential for mechanistic studies and pre-clinical validation of novel therapeutic strategies in TC. While clinical trials investigating targeted drugs have been disappointing, pre-clinical successes with chemotherapy and targeted drug combinations fuel the need for further investigation in clinical setting.
Collapse
Affiliation(s)
- Gerda de Vries
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ximena Rosas-Plaza
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Steven de Jong
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
19
|
Hou Z, Sun L, Xu F, Hu F, Lan J, Song D, Feng Y, Wang J, Luo X, Hu J, Wang G. Blocking histone methyltransferase SETDB1 inhibits tumorigenesis and enhances cetuximab sensitivity in colorectal cancer. Cancer Lett 2020; 487:63-73. [PMID: 32473242 DOI: 10.1016/j.canlet.2020.05.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
The histone methyltransferase SETDB1 catalyzes the addition of methyl groups to histone H3 at lysine 9, and upregulation of SETDB1 is associated with poor prognosis in cancer patients. Here, we describe how overexpression of SETDB1 contributes to colorectal cancer (CRC) tumorigenesis and drug resistance. We show that SETDB1 is upregulated in CRC, and its level correlates with poor clinical outcome. SETDB1 attenuation inhibits CRC cell proliferation Mechanistically, SETDB1 promotes cell proliferation by upregulating Akt activation. Further, SETDB1 is essential for the tumorigenic activity of Akt. Functional characterization revealed that inhibition of SETDB1 reduces cell growth in CRC resistant to targeted treatments in vitro and in vivo, KRAS-mutated CRC included. Taken together, our results indicate that SETDB1 is a major driver of CRC and may serve as a potential target for the treatment of KRAS-mutated CRC.
Collapse
Affiliation(s)
- Zhenlin Hou
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Li Sun
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Xu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fuqing Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingqin Lan
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Da Song
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongdong Feng
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Wang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuelai Luo
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junbo Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Guihua Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
20
|
Isoform-Specific Lysine Methylation of RORα2 by SETD7 Is Required for Association of the TIP60 Coactivator Complex in Prostate Cancer Progression. Int J Mol Sci 2020; 21:ijms21051622. [PMID: 32120841 PMCID: PMC7084544 DOI: 10.3390/ijms21051622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
The retinoid acid-related orphan receptor α (RORα), a member of the orphan nuclear receptor superfamily, functions as an unknown ligand-dependent transcription factor. RORα was shown to regulate a broad array of physiological processes such as Purkinje cell development in the cerebellum, circadian rhythm, lipid and bone metabolism, inhibition of inflammation, and anti-apoptosis. The human RORα gene encodes at least four distinct isoforms (RORα1, -2, -3, -4), which differ only in their N-terminal domain (NTD). Two isoforms, RORα2 and 3, are not expressed in mice, whereas RORα1 and 4 are expressed both in mice and humans. In the present study, we identified the specific NTD of RORα2 that enhances prostate tumor progression and proliferation via lysine methylation-mediated recruitment of coactivator complex pontin/Tip60. Upregulation of the RORα2 isoform in prostate cancers putatively promotes tumor formation and progression. Furthermore, binding between coactivator complex and RORα2 is increased by lysine methylation of RORα2 because methylation permits subsequent interaction with binding partners. This methylation-dependent activation is performed by SET domain containing 7 (SETD7) methyltransferase, inducing the oncogenic potential of RORα2. Thus, post-translational lysine methylation of RORα2 modulates oncogenic function of RORα2 in prostate cancer. Exploration of the post-translational modifications of RORα2 provides new avenues for the development of tumor-suppressive therapeutic agents through modulating the human isoform-specific tumorigenic role of RORα2.
Collapse
|
21
|
Cancer progression is mediated by proline catabolism in non-small cell lung cancer. Oncogene 2020; 39:2358-2376. [PMID: 31911619 DOI: 10.1038/s41388-019-1151-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Dysregulated metabolism contributes to cancer initiation and progression, but the key drivers of these pathways are just being discovered. Here, we report a critical role for proline catabolism in non-small cell lung cancer (NSCLC). Proline dehydrogenase (PRODH) is activated to reduce proline levels by the chromatin remodeling factor lymphoid-specific helicase (LSH), an epigenetic driver of NSCLC. PRODH promotes NSCLC tumorigenesis by inducing epithelial to mesenchymal transition (EMT) and IKKα-dependent inflammatory genes, including CXCL1, LCN2, and IL17C. Consistently, proline addition promotes the expression of these inflammatory genes, as well as EMT, tumor cell proliferation, and migration in vitro and tumor growth in vivo, while the depletion or inhibition of PRODH blocks these phenotypes. In summary, we reveal an essential metabolic pathway amenable to targeting in NSCLC.
Collapse
|
22
|
Octeau D, Kessous R, Klein K, Kogan L, Pelmus M, Ferenczy A, Greenwood CMT, Van Kempen LC, Salvador S, Lau S, Tonin PN, Yasmeen A, Gotlieb WH. Outcome-Related Differences in Gene Expression Profiles of High-Grade Serous Ovarian Cancers Following Neoadjuvant Chemotherapy. Mol Cancer Res 2019; 17:2422-2431. [PMID: 31530633 DOI: 10.1158/1541-7786.mcr-19-0398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/14/2019] [Accepted: 09/12/2019] [Indexed: 11/16/2022]
Abstract
Large-scale genomic studies have detailed the molecular landscape of tumors from patients with high-grade serous ovarian cancers (HGSC) who underwent primary debulking surgery and correlated the identified subgroups to survival. In recent years, there is increased use of neoadjuvant chemotherapy (NACT) for patients with HGSC and while abundant data exist for patients who underwent primary debulking, little data are available on the cancer cells remaining after NACT that could lead to recurrences. We aimed to analyze gene expression profiles of NACT-treated HGSC tumor samples, and correlate them to treatment response and outcome. Tumor samples were collected from patients with stage III or IV HGSC (NACT cohort, N = 57) at the time of surgery and diagnosis (biopsy samples N = 8). Tumor content was validated by histologic examination and bioinformatics. Gene expression analysis was performed using a tailored NanoString-based assay, while sequencing was performed using MiSeq. A cross-validated survival classifier revealed patient clusters with either a "Better" or "Worse" prognostic outcome. The association with overall survival remained significant after controlling for clinical variables, and differential gene expression, gene set enrichment analyses, and the appropriate survival models were used to assess the associations between alterations in gene expression in cancer cells remaining after NACT and outcome. Pathway-based analysis of the differentially expressed genes revealed comparatively high levels of cell cycle and DNA repair gene expression in the poor outcome group. IMPLICATIONS: Our work suggests mRNA expression patterns in key genes following NACT may reflect response to treatment and outcome in patient with HGSC.
Collapse
Affiliation(s)
- David Octeau
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Canada
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - Roy Kessous
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - Kathleen Klein
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Liron Kogan
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - Manuella Pelmus
- Division of Pathology, Jewish General Hospital, Montréal, Canada
| | - Alex Ferenczy
- Division of Pathology, Jewish General Hospital, Montréal, Canada
| | - Celia M T Greenwood
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Leon C Van Kempen
- Department of Molecular Pathology, Jewish General Hospital, Montreal, Canada
| | - Shannon Salvador
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - Susie Lau
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - Patricia N Tonin
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Amber Yasmeen
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada.
| | - Walter H Gotlieb
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada
| |
Collapse
|
23
|
Bloom JC, Loehr AR, Schimenti JC, Weiss RS. Germline genome protection: implications for gamete quality and germ cell tumorigenesis. Andrology 2019; 7:516-526. [PMID: 31119900 DOI: 10.1111/andr.12651] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Germ cells have a unique and critical role as the conduit for hereditary information and therefore employ multiple strategies to protect genomic integrity and avoid mutations. Unlike somatic cells, which often respond to DNA damage by arresting the cell cycle and conducting DNA repair, germ cells as well as long-lived pluripotent stem cells typically avoid the use of error-prone repair mechanisms and favor apoptosis, reducing the risk of genetic alterations. Testicular germ cell tumors, the most common cancers of young men, arise from pre-natal germ cells. OBJECTIVES To summarize the current understanding of DNA damage response mechanisms in pre-meiotic germ cells and to discuss how they impact both the origins of testicular germ cell tumors and their remarkable responsiveness to genotoxic chemotherapy. MATERIALS AND METHODS We conducted a review of literature gathered from PubMed regarding the DNA damage response properties of testicular germ cell tumors and the germ cells from which they arise, as well as the influence of these mechanisms on therapeutic responses by testicular germ cell tumors. RESULTS AND DISCUSSION This review provides a comprehensive evaluation of how the developmental origins of male germ cells and their inherent germ cell-like DNA damage response directly impact the development and therapeutic sensitivity of testicular germ cell tumors. CONCLUSIONS The DNA damage response of germ cells directly impacts the development and therapeutic sensitivity of testicular germ cell tumors. Recent advances in the study of primordial germ cells, post-natal mitotically dividing germ cells, and pluripotent stem cells will allow for new investigations into the initiation, progression, and treatment of testicular germ cell tumors.
Collapse
Affiliation(s)
- J C Bloom
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - A R Loehr
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - J C Schimenti
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - R S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
24
|
Karsli Uzunbas G, Ahmed F, Sammons MA. Control of p53-dependent transcription and enhancer activity by the p53 family member p63. J Biol Chem 2019; 294:10720-10736. [PMID: 31113863 DOI: 10.1074/jbc.ra119.007965] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/15/2019] [Indexed: 01/20/2023] Open
Abstract
Transcriptional activation by p53 provides powerful, organism-wide tumor suppression. We hypothesized that the local chromatin environment, including differential enhancer activities, contributes to various p53-dependent transcriptional activities in different cell types during stress-induced signaling. In this work, using ChIP-sequencing, immunoblotting, quantitative PCR, and computational analyses across various mammalian cell lines, we demonstrate that the p53-induced transcriptome varies by cell type, reflects cell type-specific activities, and is considerably broader than previously anticipated. We found that these molecular events are strongly influenced by p53's engagement with differentially active cell type-specific enhancers and promoters. We also observed that p53 activity depends on the p53 family member tumor protein p63 in epithelial cell types. Notably, we demonstrate that p63 is required for epithelial enhancer identity, including enhancers used by p53 during stress-dependent signaling. Loss of p63, but not p53, caused site-specific depletion of enhancer-associated chromatin modifications, suggesting that p63 functions as an enhancer maintenance factor in epithelial cells. Additionally, a subset of epithelial-specific enhancers depends on the activity of p63 providing a direct link between lineage determination and enhancer structure. These results suggest that a broad, cell-intrinsic mechanism controls p53-dependent cellular stress response through differential regulation of cis-regulatory elements.
Collapse
Affiliation(s)
- Gizem Karsli Uzunbas
- From the Department of Biological Sciences, State University of New York at Albany, Albany, New York 12222
| | - Faraz Ahmed
- From the Department of Biological Sciences, State University of New York at Albany, Albany, New York 12222
| | - Morgan A Sammons
- From the Department of Biological Sciences, State University of New York at Albany, Albany, New York 12222
| |
Collapse
|
25
|
Shang L, Wei M. Inhibition of SMYD2 Sensitized Cisplatin to Resistant Cells in NSCLC Through Activating p53 Pathway. Front Oncol 2019; 9:306. [PMID: 31106145 PMCID: PMC6498871 DOI: 10.3389/fonc.2019.00306] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/03/2019] [Indexed: 12/13/2022] Open
Abstract
The protein lysine methyltransferase SMYD2 has recently emerged as a new enzyme modulate gene transcription or signaling pathways, and involved into tumor progression. However, the role of SMYD2 in drug resistant is still not known. Here, we found that inhibition of SMYD2 by specific inhibitor could enhance the cell sensitivity to cisplatin (CDDP), but not paclitaxel, NVB, and VCR in non-small cell lung cancer (NSCLC). Further study showed that SMYD2 and its substrates were overexpressed in NSCLC resistant cells, and the inhibition of SMYD2 or knockdown by specific siRNA could reverse the cell resistance to cisplatin treatment in NSCLC/CDDP cells. In addition, our data indicated that the inhibition or knockdown SMYD2 inhibit tumor sphere formation and reduce cell migration in NSCLC/CDDP cells, but not in NSCLC parental cells. Mechanistically, inhibition of SMYD2 could enhance p53 pathway activity and induce cell apoptosis through regulating its target genes, including p21, GADD45, and Bax. On the contrary, the sensitivity of cells to cisplatin was decreased after knockdown p53 or in p53 deletion NSCLC cells. The synergistically action was further confirmed by in vivo experiments. Taken together, our results demonstrate SMYD2 is involved into cisplatin resistance through regulating p53 pathway, and might become a promising therapeutic target for cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Lei Shang
- School of Pharmacy, China Medical University, Shenyang, China.,Shenyang Medical College, Shenyang, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
26
|
Levine AJ. Targeting Therapies for the p53 Protein in Cancer Treatments. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055455] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Half of all human cancers contain TP53 mutations, and in many other cancers, the function of the p53 protein is compromised. The diversity of these mutations and phenotypes presents a challenge to the development of drugs that target p53 mutant cancer cells. This review describes the rationale for many different approaches in the development of p53 targeted therapies: ( a) viruses and gene therapies, ( b) increased levels and activity of wild-type p53 proteins in cancer cells, ( c) p53 protein gain-of-function inhibitors, ( d) p53 protein loss-of-function structural correctors, ( e) mutant p53 protein synthetic lethal drugs interfering with the p53 pathway, and ( f) cellular immune responses to mutant p53 protein antigens. As these types of therapies are developed, tested, and evaluated, the best of them will have a significant impact upon cancer treatments and possibly prevention.
Collapse
|
27
|
Turdo A, Veschi V, Gaggianesi M, Chinnici A, Bianca P, Todaro M, Stassi G. Meeting the Challenge of Targeting Cancer Stem Cells. Front Cell Dev Biol 2019; 7:16. [PMID: 30834247 PMCID: PMC6387961 DOI: 10.3389/fcell.2019.00016] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Notwithstanding cancer patients benefit from a plethora of therapeutic alternatives, drug resistance remains a critical hurdle. Indeed, the high mortality rate is associated with metastatic disease, which is mostly incurable due to the refractoriness of metastatic cells to current treatments. Increasing data demonstrate that tumors contain a small subpopulation of cancer stem cells (CSCs) able to establish primary tumor and metastasis. CSCs are endowed with multiple treatment resistance capabilities comprising a highly efficient DNA damage repair machinery, the activation of survival pathways, enhanced cellular plasticity, immune evasion and the adaptation to a hostile microenvironment. Due to the presence of distinct cell populations within a tumor, cancer research has to face the major challenge of targeting the intra-tumoral as well as inter-tumoral heterogeneity. Thus, targeting molecular drivers operating in CSCs, in combination with standard treatments, may improve cancer patients’ outcomes, yielding long-lasting responses. Here, we report a comprehensive overview on the most significant therapeutic advances that have changed the known paradigms of cancer treatment with a particular emphasis on newly developed compounds that selectively affect the CSC population. Specifically, we are focusing on innovative therapeutic approaches including differentiation therapy, anti-angiogenic compounds, immunotherapy and inhibition of epigenetic enzymes and microenvironmental cues.
Collapse
Affiliation(s)
- Alice Turdo
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Aurora Chinnici
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Paola Bianca
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of PROMISE, University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
28
|
Li Y, Zhang MC, Xu XK, Zhao Y, Mahanand C, Zhu T, Deng H, Nevo E, Du JZ, Chen XQ. Functional Diversity of p53 in Human and Wild Animals. Front Endocrinol (Lausanne) 2019; 10:152. [PMID: 30915036 PMCID: PMC6422910 DOI: 10.3389/fendo.2019.00152] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
The common understanding of p53 function is a genome guardian, which is activated by diverse stresses stimuli and mediates DNA repair, apoptosis, and cell cycle arrest. Increasing evidence has demonstrated p53 new cellular functions involved in abundant endocrine and metabolic response for maintaining homeostasis. However, TP53 is frequently mutant in human cancers, and the mutant p53 (Mut-p53) turns to an "evil" cancer-assistant. Mut-p53-induced epithelial-mesenchymal transition (EMT) plays a crucial role in the invasion and metastasis of endocrine carcinomas, and Mut-p53 is involved in cancer immune evasion by upregulating PD-L1 expression. Therefore, Mut-p53 is a valuable treatment target for malignant tumors. Targeting Mut-p53 in correcting sequence and conformation are increasingly concerned. Interestingly, in wild animals, p53 variations contribute to cancer resistant and high longevity. This review has discussed the multiple functions of p53 in health, diseases, and nature evolution, summarized the frequently mutant sites of p53, and the mechanisms of Mut-p53-mediated metastasis and immune evasion in endocrine cancers. We have provided a new insight for multiple roles of p53 in human and wild animals.
Collapse
Affiliation(s)
- Yi Li
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
| | - Meng-Chen Zhang
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
| | - Xiao-Kang Xu
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
| | - Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Chatoo Mahanand
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
| | - Tao Zhu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Hong Deng
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Eviatar Nevo
- Institute of Evolution and International Graduate Center of Evolution, University of Haifa, Haifa, Israel
| | - Ji-Zeng Du
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health, Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xue-Qun Chen
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health, Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Xue-Qun Chen
| |
Collapse
|
29
|
Abstract
This review by Levine and Berger discusses the cross-talk between the p53 protein and epigenetic programs. The p53 protein not only enforces the stability of the genome by the prevention of genetic alterations in cells but also plays an important role in regulating the epigenetic changes that occur in cells. Epigenetic programs regulate the development and maintenance of organisms over a lifetime. These programs are carried out through chemical modifications of DNA and proteins such as histones and transcription factors. These epigenetic modifications are less stable than genetic alterations and even reversible under a variety of circumstances, such as developmental changes, regeneration of tissues, cell divisions, aging, and pathological conditions observed in many cancers. The p53 protein not only enforces the stability of the genome by the prevention of genetic alterations in cells but also plays a role in regulating the epigenetic changes that can occur in cells. The full-length p53 protein is largely inactive in stem cells but, when activated, helps to commit these cells to developmental lineages through a series of epigenetic changes. Just as p53 impacts epigenetic change, the enzyme activities that carry out epigenetic protein modifications act on the p53 protein and its splice variants in stem and progenitor cells to silence or activate its transcriptional activities. Thus, there is a great deal of cross-talk between the p53 protein and epigenetic programs. This review collects the diverse experimental evidence that leads to these conclusions. This in turn permits new ideas and directions for the treatment of cancers, reactivating developmental pathways for tissue regeneration and responses to the impact of aging.
Collapse
Affiliation(s)
- Arnold J Levine
- Simons Center for Systems Biology, School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, USA
| | - Shelley L Berger
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
30
|
Merkel O, Taylor N, Prutsch N, Staber PB, Moriggl R, Turner SD, Kenner L. When the guardian sleeps: Reactivation of the p53 pathway in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:1-13. [PMID: 28927521 DOI: 10.1016/j.mrrev.2017.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 12/22/2022]
Abstract
The p53 tumor suppressor is inactivated in most cancers, thus suggesting that loss of p53 is a prerequisite for tumor growth. Therefore, its reintroduction through different means bears great clinical potential. After a brief introduction to current knowledge of p53 and its regulation by the ubiquitin-ligases MDM2/MDMX and post-translational modifications, we will discuss small molecules that are able to reactivate specific, frequently observed mutant forms of p53 and their applicability for clinical purposes. Many malignancies display amplification of MDM genes encoding negative regulators of p53 and therefore much effort to date has concentrated on the development of molecules that inhibit MDM2, the most advanced of which are being tested in clinical trials for sarcoma, glioblastoma, bladder cancer and lung adenocarcinoma. These will be discussed as will recent findings of MDMX inhibitors: these are of special importance as it has been shown that cancers that become resistant to MDM2 inhibitors often amplify MDM4. Finally, we will also touch on gene therapy and vaccination approaches; the former of which aims to replace mutated TP53 and the latter whose goal is to activate the body's immune system toward mutant p53 expressing cells. Besides the obvious importance of MDM2 and MDMX expression for regulation of p53, other regulatory factors should not be underestimated and are also described. Despite the beauty of the concept, the past years have shown that many obstacles have to be overcome to bring p53 reactivation to the clinic on a broad scale, and it is likely that in most cases it will be part of a combined therapeutic approach. However, improving current p53 targeted molecules and finding the best therapy partners will clearly impact the future of cancer therapy.
Collapse
Affiliation(s)
- Olaf Merkel
- Department of Clinical Pathology, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Ninon Taylor
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory of Immunological and Molecular Cancer Research Laboratory of Immunological and Molecular Cancer Research, Paracelsus Medical University, Salzburg, Austria
| | - Nicole Prutsch
- Department of Clinical Pathology, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Philipp B Staber
- Department of Internal Medicine 1, Division of Hematology and Hemostaseology, Comprehensive Cancer Centre Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13a, 1090 Vienna, Austria; Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna and Medical University of Vienna, Austria
| | - Suzanne D Turner
- Department of Pathology, University of Cambridge, Lab Block Level 3, Box 231, Addenbrooke's Hospital, Cambridge CB20QQ, UK
| | - Lukas Kenner
- Department of Clinical Pathology, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13a, 1090 Vienna, Austria; Institute of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, Austria.
| |
Collapse
|
31
|
Wang Q, Zou Y, Nowotschin S, Kim SY, Li QV, Soh CL, Su J, Zhang C, Shu W, Xi Q, Huangfu D, Hadjantonakis AK, Massagué J. The p53 Family Coordinates Wnt and Nodal Inputs in Mesendodermal Differentiation of Embryonic Stem Cells. Cell Stem Cell 2016; 20:70-86. [PMID: 27889317 DOI: 10.1016/j.stem.2016.10.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 09/07/2016] [Accepted: 10/02/2016] [Indexed: 01/01/2023]
Abstract
In this study, we outline a regulatory network that involves the p53 tumor suppressor family and the Wnt pathway acting together with the TGF-β pathway in mesendodermal differentiation of mouse and human embryonic stem cells. Knockout of all three members, p53, p63, and p73, shows that the p53 family is essential for mesendoderm specification during exit from pluripotency in embryos and in culture. Wnt3 and its receptor Fzd1 are direct p53 family target genes in this context, and induction of Wnt signaling by p53 is critical for activation of mesendodermal differentiation genes. Globally, Wnt3-activated Tcf3 and nodal-activated Smad2/3 transcription factors depend on each other for co-occupancy of target enhancers associated with key differentiation loci. Our results therefore highlight an unanticipated role for p53 family proteins in a regulatory network that integrates essential Wnt-Tcf and nodal-Smad inputs in a selective and interdependent way to drive mesendodermal differentiation of pluripotent cells.
Collapse
Affiliation(s)
- Qiong Wang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yilong Zou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sang Yong Kim
- Rodent Genetic Engineering Core, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Qing V Li
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Chew-Li Soh
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jie Su
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chao Zhang
- Department of Medicine and Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Weiping Shu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Qiaoran Xi
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|