1
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Hu X, Chen F, Jia L, Long A, Peng Y, Li X, Huang J, Wei X, Fang X, Gao Z, Zhang M, Liu X, Chen YG, Wang Y, Zhang H, Wang Y. A gut-derived hormone regulates cholesterol metabolism. Cell 2024; 187:1685-1700.e18. [PMID: 38503280 DOI: 10.1016/j.cell.2024.02.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/18/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
The reciprocal coordination between cholesterol absorption in the intestine and de novo cholesterol synthesis in the liver is essential for maintaining cholesterol homeostasis, yet the mechanisms governing the opposing regulation of these processes remain poorly understood. Here, we identify a hormone, Cholesin, which is capable of inhibiting cholesterol synthesis in the liver, leading to a reduction in circulating cholesterol levels. Cholesin is encoded by a gene with a previously unknown function (C7orf50 in humans; 3110082I17Rik in mice). It is secreted from the intestine in response to cholesterol absorption and binds to GPR146, an orphan G-protein-coupled receptor, exerting antagonistic downstream effects by inhibiting PKA signaling and thereby suppressing SREBP2-controlled cholesterol synthesis in the liver. Therefore, our results demonstrate that the Cholesin-GPR146 axis mediates the inhibitory effect of intestinal cholesterol absorption on hepatic cholesterol synthesis. This discovered hormone, Cholesin, holds promise as an effective agent in combating hypercholesterolemia and atherosclerosis.
Collapse
Affiliation(s)
- Xiaoli Hu
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fengyi Chen
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liangjie Jia
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Aijun Long
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Peng
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junfeng Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xueyun Wei
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinlei Fang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zihua Gao
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mengxian Zhang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Ye-Guang Chen
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Guangzhou Laboratory, Guangzhou 510005, China; School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yiguo Wang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Zhu W, Hong Y, Tong Z, He X, Li Y, Wang H, Gao X, Song P, Zhang X, Wu X, Tan Z, Huang W, Liu Z, Bao Y, Ma J, Zheng N, Xie C, Ke X, Zhou W, Jia W, Li M, Zhong J, Sheng L, Li H. Activation of hepatic adenosine A1 receptor ameliorates MASH via inhibiting SREBPs maturation. Cell Rep Med 2024; 5:101477. [PMID: 38508143 PMCID: PMC10983109 DOI: 10.1016/j.xcrm.2024.101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/10/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Metabolic (dysfunction)-associated steatohepatitis (MASH) is the advanced stage of metabolic (dysfunction)-associated fatty liver disease (MAFLD) lacking approved clinical drugs. Adenosine A1 receptor (A1R), belonging to the G-protein-coupled receptors (GPCRs) superfamily, is mainly distributed in the central nervous system and major peripheral organs with wide-ranging physiological functions; however, the exact role of hepatic A1R in MAFLD remains unclear. Here, we report that liver-specific depletion of A1R aggravates while overexpression attenuates diet-induced metabolic-associated fatty liver (MAFL)/MASH in mice. Mechanistically, activation of hepatic A1R promotes the competitive binding of sterol-regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) to sequestosome 1 (SQSTM1), rather than protein kinase A (PKA) leading to SCAP degradation in lysosomes. Reduced SCAP hinders SREBP1c/2 maturation and thus suppresses de novo lipogenesis and inflammation. Higher hepatic A1R expression is observed in patients with MAFL/MASH and high-fat diet (HFD)-fed mice, which is supposed to be a physiologically adaptive response because A1R agonists attenuate MAFL/MASH in an A1R-dependent manner. These results highlight that hepatic A1R is a potential target for MAFL/MASH therapy.
Collapse
Affiliation(s)
- Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaowei Tong
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pengtao Song
- Department of Pathology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Xianshan Zhang
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Xiaochang Wu
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Zhenhua Tan
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junli Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cen Xie
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xisong Ke
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural, Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Mingxiao Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jing Zhong
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China.
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Liimatta J, Curschellas E, Altinkilic EM, Naamneh Elzenaty R, Augsburger P, du Toit T, Voegel CD, Breault DT, Flück CE, Pignatti E. Adrenal Abcg1 Controls Cholesterol Flux and Steroidogenesis. Endocrinology 2024; 165:bqae014. [PMID: 38301271 PMCID: PMC10863561 DOI: 10.1210/endocr/bqae014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
Cholesterol is the precursor of all steroids, but how cholesterol flux is controlled in steroidogenic tissues is poorly understood. The cholesterol exporter ABCG1 is an essential component of the reverse cholesterol pathway and its global inactivation results in neutral lipid redistribution to tissue macrophages. The function of ABCG1 in steroidogenic tissues, however, has not been explored. To model this, we inactivated Abcg1 in the mouse adrenal cortex, which led to an adrenal-specific increase in transcripts involved in cholesterol uptake and de novo synthesis. Abcg1 inactivation did not affect adrenal cholesterol content, zonation, or serum lipid profile. Instead, we observed a moderate increase in corticosterone production that was not recapitulated by the inactivation of the functionally similar cholesterol exporter Abca1. Altogether, our data imply that Abcg1 controls cholesterol uptake and biosynthesis and regulates glucocorticoid production in the adrenal cortex, introducing the possibility that ABCG1 variants may account for physiological or subclinical variation in stress response.
Collapse
Affiliation(s)
- Jani Liimatta
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
- Kuopio Pediatric Research Unit (KuPRU), University of Eastern Finland and Kuopio University Hospital, Kuopio 70200, Finland
| | - Evelyn Curschellas
- Department of Chemistry, Biochemistry and Pharmacy, Medical Faculty, University of Bern, Bern 3010, Switzerland
| | - Emre Murat Altinkilic
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Rawda Naamneh Elzenaty
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Philipp Augsburger
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Therina du Toit
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Clarissa D Voegel
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - David T Breault
- Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Emanuele Pignatti
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| |
Collapse
|
5
|
Muta Y, Linares JF, Martinez-Ordoñez A, Duran A, Cid-Diaz T, Kinoshita H, Zhang X, Han Q, Nakanishi Y, Nakanishi N, Cordes T, Arora GK, Ruiz-Martinez M, Reina-Campos M, Kasashima H, Yashiro M, Maeda K, Albaladejo-Gonzalez A, Torres-Moreno D, García-Solano J, Conesa-Zamora P, Inghirami G, Metallo CM, Osborne TF, Diaz-Meco MT, Moscat J. Enhanced SREBP2-driven cholesterol biosynthesis by PKCλ/ι deficiency in intestinal epithelial cells promotes aggressive serrated tumorigenesis. Nat Commun 2023; 14:8075. [PMID: 38092754 PMCID: PMC10719313 DOI: 10.1038/s41467-023-43690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
The metabolic and signaling pathways regulating aggressive mesenchymal colorectal cancer (CRC) initiation and progression through the serrated route are largely unknown. Although relatively well characterized as BRAF mutant cancers, their poor response to current targeted therapy, difficult preneoplastic detection, and challenging endoscopic resection make the identification of their metabolic requirements a priority. Here, we demonstrate that the phosphorylation of SCAP by the atypical PKC (aPKC), PKCλ/ι promotes its degradation and inhibits the processing and activation of SREBP2, the master regulator of cholesterol biosynthesis. We show that the upregulation of SREBP2 and cholesterol by reduced aPKC levels is essential for controlling metaplasia and generating the most aggressive cell subpopulation in serrated tumors in mice and humans. Since these alterations are also detected prior to neoplastic transformation, together with the sensitivity of these tumors to cholesterol metabolism inhibitors, our data indicate that targeting cholesterol biosynthesis is a potential mechanism for serrated chemoprevention.
Collapse
Affiliation(s)
- Yu Muta
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Juan F Linares
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Anxo Martinez-Ordoñez
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Angeles Duran
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Tania Cid-Diaz
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Hiroto Kinoshita
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xiao Zhang
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Qixiu Han
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Thekla Cordes
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, 38106, Germany
| | - Gurpreet K Arora
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Marc Ruiz-Martinez
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Miguel Reina-Campos
- School of Biological Sciences, Department of Molecular Biology, University of California San Diego, San Diego, CA, USA
| | - Hiroaki Kasashima
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka city, 545-8585, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka city, 545-8585, Japan
| | - Kiyoshi Maeda
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka city, 545-8585, Japan
| | - Ana Albaladejo-Gonzalez
- Department of Histology and Pathology, Faculty of Life Sciences, Universidad Católica de Murcia (UCAM), 30107, Murcia, Spain
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), Calle Mezquita sn, 30202, Cartagena, Spain
| | - Daniel Torres-Moreno
- Department of Histology and Pathology, Faculty of Life Sciences, Universidad Católica de Murcia (UCAM), 30107, Murcia, Spain
- Department of Clinical Analysis, Santa Lucía General University Hospital (HGUSL), Calle Mezquita sn, 30202, Cartagena, Spain
| | - José García-Solano
- Department of Histology and Pathology, Faculty of Life Sciences, Universidad Católica de Murcia (UCAM), 30107, Murcia, Spain
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), Calle Mezquita sn, 30202, Cartagena, Spain
| | - Pablo Conesa-Zamora
- Department of Histology and Pathology, Faculty of Life Sciences, Universidad Católica de Murcia (UCAM), 30107, Murcia, Spain
- Department of Clinical Analysis, Santa Lucía General University Hospital (HGUSL), Calle Mezquita sn, 30202, Cartagena, Spain
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Christian M Metallo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Timothy F Osborne
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St, Petersburg, FL, USA
| | - Maria T Diaz-Meco
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Jorge Moscat
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Kim SH, Son GH, Seok JY, Chun SK, Yun H, Jang J, Suh YG, Kim K, Jung JW, Chung S. Identification of a novel class of cortisol biosynthesis inhibitors and its implications in a therapeutic strategy for hypercortisolism. Life Sci 2023; 325:121744. [PMID: 37127185 DOI: 10.1016/j.lfs.2023.121744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
AIMS Dysregulation of adrenocortical steroid (corticosteroids) biosynthesis leads to pathological conditions such as Cushing's syndrome. Although several classes of steroid biosynthesis inhibitors have been developed to treat cortisol overproduction, limitations such as insufficient efficacy, adverse effects, and/or tolerability still remain. The present study aimed to develop a new class of small molecules that inhibit cortisol production, and investigated their putative modes of action. MAIN METHODS We screened an in-house chemical library with drug-like chemical scaffolds using human adrenocortical NCI-H295R cells. We then evaluated and validated the effects of the selected compounds at multiple regulatory steps of the adrenal steroidogenic pathway. Finally, genome-wide RNA expression analysis coupled with gene enrichment analysis was conducted to infer possible action mechanisms. KEY FINDINGS A subset of benzimidazolylurea derivatives, including a representative compound (designated as CJ28), inhibited both basal and stimulated production of cortisol and related intermediate steroids. CJ28 attenuated the mRNA expression of multiple genes involved in steroidogenesis and cholesterol biosynthesis. Furthermore, CJ28 significantly attenuated de novo cholesterol biosynthesis, which contributed to its suppression of cortisol production. SIGNIFICANCE We identified a novel chemical scaffold that exerts inhibitory effects on cortisol and cholesterol biosynthesis via coordinated transcriptional silencing of gene expression networks. Our findings also reveal an additional adrenal-directed pharmacological strategy for hypercortisolism involving a combination of inhibitors targeting steroidogenesis and de novo cholesterol biosynthesis.
Collapse
Affiliation(s)
- Soo Hyun Kim
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gi Hoon Son
- Department of Biomedical Sciences and Department of Legal Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Joo Young Seok
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Kook Chun
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jaebong Jang
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Young-Ger Suh
- College of Pharmacy, CHA University, Pocheon 11160, Republic of Korea
| | - Kyungjin Kim
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jong-Wha Jung
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Sooyoung Chung
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
7
|
Gezer A, Karadağ Sari E. Investigation of apoptotic and autophagic effects of chronic roflumilast use on testicular tissue in rats by immunohistochemical and immunofluorescence methods. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:276-284. [PMID: 36865049 PMCID: PMC9922372 DOI: 10.22038/ijbms.2023.65948.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/26/2022] [Indexed: 03/04/2023]
Abstract
Objectives The present study aims to determine how various dosages of chronic roflumilast affect testicular tissue and testosterone levels in healthy rats. Materials and Methods Biochemical tests, along with histopathological, immunohistochemical, and immunofluorescence studies, were carried out. Results Loss of tissue in the seminiferous epithelium, degeneration in the interstitial area, a separation between cells, desquamation, interstitial edema, and degenerative alterations in testicular tissue were observed in roflumilast groups when compared with the other groups. While apoptosis and autophagy were statistically negligible in the control and sham groups, the roflumilast groups had significantly higher apoptotic and autophagic alterations, as well as immunopositivity. Serum testosterone levels in the 1 mg/kg roflumilast group were lower than those in the control, sham, and 0.5 mg/kg roflumilast groups. Conclusion Analyses of the research findings revealed that continuous usage of the broad-spectrum active component roflumilast exerted unfavorable effects on the testicular tissue and testosterone levels of rats.
Collapse
Affiliation(s)
- Arzu Gezer
- Vocational School of Health Services, Atatürk University, Erzurum, Turkey,Corresponding author: Arzu Gezer. Vocational School of Health Services, Atatürk University, Erzurum, Turkey.
| | - Ebru Karadağ Sari
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
8
|
Wang Y, Guo Y, Duan C, Li J, Ji S, Yan H, Liu Y, Zhang Y. LncGSAR Controls Ovarian Granulosa Cell Steroidogenesis via Sponging MiR-125b to Activate SCAP/SREBP Pathway. Int J Mol Sci 2022; 23:ijms232012132. [PMID: 36293007 PMCID: PMC9603659 DOI: 10.3390/ijms232012132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play important roles in livestock fecundity, and many lncRNAs that affect follicular development and reproductive diseases have been identified in the ovary. However, only a few of them have been functionally annotated and mechanistically validated. In this study, we identified a new lncRNA (lncGSAR) and investigated its effects on the proliferation and steroidogenesis of ovine granulosa cells (GCs). High concentrations of glucose (add 33.6 mM glucose) caused high expression of lncGSAR in GCs by regulating its stability, and lncGSAR overexpression promoted GCs proliferation, estrogen secretion, and inhibited progesterone secretion, whereas interference with lncGASR had the opposite effect. Next, we found that the RNA molecules of lncGSAR act on MiR-125b as competitive endogenous RNA (ceRNA), and SREBP-cleavage-activating protein (SCAP) was verified as a target of MiR-125b. LncGASR overexpression increased the expression of SCAP, SREBP, and steroid hormone-related proteins, which can be attenuated by MiR-125b. Our results demonstrated that lncGSAR can act as a ceRNA to activate SCAP/SREBP signaling by sponging MiR-125b to regulate steroid hormone secretion in GCs. These findings provide new insights into the mechanisms of nutrient-regulated follicle development in ewes.
Collapse
Affiliation(s)
- Yong Wang
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yunxia Guo
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Chunhui Duan
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Junjie Li
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Shoukun Ji
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Huihui Yan
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yueqin Liu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yingjie Zhang
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
- Correspondence: ; Tel.: +86-31-2752-8366; Fax: +86-31-2752-8886
| |
Collapse
|
9
|
Koganti PP, Tu LN, Selvaraj V. Functional metabolite reserves and lipid homeostasis revealed by the MA-10 Leydig cell metabolome. PNAS NEXUS 2022; 1:pgac215. [PMID: 36714831 PMCID: PMC9802464 DOI: 10.1093/pnasnexus/pgac215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023]
Abstract
In Leydig cells, intrinsic factors that determine cellular steroidogenic efficiency is of functional interest to decipher and monitor pathophysiology in many contexts. Nevertheless, beyond basic regulation of cholesterol storage and mobilization, systems biology interpretation of the metabolite networks in steroidogenic function is deficient. To reconstruct and describe the different molecular systems regulating steroidogenesis, we profiled the metabolites in resting MA-10 Leydig cells. Our results identified 283-annotated components (82 neutral lipids, 154 membrane lipids, and 47 other metabolites). Neutral lipids were represented by an abundance of triacyglycerols (97.1%), and low levels of cholesterol esters (2.0%). Membrane lipids were represented by an abundance of glycerophospholipids (77.8%), followed by sphingolipids (22.2%). Acylcarnitines, nucleosides, amino acids and their derivatives were the other metabolite classes identified. Among nonlipid metabolites, we recognized substantial reserves of aspartic acid, choline, creatine, betaine, glutamine, homoserine, isoleucine, and pantothenic acid none of which have been previously considered as a requirement in steroidogenic function. Individually limiting use of betaine, choline, or pantothenic acid, during luteinizing hormone-induced steroidogenesis in MA-10 cells resulted in substantial decreases to acute steroidogenic capacity, explained by intermediary metabolite imbalances affecting homeostasis. As such, our dataset represents the current level of baseline characterization and unravels the functional resting state of steroidogenic MA-10 Leydig cells. In identifying metabolite stockpiles and causal mechanisms, these results serve to further comprehend the cellular setup and regulation of steroid biosynthesis.
Collapse
Affiliation(s)
- Prasanthi P Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lan N Tu
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Pretreatment of buckwheat globulin by ultra-high pressure: Effects on enzymatic hydrolysis and final hydrolysate lipid metabolism regulation capacities. Food Chem 2022; 379:132102. [DOI: 10.1016/j.foodchem.2022.132102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/24/2022]
|
11
|
Prakash S, Kumar Rai A. Retinoic acid increases the cellular cholesterol predominantly in a mTOR-independent manner. Immunol Res 2022; 70:530-536. [PMID: 35585420 DOI: 10.1007/s12026-022-09292-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/04/2022] [Indexed: 11/05/2022]
Abstract
Retinoic acid (RA) plays a role in the mounting immune response and controls several functions of the human body, including cholesterol homeostasis. The synthesis, uptake, and efflux of cellular cholesterol are significantly linked to the mammalian target of rapamycin complex-1 (mTORC1). Activation of mTORC1 promotes the synthesis and uptake of the cholesterol and suppresses its efflux, thus causing accumulation of cellular cholesterol. It is intriguing to know the effect of a high dose of RA on cholesterol accumulation in macrophages (mφ) and whether it is via mTOR activation. It is important to note that the long-term treatment of RA in humans is safe. Therefore, we chose a high dose of RA to observe its effect, which may be implicated in diseases like visceral leishmaniasis, where cholesterol deficiency is established. In the present study, we found the increased expression of RAPTOR, a regulatory component of the mTORC1 complex, in mφ upon treatment with RA. We observed the increased expression of SREBP2, LDLR, and PCSK9 in RA-treated mφ under sufficient cholesterol conditions, which further increased cellular cholesterol levels. Notably, their expressions were decreased when the mTOR pathway was inhibited by rapamycin. However, treatment with rapamycin did not result in the loss of cellular cholesterol in RA-treated mφ. Comparison with rapamycin-treated mφ suggests that RA induces cellular cholesterol levels in a mTORC1-independent manner.
Collapse
Affiliation(s)
- Satya Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, U.P., India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, U.P., India.
| |
Collapse
|
12
|
Yuefeng Y, Zhiqi L, Yi C, Keyu Z, Heng W, Yuying W, Ningjian W, Yuetian Y, Xinjie G, Yihao Z, Yingli L, Fangzhen X. Testosterone Deficiency Promotes Hypercholesteremia and Attenuates Cholesterol Liver Uptake via AR/PCSK9/LDLR Pathways. Int J Endocrinol 2022; 2022:7989751. [PMID: 35599686 PMCID: PMC9122719 DOI: 10.1155/2022/7989751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Testosterone deficiency is reportedly correlated with an elevation of cholesterol in plasma, but the mechanism remains unclear. Our objective was to investigate the effects of testosterone deficiency on cholesterol metabolism and the corresponding molecular changes in vivo and in vitro. METHODS SD rats were randomized into three groups: sham-operated (SHAM), subtotal orchiectomized (SO), and orchiectomized (ORX) and fed for 8 weeks. HepG2 cells were cultured with medium containing testosterone with the final concentrations of 0, 10, 30, and 300 nM. Method of isotope tracing and fluorescence labelling was adopted to investigate cholesterol metabolism. Several key molecules of cholesterol metabolism were also analyzed. RESULTS SO and ORX rats displayed dysfunctional liver uptake of cholesterol. HepG2 cells incubated with testosterone of lower and excessive level exhibited reduced capacity of cholesterol uptake. Further investigation revealed that lack of testosterone induced increased proprotein convertase subtilisin/kexin type 9 (PCSK9) and decreased low-density lipoprotein receptor (LDLR) both in vivo and in vitro. Moreover, the androgen receptor (AR) antagonist flutamide mimicked the effects of testosterone deficiency on PCSK9 and LDLR indicating the role of AR as a mediator in triggering attenuating liver cholesterol uptake in which testosterone instead of dihydrotestosterone (DHT) is the major functional form of androgen. CONCLUSION Testosterone deficiency attenuated cholesterol liver uptake mediated by the PCSK9-LDLR pathway, in which AR and testosterone without transforming to DHT play important roles.
Collapse
Affiliation(s)
- Yu Yuefeng
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Lin Zhiqi
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Chen Yi
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Zhu Keyu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Wan Heng
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Wang Yuying
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Wang Ningjian
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yu Yuetian
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Gu Xinjie
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Zhang Yihao
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Lu Yingli
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Xia Fangzhen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
13
|
Treatment of Experimental Autoimmune Encephalomyelitis with an Inhibitor of Phosphodiesterase-8 (PDE8). Cells 2022; 11:cells11040660. [PMID: 35203312 PMCID: PMC8870644 DOI: 10.3390/cells11040660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
After decades of development, inhibitors targeting cyclic nucleotide phosphodiesterases (PDEs) expressed in leukocytes have entered clinical practice for the treatment of inflammatory disorders, with three PDE4 inhibitors being in clinical use as therapeutics for psoriasis, psoriatic arthritis, chronic obstructive pulmonary disease and atopic dermatitis. In contrast, the PDE8 family that is upregulated in pro-inflammatory T cells is a largely unexplored therapeutic target. We have previously demonstrated a role for the PDE8A-Raf-1 kinase complex in the regulation of myelin oligodendrocyte glycoprotein peptide 35–55 (MOG35–55) activated CD4+ effector T cell adhesion and locomotion by a mechanism that differs from PDE4 activity. In this study, we explored the in vivo treatment of experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS) induced in mice immunized with MOG using the PDE8-selective inhibitor PF-04957325. For treatment in vivo, mice with EAE were either subcutaneously (s.c.) injected three times daily (10 mg/kg/dose), or were implanted subcutaneously with Alzet mini-osmotic pumps to deliver the PDE8 inhibitor (15.5 mg/kg/day). The mice were scored daily for clinical signs of paresis and paralysis which were characteristic of EAE. We observed the suppression of the clinical signs of EAE and a reduction of inflammatory lesion formation in the CNS by histopathological analysis through the determination of the numbers of mononuclear cells isolated from the spinal cord of mice with EAE. The PDE8 inhibitor treatment reduces the accumulation of both encephalitogenic Th1 and Th17 T cells in the CNS. Our study demonstrates the efficacy of targeting PDE8 as a treatment of autoimmune inflammation in vivo by reducing the inflammatory lesion load.
Collapse
|
14
|
Beavo JA, Golkowski M, Shimizu-Albergine M, Beltejar MC, Bornfeldt KE, Ong SE. Phosphoproteomic Analysis as an Approach for Understanding Molecular Mechanisms of cAMP-Dependent Actions. Mol Pharmacol 2021; 99:342-357. [PMID: 33574048 PMCID: PMC8058506 DOI: 10.1124/molpharm.120.000197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, highly sensitive mass spectrometry-based phosphoproteomic analysis is beginning to be applied to identification of protein kinase substrates altered downstream of increased cAMP. Such studies identify a very large number of phosphorylation sites regulated in response to increased cAMP. Therefore, we now are tasked with the challenge of determining how many of these altered phosphorylation sites are relevant to regulation of function in the cell. This minireview describes the use of phosphoproteomic analysis to monitor the effects of cyclic nucleotide phosphodiesterase (PDE) inhibitors on cAMP-dependent phosphorylation events. More specifically, it describes two examples of this approach carried out in the authors' laboratories using the selective PDE inhibitor approach. After a short discussion of several likely conclusions suggested by these analyses of cAMP function in steroid hormone-producing cells and also in T-cells, it expands into a discussion about some newer and more speculative interpretations of the data. These include the idea that multiple phosphorylation sites and not a single rate-limiting step likely regulate these and, by analogy, many other cAMP-dependent pathways. In addition, the idea that meaningful regulation requires a high stoichiometry of phosphorylation to be important is discussed and suggested to be untrue in many instances. These new interpretations have important implications for drug design, especially for targeting pathway agonists. SIGNIFICANCE STATEMENT: Phosphoproteomic analyses identify thousands of altered phosphorylation sites upon drug treatment, providing many possible regulatory targets but also highlighting questions about which phosphosites are functionally important. These data imply that multistep processes are regulated by phosphorylation at not one but rather many sites. Most previous studies assumed a single step or very few rate-limiting steps were changed by phosphorylation. This concept should be changed. Previous interpretations also assumed substoichiometric phosphorylation was not of regulatory importance. This assumption also should be changed.
Collapse
Affiliation(s)
- Joseph A Beavo
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Martin Golkowski
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Masami Shimizu-Albergine
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Michael-Claude Beltejar
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Karin E Bornfeldt
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Shao-En Ong
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| |
Collapse
|
15
|
Epstein PM, Basole C, Brocke S. The Role of PDE8 in T Cell Recruitment and Function in Inflammation. Front Cell Dev Biol 2021; 9:636778. [PMID: 33937235 PMCID: PMC8085600 DOI: 10.3389/fcell.2021.636778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/29/2021] [Indexed: 01/07/2023] Open
Abstract
Inhibitors targeting cyclic nucleotide phosphodiesterases (PDEs) expressed in leukocytes have entered clinical practice to treat inflammatory disorders, with three PDE4 inhibitors currently in clinical use as therapeutics for psoriasis, psoriatic arthritis, atopic dermatitis and chronic obstructive pulmonary disease. In contrast, the PDE8 family that is upregulated in pro-inflammatory T cells is a largely unexplored therapeutic target. It was shown that PDE8A plays a major role in controlling T cell and breast cancer cell motility, including adhesion to endothelial cells under physiological shear stress and chemotaxis. This is a unique function of PDE8 not shared by PDE4, another cAMP specific PDE, employed, as noted, as an anti-inflammatory therapeutic. Additionally, a regulatory role was shown for the PDE8A-rapidly accelerated fibrosarcoma (Raf)-1 kinase signaling complex in myelin antigen reactive CD4+ effector T cell adhesion and locomotion by a mechanism differing from that of PDE4. The PDE8A-Raf-1 kinase signaling complex affects T cell motility, at least in part, via regulating the LFA-1 integrin mediated adhesion to ICAM-1. The findings that PDE8A and its isoforms are expressed at higher levels in naive and myelin oligodendrocyte glycoprotein (MOG)35–55 activated effector T (Teff) cells compared to regulatory T (Treg) cells and that PDE8 inhibition specifically affects MOG35–55 activated Teff cell adhesion, indicates that PDE8A could represent a new beneficial target expressed in pathogenic Teff cells in CNS inflammation. The implications of this work for targeting PDE8 in inflammation will be discussed in this review.
Collapse
Affiliation(s)
- Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, CT, United States
| | - Chaitali Basole
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, CT, United States
| |
Collapse
|
16
|
Funes AK, Simón L, Colombo R, Avena MV, Monclús M, Crescitelli J, Cabrillana ME, Conte MI, Cayado N, Boarelli P, Fornés MW, Saez Lancellotti TE. Impact of high fat diet on the sterol regulatory element-binding protein 2 cholesterol pathway in the testicle. Mol Hum Reprod 2021; 27:6206393. [PMID: 33787903 DOI: 10.1093/molehr/gaab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Male fertility has been shown to be dependent on cholesterol homeostasis. This lipid is essential for testosterone synthesis and spermatogenesis, but its levels must be maintained in an optimal range for proper testicular function. In particular, sperm cells' development is very sensitive to high cholesterol levels, noticeably during acrosomal formation. The aim of this work was to study whether the molecular pathway that regulates intracellular cholesterol, the sterol regulatory element-binding protein (SREBP) pathway, is affected in the testicles of animals under a fat diet. To investigate this, we took advantage of the non-obese hypercholesterolemia (HC) model in New Zealand rabbits that displays poor sperm and seminal quality. The testicular expression of SREBP isoform 2 (SREBP2) and its target molecules 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) and low-density lipoprotein receptor (LDLR) were studied under acute (6 months) and chronic (more than 12 months) fat intake by RT-PCR, western blot and immunofluorescence. Our findings showed that fat consumption promoted down-regulation of the SREBP2 pathway in the testicle at 6 months, but upregulation after a chronic period. This was consistent with load of testicular cholesterol, assessed by filipin staining. In conclusion, the intracellular pathway that regulates cholesterol levels in the testicle is sensitive to dietary fats, and behaves differently depending on the duration of consumption: it has a short-term protective effect, but became deregulated in the long term, ultimately leading to a detrimental situation. These results will contribute to the understanding of the basic mechanisms of the effect of fat consumption in humans with idiopathic infertility.
Collapse
Affiliation(s)
- Abi K Funes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM) †. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Laboratorio de Biología Molecular del Metabolismo & Nutrición (bMeNu)†, Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Layla Simón
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM) †. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Regina Colombo
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM) †. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Laboratorio de Biología Molecular del Metabolismo & Nutrición (bMeNu)†, Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - María Virginia Avena
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM) †. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Laboratorio de Biología Molecular del Metabolismo & Nutrición (bMeNu)†, Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - María Monclús
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM) †. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Instituto de Investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina
| | - Julieta Crescitelli
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (bMeNu)†, Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Instituto de Investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina
| | - María E Cabrillana
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM) †. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - María Inés Conte
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM) †. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Niubys Cayado
- Instituto de Investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina.,Laboratorio de Oncología, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Paola Boarelli
- Laboratorio de Enfermedades Metabólicas (LEM), Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Miguel W Fornés
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM) †. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Tania E Saez Lancellotti
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM) †. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Laboratorio de Biología Molecular del Metabolismo & Nutrición (bMeNu)†, Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Científico y Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Instituto de Investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina
| |
Collapse
|
17
|
Dong G, Huang X, Jiang S, Ni L, Ma L, Zhu C, Chen S. SCAP Mediated GDF15-Induced Invasion and EMT of Esophageal Cancer. Front Oncol 2020; 10:564785. [PMID: 33123476 PMCID: PMC7573169 DOI: 10.3389/fonc.2020.564785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/01/2020] [Indexed: 11/24/2022] Open
Abstract
Background: GDF15 is a potential biomarker for patients with esophageal cancer (EC). However, the mechanistic role of GDF15 in the invasion and metastasis of EC remains poorly understood. Methods: We determined the expression and function of GDF15 in esophageal cancer cells (ESCCs) and in patient tissue samples using western blotting, migration, and invasion assays, immunohistochemistry, Co-IP assays, and quantitative real-time-PCR. In addition, a pulmonary metastatic nude mouse model was used to determine the function of GDF15. We then supplemented our experimental results with database analysis to validate our findings. Results: GDF15 was upregulated in EC, and was associated with poor differentiation, high metastasis rates, and worse prognosis. GDF15 knock-down reduced the migration and invasion of ESCCs. Co-IP assays demonstrated its association with SCAP, while GDF15 knock-down decreased SCAP levels. SCAP overexpression reversed the migration, invasion and EMT in GDF15-siRNA ESCCs. However, after incubation with β-cyclodextrin (β-CD), the ability of migration and invasion was weakened, EMT was reversed again. Migration, invasion, and EMT were enhanced in GDF15-siRNA ESCCs cultured in the presence of cholesterol and were similar to GDF15-siRNA ESCCs overexpressing SCAP. In vivo, knockdown of GDF15 inhibited lung metastasis of ESCCs and was reversed by SCAP overexpression or high cholesterol diet. Increased lung metastasis after SCAP overexpression was partially suppressed by intraperitoneal injection of β-CD. In addition, we determined that GDF15 was a direct target of miR-1324, miR-1324 was down-regulated in EC tissues. MiR-1324 upregulation resulted in decreased GDF15 expression and metastasis in ESCCs. Conclusions: We demonstrated that SCAP mediated GDF15-induced the invasion and metastasis of EC by regulating cholesterol metabolism. In addition, GDF15 was shown to be a direct target of miR-1324.
Collapse
Affiliation(s)
- Gang Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoquan Huang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Siyu Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liyuan Ni
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lili Ma
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chouwen Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Shiyao Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Comparative Study of the Steroidogenic Effects of Human Chorionic Gonadotropin and Thieno[2,3-D]pyrimidine-Based Allosteric Agonist of Luteinizing Hormone Receptor in Young Adult, Aging and Diabetic Male Rats. Int J Mol Sci 2020; 21:ijms21207493. [PMID: 33050653 PMCID: PMC7590010 DOI: 10.3390/ijms21207493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Low-molecular-weight agonists of luteinizing hormone (LH)/human chorionic gonadotropin (hCG) receptor (LHCGR), which interact with LHCGR transmembrane allosteric site and, in comparison with gonadotropins, more selectively activate intracellular effectors, are currently being developed. Meanwhile, their effects on testicular steroidogenesis have not been studied. The purpose of this work is to perform a comparative study of the effects of 5-amino-N-tert-butyl-4-(3-(1-methylpyrazole-4-carboxamido)phenyl)-2-(methylthio)thieno[2,3-d] pyrimidine-6-carboxamide (TP4/2), a LHCGR allosteric agonist developed by us, and hCG on adenylyl cyclase activity in rat testicular membranes, testosterone levels, testicular steroidogenesis and spermatogenesis in young (four-month-old), aging (18-month-old) and diabetic male Wistar rats. Type 1 diabetes was caused by a single streptozotocin (50 mg/kg) injection. TP4/2 (20 mg/kg/day) and hCG (20 IU/rat/day) were administered for 5 days. TP4/2 was less effective in adenylyl cyclase stimulation and ability to activate steroidogenesis when administered once into rats. On the 3rd–5th day, TP4/2 and hCG steroidogenic effects in young adult, aging and diabetic rats were comparable. Unlike hCG, TP4/2 did not inhibit LHCGR gene expression and did not hyperstimulate the testicular steroidogenesis system, moderately increasing steroidogenic proteins gene expression and testosterone production. In aging and diabetic testes, TP4/2 improved spermatogenesis. Thus, during five-day administration, TP4/2 steadily stimulates testicular steroidogenesis, and can be used to prevent androgen deficiency in aging and diabetes.
Collapse
|
19
|
Longo J, Pandyra AA, Stachura P, Minden MD, Schimmer AD, Penn LZ. Cyclic AMP-hydrolyzing phosphodiesterase inhibitors potentiate statin-induced cancer cell death. Mol Oncol 2020; 14:2533-2545. [PMID: 32749766 PMCID: PMC7530792 DOI: 10.1002/1878-0261.12775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/13/2020] [Accepted: 07/30/2020] [Indexed: 01/06/2023] Open
Abstract
Dipyridamole, an antiplatelet drug, has been shown to synergize with statins to induce cancer cell-specific apoptosis. However, given the polypharmacology of dipyridamole, the mechanism by which it potentiates statin-induced apoptosis remains unclear. Here, we applied a pharmacological approach to identify the activity of dipyridamole specific to its synergistic anticancer interaction with statins. We evaluated compounds that phenocopy the individual activities of dipyridamole and assessed whether they could potentiate statin-induced cell death. Notably, we identified that a phosphodiesterase (PDE) inhibitor, cilostazol, and other compounds that increase intracellular cyclic adenosine monophosphate (cAMP) levels potentiate statin-induced apoptosis in acute myeloid leukemia and multiple myeloma cells. Additionally, we demonstrated that both dipyridamole and cilostazol further inhibit statin-induced activation of sterol regulatory element-binding protein 2, a known modulator of statin sensitivity, in a cAMP-independent manner. Taken together, our data support that PDE inhibitors such as dipyridamole and cilostazol can potentiate statin-induced apoptosis via a dual mechanism. Given that several PDE inhibitors are clinically approved for various indications, they are immediately available for testing in combination with statins for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Joseph Longo
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| | - Aleksandra A. Pandyra
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Department of Molecular Medicine IIMedical FacultyHeinrich Heine UniversityDüsseldorfGermany
- Department of Gastroenterology, Hepatology, and Infectious DiseasesHeinrich Heine UniversityDüsseldorfGermany
| | - Paweł Stachura
- Department of Molecular Medicine IIMedical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - Mark D. Minden
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| | - Aaron D. Schimmer
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| | - Linda Z. Penn
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| |
Collapse
|
20
|
Derkach KV, Bakhtyukov AA, Romanova IV, Zorina II, Bayunova LV, Bondareva VM, Yu Morina I, Kumar Roy V, Shpakov AO. The effect of metformin treatment on the basal and gonadotropin-stimulated steroidogenesis in male rats with type 2 diabetes mellitus. Andrologia 2020; 52:e13816. [PMID: 32951228 DOI: 10.1111/and.13816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus impairs reproductive functions in men, and important tasks are deciphering the mechanisms of testicular dysfunctions in diabetes and the search of effective approaches to their correction. The purpose was to study the effect of four-week metformin treatment (120 mg kg-1 day-1 ) of male Wistar rats with high-fat diet/low-dose streptozotocin-induced type 2 diabetes on basal and gonadotropin-stimulated steroidogenesis, intratesticular content of leptin and the leptin and luteinising hormone receptors and on spermatogenesis. Diabetic rats had hyperleptinaemia, androgen deficiency and reduced sperm count and quality, and in the testes, they had the increased leptin level and the decreased content of the leptin and luteinising hormone receptors and 17-hydroxyprogesterone. The stimulating effects of chorionic gonadotropin on testosterone production and expression of steroidogenic genes (Star, Cyp11a1) were decreased. Metformin restored basal and gonadotropin-stimulated blood testosterone levels. In the testes, it restored gonadotropin-stimulated 17-hydroxyprogesterone, androstenedione and testosterone levels, Star expression and the content of leptin and the leptin and luteinising hormone receptors. Metformin also improved epididymal sperm count and morphology. We concluded that metformin treatment normalises the testicular steroidogenesis in diabetic rats, which is due to restoration of the gonadotropin and leptin systems in the testes and is associated with an improvement in spermatogenesis.
Collapse
Affiliation(s)
- Kira V Derkach
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Andrey A Bakhtyukov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina V Romanova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Inna I Zorina
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Liubov V Bayunova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Vera M Bondareva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina Yu Morina
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Alexander O Shpakov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
21
|
Schooling CM, Zhao JV, Au Yeung SL, Leung GM. Investigating pleiotropic effects of statins on ischemic heart disease in the UK Biobank using Mendelian randomisation. eLife 2020; 9:e58567. [PMID: 32838838 PMCID: PMC7449694 DOI: 10.7554/elife.58567] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
We examined whether specifically statins, of the major lipid modifiers (statins, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors and ezetimibe) have pleiotropic effects on ischemic heart disease (IHD) via testosterone in men or women. As a validation, we similarly assessed whether a drug that unexpectedly likely increases IHD also operates via testosterone. Using previously published genetic instruments we conducted a sex-specific univariable and multivariable Mendelian randomization study in the UK Biobank, including 179918 men with 25410 IHD cases and 212080 women with 12511 IHD cases. Of these three lipid modifiers, only genetically mimicking the effects of statins in men affected testosterone, which partly mediated effects on IHD. Correspondingly, genetically mimicking effects of anakinra on testosterone and IHD presented a reverse pattern to that for statins. These insights may facilitate the development of new interventions for cardiovascular diseases as well as highlighting the importance of sex-specific explanations, investigations, prevention and treatment.
Collapse
Affiliation(s)
- CM Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
- City University of New York, Graduate School of Public Health and Health PolicyNew YorkUnited States
| | - JV Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| | - SL Au Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| | - GM Leung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| |
Collapse
|
22
|
Golkowski M, Vidadala VN, Lau HT, Shoemaker A, Shimizu-Albergine M, Beavo J, Maly DJ, Ong SE. Kinobead/LC-MS Phosphokinome Profiling Enables Rapid Analyses of Kinase-Dependent Cell Signaling Networks. J Proteome Res 2020; 19:1235-1247. [PMID: 32037842 DOI: 10.1021/acs.jproteome.9b00742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Kinase-catalyzed protein phosphorylation is fundamental to eukaryotic signal transduction, regulating most cellular processes. Kinases are frequently dysregulated in cancer, inflammation, and degenerative diseases, and because they can be inhibited with small molecules, they became important drug targets. Accordingly, analytical approaches that determine kinase activation states are critically important to understand kinase-dependent signal transduction and to identify novel drug targets and predictive biomarkers. Multiplexed inhibitor beads (MIBs or kinobeads) efficiently enrich kinases from cell lysates for liquid chromatography-mass spectrometry (LC-MS) analysis. When combined with phosphopeptide enrichment, kinobead/LC-MS can also quantify the phosphorylation state of kinases, which determines their activation state. However, an efficient kinobead/LC-MS kinase phospho-profiling protocol that allows routine analyses of cell lines and tissues has not yet been developed. Here, we present a facile workflow that quantifies the global phosphorylation state of kinases with unprecedented sensitivity. We also found that our kinobead/LC-MS protocol can measure changes in kinase complex composition and show how these changes can indicate kinase activity. We demonstrate the utility of our approach in specifying kinase signaling pathways that control the acute steroidogenic response in Leydig cells; this analysis establishes the first comprehensive framework for the post-translational control of steroid biosynthesis.
Collapse
Affiliation(s)
- Martin Golkowski
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | | | - Ho-Tak Lau
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - Anna Shoemaker
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - Masami Shimizu-Albergine
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington 98109, United States
| | - Joseph Beavo
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
23
|
Lipidomic profiling analysis of the phospholipid molecules in SCAP-induced lipid droplet formation in bovine mammary epithelial cells. Prostaglandins Other Lipid Mediat 2020; 149:106420. [PMID: 31953015 DOI: 10.1016/j.prostaglandins.2020.106420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/15/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
The accumulation of lipid droplets (LDs) in the cytoplasm plays an important role in energy balance, membrane synthesis and cell signal transduction. The aim of this study was to investigate the profile of phospholipids after SCAP-induced LD formation in bovine mammary epithelial cells (BMECs). A shRNA-SCAP vector and a SCAP/SREBP vector were used to knock down and overexpress the SCAP gene in BMECs prior to evaluating the effects on LDs using Western blotting, real-time PCR, LD staining and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The average LD diameter was determined following oil red O staining. The overexpression of SCAP increased the abundance of SCD, ACACA and FASN genes and nuclear SREBP1a. In contrast, knocking down SCAP decreased the abundance of the nuclear SREBP1a protein and downregulated the abundance of target genes. Lipid droplet staining revealed that knocking down SCAP reduced LD formation and average LD diameter. In contrast, overexpression of SCAP increased the formation and size of the LDs. The results from an analysis of cellular lipids revealed that phospholipids are the predominant species in the profile of cell lipids. phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are important for determining the size of LDs. The LD formation induced by SCAP gene overexpression and knockdown underscored the role of phospholipids involved in lipid droplet formation and fusion.
Collapse
|
24
|
Gouw AM, Margulis K, Liu NS, Raman SJ, Mancuso A, Toal GG, Tong L, Mosley A, Hsieh AL, Sullivan DK, Stine ZE, Altman BJ, Schulze A, Dang CV, Zare RN, Felsher DW. The MYC Oncogene Cooperates with Sterol-Regulated Element-Binding Protein to Regulate Lipogenesis Essential for Neoplastic Growth. Cell Metab 2019; 30:556-572.e5. [PMID: 31447321 PMCID: PMC6911354 DOI: 10.1016/j.cmet.2019.07.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 09/24/2018] [Accepted: 07/24/2019] [Indexed: 12/14/2022]
Abstract
Lipid metabolism is frequently perturbed in cancers, but the underlying mechanism is unclear. We present comprehensive evidence that oncogene MYC, in collaboration with transcription factor sterol-regulated element-binding protein (SREBP1), regulates lipogenesis to promote tumorigenesis. We used human and mouse tumor-derived cell lines, tumor xenografts, and four conditional transgenic mouse models of MYC-induced tumors to show that MYC regulates lipogenesis genes, enzymes, and metabolites. We found that MYC induces SREBP1, and they collaborate to activate fatty acid (FA) synthesis and drive FA chain elongation from glucose and glutamine. Further, by employing desorption electrospray ionization mass spectrometry imaging (DESI-MSI), we observed in vivo lipidomic changes upon MYC induction across different cancers, for example, a global increase in glycerophosphoglycerols. After inhibition of FA synthesis, tumorigenesis was blocked, and tumors regressed in both xenograft and primary transgenic mouse models, revealing the vulnerability of MYC-induced tumors to the inhibition of lipogenesis.
Collapse
Affiliation(s)
- Arvin M Gouw
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Natalie S Liu
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sudha J Raman
- Department of Biochemistry and Molecular Biology, Wurzburg University, Wurzburg, Germany
| | - Anthony Mancuso
- Department of Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Georgia G Toal
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ling Tong
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adriane Mosley
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Annie L Hsieh
- Department of Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delaney K Sullivan
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zachary E Stine
- Department of Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian J Altman
- Department of Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Almut Schulze
- Department of Biochemistry and Molecular Biology, Wurzburg University, Wurzburg, Germany
| | - Chi V Dang
- Department of Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Ludwig Institute for Cancer Research, New York, NY 10017, USA; The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Ludwig Institute for Cancer Research, New York, NY 10017, USA.
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Raghow R, Dong Q, Elam MB. Phosphorylation dependent proteostasis of sterol regulatory element binding proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1145-1156. [DOI: 10.1016/j.bbalip.2019.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/19/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022]
|
26
|
Zhou R, Wu J, Liu B, Jiang Y, Chen W, Li J, He Q, He Z. The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis. Cell Mol Life Sci 2019; 76:2681-2695. [PMID: 30980107 PMCID: PMC11105226 DOI: 10.1007/s00018-019-03101-9] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
Abstract
Spermatogenesis is fundamental to the establishment and maintenance of male reproduction, whereas its abnormality results in male infertility. Somatic cells, including Leydig cells, myoid cells, and Sertoli cells, constitute the microenvironment or the niche of testis, which is essential for regulating normal spermatogenesis. Leydig cells are an important component of the testicular stroma, while peritubular myoid cells are one of the major cell types of seminiferous tubules. Here we addressed the roles and mechanisms of Leydig cells and myoid cells in the regulation of spermatogenesis. Specifically, we summarized the biological features of Leydig cells and peritubular myoid cells, and we introduced the process of testosterone production and its major regulation. We also discussed other hormones, cytokines, growth factors, transcription factors and receptors associated with Leydig cells and myoid cells in mediating spermatogenesis. Furthermore, we highlighted the issues that are worthy of further studies in the regulation of spermatogenesis by Leydig cells and peritubular myoid cells. This review would provide novel insights into molecular mechanisms of the somatic cells in controlling spermatogenesis, and it could offer new targets for developing therapeutic approaches of male infertility.
Collapse
Affiliation(s)
- Rui Zhou
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jingrouzi Wu
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Bang Liu
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yiqun Jiang
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wei Chen
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jian Li
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Quanyuan He
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Zuping He
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
27
|
In silico predicted transcriptional regulatory control of steroidogenesis in spawning female fathead minnows (Pimephales promelas). J Theor Biol 2018; 455:179-190. [PMID: 30036528 DOI: 10.1016/j.jtbi.2018.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 11/21/2022]
Abstract
Oocyte development and maturation (or oogenesis) in spawning female fish is mediated by interrelated transcriptional regulatory and steroidogenesis networks. This study integrates a transcriptional regulatory network (TRN) model of steroidogenic enzyme gene expressions with a flux balance analysis (FBA) model of steroidogenesis. The two models were functionally related. Output from the TRN model (as magnitude gene expression simulated using extreme pathway (ExPa) analysis) was used to re-constrain linear inequality bounds for reactions in the FBA model. This allowed TRN model predictions to impact the steroidogenesis FBA model. These two interrelated models were tested as follows: First, in silico targeted steroidogenic enzyme gene activations in the TRN model showed high co-regulation (67-83%) for genes involved with oocyte growth and development (cyp11a1, cyp17-17,20-lyase, 3β-HSD and cyp19a1a). Whereas, no or low co-regulation corresponded with genes concertedly involved with oocyte final maturation prior to spawning (cyp17-17α-hydroxylase (0%) and 20β-HSD (33%)). Analysis (using FBA) of accompanying steroidogenesis fluxes showed high overlap for enzymes involved with oocyte growth and development versus those involved with final maturation and spawning. Second, the TRN model was parameterized with in vivo changes in the presence/absence of transcription factors (TFs) during oogenesis in female fathead minnows (Pimephales promelas). Oogenesis stages studied included: PreVitellogenic-Vitellogenic, Vitellogenic-Mature, Mature-Ovulated and Ovulated-Atretic stages. Predictions of TRN genes active during oogenesis showed overall elevated expressions for most genes during early oocyte development (PreVitellogenic-Vitellogenic, Vitellogenic-Mature) and post-ovulation (Ovulated-Atretic). Whereas ovulation (Mature-Ovulated) showed highest expression for cyp17-17α-hydroxylase only. FBA showed steroid hormone productions to also follow trends concomitant with steroidogenic enzyme gene expressions. General trends predicted by in silico modeling were similar to those observed in vivo. The integrated computational framework presented was capable of mechanistically representing aspects of reproductive function in fish. This approach can be extended to study reproductive effects under exposure to adverse environmental or anthropogenic stressors.
Collapse
|
28
|
Jefcoate CR, Lee J. Cholesterol signaling in single cells: lessons from STAR and sm-FISH. J Mol Endocrinol 2018; 60:R213-R235. [PMID: 29691317 PMCID: PMC6324173 DOI: 10.1530/jme-17-0281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 12/11/2022]
Abstract
Cholesterol is an important regulator of cell signaling, both through direct impacts on cell membranes and through oxy-metabolites that activate specific receptors (steroids, hydroxy-cholesterols, bile acids). Cholesterol moves slowly through and between cell membranes with the assistance of specific binding proteins and transfer processes. The prototype cholesterol regulator is the Steroidogenesis Acute Regulatory (STAR), which moves cholesterol into mitochondria, where steroid synthesis is initiated by cytochrome P450 11A1 in multiple endocrine cell types. CYP27A1 generates hydroxyl cholesterol metabolites that activate LXR nuclear receptors to control cholesterol homeostatic and transport mechanisms. LXR regulation of cholesterol transport and storage as cholesterol ester droplets is shared by both steroid-producing cells and macrophage. This cholesterol signaling is crucial to brain neuron regulation by astrocytes and microglial macrophage, mediated by ApoE and sensitive to disruption by β-amyloid plaques. sm-FISH delivers appreciable insights into signaling in single cells, by resolving single RNA molecules as mRNA and by quantifying pre-mRNA at gene loci. sm-FISH has been applied to problems in physiology, embryo development and cancer biology, where single cell features have critical impacts. sm-FISH identifies novel features of STAR transcription in adrenal and testis cells, including asymmetric expression at individual gene loci, delayed splicing and 1:1 association of mRNA with mitochondria. This may represent a functional unit for the translation-dependent cholesterol transfer directed by STAR, which integrates into mitochondrial fusion dynamics. Similar cholesterol dynamics repeat with different players in the cycling of cholesterol between astrocytes and neurons in the brain, which may be abnormal in neurodegenerative diseases.
Collapse
Affiliation(s)
- Colin R Jefcoate
- Department of Cell and Regenerative Biology and the Endocrinology and Reproductive Physiology ProgramUniversity of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jinwoo Lee
- Department of Cell and Regenerative Biology and the Endocrinology and Reproductive Physiology ProgramUniversity of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
29
|
Vigone G, Shuhaibar LC, Egbert JR, Uliasz TF, Movsesian MA, Jaffe LA. Multiple cAMP Phosphodiesterases Act Together to Prevent Premature Oocyte Meiosis and Ovulation. Endocrinology 2018; 159:2142-2152. [PMID: 29608743 PMCID: PMC5913618 DOI: 10.1210/en.2018-00017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/22/2018] [Indexed: 12/27/2022]
Abstract
Luteinizing hormone (LH) acts on the granulosa cells that surround the oocyte in mammalian preovulatory follicles to cause meiotic resumption and ovulation. Both of these responses are mediated primarily by an increase in cyclic adenosine monophosphate (cAMP) in the granulosa cells, and the activity of cAMP phosphodiesterases (PDEs), including PDE4, contributes to preventing premature responses. However, two other cAMP-specific PDEs, PDE7 and PDE8, are also expressed at high levels in the granulosa cells, raising the question of whether these PDEs also contribute to preventing uncontrolled activation of meiotic resumption and ovulation. With the use of selective inhibitors, we show that inhibition of PDE7 or PDE8 alone has no effect on the cAMP content of follicles, and inhibition of PDE4 alone has only a small and variable effect. In contrast, a mixture of the three inhibitors elevates cAMP to a level comparable with that seen with LH. Correspondingly, inhibition of PDE7 or PDE8 alone has no effect on meiotic resumption or ovulation, and inhibition of PDE4 alone has only a partial and slow effect. However, the fraction of oocytes resuming meiosis and undergoing ovulation is increased when PDE4, PDE7, and PDE8 are simultaneously inhibited. PDE4, PDE7, and PDE8 also function together to suppress the premature synthesis of progesterone and progesterone receptors, which are required for ovulation. Our results indicate that three cAMP PDEs act in concert to suppress premature responses in preovulatory follicles.
Collapse
Affiliation(s)
- Giulia Vigone
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
- Correspondence: Giulia Vigone, PhD, or Laurinda A. Jaffe, PhD, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030. E-mail: or
| | - Leia C Shuhaibar
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Tracy F Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Matthew A Movsesian
- Cardiology Section, VA Salt Lake City Health Care System, and Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
- Correspondence: Giulia Vigone, PhD, or Laurinda A. Jaffe, PhD, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030. E-mail: or
| |
Collapse
|
30
|
Yang S, Zhou X, Pei Y, Wang H, He K, Zhao A. Identification of Differentially Expressed Genes in Porcine Ovaries at Proestrus and Estrus Stages Using RNA-Seq Technique. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9150723. [PMID: 29662904 PMCID: PMC5832140 DOI: 10.1155/2018/9150723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/29/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
Estrus is an important factor for the fecundity of sows, and it is involved in ovulation and hormone secretion in ovaries. To better understand the molecular mechanisms of porcine estrus, the expression patterns of ovarian mRNA at proestrus and estrus stages were analyzed using RNA sequencing technology. A total of 2,167 differentially expressed genes (DEGs) were identified (P ≤ 0.05, |log2 Ratio| ≥ 1), of which 784 were upregulated and 1,383 were downregulated in the estrus compared with the proestrus group. Gene Ontology (GO) enrichment indicated that these DEGs were mainly involved in the cellular process, single-organism process, cell and cell part, and binding and metabolic process. In addition, a pathway analysis showed that these DEGs were significantly enriched in 33 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including cell adhesion molecules, ECM-receptor interaction, and cytokine-cytokine receptor interaction. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) confirmed the differential expression of 10 selected DEGs. Many of the novel candidate genes identified in this study will be valuable for understanding the molecular mechanisms of the sow estrous cycle.
Collapse
Affiliation(s)
- Songbai Yang
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Xiaolong Zhou
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Yue Pei
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Han Wang
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Ke He
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Ayong Zhao
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| |
Collapse
|
31
|
Zhang L, Rajbhandari P, Priest C, Sandhu J, Wu X, Temel R, Castrillo A, de Aguiar Vallim TQ, Sallam T, Tontonoz P. Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP. eLife 2017; 6:e28766. [PMID: 29068315 PMCID: PMC5656429 DOI: 10.7554/elife.28766] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/05/2017] [Indexed: 12/25/2022] Open
Abstract
Cholesterol homeostasis is maintained through concerted action of the SREBPs and LXRs. Here, we report that RNF145, a previously uncharacterized ER membrane ubiquitin ligase, participates in crosstalk between these critical signaling pathways. RNF145 expression is induced in response to LXR activation and high-cholesterol diet feeding. Transduction of RNF145 into mouse liver inhibits the expression of genes involved in cholesterol biosynthesis and reduces plasma cholesterol levels. Conversely, acute suppression of RNF145 via shRNA-mediated knockdown, or chronic inactivation of RNF145 by genetic deletion, potentiates the expression of cholesterol biosynthetic genes and increases cholesterol levels both in liver and plasma. Mechanistic studies show that RNF145 triggers ubiquitination of SCAP on lysine residues within a cytoplasmic loop essential for COPII binding, potentially inhibiting its transport to Golgi and subsequent processing of SREBP-2. These findings define an additional mechanism linking hepatic sterol levels to the reciprocal actions of the SREBP-2 and LXR pathways.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Christina Priest
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Jaspreet Sandhu
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Xiaohui Wu
- Department of Medicine, Division of CardiologyUniversity of California, Los AngelesLos AngelesUnited States
| | - Ryan Temel
- Saha Cardiovascular Research CenterUniversity of KentuckyLexingtonUnited States
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonUnited States
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Alberto SolsCSIC-Universidad Autónoma de Madrid, Unidad de Biomedicina-Universidad de Las Palmas de Gran Canaria (Unidad asociada al CSIC)Las Palmas de Gran CanariaSpain
- Instituto Universitario de Investigaciones Biomédicas y SanitariasUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
| | - Thomas Q de Aguiar Vallim
- Department of Medicine, Division of CardiologyUniversity of California, Los AngelesLos AngelesUnited States
| | - Tamer Sallam
- Department of Medicine, Division of CardiologyUniversity of California, Los AngelesLos AngelesUnited States
| | - Peter Tontonoz
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
32
|
Engelking LJ, Cantoria MJ, Xu Y, Liang G. Developmental and extrahepatic physiological functions of SREBP pathway genes in mice. Semin Cell Dev Biol 2017; 81:98-109. [PMID: 28736205 DOI: 10.1016/j.semcdb.2017.07.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/07/2017] [Indexed: 12/17/2022]
Abstract
Sterol regulatory element-binding proteins (SREBPs), master transcriptional regulators of cholesterol and fatty acid synthesis, have been found to contribute to a diverse array of cellular processes. In this review, we focus on genetically engineered mice in which the activities of six components of the SREBP gene pathway, namely SREBP-1, SREBP-2, Scap, Insig-1, Insig-2, or Site-1 protease have been altered through gene knockout or transgenic approaches. In addition to the expected impacts on lipid metabolism, manipulation of these genes in mice is found to affect a wide array of developmental and physiologic processes ranging from interferon signaling in macrophages to synaptic transmission in the brain. The findings reviewed herein provide a blueprint to guide future studies defining the complex interactions between lipid biology and the physiologic processes of many distinct organ systems.
Collapse
Affiliation(s)
- Luke J Engelking
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Mary Jo Cantoria
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yanchao Xu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guosheng Liang
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
33
|
Applying a systems approach to thyroid physiology: Looking at the whole with a mitochondrial perspective instead of judging single TSH values or why we should know more about mitochondria to understand metabolism. BBA CLINICAL 2017; 7:127-140. [PMID: 28417080 PMCID: PMC5390562 DOI: 10.1016/j.bbacli.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 12/17/2022]
Abstract
Classical thinking in endocrine physiology squeezes our diagnostic handling into a simple negative feedback mechanism with a controller and a controlled variable. In the case of the thyroid this is reduced to TSH and fT3 and fT4, respectively. The setting of this tight notion has no free space for any additions. In this paper we want to challenge this model of limited application by proposing a construct based on a systems approach departing from two basic considerations. In first place since the majority of cases of thyroid disease develop and appear during life it has to be considered as an acquired condition. In the second place, our experience with the reversibility of morphological changes makes the autoimmune theory inconsistent. While medical complexity can expand into the era of OMICS as well as into one where manipulations with the use of knock-outs and -ins are common in science, we have preferred to maintain a simple and practical approach. We will describe the interactions of iron, magnesium, zinc, selenium and coenzyme Q10 with the thyroid axis. The discourse will be then brought into the context of ovarian function, i.e. steroid hormone production. Finally the same elemental players will be presented in relation to the basic mitochondrial machinery that supports the endocrine. We propose that an intact mitochondrial function can guard the normal endocrine function of both the thyroid as well as of the ovarian axis. The basic elements required for this function appear to be magnesium and iron. In the case of the thyroid, magnesium-ATP acts in iodine uptake and the heme protein peroxidase in thyroid hormone synthesis. A similar biochemical process is found in steroid synthesis with cholesterol uptake being the initial energy-dependent step and later the heme protein ferredoxin 1 which is required for steroid synthesis. Magnesium plays a central role in determining the clinical picture associated with thyroid disease and is also involved in maintaining fertility. With the aid of 3D sonography patients needing selenium and/or coenzyme Q10 can be easily identified. By this we firmly believe that physicians should know more about basic biochemistry and the way it fits into mitochondrial function in order to understand metabolism. Contemplating only TSH is highly reductionistic. Outline Author's profiles and motivation for this analysis The philosophical alternatives in science and medicine Reductionism vs. systems approach in clinical thyroid disease guidelines The entry into complexity: the involvement of the musculoskeletal system Integrating East and West: teachings from Chinese Medicine and from evidence based medicine (EBM) Can a mathematical model represent complexity in the daily thyroid practice? How effective is thyroxine treatment? Resolving the situation of residual symptoms in treated patients with thyroid disease Importance of iron, zinc and magnesium in relation to thyroid function Putting together new concepts related to thyroid function for a systems approach Expanding our model into general aspects of medicine
Collapse
|
34
|
Li J, Wang X, Yuan Y, Long X, Bao J, Li X. An in vitro test system for evaluation of SCAP–SREBP pathway inhibitory activities of Traditional Chinese Medicines. RSC Adv 2017. [DOI: 10.1039/c7ra09521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In vitro assay system demonstrates that Rhizoma Alismatis and Semen Cassiae show beneficial effects on inhibition of SCAP–SREBP pathway activities.
Collapse
Affiliation(s)
- Jianzong Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education
- College of Life Sciences
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Xin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education
- College of Life Sciences
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Yuan Yuan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education
- College of Life Sciences
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Xin Long
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education
- College of Life Sciences
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Jinku Bao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education
- College of Life Sciences
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Xin Li
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
| |
Collapse
|