1
|
West JT, Wagner RL, Steinkrauss A, Dennis NA. Investigating the Cognitive Correlates of Semantic and Perceptual False Memory in Older and Younger Adults: A Multi-Group Latent Variable Approach. JOURNAL OF MEMORY AND LANGUAGE 2025; 142:104625. [PMID: 40160539 PMCID: PMC11951306 DOI: 10.1016/j.jml.2025.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Falsely remembering information can have negative consequences for day-to-day functioning and can be especially problematic for older adults who often experience higher rates of false memory. Because there is considerable variability between older adults in memory and cognition, it is essential that we understand the factors that place older individuals at risk for developing false memories. Whereas lower frontal functioning has previously been related to false memory in general, prior research suggests that there may also be domain-specificity in the factors associated with false memory. To test this possibility, 211 young adults and 152 older adults completed tasks measuring semantic false memory, perceptual false memory, frontal functioning, semantic discrimination, and perceptual discrimination. Factor analyses revealed that - contrary to predictions - individual differences in semantic and perceptual false memory were best represented by a single, overarching false memory factor. Although cognitive abilities were generally not related to false memory when assessed together, semantic discrimination, perceptual discrimination, and frontal functioning were all negatively associated with false memory in isolation, and jointly predicted 37% of the variance in younger adults and 40% in older adults. Importantly, the extent to which these cognitive abilities protected against false memory did not differ between older and younger adults. Results suggest that for both older and younger adults, individual differences in the tendency to falsely remember information are captured by a single overarching construct that has negative (yet redundant) associations with various cognitive abilities.
Collapse
Affiliation(s)
- John T. West
- Department of Psychology, Pennsylvania State University, University Park, PA
| | - Rebecca L. Wagner
- Department of Psychology, Pennsylvania State University, University Park, PA
| | | | - Nancy A. Dennis
- Department of Psychology, Pennsylvania State University, University Park, PA
| |
Collapse
|
2
|
Valle T, Krizovenska A, García-Arch J, Teresa Bajo M, Fuentemilla L. Social Network Structure Shapes the Formation of True and False Memories at the Collective Level. Cogn Sci 2025; 49:e70060. [PMID: 40230059 DOI: 10.1111/cogs.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025]
Abstract
Societal structures and memory organization models share network-like features, offering insights into how information spreads and shapes collective memories. In this study, we manipulated the structure of lab-created community networks during a computer-mediated recall task using the Deese-Roediger-McDermott paradigm to test the spreading activation theory of true and false memory formation. We hypothesized that social network structure, whether clustered or not, would influence memory accuracy. Our results showed that clustered networks reinforced true memories by promoting mnemonic convergence, while non-clustered networks led to more false memories by increasing widespread cross-activation. These findings highlight how social network topology impacts memory dynamics and collective knowledge evolution.
Collapse
Affiliation(s)
- Tania Valle
- Department of Psychology, University of Jaen
- Department of Cognition, Development and Education Psychology, Faculty of Psychology, University of Barcelona
| | - Annamaria Krizovenska
- Department of Cognition, Development and Education Psychology, Faculty of Psychology, University of Barcelona
| | - Josué García-Arch
- Department of Cognition, Development and Education Psychology, Faculty of Psychology, University of Barcelona
- Institute of Neuroscience (UBNeuro), University of Barcelona
| | - Maria Teresa Bajo
- Mind, Brain and Behaviour Research Center, University of Granada
- Department of Experimental Psychology, University of Granada
| | - Lluís Fuentemilla
- Department of Cognition, Development and Education Psychology, Faculty of Psychology, University of Barcelona
- Institute of Neuroscience (UBNeuro), University of Barcelona
- Bellvitge Institute for Biomedical Research
| |
Collapse
|
3
|
Li Y, Wang C, Hu W, Zhang Q, Mei H, Ji S, Li D, Wang Y, Kong Y, Song Y, Dong X. Intersubject neural similarity reveals the development trajectory of recognition memory in children. Dev Cogn Neurosci 2025; 73:101553. [PMID: 40121798 PMCID: PMC11979950 DOI: 10.1016/j.dcn.2025.101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Recognition memory improves with child development, but the neural mechanisms underlying such improvement and the developmental variation remain poorly understood. Herein, we investigated how the neural representations during the encoding and retrieval phases of recognition memory change with age, using representational similarity analysis in a sample of children aged 6-13 years (n = 137). Our results indicated that the encoding and retrieval phases have distinct neural patterns of development. Similarly, using a model-free approach, we confirmed that there is a key developmental stage (about 9-10 years old) for the neural representation during the encoding phase, whereas the neural representation during the retrieval phase tends to be stable with child development. Additionally, we identified that the neural similarity between the encoding and retrieval phases in children is primarily located in the left parietal-occipital region. Overall, these findings refine the developmental process underlying memory representation and enhance our understanding of the neural mechanisms of recognition memory.
Collapse
Affiliation(s)
- Yiwen Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Chaoqun Wang
- Children's Health Research Center, Changzhou Children's Hospital of Nantong University, Changzhou, Jiangsu 213000, China
| | - Weiyu Hu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Qinfen Zhang
- Children's Health Research Center, Changzhou Children's Hospital of Nantong University, Changzhou, Jiangsu 213000, China
| | - Haitian Mei
- Children's Health Research Center, Changzhou Children's Hospital of Nantong University, Changzhou, Jiangsu 213000, China
| | - Shiyan Ji
- Children's Health Research Center, Changzhou Children's Hospital of Nantong University, Changzhou, Jiangsu 213000, China
| | - Dongwei Li
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Yiyang Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yuanjun Kong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Xuan Dong
- Children's Health Research Center, Changzhou Children's Hospital of Nantong University, Changzhou, Jiangsu 213000, China.
| |
Collapse
|
4
|
Shao X, Li A, Wang Z, Xue G, Zhu B. False recall is associated with larger caudate in males but not in females. Memory 2024; 32:1341-1348. [PMID: 38416016 DOI: 10.1080/09658211.2024.2319314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
After learning semantically related words, some people are more likely than others to incorrectly recall unstudied but semantically related lures (i.e., Deese-Roediger-McDermott [DRM] false recall). Previous studies have suggested that neural activity in subcortical regions (e.g., the caudate) is involved in false memory, and that there may be sex differences in the neural basis of false memory. However, sex-specific associations between subcortical volumes and false memory are not well understood. This study investigated whether sex modulates the associations between subcortical volumes and DRM false recall in 400 healthy college students. Volumes of subcortical regions including the caudate, accumbens, amygdala, hippocampus, pallidum, putamen and thalamus were obtained from structural magnetic resonance images and measured using FreeSurfer. The results showed that males had lower true and false recall but larger subcortical volumes than females. Interestingly, higher false recall was associated with a larger caudate in males, but not in females. This association was significant after controlling for age and intracranial volume. This study provides new evidence on the neural basis of false recall. It suggests that the caudate plays a role in false recall in young men, and that future studies of the neural correlates of false memory should consider sex differences.
Collapse
Affiliation(s)
- Xuhao Shao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
- Institute of Developmental Psychology, Beijing Normal University, Beijing, People's Republic of China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, People's Republic of China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, People's Republic of China
- Collaborative Innovation Center of Assessment for Basic Education Quality, Beijing Normal University, Beijing, People's Republic of China
| | - Ao Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Zehua Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Bi Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
- Institute of Developmental Psychology, Beijing Normal University, Beijing, People's Republic of China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, People's Republic of China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
5
|
McLachlan E, Liu K, Huzzey L, Burgess N, Reeves S, Howard R. Increased memory confidence and delusions in Alzheimer's disease: a preliminary study. Neurocase 2024; 30:142-145. [PMID: 39514372 PMCID: PMC11614042 DOI: 10.1080/13554794.2024.2426267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
There is uncertainty about whether delusion formation in Alzheimer's disease (AD) can be explained by false memories. "Metamemory," the ability to self-evaluate memory and identify memory errors, is impaired in people with delusions in schizophrenia. Our objective was to investigate whether false memory and metamemory were associated with delusions in AD. Participants with mild AD, with and without delusions, completed a computerized word recognition task and a metamemory measure. Group differences were compared using independent-samples t-tests or Mann Whitney tests. Significant findings were explored through binary logistic regression modeling. Participants with delusions (n = 10) gave more high confidence responses, significantly so for correct responses; percentage of high confidence correct responses for those with delusions (mean (SD)) was 69.7% (31.0%) and for those without (n = 14) was 43.5% (29.9%); t22 = -2.09, p = .049. This remained significant when sex was included in regression modeling; for each 1.0% increase in high confidence correct responses, participants were 5.4% more likely to have delusions (Exp(β) 1.054, 95% CI 1.007-1.105, p = .025). Findings provide tentative support for a link between metamemory and delusions in AD. This should be explored in a larger sample as it has potential implications for treatment.
Collapse
Affiliation(s)
- Emma McLachlan
- Division of Psychiatry, University College London, London, UK
| | - Kathy Liu
- Division of Psychiatry, University College London, London, UK
| | - Lauren Huzzey
- Enfield Memory Service, Barnet, Enfield and Haringey NHS Mental Health Trust, London, UK
| | - Neil Burgess
- UCL Institute of Cognitive Neuroscience and UCL Queen Square Institute of Neurology, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Suzanne Reeves
- Division of Psychiatry, University College London, London, UK
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| |
Collapse
|
6
|
Hu H, Li A, Zhang L, Liu C, Shi L, Peng X, Li T, Zhou Y, Xue G. Goal-directed attention transforms both working and long-term memory representations in the human parietal cortex. PLoS Biol 2024; 22:e3002721. [PMID: 39008524 PMCID: PMC11271952 DOI: 10.1371/journal.pbio.3002721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 07/25/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
The abundance of distractors in the world poses a major challenge to our brain's limited processing capacity, but little is known about how selective attention modulates stimulus representations in the brain to reduce interference and support durable target memory. Here, we collected functional magnetic resonance imaging (fMRI) data in a selective attention task in which target and distractor pictures of different visual categories were simultaneously presented. Participants were asked to selectively process the target according to the effective cue, either before the encoding period (i.e., perceptual attention) or the maintenance period (i.e., reflective attention). On the next day, participants were asked to perform a memory recognition task in the scanner in which the targets, distractors, and novel items were presented in a pseudorandom order. Behavioral results showed that perceptual attention was better at enhancing target memory and reducing distractor memory than reflective attention, although the overall memory capacity (memory for both target and distractor) was comparable. Using multiple-voxel pattern analysis of the neural data, we found more robust target representation and weaker distractor representation in working memory for perceptual attention than for reflective attention. Interestingly, perceptual attention partially shifted the regions involved in maintaining the target representation from the visual cortex to the parietal cortex. Furthermore, the targets and distractors simultaneously presented in the perceptual attention condition showed reduced pattern similarity in the parietal cortex during retrieval compared to items not presented together. This neural pattern repulsion positively correlated with individuals' recognition of both targets and distractors. These results emphasize the critical role of selective attention in transforming memory representations to reduce interference and improve long-term memory performance.
Collapse
Affiliation(s)
- Huinan Hu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Anqi Li
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, PR China
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, HKSAR, PR China
| | - Liang Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Chuqi Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Liang Shi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Xiaojing Peng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Tong Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Yu Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
- Chinese Institute for Brain Research, Beijing, PR China
| |
Collapse
|
7
|
Zhang R, Tomasi D, Shokri-Kojori E, Manza P, Demiral SB, Wang GJ, Volkow ND. Seasonality in regional brain glucose metabolism. Psychol Med 2024; 54:2264-2272. [PMID: 38634486 DOI: 10.1017/s0033291724000436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
BACKGROUND Daylength and the rates of changes in daylength have been associated with seasonal fluctuations in psychiatric symptoms and in cognition and mood in healthy adults. However, variations in human brain glucose metabolism in concordance with seasonal changes remain under explored. METHODS In this cross-sectional study, we examined seasonal effects on brain glucose metabolism, which we measured using 18F-fluorodeoxyglucose-PET in 97 healthy participants. To maximize the sensitivity of regional effects, we computed relative metabolic measures by normalizing the regional measures to white matter metabolism. Additionally, we explored the role of rest-activity rhythms/sleep-wake activity measured with actigraphy in the seasonal variations of regional brain metabolic activity. RESULTS We found that seasonal variations of cerebral glucose metabolism differed across brain regions. Glucose metabolism in prefrontal regions increased with longer daylength and with greater day-to-day increases in daylength. The cuneus and olfactory bulb had the maximum and minimum metabolic values around the summer and winter solstice respectively (positively associated with daylength), whereas the temporal lobe, brainstem, and postcentral cortex showed maximum and minimum metabolic values around the spring and autumn equinoxes, respectively (positively associated with faster daylength gain). Longer daylength was associated with greater amplitude and robustness of diurnal activity rhythms suggesting circadian involvement. CONCLUSIONS The current findings advance our knowledge of seasonal patterns in a key indicator of brain function relevant for mood and cognition. These data could inform treatment interventions for psychiatric symptoms that peak at specific times of the year.
Collapse
Affiliation(s)
- Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sukru Baris Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Xiao X, Li J, Cao D, Zhang J, Jiang T. Contributions of repeated learning to memory in humans: insights from single-neuron recordings in the hippocampus and amygdala. Cereb Cortex 2024; 34:bhae244. [PMID: 38858840 DOI: 10.1093/cercor/bhae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
Despite the well-established phenomenon of improved memory performance through repeated learning, studies investigating the associated neural mechanisms have yielded complex and sometimes contradictory findings, and direct evidence from human neuronal recordings has been lacking. This study employs single-neuron recordings with exceptional spatial-temporal resolution, combined with representational similarity analysis, to explore the neural dynamics within the hippocampus and amygdala during repeated learning. Our results demonstrate that in the hippocampus, repetition enhances both representational specificity and fidelity, with these features predicting learning times. Conversely, the amygdala exhibits heightened representational specificity and fidelity during initial learning but does not show improvement with repetition, suggesting functional specialization of the hippocampus and amygdala during different stages of the learning repetition. Specifically, the hippocampus appears to contribute to sustained engagement necessary for benefiting from repeated learning, while the amygdala may play a role in the representation of novel items. These findings contribute to a comprehensive understanding of the intricate interplay between these brain regions in memory processes. Significance statement For over a century, understanding how repetition contributes to memory enhancement has captivated researchers, yet direct neuronal evidence has been lacking, with a primary focus on the hippocampus and a neglect of the neighboring amygdala. Employing advanced single-neuron recordings and analytical techniques, this study unveils a nuanced functional specialization within the amygdala-hippocampal circuit during various learning repetition. The results highlight the hippocampus's role in sustaining engagement for improved memory with repetition, contrasting with the amygdala's superior ability in representing novel items. This exploration not only deepens our comprehension of memory enhancement intricacies but also sheds light on potential interventions to optimize learning and memory processes.
Collapse
Affiliation(s)
- Xinyu Xiao
- Tianzi Jiang Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Li
- School of Psychology, Capital Normal University, Beijing 100048, China
| | - Dan Cao
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Zhang
- Tianzi Jiang Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzi Jiang
- Tianzi Jiang Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China
| |
Collapse
|
9
|
Pérez-Mata N, Diges M. False memories in forensic psychology: do cognition and brain activity tell the same story? Front Psychol 2024; 15:1327196. [PMID: 38827889 PMCID: PMC11141885 DOI: 10.3389/fpsyg.2024.1327196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/09/2024] [Indexed: 06/05/2024] Open
Abstract
One of the most important problems in forensic psychology is the impossibility of reliably discriminating between true and false memories when the only prosecution evidence comes from the memory of a witness or a victim. Unfortunately, both children and adults can be persuaded that they have been victims of past criminal acts, usually of a sexual nature. In adults, suggestion often occurs in the context of suggestive therapies based on the belief that traumatic events are repressed, while children come to believe and report events that never occurred as a result of repeated suggestive questioning. Cognitive Researchers have designed false memory paradigms (i.e., misinformation effect, Deese-Roediger-McDermott paradigm, event implantation paradigm) to first form false memories and then determine whether it is possible to reliably differentiate between false and true memories. In the present study, we review the contribution of cognitive research to the formation of false memories and the neuropsychological approaches aimed to discriminate between true and false memories. Based on these results, we analyze the applicability of the cognitive and neuropsychological evidence to the forensic setting.
Collapse
Affiliation(s)
- Nieves Pérez-Mata
- Department of Psicología Básica, Universidad Autónoma de Madrid, Madrid, Spain
| | | |
Collapse
|
10
|
Noguchi Y. Harmonic memory signals in the human cerebral cortex induced by semantic relatedness of words. NPJ SCIENCE OF LEARNING 2024; 9:6. [PMID: 38355685 PMCID: PMC10866900 DOI: 10.1038/s41539-024-00221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
When we memorize multiple words simultaneously, semantic relatedness among those words assists memory. For example, the information about "apple", "banana," and "orange" will be connected via a common concept of "fruits" and become easy to retain and recall. Neural mechanisms underlying this semantic integration in verbal working memory remain unclear. Here I used electroencephalography (EEG) and investigated neural signals when healthy human participants memorized five nouns semantically related (Sem trial) or not (NonSem trial). The regularity of oscillatory signals (8-30 Hz) during the retention period was found to be lower in NonSem than Sem trials, indicating that memorizing words unrelated to each other induced a non-harmonic (irregular) waveform in the temporal cortex. These results suggest that (i) semantic features of a word are retained as a set of neural oscillations at specific frequencies and (ii) memorizing words sharing a common semantic feature produces harmonic brain responses through a resonance or integration (sharing) of the oscillatory signals.
Collapse
Affiliation(s)
- Yasuki Noguchi
- Department of Psychology, Graduate School of Humanities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
11
|
Liu H, Wang J, Gao Q, Lu Y, Wang C, Zheng L, Li L, Guo X. The effects of forewarning and divided attention on context retrieval in false recognition. Memory 2024; 32:111-128. [PMID: 38346234 DOI: 10.1080/09658211.2024.2314979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/04/2023] [Indexed: 02/29/2024]
Abstract
After studying a list of words that are semantically associated to a critical lure, participants are more likely to attribute a falsely recognised critical lure to the context of its strong than weak semantic associates. This is known as the source-strength effect. The current study investigated the roles of automatic and controlled processing in context retrieval in false recognition that is demonstrated by the source-strength effect. The results revealed that the source-strength effect was impervious to forewarning (Experiment 1) and remained intact when attentional resources at encoding were reduced (Experiment 2), suggesting that context retrieval in false recognition is based on automatic processes that are not amenable to conscious control and do not require many attentional resources. This interpretation is consistent with the associative activation theory, which proposes that context retrieval in false recognition is based on memory associations between contexts and critical lures that are automatically created when critical lures become automatically activated via spreading activation process.
Collapse
Affiliation(s)
- Hanyue Liu
- School of Health Management, XiHua University, Chengdu, People's Republic of China
| | - Jianqin Wang
- Department of Psychology, Fudan University, Shanghai, People's Republic of China
| | - Qianyun Gao
- School of Health Management, XiHua University, Chengdu, People's Republic of China
| | - Yang Lu
- Fudan Institute on Ageing, Fudan University, Shanghai, People's Republic of China
- Ministry of education (MOE) Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai, People's Republic of China
| | - Chenggong Wang
- College of Science and Technology, Ningbo University, Cixi, People's Republic of China
| | - Li Zheng
- Fudan Institute on Ageing, Fudan University, Shanghai, People's Republic of China
- Ministry of education (MOE) Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai, People's Republic of China
| | - Lin Li
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, People's Republic of China
| | - Xiuyan Guo
- Fudan Institute on Ageing, Fudan University, Shanghai, People's Republic of China
- Ministry of education (MOE) Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
12
|
Simon SS, Varangis E, Lee S, Gu Y, Gazes Y, Razlighi QR, Habeck C, Stern Y. In vivo tau is associated with change in memory and processing speed, but not reasoning, in cognitively unimpaired older adults. Neurobiol Aging 2024; 133:28-38. [PMID: 38376885 PMCID: PMC10879688 DOI: 10.1016/j.neurobiolaging.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/30/2023] [Accepted: 10/01/2023] [Indexed: 02/21/2024]
Abstract
The relationship between tau deposition and cognitive decline in cognitively healthy older adults is still unclear. The tau PET tracer 18F-MK-6240 has shown favorable imaging characteristics to identify early tau deposition in aging. We evaluated the relationship between in vivo tau levels (18F-MK-6240) and retrospective cognitive change over 5 years in episodic memory, processing speed, and reasoning. For tau quantification, a set of regions of interest (ROIs) was selected a priori based on previous literature: (1) total-ROI comprising selected areas, (2) medial temporal lobe-ROI, and (3) lateral temporal lobe-ROI and cingulate/parietal lobe-ROI. Higher tau burden in most ROIs was associated with a steeper decline in memory and speed. There were no associations between tau and reasoning change. The novelty of this finding is that tau burden may affect not only episodic memory, a well-established finding but also processing speed. Our finding reinforces the notion that early tau deposition in areas related to Alzheimer's disease is associated with cognitive decline in cognitively unimpaired individuals, even in a sample with low amyloid-β pathology.
Collapse
Affiliation(s)
- Sharon Sanz Simon
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Eleanna Varangis
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA; Concussion Center, University of Michigan, Ann Arbor, MI, USA
| | - Seonjoo Lee
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Yian Gu
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Yunglin Gazes
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | | | - Christian Habeck
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
13
|
Tompary A, Xia A, Coslett BH, Thompson-Schill SL. Disruption of Anterior Temporal Lobe Reduces Distortions in Memory From Category Knowledge. J Cogn Neurosci 2023; 35:1899-1918. [PMID: 37713660 PMCID: PMC10860667 DOI: 10.1162/jocn_a_02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Memory retrieval does not provide a perfect recapitulation of past events, but instead an imperfect reconstruction of event-specific details and general knowledge. However, it remains unclear whether this reconstruction relies on mixtures of signals from different memory systems, including one supporting general knowledge. Here, we investigate whether the anterior temporal lobe (ATL) distorts new memories because of prior category knowledge. In this preregistered experiment (n = 36), participants encoded and retrieved image-location associations. Most images' locations were clustered according to their category, but some were in random locations. With this protocol, we previously demonstrated that randomly located images were retrieved closer to their category cluster relative to their encoded locations, suggesting an influence of category knowledge. We combined this procedure with TMS delivered to the left ATL before retrieval. We separately examined event-specific details (error) and category knowledge (bias) to identify distinct signals attributable to different memory systems. We found that TMS to ATL attenuated bias in location memory, but this effect was limited to exploratory analyses of atypical category members of animal categories. The magnitude of error was not impacted, suggesting that a memory's fidelity can be decoupled from its distortion by category knowledge. This raises the intriguing possibility that retrieval is jointly supported by separable memory systems.
Collapse
|
14
|
Vijayarajah S, Schlichting ML. Anterior Hippocampal Engagement during Memory Formation Predicts Subsequent False Recognition of Similar Experiences. J Cogn Neurosci 2023; 35:1716-1740. [PMID: 37677052 DOI: 10.1162/jocn_a_02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
People better remember experiences when they orient to meaning over surface-level perceptual features. Such an orientation-related memory boost has been associated with engagement of both hippocampus (HPC) and neocortex during encoding. However, less is known about the neural mechanisms by which a cognitive orientation toward meaning might also promote memory errors, with one open question being whether the HPC-a region traditionally implicated in precise memory formation-also contributes to behavioral imprecision. We used fMRI to characterize encoding-phase signatures as people oriented toward the meaning (story) versus perceptual style (artist) of storybook-style illustrations and then linked them to subsequent true and false memories. We found that story and artist orientation tasks were each associated with both unique univariate profiles and consistent neural states defined using multivoxel patterns. Linking these neural signatures to behavior, we found that greater medial pFC activation and alignment of neural patterns to the story (but not artist) state was related to subsequent memory success on a trial-by-trial basis. Moreover, among successfully remembered experiences, greater anterior HPC engagement at encoding was associated with a higher likelihood of related false recognitions, consistent with the encoding of broad traces in this region. Interestingly, these effects did not reliably vary by cued orientation. These results suggest that, irrespective of the cued encoding orientation, neocortical and hippocampal mechanisms associated with orienting to meaning (story) over perceptual (artist) features may support memory, with the formation of generalizable memories being a specialty of anterior HPC.
Collapse
|
15
|
Bein O, Gasser C, Amer T, Maril A, Davachi L. Predictions transform memories: How expected versus unexpected events are integrated or separated in memory. Neurosci Biobehav Rev 2023; 153:105368. [PMID: 37619645 PMCID: PMC10591973 DOI: 10.1016/j.neubiorev.2023.105368] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Our brains constantly generate predictions about the environment based on prior knowledge. Many of the events we experience are consistent with these predictions, while others might be inconsistent with prior knowledge and thus violate our predictions. To guide future behavior, the memory system must be able to strengthen, transform, or add to existing knowledge based on the accuracy of our predictions. We synthesize recent evidence suggesting that when an event is consistent with our predictions, it leads to neural integration between related memories, which is associated with enhanced associative memory, as well as memory biases. Prediction errors, in turn, can promote both neural integration and separation, and lead to multiple mnemonic outcomes. We review these findings and how they interact with factors such as memory reactivation, prediction error strength, and task goals, to offer insight into what determines memory for events that violate our predictions. In doing so, this review brings together recent neural and behavioral research to advance our understanding of how predictions shape memory, and why.
Collapse
Affiliation(s)
- Oded Bein
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States.
| | - Camille Gasser
- Department of Psychology, Columbia University, New York, NY, United States.
| | - Tarek Amer
- Department of Psychology, University of Victoria, Victoria, Canada
| | - Anat Maril
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Cognitive Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lila Davachi
- Center for Clinical Research, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| |
Collapse
|
16
|
Sheng J, Wang S, Zhang L, Liu C, Shi L, Zhou Y, Hu H, Chen C, Xue G. Intersubject similarity in neural representations underlies shared episodic memory content. Proc Natl Acad Sci U S A 2023; 120:e2308951120. [PMID: 37603733 PMCID: PMC10466090 DOI: 10.1073/pnas.2308951120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/05/2023] [Indexed: 08/23/2023] Open
Abstract
Individuals generally form their unique memories from shared experiences, yet the neural representational mechanisms underlying this subjectiveness of memory are poorly understood. The current study addressed this important question from the cross-subject neural representational perspective, leveraging a large functional magnetic resonance imaging dataset (n = 415) of a face-name associative memory task. We found that individuals' memory abilities were predicted by their synchronization to the group-averaged, canonical trial-by-trial activation level and, to a lesser degree, by their similarity to the group-averaged representational patterns during encoding. More importantly, the memory content shared between pairs of participants could be predicted by their shared local neural activation pattern, particularly in the angular gyrus and ventromedial prefrontal cortex, even after controlling for differences in memory abilities. These results uncover neural representational mechanisms for individualized memory and underscore the constructive nature of episodic memory.
Collapse
Affiliation(s)
- Jintao Sheng
- State Key Laboratory of Cognitive Neuroscience and Learning and International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing100875, China
| | - Sisi Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing100875, China
| | - Liang Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing100875, China
| | - Chuqi Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing100875, China
| | - Liang Shi
- State Key Laboratory of Cognitive Neuroscience and Learning and International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing100875, China
| | - Yu Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning and International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing100875, China
| | - Huinan Hu
- State Key Laboratory of Cognitive Neuroscience and Learning and International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing100875, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA92697
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning and International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing100875, China
- Chinese Institute for Brain Research, Beijing102206, China
| |
Collapse
|
17
|
Vives ML, de Bruin D, van Baar JM, FeldmanHall O, Bhandari A. Uncertainty aversion predicts the neural expansion of semantic representations. Nat Hum Behav 2023; 7:765-775. [PMID: 36997668 DOI: 10.1038/s41562-023-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/17/2023] [Indexed: 04/01/2023]
Abstract
Correctly identifying the meaning of a stimulus requires activating the appropriate semantic representation among many alternatives. One way to reduce this uncertainty is to differentiate semantic representations from each other, thereby expanding the semantic space. Here, in four experiments, we test this semantic-expansion hypothesis, finding that uncertainty-averse individuals exhibit increasingly differentiated and separated semantic representations. This effect is mirrored at the neural level, where uncertainty aversion predicts greater distances between activity patterns in the left inferior frontal gyrus when reading words, and enhanced sensitivity to the semantic ambiguity of these words in the ventromedial prefrontal cortex. Two direct tests of the behavioural consequences of semantic expansion further reveal that uncertainty-averse individuals exhibit reduced semantic interference and poorer generalization. Together, these findings show that the internal structure of our semantic representations acts as an organizing principle to make the world more identifiable.
Collapse
Affiliation(s)
- Marc-Lluís Vives
- Department of Cognitive, Linguistic, Psychological Sciences, Brown University, Providence, RI, USA.
- Department of Psychology, Leiden University, Leiden, The Netherlands.
| | - Daantje de Bruin
- Department of Cognitive, Linguistic, Psychological Sciences, Brown University, Providence, RI, USA
| | - Jeroen M van Baar
- Trimbos Institute, Netherlands Institute for Mental Health and Addiction, Utrecht, The Netherlands
| | - Oriel FeldmanHall
- Department of Cognitive, Linguistic, Psychological Sciences, Brown University, Providence, RI, USA.
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | - Apoorva Bhandari
- Department of Cognitive, Linguistic, Psychological Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
18
|
Shao X, Li A, Chen C, Loftus EF, Zhu B. Cross-stage neural pattern similarity in the hippocampus predicts false memory derived from post-event inaccurate information. Nat Commun 2023; 14:2299. [PMID: 37085518 PMCID: PMC10121656 DOI: 10.1038/s41467-023-38046-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
The misinformation effect occurs when people's memory of an event is altered by subsequent inaccurate information. No study has systematically tested theories about the dynamics of human hippocampal representations during the three stages of misinformation-induced false memory. This study replicates behavioral results of the misinformation effect, and investigates the cross-stage pattern similarity in the hippocampus and cortex using functional magnetic resonance imaging. Results show item-specific hippocampal pattern similarity between original-event and post-event stages. During the memory-test stage, hippocampal representations of original information are weakened for true memory, whereas hippocampal representations of misinformation compete with original information to create false memory. When false memory occurs, this conflict is resolved by the lateral prefrontal cortex. Individuals' memory traces of post-event information in the hippocampus predict false memory, whereas original information in the lateral parietal cortex predicts true memory. These findings support the multiple-trace model, and emphasize the reconstructive nature of human memory.
Collapse
Affiliation(s)
- Xuhao Shao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing, China
- Institute of Developmental Psychology, Beijing Normal University, 100875, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 100875, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China
| | - Ao Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, 92697, USA
| | - Elizabeth F Loftus
- Department of Psychological Science, University of California, Irvine, CA, 92697, USA
| | - Bi Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing, China.
- Institute of Developmental Psychology, Beijing Normal University, 100875, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 100875, Beijing, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
19
|
People who are averse to uncertainty exhibit expanded semantic representations. Nat Hum Behav 2023; 7:676-677. [PMID: 36997669 DOI: 10.1038/s41562-023-01566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
20
|
Ricupero S, Carpenter CM, Steinkrauss AC, Gerver CR, Chamberlain JD, Monkman RG, Overman AA, Dennis NA. Neural distinctiveness and reinstatement of hippocampal representations support unitization for associations. Brain Res 2023; 1798:148143. [PMID: 36328066 PMCID: PMC10657642 DOI: 10.1016/j.brainres.2022.148143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/28/2022]
Abstract
The medial temporal lobe (MTL) is critical to associative memory success, yet not all types of associations may be processed in a similar manner within MTL subregions. In particular, previous work suggests intra- and inter-item associations not only exhibit differences in overall rates of recollection, but also recruit different MTL subregions. Whereas intra-item associations, akin to unitization, take advantage of associations between within-item features, inter-item associations form links across discrete items. The current work examines the neural differences between these two types of associations using fMRI and multivoxel analyses. Specifically, the current study examines differences across face-occupation as a function of whether the pairing was viewed as a person performing the given job (intra-item binding) or a person saying they knew someone who had a particular job (inter-item binding). The results show that at encoding, successfully recollected neural patterns related to intra- and inter-item associations are distinct from one another in the hippocampus, parahippocampal and perirhinal cortex. Additionally, the two trial types are reinstated distinctly such that inter-item trials have higher neural reinstatement from encoding to retrieval compared to intra-item trials in the hippocampus. We conclude that intra- and inter- associative pairs may utilize similar neural regions that represent patterns of activation differentially at encoding. However, to reinstate information to the same degree (i.e., subsequently successfully recollected) inter-item associations, that are all encoded in the same manner, may be reinstated more similarly compared to intra-item associations that are encoded by imagining pairs differently and occupation specific. This may indicate that intra-item associations promote more efficient reinstatement.
Collapse
Affiliation(s)
- S Ricupero
- The Pennsylvania State University, United States
| | | | | | - C R Gerver
- The Pennsylvania State University, United States
| | | | | | | | - N A Dennis
- The Pennsylvania State University, United States.
| |
Collapse
|
21
|
Schwen Blackett D, Varkey J, Wilmskoetter J, Roth R, Andrews K, Busby N, Gleichgerrcht E, Desai RH, Riccardi N, Basilakos A, Johnson LP, Kristinsson S, Johnson L, Rorden C, Spell LA, Fridriksson J, Bonilha L. Neural network bases of thematic semantic processing in language production. Cortex 2022; 156:126-143. [PMID: 36244204 PMCID: PMC10041939 DOI: 10.1016/j.cortex.2022.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
Semantic processing is a central component of language and cognition. The anterior temporal lobe is postulated to be a key hub for semantic processing, but the posterior temporoparietal cortex is also involved in thematic associations during language. It is possible that these regions act in concert and depend on an anteroposterior network linking the temporal pole with posterior structures to support thematic semantic processing during language production. We employed connectome-based lesion-symptom mapping to examine the causal relationship between lesioned white matter pathways and thematic processing language deficits among individuals with post-stroke aphasia. Seventy-nine adults with chronic aphasia completed the Philadelphia Naming Test, and semantic errors were coded as either thematic or taxonomic to control for taxonomic errors. Controlling for nonverbal conceptual-semantic knowledge as measured by the Pyramids and Palm Trees Test, lesion size, and the taxonomic error rate, thematic error rate was associated with loss of white matter connections from the temporal pole traversing in peri-Sylvian regions to the posterior cingulate and the insula. These findings support the existence of a distributed network underlying thematic relationship processing in language as opposed to discrete cortical areas.
Collapse
Affiliation(s)
- Deena Schwen Blackett
- Department of Otolaryngology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA; Division of Speech-Language Pathology, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA.
| | - Jesse Varkey
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Janina Wilmskoetter
- Division of Speech-Language Pathology, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA.
| | - Rebecca Roth
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Keeghan Andrews
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Ezequiel Gleichgerrcht
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Rutvik H Desai
- Department of Psychology, University of South Carolina, Barnwell College, Columbia, SC, USA.
| | - Nicholas Riccardi
- Department of Psychology, University of South Carolina, Barnwell College, Columbia, SC, USA.
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Lorelei P Johnson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Lisa Johnson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Barnwell College, Columbia, SC, USA.
| | - Leigh A Spell
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Leonardo Bonilha
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
22
|
Xue G. From remembering to reconstruction: The transformative neural representation of episodic memory. Prog Neurobiol 2022; 219:102351. [PMID: 36089107 DOI: 10.1016/j.pneurobio.2022.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
Although memory has long been recognized as a generative process, neural research of memory in recent decades has been predominantly influenced by Tulving's "mental time traveling" perspective and focused on the reactivation and consolidation of encoded memory representations. With the development of multiple powerful analytical approaches to characterize the contents and formats of neural representations, recent studies are able to provide detailed examinations of the representations at various processing stages and have provided exciting new insights into the transformative nature of episodic memory. These studies have revealed the rapid, substantial, and continuous transformation of memory representation during the encoding, maintenance, consolidation, and retrieval of both single and multiple events, as well as event sequences. These transformations are characterized by the abstraction, integration, differentiation, and reorganization of memory representations, enabling the long-term retention and generalization of memory. These studies mark a significant shift in perspective from remembering to reconstruction, which might better reveal the nature of memory and its roles in supporting more effective learning, adaptive decision-making, and creative problem solving.
Collapse
Affiliation(s)
- Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China; Chinese Institute for Brain Research, Beijing 102206, PR China.
| |
Collapse
|
23
|
Zoellner C, Klein N, Cheng S, Schubotz R, Axmacher N, Wolf OT. EXPRESS: Where was the Toaster? A systematic investigation of semantic construction in a new virtual episodic memory paradigm. Q J Exp Psychol (Hove) 2022:17470218221116610. [PMID: 35848220 DOI: 10.1177/17470218221116610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Retrieved memories of past events are often inaccurate. The scenario construction model (SCM) postulates that during encoding, only the gist of an episode is stored in the episodic memory trace and during retrieval, information missing from that trace is constructed from semantic information. The current study aimed to find behavioural evidence for semantic construction in a realistic, yet controlled setting by introducing a new paradigm and adjusted memory tests that measure semantic construction. Using a desktop virtual reality (VR) participants navigated through a flat in which some household objects appeared in unexpected rooms, creating conflicts between the experienced episode and semantic expectations. The manipulation of congruence enabled us to identify influences from semantic information in cases of episodic memory failure. Besides we controlled for objects to be task-relevant or -irrelevant to the sequence of action. In addition to an established old/new recognition task we introduced spatial and temporal recall measures as possible superior memory measures quantifying semantic construction. The recognition task and the spatial recall revealed, that both congruence and task-relevance predicted correct episodic memory retrieval. In cases of episodic memory failure semantic construction was more likely than guessing and occurred more frequently for task-irrelevant objects. In the temporal recall object-pairs belonging to the same semantic room-category were temporally clustered together compared to object-pairs from different semantic categories (at the second retrieval). Taken together, our findings support the predictions of the SCM. The new VR-paradigm, including the new memory measures appears to be a promising tool for investigating semantic construction.
Collapse
Affiliation(s)
- Carina Zoellner
- Department of Cognitive Psychology, Ruhr University, Bochum, Germany 9142
| | - Nicole Klein
- Department of Cognitive Psychology, Ruhr University, Bochum, Germany 9142
| | - Sen Cheng
- Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany 9142
| | - Ricarda Schubotz
- Department of Psychology, University of Muenster, Muenster, Germany 9185.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Ruhr University Bochum, Bochum, Germany 9142
| | - Oliver T Wolf
- Department of Cognitive Psychology, Ruhr University, Bochum, Germany 9142
| |
Collapse
|
24
|
Shao X, Chen C, Loftus EF, Xue G, Zhu B. Dynamic changes in neural representations underlie the repetition effect on false memory. Neuroimage 2022; 259:119442. [PMID: 35788042 DOI: 10.1016/j.neuroimage.2022.119442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Restudying word lists (e.g., dream, awake, and bed) strengthens true memory of the studied words and reduces false memory for unstudied but semantically related lures (e.g., sleep). Yet, the neural mechanisms involved in this repetition effect on false memory remain unclear. Possible mechanisms involve item-specific and semantic neural representations at encoding, and the memory strength between encoding and retrieval. This study first replicated the behavioral results (Exp. 1) and then investigated various neural mechanisms by using slow event-related functional magnetic resonance imaging (fMRI) and representational similarity analysis (Exp. 2). Behavioral results confirmed that restudy improved true memory and reduced false memory. The fMRI results showed that restudy induced item-specific neural representations at encoding in the left occipital pole, but reduced neural overlap between semantic representations at encoding in the left temporal pole. Individual differences in these two encoding neural mechanisms were correlated with the behavioral measure of false memory, with greater restudy-induced representational changes at encoding (item-specific neural representations and reduced neural overlap between semantic representations) being associated with lower false memory. Moreover, restudy enhanced the memory strength between encoding and retrieval in the visuoparietal cortex but reduced it in the frontal cortex. These findings suggest that dynamic changes in neural representations underlie the repetition effect on false memory, supporting a dual-coding neural framework.
Collapse
Affiliation(s)
- Xuhao Shao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA 92697, United States
| | - Elizabeth F Loftus
- Department of Psychological Science, University of California, Irvine, CA 92697, United States
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Bi Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
25
|
Dennis NA, Overman AA, Carpenter CM, Gerver CR. Understanding associative false memories in aging using multivariate analyses. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2022; 29:500-525. [PMID: 35147489 PMCID: PMC9162130 DOI: 10.1080/13825585.2022.2037500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Age-related declines in associative memory are ubiquitous, with decreases in behavioral discriminability largely arising from increases in false memories for recombined lures. Using representational similarity analyses to examine the neural basis of associative false memories in aging, the current study found that neural pattern similarity between Hits and FAs and Hits and CRs differed as a function of age in occipital ROIs, such that older adults exhibited a smaller difference between the two similarity metrics than did younger adults. Additionally, greater Hit-FA representational similarity correlated with increases in associative FAs across several ROIs. Results suggest that while neural representations underlying targets may not differ across ages, greater pattern similarity between the neural representation of targets and lures may reflect reduced distinctiveness of the information encoded in memory, such that old and new items are more difficult to discriminate, leading to more false alarms.
Collapse
Affiliation(s)
- Nancy A. Dennis
- Department of Psychology, The Pennsylvania State University, University Park, PA
| | | | | | - Courtney R. Gerver
- Department of Psychology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
26
|
Abstract
In an analysis of memory systems, Sherry and Schacter (Psychological Review, 94, 439-454, 1987) emphasized the importance of functional and evolutionary considerations for characterizing mechanisms of memory. The present article considers four different yet closely related topics from more recent research in which similar considerations have played a prominent role in shaping both experiment and theory: the seven sins of memory, mechanisms underlying memory misattribution errors, the role of memory in imagining future experiences, and the relation between associative inference and memory errors. These lines of research illustrate the usefulness of attempting to integrate functional and mechanistic considerations, in line with the general approach articulated by Sherry and Schacter.
Collapse
|
27
|
Moore D, Jung M, Hillman CH, Kang M, Loprinzi PD. Interrelationships between exercise, functional connectivity, and cognition among healthy adults: A systematic review. Psychophysiology 2022; 59:e14014. [PMID: 35122693 DOI: 10.1111/psyp.14014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/29/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
Abstract
The main purpose of this systematic review was to examine past literature focusing on the potential relationship between exercise (or physical activity or cardiorespiratory fitness [CRF]) and functional brain connectivity in healthy adults. Among the studies meeting this purpose, we also evaluated studies investigating whether, and how, functional connectivity may influence the exercise-cognition relationship. A systematic review was employed through several electronic databases (PsychInfo, PubMed, and Google Scholar) in accordance with PRISMA guidelines. The literature search identified 656 records, and a total of 12 studies met the inclusion criteria. Among these 12 studies, there were 4, 7, and 1 study, respectively, examining the relationship between exercise and frontal lobe connectivity, temporal lobe connectivity, and whole-brain connectivity. Also, 7 studies examined the relationship between functional connectivity and cognitive performance across multiple brain regions as a function of exercise. Existing literature suggests that CRF, habitual physical activity, and varying intensities of acute exercise can strengthen functional connections among a wide variety of regions and subcortical structures of the human brain. These exercise-induced functional connectivity changes within and between specific brain structures/networks supporting cognitive processing may improve various domains of cognitive function. Given these complex associations, a thorough understanding of how functional connectivity plays a mediating role in the exercise-cognition interaction is needed in future studies.
Collapse
Affiliation(s)
- Damien Moore
- Exercise and Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, Mississippi, USA
| | - Myungjin Jung
- Exercise and Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, Mississippi, USA.,Health and Sport Analytics Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, Mississippi, USA
| | - Charles H Hillman
- Center for Cognitive & Brain Health, Department of Psychology, Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, Massachusetts, United States
| | - Minsoo Kang
- Health and Sport Analytics Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, Mississippi, USA
| | - Paul D Loprinzi
- Exercise and Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, Mississippi, USA
| |
Collapse
|
28
|
Age-related differences in encoding-retrieval similarity and their relationship to false memory. Neurobiol Aging 2022; 113:15-27. [DOI: 10.1016/j.neurobiolaging.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/26/2022]
|
29
|
Santaniello G, Ferré P, Sanchez-Carmona A, Huete-Pérez D, Albert J, Hinojosa JA. Gamma Oscillations in the Temporal Pole Reflect the Contribution of Approach and Avoidance Motivational Systems to the Processing of Fear and Anger Words. Front Psychol 2022; 12:802290. [PMID: 35140664 PMCID: PMC8820231 DOI: 10.3389/fpsyg.2021.802290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Prior reports suggest that affective effects in visual word processing cannot be fully explained by a dimensional perspective of emotions based on valence and arousal. In the current study, we focused on the contribution of approach and avoidance motivational systems that are related to different action components to the processing of emotional words. To this aim, we compared frontal alpha asymmetries and brain oscillations elicited by anger words associated with approach (fighting) motivational tendencies, and fear words that may trigger either avoidance (escaping), approach (fighting) or no (freezing) action tendencies. The participants’ task was to make decisions about approaching or distancing from the concepts represented by words. The results of cluster-based and beamforming analyses revealed increased gamma power band synchronization for fear words relative to anger words between 725 and 750 ms, with an estimated neural origin in the temporal pole. These findings were interpreted to reflect a conflict between different action tendencies underlying the representation of fear words in semantic and emotional memories, when trying to achieve task requirements. These results are in line with the predictions made by the fear-hinders-action hypothesis. Additionally, current data highlights the contribution of motivational features to the representation and processing of emotional words.
Collapse
Affiliation(s)
- Gerardo Santaniello
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Ferré
- Universitat Rovira i Virgili, Department of Psychology, Research Center for Behavior Assessment (CRAMC), Tarragona, Spain
| | | | - Daniel Huete-Pérez
- Universitat Rovira i Virgili, Department of Psychology, Research Center for Behavior Assessment (CRAMC), Tarragona, Spain
| | - Jacobo Albert
- Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | - José A Hinojosa
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Nebrija en Cognición (CINC), Universidad Nebrija, Madrid, Spain
| |
Collapse
|
30
|
Guo P, Hu S, Jiang X, Zheng H, Mo D, Cao X, Zhu J, Zhong H. Associations of Neurocognition and Social Cognition With Brain Structure and Function in Early-Onset Schizophrenia. Front Psychiatry 2022; 13:798105. [PMID: 35222115 PMCID: PMC8866448 DOI: 10.3389/fpsyt.2022.798105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cognitive impairment is a core feature of schizophrenia that is more serious in patients with early-onset schizophrenia (EOS). However, the neuroimaging basis of cognitive functions, including neurocognition and social cognition, remains unclear in patients with EOS. METHODS Forty-three patients with EOS underwent structural and resting state functional magnetic resonance imaging scans. Brain structure and function were evaluated through the analysis of brain gray matter volume (GMV) and amplitude of low-frequency fluctuations (ALFF). They underwent comprehensive assessments for neurocognition (verbal memory, verbal expression, attention, and executive function) and social cognition (theory of mind and attributional bias). Correlation analyses were conducted to detect the potential link between cognitive function indices and brain imaging parameters. RESULTS First, neurocognition was linked to brain structure characterized by higher immediate recall scores associated with increased GMV in the left temporal pole, higher verbal fluency scores associated with increased GMV in the left temporal pole: middle temporal gyrus, and higher Stroop-word scores associated with increased GMV in the right middle frontal gyrus. Second, social cognition was related to brain function characterized by lower sense of reality scores associated with increased ALFF in the left precentral gyrus, higher scores of accidental hostility bias associated with increased ALFF in the right middle temporal gyrus, and higher scores of accidental aggression bias associated with increased ALFF in the left precentral gyrus. CONCLUSION These findings may add to the existing knowledge about the cognitive function-brain relationship. They may have clinical significance for studying the mechanism of neurocognitive and social cognitive impairment in patients with EOS and providing potential neural targets for their treatment and intervention.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Shuwen Hu
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Xiaolu Jiang
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Hongyu Zheng
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Daming Mo
- Department of Child and Adolescent Mental Disorder, Anhui Mental Health Center, Hefei, China
| | - Xiaomei Cao
- Department of Child and Adolescent Mental Disorder, Anhui Mental Health Center, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Zhong
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Child and Adolescent Mental Disorder, Anhui Mental Health Center, Hefei, China
| |
Collapse
|
31
|
Rapid neural reorganization during retrieval practice predicts subsequent long-term retention and false memory. Nat Hum Behav 2022; 6:134-145. [PMID: 34621051 DOI: 10.1038/s41562-021-01188-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/22/2021] [Indexed: 02/08/2023]
Abstract
Active retrieval can alter the strength and content of a memory, yielding either enhanced or distorted subsequent recall. However, how consolidation influences these retrieval-induced seemingly contradictory outcomes remains unknown. Here we show that rapid neural reorganization over an eight-run retrieval practice predicted subsequent recall. Retrieval practice boosted memory retention following a 24-hour (long-term) but not 30-minute delay, and increased false memory at both delays. Long-term retention gains were predicted by multi-voxel representation distinctiveness in the posterior parietal cortex (PPC) that increased progressively over retrieval practice. False memory was predicted by unstable representation distinctiveness in the medial temporal lobe (MTL). Retrieval practice enhanced the efficiency of memory-related brain networks, through building up PPC and MTL connections with the ventrolateral and dorsolateral prefrontal cortex that predicted long-term retention gains and false memory, respectively. Our findings indicate that retrieval-induced rapid neural reorganization together with consecutive consolidation fosters long-term retention and false memories via distinct pathways.
Collapse
|
32
|
Wang S, Feng SF, Bornstein AM. Mixing memory and desire: How memory reactivation supports deliberative decision-making. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 13:e1581. [PMID: 34665529 DOI: 10.1002/wcs.1581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022]
Abstract
Memories affect nearly every aspect of our mental life. They allow us to both resolve uncertainty in the present and to construct plans for the future. Recently, renewed interest in the role memory plays in adaptive behavior has led to new theoretical advances and empirical observations. We review key findings, with particular emphasis on how the retrieval of many kinds of memories affects deliberative action selection. These results are interpreted in a sequential inference framework, in which reinstatements from memory serve as "samples" of potential action outcomes. The resulting model suggests a central role for the dynamics of memory reactivation in determining the influence of different kinds of memory in decisions. We propose that representation-specific dynamics can implement a bottom-up "product of experts" rule that integrates multiple sets of action-outcome predictions weighted based on their uncertainty. We close by reviewing related findings and identifying areas for further research. This article is categorized under: Psychology > Reasoning and Decision Making Neuroscience > Cognition Neuroscience > Computation.
Collapse
Affiliation(s)
- Shaoming Wang
- Department of Psychology, New York University, New York, New York, USA
| | - Samuel F Feng
- Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi, UAE.,Khalifa University Centre for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Aaron M Bornstein
- Department of Cognitive Sciences, University of California-Irvine, Irvine, California, USA.,Center for the Neurobiology of Learning & Memory, University of California-Irvine, Irvine, California, USA.,Institute for Mathematical Behavioral Sciences, University of California-Irvine, Irvine, California, USA
| |
Collapse
|
33
|
Liu J, Zhang H, Yu T, Ren L, Ni D, Yang Q, Lu B, Zhang L, Axmacher N, Xue G. Transformative neural representations support long-term episodic memory. SCIENCE ADVANCES 2021; 7:eabg9715. [PMID: 34623910 PMCID: PMC8500506 DOI: 10.1126/sciadv.abg9715] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Memory is often conceived as a dynamic process that involves substantial transformations of mental representations. However, the neural mechanisms underlying these transformations and their role in memory formation and retrieval have only started to be elucidated. Combining intracranial EEG recordings with deep neural network models, we provide a detailed picture of the representational transformations from encoding to short-term memory maintenance and long-term memory retrieval that underlie successful episodic memory. We observed substantial representational transformations during encoding. Critically, more pronounced semantic representational formats predicted better subsequent long-term memory, and this effect was mediated by more consistent item-specific representations across encoding events. The representations were further transformed right after stimulus offset, and the representations during long-term memory retrieval were more similar to those during short-term maintenance than during encoding. Our results suggest that memory representations pass through multiple stages of transformations to achieve successful long-term memory formation and recall.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hui Zhang
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum 44801, Germany
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Liankun Ren
- Comprehensive Epilepsy Center of Beijing, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Duanyu Ni
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Qinhao Yang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Baoqing Lu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Liang Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Nikolai Axmacher
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum 44801, Germany
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
34
|
Perceptual and Semantic Representations at Encoding Contribute to True and False Recognition of Objects. J Neurosci 2021; 41:8375-8389. [PMID: 34413205 DOI: 10.1523/jneurosci.0677-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022] Open
Abstract
When encoding new episodic memories, visual and semantic processing is proposed to make distinct contributions to accurate memory and memory distortions. Here, we used fMRI and preregistered representational similarity analysis to uncover the representations that predict true and false recognition of unfamiliar objects. Two semantic models captured coarse-grained taxonomic categories and specific object features, respectively, while two perceptual models embodied low-level visual properties. Twenty-eight female and male participants encoded images of objects during fMRI scanning, and later had to discriminate studied objects from similar lures and novel objects in a recognition memory test. Both perceptual and semantic models predicted true memory. When studied objects were later identified correctly, neural patterns corresponded to low-level visual representations of these object images in the early visual cortex, lingual, and fusiform gyri. In a similar fashion, alignment of neural patterns with fine-grained semantic feature representations in the fusiform gyrus also predicted true recognition. However, emphasis on coarser taxonomic representations predicted forgetting more anteriorly in the anterior ventral temporal cortex, left inferior frontal gyrus and, in an exploratory analysis, left perirhinal cortex. In contrast, false recognition of similar lure objects was associated with weaker visual analysis posteriorly in early visual and left occipitotemporal cortex. The results implicate multiple perceptual and semantic representations in successful memory encoding and suggest that fine-grained semantic as well as visual analysis contributes to accurate later recognition, while processing visual image detail is critical for avoiding false recognition errors.SIGNIFICANCE STATEMENT People are able to store detailed memories of many similar objects. We offer new insights into the encoding of these specific memories by combining fMRI with explicit models of how image properties and object knowledge are represented in the brain. When people processed fine-grained visual properties in occipital and posterior temporal cortex, they were more likely to recognize the objects later and less likely to falsely recognize similar objects. In contrast, while object-specific feature representations in fusiform gyrus predicted accurate memory, coarse-grained categorical representations in frontal and temporal regions predicted forgetting. The data provide the first direct tests of theoretical assumptions about encoding true and false memories, suggesting that semantic representations contribute to specific memories as well as errors.
Collapse
|
35
|
Alonso MA, Díez-Álamo AM, Gómez-Ariza CJ, Díez E, Fernandez A. Transcranial Direct Current Stimulation Over the Right Anterior Temporal Lobe Does Not Modulate False Recognition. Front Psychol 2021; 12:718118. [PMID: 34603142 PMCID: PMC8484642 DOI: 10.3389/fpsyg.2021.718118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Non-invasive transcranial direct current stimulation (tDCS) over the left anterior temporal lobe (ATL) has been shown to cause a reduction in the rate of false memories with semantically related words. Such a reduction seems to be specific to false memories induced by the study of associative lists, but is not observed when the studied lists are categorical in nature. These findings are interpreted as evidence that the left ATL functions as an integration hub that is crucial for the binding of semantic information into coherent representations of concepts. In order to investigate whether the right ATL might also contribute to semantic integration in the processing of verbal associative material, a follow-up tDCS study was conducted with the stimulation at study lateralized on the right ATL. A sample of 75 undergraduate students participated in an experiment in which they studied 8 associative lists and 8 categorical lists. One third of the participants studied all their word lists under anodal stimulation, another third studied under cathodal stimulation and the other third under sham stimulation. Results showed that stimulation of the right ATL by tDCS does not modulate false recognition for either association-related critical words or category-related critical words. These results provide preliminary support to views positing asymmetric connectivity between the anterior temporal lobes and the semantic representational network, and provide evidence for understanding bilateral brain dynamics and the nature of semantically induced memory distortions.
Collapse
Affiliation(s)
- María Angeles Alonso
- Instituto Universitario de Neurociencia (IUNE), University of La Laguna, San Cristóbal de La Laguna, Spain.,Institute on Community Integration (INICO), University of Salamanca, Salamanca, Spain
| | - Antonio M Díez-Álamo
- Institute on Community Integration (INICO), University of Salamanca, Salamanca, Spain
| | | | - Emiliano Díez
- Instituto Universitario de Neurociencia (IUNE), University of La Laguna, San Cristóbal de La Laguna, Spain.,Institute on Community Integration (INICO), University of Salamanca, Salamanca, Spain
| | - Angel Fernandez
- Instituto Universitario de Neurociencia (IUNE), University of La Laguna, San Cristóbal de La Laguna, Spain.,Institute on Community Integration (INICO), University of Salamanca, Salamanca, Spain
| |
Collapse
|
36
|
McCormick C, Maguire EA. The distinct and overlapping brain networks supporting semantic and spatial constructive scene processing. Neuropsychologia 2021; 158:107912. [PMID: 34116069 PMCID: PMC8287593 DOI: 10.1016/j.neuropsychologia.2021.107912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/20/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022]
Abstract
Scene imagery features prominently when we recall autobiographical memories, imagine the future and navigate around in the world. Consequently, in this study we sought to better understand how scene representations are supported by the brain. Processing scenes involves a variety of cognitive processes that in the real world are highly interactive. Here, however, our goal was to separate semantic and spatial constructive scene processes in order to identify the brain areas that were distinct to each process, those they had in common, and the connectivity between regions. To this end, participants searched for either semantic or spatial constructive impossibilities in scenes during functional MRI. We focussed our analyses on only those scenes that were possible, thus removing any error detection that would evoke reactions such as surprise or novelty. Importantly, we also counterbalanced possible scenes across participants, enabling us to examine brain activity and connectivity for the same possible scene images under two different conditions. We found that participants adopted different cognitive strategies, which were reflected in distinct oculomotor behaviour, for each condition. These were in turn associated with increased engagement of lateral temporal and parietal cortices for semantic scene processing, the hippocampus for spatial constructive scene processing, and increased activation of the ventromedial prefrontal cortex (vmPFC) that was common to both. Connectivity analyses showed that the vmPFC switched between semantic and spatial constructive brain networks depending on the task at hand. These findings further highlight the well-known semantic functions of lateral temporal areas, while providing additional support for the previously-asserted contribution of the hippocampus to scene construction, and recent suggestions that the vmPFC may play a key role in orchestrating scene processing.
Collapse
Affiliation(s)
- Cornelia McCormick
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK.
| |
Collapse
|
37
|
Marin Bosch B, Bringard A, Logrieco MG, Lauer E, Imobersteg N, Thomas A, Ferretti G, Schwartz S, Igloi K. A single session of moderate intensity exercise influences memory, endocannabinoids and brain derived neurotrophic factor levels in men. Sci Rep 2021; 11:14371. [PMID: 34257382 PMCID: PMC8277796 DOI: 10.1038/s41598-021-93813-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 11/15/2022] Open
Abstract
Regular physical exercise enhances memory functions, synaptic plasticity in the hippocampus, and brain derived neurotrophic factor (BDNF) levels. Likewise, short periods of exercise, or acute exercise, benefit hippocampal plasticity in rodents, via increased endocannabinoids (especially anandamide, AEA) and BDNF release. Yet, it remains unknown whether acute exercise has similar effects on BDNF and AEA levels in humans, with parallel influences on memory performance. Here we combined blood biomarkers, behavioral, and fMRI measurements to assess the impact of a single session of physical exercise on associative memory and underlying neurophysiological mechanisms in healthy male volunteers. For each participant, memory was tested after three conditions: rest, moderate or high intensity exercise. A long-term memory retest took place 3 months later. At both test and retest, memory performance after moderate intensity exercise was increased compared to rest. Memory after moderate intensity exercise correlated with exercise-induced increases in both AEA and BNDF levels: while AEA was associated with hippocampal activity during memory recall, BDNF enhanced hippocampal memory representations and long-term performance. These findings demonstrate that acute moderate intensity exercise benefits consolidation of hippocampal memory representations, and that endocannabinoids and BNDF signaling may contribute to the synergic modulation of underlying neural plasticity mechanisms.
Collapse
Affiliation(s)
- Blanca Marin Bosch
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélien Bringard
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Anesthesiology, Pharmacology and Intensive Care, Geneva University Hospitals, 1205, Geneva, Switzerland.,Pulmonology Division, Geneva University Hospital, Geneva, Switzerland
| | - Maria G Logrieco
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Estelle Lauer
- Unit of Toxicology, CURML, Lausanne University Hospital and Geneva University Hospitals, Geneva, Switzerland
| | - Nathalie Imobersteg
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Anesthesiology, Pharmacology and Intensive Care, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - Aurélien Thomas
- Unit of Toxicology, CURML, Lausanne University Hospital and Geneva University Hospitals, Geneva, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Chemin Vulliette 4, 1000, Lausanne, Switzerland
| | - Guido Ferretti
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Anesthesiology, Pharmacology and Intensive Care, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - Sophie Schwartz
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland
| | - Kinga Igloi
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland. .,Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland. .,Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
38
|
Association between symbol digit modalities test and regional cortex thickness in young adults with relapsing-remitting multiple sclerosis. Clin Neurol Neurosurg 2021; 207:106805. [PMID: 34280674 DOI: 10.1016/j.clineuro.2021.106805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a demyelinating disease of the central nervous system, predominating within young adults. Cognitive disorders are common in MS and have are associated with several Magnetic Resonance Imaging (MRI) markers, especially brain atrophy. Many have found the symbol digit modalities test (SDMT) to be the most sensitive individual cognitive measure relevant to MS. However, the relationship between SDMT and regional brain cortex thickness in young adults with relapsing-remitting multiple sclerosis (YA-RRMS) has been little explored. The purpose of this study was to investigate the association between the SDMT and regional cortex thickness in YA-RRMS by FreeSurfer, which is an automatic brain structure segmentation method. METHOD Twenty-eight YA-RRMS patients (18-35 years old) were enrolled in the present study. Informed consent and information including gender, age, disease duration, number of relapses, annual relapse rate was collected from all patients. Clinical cognitive evaluations (SDMT and auditory verbal learning test (AVLT)) and daily performance: activities of daily living (ADL) were assessed in the present study. MRI scans were performed at the Institute of Neurosurgery of Tiantan Hospital. Twenty-eight matched healthy controls (HC) MRI data were obtained from Tiantan Hospital database. Data on thirty-four points of bilateral cortical structure thickness using statistically defined brain regions-of-interest from FreeSurfer were obtained from all participants. RESULTS Patients with RRMS exhibited extensively thinner cerebellar cortex compared with HC. SDMT scores were significantly correlated with AVLT subentries (IM, immediate memory; DRM, delayed recall memory; LTRM, long-term recognition memory) in YA-RRMS patients (P < 0.05). SDMT was strongly correlated with regional cortex thickness differences of the right temporal pole (r = 0.68) and bilateral parahippocampal areas (right r = 0.62; left r = 0.60), and moderately correlated with regional cortex thickness differences including the left superior temporal and right insula (r = 0.57 and 0.56, respectively) in YA-RRMS patients. CONCLUSION The present study has shown the SDMT is strongly correlated with selected cortex regions including the bilateral parahippocampal area and the right temporal pole which are involved in geometric structures processing.
Collapse
|
39
|
Friehs MA, Greene C, Pastötter B. Transcranial direct current stimulation over the left anterior temporal lobe during memory retrieval differentially affects true and false recognition in the DRM task. Eur J Neurosci 2021; 54:4609-4620. [PMID: 34076917 DOI: 10.1111/ejn.15337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 01/13/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation that has been used to modulate human brain activity and cognition. One area which has not yet been extensively explored using tDCS is the generation of false memories. In this study, we combined the Deese-Roediger-McDermott (DRM) task with stimulation of the left anterior temporal lobe (ATL) during retrieval. This area has been shown to be involved in semantic processing in general and retrieval of false memories in the DRM paradigm in particular. During stimulation, 0.7 mA were applied via a 9 cm² electrode over the left ATL, with the 35 cm² return electrode placed over the left deltoid. We contrasted the effects of cathodal, anodal, and sham stimulation, which were applied in the recognition phase of the experiment on a sample of 78 volunteers. Results showed impaired recognition of true memories after both anodal and cathodal stimulation in comparison to sham stimulation, suggesting a reduced signal-to-noise ratio. In addition, the results revealed enhanced false recognition of concept lure items during cathodal stimulation compared to anodal stimulation, indicating a polarity-dependent impact of tDCS on false memories in the DRM task. The pathway by which tDCS modulated false recognition remains unclear: stimulation may have changed the activation of irrelevant lures or affected the weighting and monitoring of lure activations. Nevertheless, these results are a first step towards using brain stimulation to decrease false memories. Practical implications of the findings for real-life settings, for example, in the courtroom, need to be addressed in future work.
Collapse
Affiliation(s)
| | - Ciara Greene
- School of Psychology, University College Dublin, Dublin, Ireland
| | - Bernhard Pastötter
- Department of Cognitive Psychology and Methodology, Trier University, Trier, Germany
| |
Collapse
|
40
|
Gilboa A, Moscovitch M. No consolidation without representation: Correspondence between neural and psychological representations in recent and remote memory. Neuron 2021; 109:2239-2255. [PMID: 34015252 DOI: 10.1016/j.neuron.2021.04.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/24/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Memory systems consolidation is often conceived as the linear, time-dependent, neurobiological shift of memory from hippocampal-cortical to cortico-cortical dependency. We argue that contrary to this unidirectional view of memory reorganization, information about events may be retained in multiple forms (e.g., event-specific sensory-near episodic memory, event-specific gist information, event-general schematic information, or abstract semantic memory). These representations can all form at the time of the event and may continue to coexist for long durations. Their relative strength, composition, and dominance of expression change with time and experience, with task demands, and through their dynamic interaction with one another. These different psychological mnemonic representations depend on distinct functional and structural neurobiological substrates such that there is a neural-psychological representation correspondence (NPRC) among them. We discuss how the dynamics of psychological memory representations are reflected in multiple levels of neurobiological markers and their interactions. By this view, there are only variations of synaptic consolidation and memory dynamics without assuming a distinct systems consolidation process.
Collapse
Affiliation(s)
- Asaf Gilboa
- Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada; Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada.
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada; Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada.
| |
Collapse
|
41
|
Carpenter AC, Thakral PP, Preston AR, Schacter DL. Reinstatement of item-specific contextual details during retrieval supports recombination-related false memories. Neuroimage 2021; 236:118033. [PMID: 33836273 PMCID: PMC8375312 DOI: 10.1016/j.neuroimage.2021.118033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022] Open
Abstract
Flexible retrieval mechanisms that allow us to infer relationships across events may also lead to memory errors or distortion when details of one event are misattributed to the related event. Here, we tested how making successful inferences alters representation of overlapping events, leading to false memories. Participants encoded overlapping associations ('AB' and 'BC'), each of which was superimposed on different indoor and outdoor scenes that were pre-exposed prior to associative learning. Participants were subsequently tested on both the directly learned pairs ('AB' and 'BC') and inferred relationships across pairs ('AC'). We predicted that when people make a correct inference, features associated with overlapping events may become integrated in memory. To test this hypothesis, participants completed a final detailed retrieval test, in which they had to recall the scene associated with initially learned 'AB' pairs (or 'BC' pairs). We found that the outcome of inference decisions impacted the degree to which neural patterns elicited during detailed 'AB' retrieval reflected reinstatement of the scene associated with the overlapping 'BC' event. After successful inference, neural patterns in the anterior hippocampus, posterior medial prefrontal cortex, and our content-reinstatement region (left inferior temporal gyrus) were more similar to the overlapping, yet incorrect 'BC' context relative to after unsuccessful inference. Further, greater hippocampal activity during inference was associated with greater reinstatement of the incorrect, overlapping context in our content-reinstatement region, which in turn tracked contextual misattributions during detailed retrieval. These results suggest recombining memories during successful inference can lead to misattribution of contextual details across related events, resulting in false memories.
Collapse
Affiliation(s)
- Alexis C Carpenter
- Department of Psychology and Center for Brain Science, Harvard University, 33 Kirkland Street, Cambridge, MA 02138, United States.
| | - Preston P Thakral
- Department of Psychology and Center for Brain Science, Harvard University, 33 Kirkland Street, Cambridge, MA 02138, United States; Department of Psychology and Neuroscience, Boston College, United States
| | - Alison R Preston
- Center for Learning and Memory and Department of Psychology, University of Texas at Austin, United States
| | - Daniel L Schacter
- Department of Psychology and Center for Brain Science, Harvard University, 33 Kirkland Street, Cambridge, MA 02138, United States
| |
Collapse
|
42
|
Hakobyan O, Cheng S. Recognition Receiver Operating Characteristic Curves: The Complex Influence of Input Statistics, Memory, and Decision-making. J Cogn Neurosci 2021; 33:1032-1055. [PMID: 33656399 DOI: 10.1162/jocn_a_01697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Receiver operating characteristic (ROC) analysis is the standard tool for studying recognition memory. In particular, the curvilinearity and the y-offset of recognition ROC curves have been interpreted as indicative of either memory strength (single-process models) or different memory processes (dual-process model). The distinction between familiarity and recollection has been widely studied in cognitive neuroscience in a variety of conditions, including lesions of different brain regions. We develop a computational model that explicitly shows how performance in recognition memory is affected by a complex and, as yet, underappreciated interplay of various factors, such as stimulus statistics, memory processing, and decision-making. We demonstrate that (1) the factors in the model affect recognition ROC curves in unexpected ways, (2) fitting R and F parameters according to the dual-process model is not particularly useful for understanding the underlying processes, and (3) the variability of recognition ROC curves and the controversies they have caused might be due to the uncontrolled variability in the contributing factors. Although our model is abstract, its functional components can be mapped onto brain regions, which are involved in corresponding functions. This enables us to reproduce and interpret in a coherent framework the diverse effects on recognition memory that have been reported in patients with frontal and hippocampal lesions. To conclude, our work highlights the importance of the rich interplay of a variety of factors in driving recognition memory performance, which has to be taken into account when interpreting recognition ROC curves.
Collapse
|
43
|
Herlin B, Navarro V, Dupont S. The temporal pole: From anatomy to function-A literature appraisal. J Chem Neuroanat 2021; 113:101925. [PMID: 33582250 DOI: 10.1016/j.jchemneu.2021.101925] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/22/2022]
Abstract
Historically, the anterior part of the temporal lobe was labelled as a unique structure named Brain Area 38 by Brodmann or Temporopolar Area TG by Von Economo, but its functions were unknown at that time. Later on, a few studies proposed to divide the temporal pole in several different subparts, based on distinct cytoarchitectural structure or connectivity patterns, while a still growing number of studies have associated the temporal pole with many cognitive functions. In this review, we provide an overview of the temporal pole anatomical and histological structure and its various functions. We performed a literature review of articles published prior to September 30, 2020 that included 112 articles. The temporal pole has thereby been associated with several high-level cognitive processes: visual processing for complex objects and face recognition, autobiographic memory, naming and word-object labelling, semantic processing in all modalities, and socio-emotional processing, as demonstrated in healthy subjects and in patients with neurological or psychiatric diseases, especially in the field of neurodegenerative disorders. A good knowledge of those functions and the symptoms associated with temporal pole lesions or dysfunctions is helpful to identify these diseases, whose diagnosis may otherwise be difficult.
Collapse
Affiliation(s)
- Bastien Herlin
- APHP Pitie-Salpêtrière-Charles-Foix, Epileptology Unit, Paris, France.
| | - Vincent Navarro
- APHP Pitie-Salpêtrière-Charles-Foix, Epileptology Unit, Paris, France; Sorbonne University, UPMC, Paris, France; APHP Pitie-Salpêtrière-Charles-Foix, Neurophysiology Unit, Paris, France; Brain and Spine Institute (INSERM UMRS1127, CNRS UMR7225, UPMC), Paris, France
| | - Sophie Dupont
- APHP Pitie-Salpêtrière-Charles-Foix, Epileptology Unit, Paris, France; Sorbonne University, UPMC, Paris, France; Brain and Spine Institute (INSERM UMRS1127, CNRS UMR7225, UPMC), Paris, France; APHP Pitie-Salpêtrière-Charles-Foix, Rehabilitation Unit, Paris, France
| |
Collapse
|
44
|
Gatti D, Vecchi T, Mazzoni G. Cerebellum and semantic memory: A TMS study using the DRM paradigm. Cortex 2020; 135:78-91. [PMID: 33360762 DOI: 10.1016/j.cortex.2020.11.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Traditionally, the cerebellum has been linked to motor functions, but recent evidence suggest that it is also involved in a wide range of cognitive processes. Given the uniformity of cerebellar cortex microstructure, it has been proposed that the same computational process might underlie cerebellar involvement in both motor and cognitive functions. Within motor functions, the cerebellum it is involved in procedural memory and associative learning. Here, we hypothesized that the cerebellum may participate to semantic memory as well. To test whether the cerebellum is causally involved in semantic memory, we carried out two experiments in which participants performed the Deese-Roediger-McDermott paradigm (DRM) while online transcranial magnetic stimulation (TMS) was administered over the right cerebellum or over a control site. In Experiment 1, cerebellar TMS selectively affected participants' discriminability for critical lures without affecting participants' discriminability for unrelated words and in Experiment 2 we found that the higher was the semantic association between new and studied words, the higher was the memory impairment caused by the TMS. These results indicate that the right cerebellum is causally involved in semantic memory and provide evidence consistent with theories that proposed the existence of a unified cerebellar function within motor and cognitive domains, as well with recent perspectives about cerebellar involvement in semantic memory and predictive functions.
Collapse
Affiliation(s)
- Daniele Gatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Tomaso Vecchi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Cognitive Psychology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Giuliana Mazzoni
- Faculty of Medicine and Psychology, University La Sapienza, Rome, Italy; School of Life Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|
45
|
Using diffusion tensor imaging to detect cortical changes in fronto-temporal dementia subtypes. Sci Rep 2020; 10:11237. [PMID: 32641807 PMCID: PMC7343779 DOI: 10.1038/s41598-020-68118-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/21/2020] [Indexed: 11/23/2022] Open
Abstract
Fronto-temporal dementia (FTD) is a common type of presenile dementia, characterized by a heterogeneous clinical presentation that includes three main subtypes: behavioural-variant FTD, non-fluent/agrammatic variant primary progressive aphasia and semantic variant PPA. To better understand the FTD subtypes and develop more specific treatments, correct diagnosis is essential. This study aimed to test the discrimination power of a novel set of cortical Diffusion Tensor Imaging measures (DTI), on FTD subtypes. A total of 96 subjects with FTD and 84 healthy subjects (HS) were included in the study. A “selection cohort” was used to determine the set of features (measurements) and to use them to select the “best” machine learning classifier from a range of seven main models. The selected classifier was trained on a “training cohort” and tested on a third cohort (“test cohort”). The classifier was used to assess the classification power for binary (HS vs. FTD), and multiclass (HS and FTD subtypes) classification problems. In the binary classification, one of the new DTI features obtained the highest accuracy (85%) as a single feature, and when it was combined with other DTI features and two other common clinical measures (grey matter fraction and MMSE), obtained an accuracy of 88%. The new DTI features can distinguish between HS and FTD subgroups with an accuracy of 76%. These results suggest that DTI measures could support differential diagnosis in a clinical setting, potentially improve efficacy of new innovative drug treatments through effective patient selection, stratification and measurement of outcomes.
Collapse
|
46
|
Novitskaya Y, Dümpelmann M, Vlachos A, Reinacher PC, Schulze-Bonhage A. In vivo-assessment of the human temporal network: Evidence for asymmetrical effective connectivity. Neuroimage 2020; 214:116769. [PMID: 32217164 DOI: 10.1016/j.neuroimage.2020.116769] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/22/2020] [Accepted: 03/19/2020] [Indexed: 11/16/2022] Open
Abstract
The human temporal lobe is a multimodal association area which plays a key role in various aspects of cognition, particularly in memory formation and spatial navigation. Functional and anatomical connectivity of temporal structures is thus a subject of intense research, yet by far underexplored in humans due to ethical and technical limitations. We assessed intratemporal cortico-cortical interactions in the living human brain by means of single pulse electrical stimulation, an invasive method allowing mapping effective intracortical connectivity with a high spatiotemporal resolution. Eighteen subjects with normal anterior-mesial temporal MR imaging undergoing intracranial presurgical epilepsy diagnostics with multiple depth electrodes were included. The investigated structures were temporal pole, hippocampus, amygdala and parahippocampal gyrus. Intratemporal cortical connectivity was assessed as a function of amplitude of the early component of the cortico-cortical evoked potentials (CCEP). While the analysis revealed robust interconnectivity between all explored structures, a clear asymmetry in bidirectional connectivity was detected for the hippocampal network and for the connections between the temporal pole and parahippocampal gyrus. The amygdala showed bidirectional asymmetry only to the hippocampus. The provided evidence of asymmetrically weighed intratemporal effective connectivity in humans in vivo is important for understanding of functional interactions within the temporal lobe since asymmetries in the brain connectivity define hierarchies in information processing. The findings are in exact accord with the anatomical tracing studies in non-human primates and open a translational route for interventions employing modulation of temporal lobe function.
Collapse
Affiliation(s)
- Yulia Novitskaya
- Epilepsy Center, Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany.
| | - Matthias Dümpelmann
- Epilepsy Center, Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albert Strasse 17, 79104, Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany
| |
Collapse
|
47
|
Wynn JS, Ryan JD, Buchsbaum BR. Eye movements support behavioral pattern completion. Proc Natl Acad Sci U S A 2020; 117:6246-6254. [PMID: 32123109 PMCID: PMC7084073 DOI: 10.1073/pnas.1917586117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ability to recall a detailed event from a simple reminder is supported by pattern completion, a cognitive operation performed by the hippocampus wherein existing mnemonic representations are retrieved from incomplete input. In behavioral studies, pattern completion is often inferred through the false endorsement of lure (i.e., similar) items as old. However, evidence that such a response is due to the specific retrieval of a similar, previously encoded item is severely lacking. We used eye movement (EM) monitoring during a partial-cue recognition memory task to index reinstatement of lure images behaviorally via the recapitulation of encoding-related EMs or gaze reinstatement. Participants reinstated encoding-related EMs following degraded retrieval cues and this reinstatement was negatively correlated with accuracy for lure images, suggesting that retrieval of existing representations (i.e., pattern completion) underlies lure false alarms. Our findings provide evidence linking gaze reinstatement and pattern completion and advance a functional role for EMs in memory retrieval.
Collapse
Affiliation(s)
- Jordana S Wynn
- Department of Psychology, University of Toronto, Toronto, ON M55 3G3, Canada;
- Rotman Research Institute, Baycrest Hospital, Toronto, ON M6A 2E1, Canada
| | - Jennifer D Ryan
- Department of Psychology, University of Toronto, Toronto, ON M55 3G3, Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, ON M6A 2E1, Canada
| | - Bradley R Buchsbaum
- Department of Psychology, University of Toronto, Toronto, ON M55 3G3, Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, ON M6A 2E1, Canada
| |
Collapse
|
48
|
Cortical Overlap and Cortical-Hippocampal Interactions Predict Subsequent True and False Memory. J Neurosci 2020; 40:1920-1930. [PMID: 31974208 DOI: 10.1523/jneurosci.1766-19.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/31/2022] Open
Abstract
The declarative memory system allows us to accurately recognize a countless number of items and events, particularly those strengthened by repeated exposure. However, increased familiarity due to repetition can also lead to false recognition of related but new items, particularly when mechanisms supporting fine-grain mnemonic discrimination fail. The hippocampus is thought to be particularly important in separating overlapping cortical inputs during encoding so that similar experiences can be differentiated. In the current study of male and female human subjects, we examine how neural pattern similarity between repeated exemplars of a given concept (e.g., apple) influences true and false memory for target or lure images. Consistent with past work, we found that subsequent true recognition was related to pattern similarity between concept exemplars and the entire encoding set (global encoding similarity), particularly in ventral visual stream. In addition, memory for an individual target exemplar (a specific apple) could be predicted solely by the degree of pattern overlap between the other exemplars (different apple pictures) of that concept (concept-specific encoding similarity). Critically, subsequent false memory for lures was mitigated when high concept-specific similarity in cortical areas was accompanied by differentiated hippocampal representations of the corresponding exemplars. Furthermore, both true and false memory entailed the reinstatement of concept-related information at varying levels of specificity. These results link both true and false memory to a measure of concept strength expressed in the overlap of cortical representations, and importantly, illustrate how the hippocampus serves to separate concurrent cortical overlap in the service of detailed memory.SIGNIFICANCE STATEMENT In some instances, the same processes that help promote memory for a general idea or concept can also hinder more detailed memory judgments, which may involve differentiating between closely related items. The current study shows that increased overlap in cortical representations for conceptually-related pictures is associated with increased recognition of repeated concept pictures. Whether similar lure items were falsely remembered as old further depended on the hippocampus, where the presence of more distinct representations protected against later false memory. This work suggests that the differentiability of brain patterns during perception is related to the differentiability of items in memory, but that fine-grain discrimination depends on the interaction between cortex and hippocampus.
Collapse
|
49
|
Representation of abstract semantic knowledge in populations of human single neurons in the medial temporal lobe. PLoS Biol 2019; 17:e3000290. [PMID: 31158216 PMCID: PMC6564037 DOI: 10.1371/journal.pbio.3000290] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 06/13/2019] [Accepted: 05/10/2019] [Indexed: 11/23/2022] Open
Abstract
Sensory experience elicits complex activity patterns throughout the neocortex. Projections from the neocortex converge onto the medial temporal lobe (MTL), in which distributed neocortical firing patterns are distilled into sparse representations. The precise nature of these neuronal representations is still unknown. Here, we show that population activity patterns in the MTL are governed by high levels of semantic abstraction. We recorded human single-unit activity in the MTL (4,917 units, 25 patients) while subjects viewed 100 images grouped into 10 semantic categories of 10 exemplars each. High levels of semantic abstraction were indicated by representational similarity analyses (RSAs) of patterns elicited by individual stimuli. Moreover, pattern classifiers trained to decode semantic categories generalised successfully to unseen exemplars, and classifiers trained to decode exemplar identity more often confused exemplars of the same versus different categories. Semantic abstraction and generalisation may thus be key to efficiently distill the essence of an experience into sparse representations in the human MTL. Although semantic abstraction is efficient and may facilitate generalisation of knowledge to novel situations, it comes at the cost of a loss of detail and may be central to the generation of false memories. Single-neuron representations of stimuli in the human medial temporal lobe at the population level are governed by highly abstract semantic principles, but the attendant efficiency and potential for generalization comes at the cost of confusion between related stimuli. What is the neuronal code for sensory experience in the human medial temporal lobe (MTL)? Single-cell electrophysiology in the awake human brain during chronic, invasive epilepsy monitoring has previously revealed the existence of so-called concept cells. These cells have been found to increase their firing rate in response to, for example, the famous tennis player ‘Roger Federer’, whether his name is spoken by a computer voice or a picture of him is presented on a computer screen. These neurons thus seem to encode the semantic content of a stimulus, regardless of the sensory modality through which it is delivered. Previous work has predominantly focused on individual neurons that were selected based on their strong response to a particular stimulus using rather conservative statistical criteria. Those studies stressed that concept cells encode a single, concrete concept in an all-or-nothing fashion. Here, we analysed the neuronal code on the level of the entire population of neurons without any preselection. We conducted representational similarity analyses (RSAs) and pattern classification analyses of firing patterns evoked by visual stimuli (for example, a picture of an apple) that could be grouped into semantic categories on multiple levels of abstraction (‘fruit’, ‘food’, ‘natural things’). We found that neuronal activation patterns contain information on higher levels of categorical abstraction rather than just the level of individual exemplars. On the one hand, the neuronal code in the human MTL thus seems well suited to generalise semantic knowledge to new situations; on the other hand, it could also be responsible for the generation of false memories.
Collapse
|
50
|
Bertoux M, Flanagan EC, Hobbs M, Ruiz-Tagle A, Delgado C, Miranda M, Ibáñez A, Slachevsky A, Hornberger M. Structural Anatomical Investigation of Long-Term Memory Deficit in Behavioral Frontotemporal Dementia. J Alzheimers Dis 2019; 62:1887-1900. [PMID: 29614645 DOI: 10.3233/jad-170771] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although a growing body of work has shown that behavioral variant frontotemporal dementia (bvFTD) could present with severe amnesia in approximately half of cases, memory assessment is currently the clinical standard to distinguish bvFTD from Alzheimer's disease (AD). Thus, the concept of "relatively preserved episodic memory" in bvFTD remains the basis of its clinical distinction from AD and a criterion for bvFTD's diagnosis. This view is supported by the idea that bvFTD is not characterized by genuine amnesia and hippocampal degeneration, by contrast to AD. In this multicenter study, we aimed to investigate the neural correlates of memory performance in bvFTD as assessed by the Free and Cued Selective Reminding Test (FCSRT). Imaging explorations followed a two-step procedure, first relying on a visual rating of atrophy of 35 bvFTD and 34 AD patients' MRI, contrasted with 29 controls; and then using voxel-based morphometry (VBM) in a subset of bvFTD patients. Results showed that 43% of bvFTD patients presented with a genuine amnesia. Data-driven analysis on visual rating data showed that, in bvFTD, memory recall & storage performances were significantly predicted by atrophy in rostral prefrontal and hippocampal/perihippocampal regions, similar to mild AD. VBM results in bvFTD (pFWE<0.05) showed similar prefrontal and hippocampal regions in addition to striatal and lateral temporal involvement. Our findings showed the involvement of prefrontal as well as medial/lateral temporal atrophy in memory deficits of bvFTD patients. This contradicts the common view that only frontal deficits explain memory impairment in this disease and plead for an updated view on memory dysfunctions in bvFTD.
Collapse
Affiliation(s)
- Maxime Bertoux
- Norwich Medical School, University of East Anglia, Norwich, UK.,Centre de Référence Démence Rares, Pitié-Salpêtrière, INSERM UMRS 975, Paris, France
| | - Emma C Flanagan
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Matthew Hobbs
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Amparo Ruiz-Tagle
- Laboratorio de Neurosciencas, Centro de Investigación Avanzada en Educación, Universidad de Chile, Santiago, Chile
| | - Carolina Delgado
- Department of Neurology, Clinic Hospital, University of Chile, Santiago, Chile
| | - Marcelo Miranda
- Department of Neurology, Clinica Las Condes, Santiago, Chile
| | - Agustín Ibáñez
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile.,Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Universidad Autónoma del Caribe, Barranquilla, Colombia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council (ACR), Sydney University, NSW, Australia
| | - Andrea Slachevsky
- Physiopathology Department, Neuroscience Department, Faculty of Medicine, University of Chile, Santiago, Chile.,Gerosciences Center for Brain Health and Metabolism, Santiago, Chile
| | | |
Collapse
|