1
|
Xu C, Du D, Han Z, Si H, Li W, Li L, Tang B. Separation and Analysis of Rare Tumor Cells in Various Body Fluids Based on Microfluidic Technology for Clinical Applications. Anal Chem 2025; 97:7567-7588. [PMID: 40186540 DOI: 10.1021/acs.analchem.4c06925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Affiliation(s)
- Chang Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Dexin Du
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Zhaojun Han
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Haibin Si
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
2
|
Lin S, Feng D, Han X, Li L, Lin Y, Gao H. Microfluidic platform for omics analysis on single cells with diverse morphology and size: A review. Anal Chim Acta 2024; 1294:342217. [PMID: 38336406 DOI: 10.1016/j.aca.2024.342217] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Microfluidic techniques have emerged as powerful tools in single-cell research, facilitating the exploration of omics information from individual cells. Cell morphology is crucial for gene expression and physiological processes. However, there is currently a lack of integrated analysis of morphology and single-cell omics information. A critical challenge remains: what platform technologies are the best option to decode omics data of cells that are complex in morphology and size? RESULTS This review highlights achievements in microfluidic-based single-cell omics and isolation of cells based on morphology, along with other cell sorting methods based on physical characteristics. Various microfluidic platforms for single-cell isolation are systematically presented, showcasing their diversity and adaptability. The discussion focuses on microfluidic devices tailored to the distinct single-cell isolation requirements in plants and animals, emphasizing the significance of considering cell morphology and cell size in optimizing single-cell omics strategies. Simultaneously, it explores the application of microfluidic single-cell sorting technologies to single-cell sequencing, aiming to effectively integrate information about cell shape and size. SIGNIFICANCE AND NOVELTY The novelty lies in presenting a comprehensive overview of recent accomplishments in microfluidic-based single-cell omics, emphasizing the integration of different microfluidic platforms and their implications for cell morphology-based isolation. By underscoring the pivotal role of the specialized morphology of different cells in single-cell research, this review provides robust support for delving deeper into the exploration of single-cell omics data.
Collapse
Affiliation(s)
- Shujin Lin
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China; Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China
| | - Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Ling Li
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China; The First Clinical Medical College of Fujian Medical University, Fuzhou, 350004, China; Hepatopancreatobiliary Surgery Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China; Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, China.
| | - Haibing Gao
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China.
| |
Collapse
|
3
|
Yu P, Chen W, Ge L, Fang J, Huang X, Tong H, Chen Z, Ding C, Huang Y. Logic gate-driven dual-index balanced visualization strategy for tumor metastasis diagnosis. Biosens Bioelectron 2023; 237:115556. [PMID: 37536227 DOI: 10.1016/j.bios.2023.115556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Exfoliated tumor cells are integral to malignant tumors diagnosis. The process of clinical cytology of exfoliation involves several complex steps that require at least two days of preparation. Here, we develop a balanced-etching visual kit based on concentration differences of Glutathione/Glucose (GSH/Glu) to distinguish normal from exfoliated tumor cells rapidly and accurately. The balanced-etching visualization kit can be used to obtain color cards and screen exfoliated tumor cells initially (within 10 min). Furthermore, by utilizing logic gates and machine learning algorithms for RGB extraction of the color card obtained from the kit, accurate screening of exfoliated tumor cells is achieved. Finally, a series of clinical tumor samples, such as urine, pleural fluids, ascites, and gastric fluids, have been validated. With effective experimental methods, accurate disease information, and appropriate therapeutic programs, the novel diagnostic strategy is expected to promote precision medicine.
Collapse
Affiliation(s)
- Pengfei Yu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Department of Gastric Surgery, Hangzhou, Zhejiang, 310022, China
| | - Weiwei Chen
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou, Zhejiang, 311121, China
| | - Li Ge
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou, Zhejiang, 311121, China; Zhengjiang Zhongwei Medical Research Center, Department of Research and Development, Hangzhou, Zhejiang, 310020, China.
| | - Jingquan Fang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Department of Gastric Surgery, Hangzhou, Zhejiang, 310022, China
| | - Xingmao Huang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Department of Gastric Surgery, Hangzhou, Zhejiang, 310022, China
| | - Hui Tong
- Zhengjiang Zhongwei Medical Research Center, Department of Research and Development, Hangzhou, Zhejiang, 310020, China
| | - Zikang Chen
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou, Zhejiang, 311121, China
| | - Caiping Ding
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou, Zhejiang, 311121, China.
| | - Youju Huang
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
4
|
Han X, Xu X, Yang C, Liu G. Microfluidic design in single-cell sequencing and application to cancer precision medicine. CELL REPORTS METHODS 2023; 3:100591. [PMID: 37725985 PMCID: PMC10545941 DOI: 10.1016/j.crmeth.2023.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/01/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Single-cell sequencing (SCS) is a crucial tool to reveal the genetic and functional heterogeneity of tumors, providing unique insights into the clonal evolution, microenvironment, drug resistance, and metastatic progression of cancers. Microfluidics is a critical component of many SCS technologies and workflows, conferring advantages in throughput, economy, and automation. Here, we review the current landscape of microfluidic architectures and sequencing techniques for single-cell omics analysis and highlight how these have enabled recent applications in oncology research. We also discuss the challenges and the promise of microfluidics-based single-cell analysis in the future of precision oncology.
Collapse
Affiliation(s)
- Xin Han
- CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xing Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China; Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related 12 Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Chaoyang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China; Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related 12 Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Guozhen Liu
- CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China.
| |
Collapse
|
5
|
Whitfield HJ, Berthelet J, Mangiola S, Bell C, Anderson RL, Pal B, Yeo B, Papenfuss AT, Merino D, Davis MJ. Single-cell RNA sequencing captures patient-level heterogeneity and associated molecular phenotypes in breast cancer pleural effusions. Clin Transl Med 2023; 13:e1356. [PMID: 37691350 PMCID: PMC10493486 DOI: 10.1002/ctm2.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Malignant pleural effusions (MPEs) are a common complication of advanced cancers, particularly those adjacent to the pleura, such as lung and breast cancer. The pathophysiology of MPE formation remains poorly understood, and although MPEs are routinely used for the diagnosis of breast cancer patients, their composition and biology are poorly understood. It is difficult to distinguish invading malignant cells from resident mesothelial cells and to identify the directionality of interactions between these populations in the pleura. There is a need to characterize the phenotypic diversity of breast cancer cell populations in the pleural microenvironment, and investigate how this varies across patients. METHODS Here, we used single-cell RNA-sequencing to study the heterogeneity of 10 MPEs from seven metastatic breast cancer patients, including three Miltenyi-enriched samples using a negative selection approach. This dataset of almost 65 000 cells was analysed using integrative approaches to compare heterogeneous cell populations and phenotypes. RESULTS We identified substantial inter-patient heterogeneity in the composition of cell types (including malignant, mesothelial and immune cell populations), in expression of subtype-specific gene signatures and in copy number aberration patterns, that captured variability across breast cancer cell populations. Within individual MPEs, we distinguished mesothelial cell populations from malignant cells using key markers, the presence of breast cancer subtype expression patterns and copy number aberration patterns. We also identified pleural mesothelial cells expressing a cancer-associated fibroblast-like transcriptomic program that may support cancer growth. CONCLUSIONS Our dataset presents the first unbiased assessment of breast cancer-associated MPEs at a single cell resolution, providing the community with a valuable resource for the study of MPEs. Our work highlights the molecular and cellular diversity captured in MPEs and motivates the potential use of these clinically relevant biopsies in the development of targeted therapeutics for patients with advanced breast cancer.
Collapse
Affiliation(s)
- Holly J. Whitfield
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Jean Berthelet
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
| | - Stefano Mangiola
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Caroline Bell
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
| | - Robin L. Anderson
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
- Peter MacCallum Cancer CentreParkvilleVictoriaAustralia
- Department of Clinical Pathology, Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
| | - Bhupinder Pal
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
| | - Belinda Yeo
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
- Austin HealthHeidelbergVictoriaAustralia
| | - Anthony T. Papenfuss
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Clinical Pathology, Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneCarltonVictoriaAustralia
| | - Delphine Merino
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
- Immunology DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Melissa J. Davis
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Clinical Pathology, Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- The University of Queensland Diamantina InstituteThe University of QueenslandBrisbaneQueenslandAustralia
- The South Australian Immunogenomics Cancer InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
6
|
Zhang W, Xu F, Yao J, Mao C, Zhu M, Qian M, Hu J, Zhong H, Zhou J, Shi X, Chen Y. Single-cell metabolic fingerprints discover a cluster of circulating tumor cells with distinct metastatic potential. Nat Commun 2023; 14:2485. [PMID: 37120634 PMCID: PMC10148826 DOI: 10.1038/s41467-023-38009-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/11/2023] [Indexed: 05/01/2023] Open
Abstract
Circulating tumor cells (CTCs) are recognized as direct seeds of metastasis. However, CTC count may not be the "best" indicator of metastatic risk because their heterogeneity is generally neglected. In this study, we develop a molecular typing system to predict colorectal cancer metastasis potential based on the metabolic fingerprints of single CTCs. After identification of the metabolites potentially related to metastasis using mass spectrometry-based untargeted metabolomics, setup of a home-built single-cell quantitative mass spectrometric platform for target metabolite analysis in individual CTCs and use of a machine learning method composed of non-negative matrix factorization and logistic regression, CTCs are divided into two subgroups, C1 and C2, based on a 4-metabolite fingerprint. Both in vitro and in vivo experiments demonstrate that CTC count in C2 subgroup is closely associated with metastasis incidence. This is an interesting report on the presence of a specific population of CTCs with distinct metastatic potential at the single-cell metabolite level.
Collapse
Affiliation(s)
- Wenjun Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Feifei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiang Yao
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Changfei Mao
- Department of General Surgery, Jiangsu Cancer Hospital (Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital), Nanjing, 210009, China
| | - Mingchen Zhu
- Department of Clinical Laboratory, Jiangsu Cancer Hospital (Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital), Nanjing, 210009, China
| | - Moting Qian
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Huilin Zhong
- School of Computer Science and Technology, Nanjing Normal University, Nanjing, 210046, China
| | - Junsheng Zhou
- School of Computer Science and Technology, Nanjing Normal University, Nanjing, 210046, China
| | - Xiaoyu Shi
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- State Key Laboratory of Reproductive Medicine, Nanjing, 211166, China.
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing, 211166, China.
| |
Collapse
|
7
|
Yang L, Wang Y. Malignant pleural effusion diagnosis and therapy. Open Life Sci 2023; 18:20220575. [PMID: 36874629 PMCID: PMC9975958 DOI: 10.1515/biol-2022-0575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 03/06/2023] Open
Abstract
Malignant pleural effusion (MPE) is a serious complication of advanced tumor, with relatively high morbidity and mortality rates, and can severely affect the quality of life and survival of patients. The mechanisms of MPE development are not well defined, but much research has been conducted to gain a deeper understanding of this process. In recent decades, although great progress has been made in the management of MPE, the diagnosis and treatment of MPE are still major challenges for clinicians. In this article, we provide a review of the research advances in the mechanisms of MPE development, diagnosis and treatment approaches. We aim to offer clinicians an overview of the latest evidence on the management of MPE, which should be individualized to provide comprehensive interventions for patients in accordance with their wishes, health status, prognosis and other factors.
Collapse
Affiliation(s)
- Liangliang Yang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Erdao District, Changchun 130033, China
| | - Yue Wang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Erdao District, Changchun 130033, China
| |
Collapse
|
8
|
Zafeiriadou A, Kollias I, Londra T, Tsaroucha E, Georgoulias V, Kotsakis A, Lianidou E, Markou A. Metabolism-Related Gene Expression in Circulating Tumor Cells from Patients with Early Stage Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14133237. [PMID: 35805008 PMCID: PMC9264894 DOI: 10.3390/cancers14133237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary In the present study, the expression of three Metabolism-Related Enzymes (MRGs) that are related to glucose and pyruvate metabolism, in parallel with glucose and monocarboxylate transporter expression (HK2, MCT1, PHGDH), was studied in CTCs isolated from the peripheral blood of early stage NSCLC patients at different timepoints. The expression levels of all tested MRGs decreased in CTCs one month after surgery, but a significant increase was noticed at the time of relapse for PHGDH and MCT1 only. An overexpression of MRGs was observed at a high frequency in the CTCs isolated from early NSCLC patients, thereby supporting the role of MRGs in metastatic processes. The glycolytic and mesenchymal subpopulation of CTCs was significantly predominant compared to CTCs that wereglycolytic but not mesenchymal-like. Our data indicate that MRGs merit further evaluation through large and well-defined cohort studies. Abstract Purpose: Metabolic reprogramming is now characterized as one of the core hallmarks of cancer, and it has already been shown that the altered genomic profile of metabolically rewired cancer cells can give valuable information. In this study, we quantified three Metabolism-Related Gene (MRG) transcripts in the circulating tumor cells (CTCs) of early stage NSCLC patients and evaluated their associations with epithelial and EMT markers. Experimental Design: We first developed and analytically validated highly sensitive RT-qPCR assays for the quantification of HK2, MCT1 and PHGDH transcripts, and further studied the expression of MRGs in CTCs that were isolated using a size-dependent microfluidic device (Parsortix, Angle) from the peripheral blood of: (a) 46 NSCLC patients at baseline, (b) 39/46 of these patients one month after surgery, (c) 10/46 patients at relapse and (d) 10 pairs of cancerous and adjacent non-cancerous FFPE tissues from the same NSCLC patients. Epithelial and EMT markers were also evaluated. Results: MCT1 and HK2 were differentially expressed between HD and NSCLC patients. An overexpression of MCT1 was detected in 15/46 (32.6%) and 3/10 (30%) patients at baseline and at progression disease (PD), respectively, whereas an overexpression of HK2 was detected in 30.4% and 0% of CTCs in the same group of samples. The expression levels of all tested MRGs decreased in CTCs one month after surgery, but a significant increase was noticed at the time of relapse for PHGDH and MCT1 only. The expression levels of HK2 and MCT1 were associated with the overexpression of mesenchymal markers (TWIST-1 and VIM). Conclusion: An overexpression of MRGs was observed at a high frequency in the CTCs isolated from early NSCLC patients, thereby supporting the role of MRGs in metastatic processes. The glycolytic and mesenchymal subpopulation of CTCs was significantly predominant compared to CTCs that were glycolytic but not mesenchymal-like. Our data indicate that MRGs merit further evaluation through large and well-defined cohort studies.
Collapse
Affiliation(s)
- A. Zafeiriadou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.Z.); (I.K.); (T.L.); (E.L.)
| | - I. Kollias
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.Z.); (I.K.); (T.L.); (E.L.)
| | - T. Londra
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.Z.); (I.K.); (T.L.); (E.L.)
| | - E. Tsaroucha
- ‘Sotiria’ General Hospital for Chest Diseases, 11527 Athens, Greece;
| | - V. Georgoulias
- First Department of Medical Oncology, IASO General Hospital of Athens, 15123 Athens, Greece;
| | - A. Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, 41334 Larissa, Greece;
| | - E. Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.Z.); (I.K.); (T.L.); (E.L.)
| | - A. Markou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.Z.); (I.K.); (T.L.); (E.L.)
- Correspondence:
| |
Collapse
|
9
|
Zhu Z, Li S, Wu D, Ren H, Ni C, Wang C, Xiang N, Ni Z. High-throughput and label-free enrichment of malignant tumor cells and clusters from pleural and peritoneal effusions using inertial microfluidics. LAB ON A CHIP 2022; 22:2097-2106. [PMID: 35441644 DOI: 10.1039/d2lc00082b] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurate and rapid diagnosis of malignant pleural and peritoneal effusions is critical due to potential association with advanced disease stages or progression. Traditional cytodiagnosis suffers from low efficiency and has difficulties in finding malignant tumor cells (MTCs) from a mass of exfoliated cells. Hence, a polymer microfluidic chip with a slanted spiral channel was employed for high-throughput and label-free enrichment of MTCs and MTC clusters from clinical malignant pleural and peritoneal effusions. The slanted spiral channel with trapezoidal cross-sections was fabricated by assembling two patterned polymer films of different thicknesses within one flow channel layer. After systematically exploring the effects of the particle size, effusion concentration, and flow rate on separation performance of the device, we realized the enrichment of MTCs from abundant blood cells in 2-fold diluted effusions. The results indicated that approximately 85% of the spiked tumor cells (A549 and MCF-7 cell lines) were recovered with high purities of over 37% at a high throughput of 2000 μL min-1. In clinical applications, we successfully enriched 24-2691 MTCs per mL from the diluted malignant pleural and peritoneal effusions collected from four types of cancer patients (n = 22). More importantly, the MTC clusters were further purified from single MTCs using a higher flow rate of 3000 μL min-1. Finally, we performed the rapid drug sensitivity test by coupling the microfluidic enrichment with CCK-8 assay. Our approach may serve as valuable assistance to accelerate cancer diagnosis and guide the selection of treatment medications.
Collapse
Affiliation(s)
- Zhixian Zhu
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Shuang Li
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| | - Dan Wu
- Department of Oncology, Jiangyin People's Hospital, Jiangyin, 214400, China
| | - Hui Ren
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Chen Ni
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Cailian Wang
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| | - Nan Xiang
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
10
|
Wang Z, Zhao Y, Shen X, Zhao Y, Zhang Z, Yin H, Zhao X, Liu H, Shi Q. Single-Cell Genomics-Based Molecular Algorithm for Early Cancer Detection. Anal Chem 2022; 94:2607-2614. [PMID: 35077134 DOI: 10.1021/acs.analchem.1c04968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As one of the prime applications of liquid biopsy, the detection of tumor-derived whole cells and molecular markers is enabled in a noninvasive means before symptoms or hints from imaging procedures used for cancer screening. However, liquid biopsy is not a diagnostic test of malignant diseases per se because it fails to establish a definitive cancer diagnosis. Although single-cell genomics provides a genome-wide genetic alternation landscape, it is technologically challenging to confirm cell malignancy of a suspicious cell in body fluids due to unknown technical noise of single-cell sequencing and genomic variation among cancer cells, especially when tumor tissues are unavailable for sequencing as the reference. To address this challenge, we report a molecular algorithm, named scCancerDx, for confirming cell malignancy based on single-cell copy number alternation profiles of suspicious cells from body fluids, leading to a definitive cancer diagnosis. The scCancerDx algorithm has been trained with normal cells and cancer cell lines and validated with single tumor cells disassociated from clinical samples. The established scCancerDx algorithm then validates hexokinase 2 (HK2) as an efficient metabolic function-associated marker of identifying disseminated tumor cells in different body fluids across many cancer types. The HK2-based test, together with scCancerDx, has been investigated for the early detection of bladder cancer (BC) at a preclinical phase by detecting high glycolytic HK2high tumor cells in urine. Early BC detection improves patient prognosis and avoids radical resection for enhancing life quality.
Collapse
Affiliation(s)
- Zhuo Wang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuyang Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiaohan Shen
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yichun Zhao
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ziyuan Zhang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Huming Yin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaojun Zhao
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Haitao Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qihui Shi
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China.,International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Luo X, Chen JY, Ataei M, Lee A. Microfluidic Compartmentalization Platforms for Single Cell Analysis. BIOSENSORS 2022; 12:58. [PMID: 35200319 PMCID: PMC8869497 DOI: 10.3390/bios12020058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
Many cellular analytical technologies measure only the average response from a cell population with an assumption that a clonal population is homogenous. The ensemble measurement often masks the difference among individual cells that can lead to misinterpretation. The advent of microfluidic technology has revolutionized single-cell analysis through precise manipulation of liquid and compartmentalizing single cells in small volumes (pico- to nano-liter). Due to its advantages from miniaturization, microfluidic systems offer an array of capabilities to study genomics, transcriptomics, and proteomics of a large number of individual cells. In this regard, microfluidic systems have emerged as a powerful technology to uncover cellular heterogeneity and expand the depth and breadth of single-cell analysis. This review will focus on recent developments of three microfluidic compartmentalization platforms (microvalve, microwell, and microdroplets) that target single-cell analysis spanning from proteomics to genomics. We also compare and contrast these three microfluidic platforms and discuss their respective advantages and disadvantages in single-cell analysis.
Collapse
Affiliation(s)
- Xuhao Luo
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA; (X.L.); (J.-Y.C.)
| | - Jui-Yi Chen
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA; (X.L.); (J.-Y.C.)
| | - Marzieh Ataei
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA;
| | - Abraham Lee
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA; (X.L.); (J.-Y.C.)
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA;
| |
Collapse
|
12
|
Cheng J, Zhang L, Zhang Y, Ye Y, Zhao W, Zhang L, Li Y, Liu Y, Zhang W, Guo H, Li M, Zhao Y, Huang C. 3D spiral channels combined with flexible micro-sieve for high-throughput rare tumor cell enrichment and assay from clinical pleural effusion samples. Biodes Manuf 2022. [DOI: 10.1007/s42242-021-00167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Yang Y, Pang W, Zhang H, Cui W, Jin K, Sun C, Wang Y, Zhang L, Ren X, Duan X. Manipulation of single cells via a Stereo Acoustic Streaming Tunnel (SteAST). MICROSYSTEMS & NANOENGINEERING 2022; 8:88. [PMID: 35935274 PMCID: PMC9352906 DOI: 10.1038/s41378-022-00424-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 05/19/2023]
Abstract
At the single-cell level, cellular parameters, gene expression and cellular function are assayed on an individual but not population-average basis. Essential to observing and analyzing the heterogeneity and behavior of these cells/clusters is the ability to prepare and manipulate individuals. Here, we demonstrate a versatile microsystem, a stereo acoustic streaming tunnel, which is triggered by ultrahigh-frequency bulk acoustic waves and highly confined by a microchannel. We thoroughly analyze the generation and features of stereo acoustic streaming to develop a virtual tunnel for observation, pretreatment and analysis of cells for different single-cell applications. 3D reconstruction, dissociation of clusters, selective trapping/release, in situ analysis and pairing of single cells with barcode gel beads were demonstrated. To further verify the reliability and robustness of this technology in complex biosamples, the separation of circulating tumor cells from undiluted blood based on properties of both physics and immunity was achieved. With the rich selection of handling modes, the platform has the potential to be a full-process microsystem, from pretreatment to analysis, and used in numerous fields, such as in vitro diagnosis, high-throughput single-cell sequencing and drug development.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072 China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072 China
| | - Hongxiang Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072 China
| | - Weiwei Cui
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072 China
| | - Ke Jin
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072 China
| | - Chongling Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072 China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072 China
| | - Lin Zhang
- Tianjin Medical University Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300072 China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300072 China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072 China
| |
Collapse
|
14
|
|
15
|
Li F, Xu H, Zhao Y. Magnetic particles as promising circulating tumor cell catchers assisting liquid biopsy in cancer diagnosis: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Lin S, Liu Y, Zhang M, Xu X, Chen Y, Zhang H, Yang C. Microfluidic single-cell transcriptomics: moving towards multimodal and spatiotemporal omics. LAB ON A CHIP 2021; 21:3829-3849. [PMID: 34541590 DOI: 10.1039/d1lc00607j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cells are the basic units of life with vast heterogeneity. Single-cell transcriptomics unveils cell-to-cell gene expression variabilities, discovers novel cell types, and uncovers the critical roles of cellular heterogeneity in biological processes. The recent advances in microfluidic technologies have greatly accelerated the development of single-cell transcriptomics with regard to throughput, sensitivity, cost, and automation. In this article, we review state-of-the-art microfluidic single-cell transcriptomics, with a focus on the methodologies. We first summarize six typical microfluidic platforms for isolation and transcriptomic analysis of single cells. Then the on-going trend of microfluidic transcriptomics towards multimodal omics, which integrates transcriptomics with other omics to provide more comprehensive pictures of gene expression networks, is discussed. We also highlight single-cell spatial transcriptomics and single-cell temporal transcriptomics that provide unprecedented spatiotemporal resolution to reveal transcriptomic dynamics in space and time, respectively. The emerging applications of microfluidic single-cell transcriptomics are also discussed. Finally, we discuss the current challenges to be tackled and provide perspectives on the future development of microfluidic single-cell transcriptomics.
Collapse
Affiliation(s)
- Shichao Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yilong Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Mingxia Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yingwen Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Huimin Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
17
|
Diving into the Pleural Fluid: Liquid Biopsy for Metastatic Malignant Pleural Effusions. Cancers (Basel) 2021; 13:cancers13112798. [PMID: 34199799 PMCID: PMC8200094 DOI: 10.3390/cancers13112798] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Malignant pleural effusion is a common complication arising as the natural progression of many tumors, such as lung cancer. When this occurs, the common protocol consists of analyzing the pleural fluid for the presence of malignant cells. However, on many occasions no malignant cells are found despite a clear suspicion of cancer. Thus, the current diagnostic methodology is imperfect and more precise methods for the identification of malignancy are needed. Nonetheless, these methods are often invasive, which may be counterproductive, especially for patients with poor health condition. These concerns have made clinicians consider alternative non-invasive strategies to diagnose cancer using the generally abundant pleural fluid (e.g., liquid biopsy). Thus, a liquid sample can be analyzed for the presence of cancer footprints, such as circulating malignant cells and tumor nucleic acids. Herein, we review the literature for studies considering pleural fluid as a successful source of liquid biopsy. Abstract Liquid biopsy is emerging as a promising non-invasive diagnostic tool for malignant pleural effusions (MPE) due to the low sensitivity of conventional pleural fluid (PF) cytological examination and the difficulty to obtain tissue biopsies, which are invasive and require procedural skills. Currently, liquid biopsy is increasingly being used for the detection of driver mutations in circulating tumor DNA (ctDNA) from plasma specimens to guide therapeutic interventions. Notably, malignant PF are richer than plasma in tumor-derived products with potential clinical usefulness, such as ctDNA, micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circulating tumor cells (CTC). Tumor-educated cell types, such as platelets and macrophages, have also been added to this diagnostic armamentarium. Herein, we will present an overview of the role of the preceding biomarkers, collectively known as liquid biopsy, in PF samples, as well as the main technical approaches used for their detection and quantitation, including a proper sample processing. Technical limitations of current platforms and future perspectives in the field will also be addressed. Using PF as liquid biopsy shows promise for use in current practice to facilitate the diagnosis and management of metastatic MPE.
Collapse
|
18
|
Zhu C, Xu Z, Yuan Y, Wang T, Xu C, Yin C, Xie P, Xu P, Ye H, Patel N, Schaul S, Wang L, Zhu X, Wang S, Gao P, Xi Q, Zhang Y, Shu G, Jiang Q. Heparin impairs skeletal muscle glucose uptake by inhibiting insulin binding to insulin receptor. ENDOCRINOLOGY DIABETES & METABOLISM 2021; 4:e00253. [PMID: 34277977 PMCID: PMC8279624 DOI: 10.1002/edm2.253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/24/2022]
Abstract
Aim Heparin, a widely used antithrombotic drug has many other anticoagulant-independent physiological functions. Here, we elucidate a novel role of heparin in glucose homeostasis, suggesting an approach for developing heparin-targeted therapies for diabetes. Methods For serum heparin levels and correlation analysis, 122 volunteer's plasma, DIO (4 weeks HFD) and db/db mice serums were collected and used for spectrophotometric determination. OGTT, ITT, 2-NBDG uptake and muscle GLUT4 immunofluorescence were detected in chronic intraperitoneal injection of heparin or heparinase (16 days) and muscle-specific loss-of-function mice. In 293T cells, the binding of insulin to its receptor was detected by fluorescence resonance energy transfer (FRET), Myc-GLUT4-mCherry plasmid was used in GLUT4 translocation. In vitro, C2C12 cells as mouse myoblast cells were further verified the effects of heparin on glucose homeostasis through 2-NBDG uptake, Western blot and co-immunoprecipitation. Results Serum concentrations of heparin are positively associated with blood glucose levels in humans and are significantly increased in diet-induced and db/db obesity mouse models. Consistently, a chronic intraperitoneal injection of heparin results in hyperglycaemia, glucose intolerance and insulin resistance. These effects are independent of heparin's anticoagulant function and associated with decreases in glucose uptake and translocation of glucose transporter type 4 (GLUT4) in skeletal muscle. By using a muscle-specific loss-of-function mouse model, we further demonstrated that muscle GLUT4 is required for the detrimental effects of heparin on glucose homeostasis. Conclusions Heparin reduced insulin binding to its receptor by interacting with insulin and inhibited insulin-mediated activation of the PI3K/Akt signalling pathway in skeletal muscle, which leads to impaired glucose uptake and hyperglycaemia.
Collapse
Affiliation(s)
- Canjun Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | | | - Yexian Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Tao Wang
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Chang Xu
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Cong Yin
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Peipei Xie
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Pingwen Xu
- Division of Endocrinology, Diabetes and Metabolism Department of Medicine The University of Illinois at Chicago Chicago IL USA
| | - Hui Ye
- Division of Endocrinology, Diabetes and Metabolism Department of Medicine The University of Illinois at Chicago Chicago IL USA
| | - Nirali Patel
- Division of Endocrinology, Diabetes and Metabolism Department of Medicine The University of Illinois at Chicago Chicago IL USA
| | - Sarah Schaul
- Division of Endocrinology, Diabetes and Metabolism Department of Medicine The University of Illinois at Chicago Chicago IL USA
| | - Lina Wang
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Xiaotong Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Songbo Wang
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Ping Gao
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Qianyun Xi
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Yongliang Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| |
Collapse
|
19
|
Belotti Y, Lim CT. Microfluidics for Liquid Biopsies: Recent Advances, Current Challenges, and Future Directions. Anal Chem 2021; 93:4727-4738. [DOI: 10.1021/acs.analchem.1c00410] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuri Belotti
- Institute for Health Innovation and Technology, National University of Singapore, 117599 Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology, National University of Singapore, 117599 Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583 Singapore
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| |
Collapse
|
20
|
Lu Y, Zheng Y, Wang Y, Gu D, Zhang J, Liu F, Chen K, Guo L. FlowCell-enriched circulating tumor cells as a predictor of lung cancer metastasis. Hum Cell 2021; 34:945-951. [PMID: 33580470 PMCID: PMC8057988 DOI: 10.1007/s13577-021-00500-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer is the most fetal malignancy due to the high rate of metastasis and recurrence after treatment. A considerable number of patients with early-stage lung cancer relapse due to overlooked distant metastasis. Circulating tumor cells (CTCs) are tumor cells in blood circulation that originated from primary or metastatic sites, and it has been shown that CTCs are critical for metastasis and prognosis in various type of cancers. Here, we employed novel method to capture, isolate and classify CTC with FlowCell system and analyzed the CTCs from a cohort of 302 individuals. Our results illustrated that FlowCell-enriched CTCs effectively differentiated benign and malignant lung tumor and the total CTC counts increased as the tumor developed. More importantly, we showed that CTCs displayed superior sensitivity and specificity to predict lung cancer metastasis in comparison to conventional circulating biomarkers. Taken together, our data suggested CTCs can be used to assist the diagnosis of lung cancer as well as predict lung cancer metastasis. These findings provide an alternative means to screen early-stage metastasis.
Collapse
Affiliation(s)
- Yan Lu
- Suzhou Centre for Disease Control and Prevention, Suzhou, 215007, Jiangsu, China
| | - Yushuang Zheng
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Dongmei Gu
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Jun Zhang
- Suzhou Centre for Disease Control and Prevention, Suzhou, 215007, Jiangsu, China
| | - Fang Liu
- Suzhou Centre for Disease Control and Prevention, Suzhou, 215007, Jiangsu, China.
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
21
|
Cayrefourcq L, Thomas F, Mazard T, Assenat E, Assou S, Alix-Panabières C. Selective treatment pressure in colon cancer drives the molecular profile of resistant circulating tumor cell clones. Mol Cancer 2021; 20:30. [PMID: 33557844 PMCID: PMC7869222 DOI: 10.1186/s12943-021-01326-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
The characterization of circulating tumor cells (CTCs) holds promises for precision medicine because these cells are an important clinical indicator of treatment efficacy. We established the first and still only nine permanent colon CTC lines from peripheral blood samples of a patient with metastatic colon cancer collected at different time points during treatment and cancer progression. The study objectives were (i) to compare the gene expression profiles of these CTC lines, and (ii) to determine the main features acquired during treatment. The number of upregulated genes was higher in the CTC lines obtained after treatment, indicating that they acquired properties to escape treatment pressure. Among these upregulated genes, some are involved in the mTOR and PI3K/AKT signaling pathways. Moreover, cytidine deaminase expression was significantly increased in the CTC lines obtained after failure of the first- and second-line 5-fluorouracile-based treatments, suggesting that these CTCs can eliminate this specific drug and resist to therapy. Several enzymes involved in xenobiotic metabolism also were upregulated after treatment, suggesting the activation of detoxification mechanisms in response to chemotherapy. Finally, the significant higher expression of aldolase B in four of the six CTC lines obtained after treatment withdrawal and cancer progression indicated that these clones originated from liver metastases. In conclusion, these CTC lines generated at different time points during treatment of metastatic colon cancer in a single patient are characterized by the deregulation of different genes that promote (i) drug resistance, (ii) xenobiotic and energy metabolism, and (iii) stem cell properties and plasticity.
Collapse
Affiliation(s)
- Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, University of Montpellier, Montpellier, France
- CREEC (CREES), Unité Mixte de Recherches, IRD 224–CNRS 5290–University of Montpellier, Montpellier, France
| | - Frédéric Thomas
- CREEC (CREES), Unité Mixte de Recherches, IRD 224–CNRS 5290–University of Montpellier, Montpellier, France
| | - Thibault Mazard
- Department IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | - Eric Assenat
- Department of Medical Oncology, University Medical Center of Montpellier, University of Montpellier, Montpellier, France
| | - Said Assou
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, University of Montpellier, Montpellier, France
- CREEC (CREES), Unité Mixte de Recherches, IRD 224–CNRS 5290–University of Montpellier, Montpellier, France
| |
Collapse
|
22
|
Liu L, Dong X, Tu Y, Miao G, Zhang Z, Zhang L, Wei Z, Yu D, Qiu X. Methods and platforms for analysis of nucleic acids from single-cell based on microfluidics. MICROFLUIDICS AND NANOFLUIDICS 2021; 25:87. [PMID: 34580578 PMCID: PMC8457033 DOI: 10.1007/s10404-021-02485-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 05/14/2023]
Abstract
Single-cell nucleic acid analysis aims at discovering the genetic differences between individual cells which is well known as the cellular heterogeneity. This technology facilitates cancer diagnosis, stem cell research, immune system analysis, and other life science applications. The conventional platforms for single-cell nucleic acid analysis more rely on manual operation or bulky devices. Recently, the emerging microfluidic technology has provided a perfect platform for single-cell nucleic acid analysis with the characteristic of accurate and automatic single-cell manipulation. In this review, we briefly summarized the procedure of single-cell nucleic acid analysis including single-cell isolation, single-cell lysis, nucleic acid amplification, and genetic analysis. And then, three representative microfluidic platforms for single-cell nucleic acid analysis are concluded as valve-, microwell-, and droplet-based platforms. Furthermore, we described the state-of-the-art integrated single-cell nucleic acid analysis systems based on the three platforms. Finally, the future development and challenges of microfluidics-based single-cell nucleic acid analysis are discussed as well.
Collapse
Affiliation(s)
- Luyao Liu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Xiaobin Dong
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Yunping Tu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Guijun Miao
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zhongping Zhang
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Lulu Zhang
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zewen Wei
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, 100081 China
| | - Duli Yu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing, 100029 China
| | - Xianbo Qiu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| |
Collapse
|
23
|
Metabolic regulation of prostate cancer heterogeneity and plasticity. Semin Cancer Biol 2020; 82:94-119. [PMID: 33290846 DOI: 10.1016/j.semcancer.2020.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming is one of the main hallmarks of cancer cells. It refers to the metabolic adaptations of tumor cells in response to nutrient deficiency, microenvironmental insults, and anti-cancer therapies. Metabolic transformation during tumor development plays a critical role in the continued tumor growth and progression and is driven by a complex interplay between the tumor mutational landscape, epigenetic modifications, and microenvironmental influences. Understanding the tumor metabolic vulnerabilities might open novel diagnostic and therapeutic approaches with the potential to improve the efficacy of current tumor treatments. Prostate cancer is a highly heterogeneous disease harboring different mutations and tumor cell phenotypes. While the increase of intra-tumor genetic and epigenetic heterogeneity is associated with tumor progression, less is known about metabolic regulation of prostate cancer cell heterogeneity and plasticity. This review summarizes the central metabolic adaptations in prostate tumors, state-of-the-art technologies for metabolic analysis, and the perspectives for metabolic targeting and diagnostic implications.
Collapse
|
24
|
Wang Z, Chen J, Yang L, Cao M, Yu Y, Zhang R, Quan H, Jiang Q, Hua Y, Wei W, Lu P, Wu J, Shi Q. Single-Cell Sequencing-Enabled Hexokinase 2 Assay for Noninvasive Bladder Cancer Diagnosis and Screening by Detecting Rare Malignant Cells in Urine. Anal Chem 2020; 92:16284-16292. [PMID: 33269906 DOI: 10.1021/acs.analchem.0c04282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bladder cancer (BC) is among the most common tumors with a high recurrence rate, necessitating noninvasive and sensitive diagnostic methods. Accurate detection of exfoliated tumor cells (ETCs) in urine is crucial for noninvasive BC diagnosis but suffers from limited sensitivity when ETCs are rare and confounded by reactive, regenerative, or reparative cells. Single-cell sequencing (SCS) enables accurate detection of ETCs by surveying oncogenic driver mutations or genome-wide copy number alternations. To overcome the low-throughput limitation of SCS, we report a SCS-validated cellular marker, hexokinase 2 (HK2), for high-throughput screening cells in urine and detecting ETCs engaging elevated glycolysis. In the SCS-based training set, a total of 385 cells from urine samples of eight urothelial carcinoma (UC) patients were sequenced to establish a HK2 threshold that achieved >90% specificity for ETC detection. This urine-based HK2 assay was tested with a blinded patient group (n = 384) including UC and benign genitourinary disorders as a validation cohort for prospectively evaluating diagnostic accuracy. The sensitivity, specificity, positive predictive value, and negative predictive value of the assay were 90, 88, 83, and 93%, respectively, which were superior to urinary cytology. For investigating the potential to be a screening test, the HK2 assay was tested with a group of healthy individuals (n = 846) and a 6-month follow-up. The specificity was 98.4% in this health group. Three participants were found to have >5 putative ETCs that were sequenced to exhibit recurrent copy number alternations characteristic of malignant cells, demonstrating early BC detection before current clinical methods.
Collapse
Affiliation(s)
- Zhuo Wang
- Minhang Branch, Zhongshan Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201100, China
| | - Jie Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liu Yang
- Shanghai Bone Tumor Institute and Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Mingzhe Cao
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanlan Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Rulin Zhang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Heng Quan
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yingqi Hua
- Shanghai Bone Tumor Institute and Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Wei
- Institute for Systems Biology, Seattle 98109, Washington, United States
| | - Peihua Lu
- Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Jun Wu
- Department of Clinical Laboratory, Shanghai General Hospital Jiading Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
| | - Qihui Shi
- Minhang Branch, Zhongshan Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201100, China.,Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai 201100, China
| |
Collapse
|
25
|
Abstract
Advanced malignancy is a prevalent cause of exudative pleural effusion. The management of malignant pleural effusion (MPE) has been the subject of several recent randomized controlled trials and excellent reviews. Less attention has been focused on another controversial and challenging aspect of MPE: establishing the diagnosis. Before selecting the optimal management strategy, the presence of an MPE must first be correctly identified with an emphasis on minimizing invasiveness and discomfort in a patient with late-stage cancer. The aim of the present review is to summarize the current knowledge about MPE diagnostics and to propose an algorithm for the diagnosis of MPE in established or suspected malignancy.
Collapse
|
26
|
Cortés-Hernández LE, Eslami-S Z, Alix-Panabières C. Liquid Biopsy to Detect Circulating Tumor Cells: Is It Ready for a Value Proposition in Laboratory Medicine? J Appl Lab Med 2020; 5:1027-1037. [PMID: 32845318 DOI: 10.1093/jalm/jfaa115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/24/2020] [Indexed: 12/27/2022]
Abstract
The long-term effects of cancer on patient quality of life and its economic burden are important issues that need to be addressed. Therefore, it is critical to assess patient priorities and investigate the value proposition of clinical tests in this field. The minimally invasive liquid biopsy has attracted much attention because it allows serial sampling during cancer progression, and provides valuable biological information on the tumor biology and treatment response through the analysis of analytes in the blood, such as circulating tumor cells (CTCs). To introduce CTC analysis in daily clinical practice, it is still necessary to firmly establish its clinical benefits and extra value for clinical decision-making. A laboratory medicine value proposition of CTC medical applications can help to address these issues. In this review, we discuss the current evidence for a value proposition of CTC detection, isolation, and characterization using the available technologies, and we summarize the unmet requirements for the full integration of CTCs in the care pathway.
Collapse
Affiliation(s)
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| |
Collapse
|
27
|
Cortés-Hernández LE, Eslami-S Z, Pantel K, Alix-Panabières C. Molecular and Functional Characterization of Circulating Tumor Cells: From Discovery to Clinical Application. Clin Chem 2020; 66:97-104. [PMID: 31811001 DOI: 10.1373/clinchem.2019.303586] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND One of the objectives for the liquid biopsy is to become a surrogate to tissue biopsies in diagnosis of cancer as a minimally invasive method, with clinical utility in real-time follow-ups of patients. To achieve this goal, it is still necessary to achieve a better understanding of the mechanisms of cancer and the biological principles that govern its behavior, particularly with regard to circulating tumor cells (CTCs). CONTENT The isolation, enumeration, detection, and characterization of CTCs have already proven to provide relevant clinical information about patient prognosis and treatment prediction. Moreover, CTCs can be analyzed at the genome, proteome, transcriptome, and secretome levels and can also be used for functional studies in in vitro and in vivo models. These features, taken together, have made CTCs a very valuable biosource. SUMMARY To further advance the field and discover new clinical applications for CTCs, several studies have been performed to learn more about these cells and better understand the biology of metastasis. In this review, we describe the recent literature on the topic of liquid biopsy with particular focus on the biology of CTCs.
Collapse
Affiliation(s)
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| |
Collapse
|
28
|
Li Y, Lv Z, Zhang S, Wang Z, He L, Tang M, Pu W, Zhao H, Zhang Z, Shi Q, Cai D, Wu M, Hu G, Lui KO, Feng J, Nieto MA, Zhou B. Genetic Fate Mapping of Transient Cell Fate Reveals N-Cadherin Activity and Function in Tumor Metastasis. Dev Cell 2020; 54:593-607.e5. [PMID: 32668208 DOI: 10.1016/j.devcel.2020.06.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/26/2020] [Accepted: 06/16/2020] [Indexed: 01/06/2023]
Abstract
Genetic lineage tracing unravels cell fate and plasticity in development, tissue homeostasis, and diseases. However, it remains technically challenging to trace temporary or transient cell fate, such as epithelial-to-mesenchymal transition (EMT) in tumor metastasis. Here, we generated a genetic fate-mapping system for temporally seamless tracing of transient cell fate. Highlighting its immediate application, we used it to study EMT gene activity from the local primary tumor to a distant metastatic site in vivo. In a spontaneous breast-to-lung metastasis model, we found that primary tumor cells activated vimentin and N-cadherin in situ, but only N-cadherin was activated and functionally required during metastasis. Tumor cells that have ever expressed N-cadherin constituted the majority of metastases in lungs, and functional deletion of N-cad significantly reduced metastasis. The seamless genetic recording system described here provides an alternative way for understanding transient cell fate and plasticity in biological processes.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zan Lv
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shaohua Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhuo Wang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 201100, Shanghai, China
| | - Lingjuan He
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Muxue Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenjuan Pu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Huan Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenqian Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qihui Shi
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 201100, Shanghai, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Mingfu Wu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kathy O Lui
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR 999077, China
| | - Jing Feng
- Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201400, China
| | - M Angela Nieto
- Institute de Neurociencias CSIC-UMH, Avda. Ramon y Cajal s/n, 03550 San Juan de Alicante, Spain
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
29
|
Yang L, George J, Wang J. Deep Profiling of Cellular Heterogeneity by Emerging Single-Cell Proteomic Technologies. Proteomics 2020; 20:e1900226. [PMID: 31729152 PMCID: PMC7225074 DOI: 10.1002/pmic.201900226] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/14/2019] [Indexed: 12/20/2022]
Abstract
The ability to comprehensively profile cellular heterogeneity in functional proteome is crucial in advancing the understanding of cell behavior, organism development, and disease mechanisms. Conventional bulk measurement by averaging the biological responses across a population often loses the information of cellular variations. Single-cell proteomic technologies are becoming increasingly important to understand and discern cellular heterogeneity. The well-established methods for single-cell protein analysis based on flow cytometry and fluorescence microscopy are limited by the low multiplexing ability owing to the spectra overlap of fluorophores for labeling antibodies. Recent advances in mass spectrometry (MS), microchip, and reiterative staining-based techniques for single-cell proteomics have enabled the evaluation of cellular heterogeneity with high throughput, increased multiplexity, and improved sensitivity. In this review, the principles, developments, advantages, and limitations of these advanced technologies in analysis of single-cell proteins, along with their biological applications to study cellular heterogeneity, are described. At last, the remaining challenges, possible strategies, and future opportunities that will facilitate the improvement and broad applications of single-cell proteomic technologies in cell biology and medical research are discussed.
Collapse
Affiliation(s)
- Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794
| | - Justin George
- Department of Chemistry, State University of New York, University at Albany, Albany, NY 12222
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794
| |
Collapse
|
30
|
Dysmetabolic Circulating Tumor Cells Are Prognostic in Metastatic Breast Cancer. Cancers (Basel) 2020; 12:cancers12041005. [PMID: 32325824 PMCID: PMC7226515 DOI: 10.3390/cancers12041005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Circulating tumor cells (CTCs) belong to a heterogeneous pool of rare cells, and a unequivocal phenotypic definition of CTC is lacking. Here, we present a definition of metabolically-altered CTC (MBA-CTCs) as CD45-negative cells with an increased extracellular acidification rate, detected with a single-cell droplet microfluidic technique. We tested the prognostic value of MBA-CTCs in 31 metastatic breast cancer patients before starting a new systemic therapy (T0) and 3–4 weeks after (T1), comparing results with a parallel FDA-approved CellSearch (CS) approach. An increased level of MBA-CTCs was associated with: i) a shorter median PFS pre-therapy (123 days vs. 306; p < 0.0001) and during therapy (139 vs. 266 days; p = 0.0009); ii) a worse OS pre-therapy (p = 0.0003, 82% survival vs. 20%) and during therapy (p = 0.0301, 67% survival vs. 38%); iii) good agreement with therapy response (kappa = 0.685). The trend of MBA-CTCs over time (combining data at T0 and T1) added information with respect to separate evaluation of T0 and T1. The combined results of the two assays (MBA and CS) increased stratification accuracy, while correlation between MBA and CS was not significant, suggesting that the two assays are detecting different CTC subsets. In conclusion, this study suggests that MBA allows detection of both EpCAM-negative and EpCAM-positive, viable and label-free CTCs, which provide clinical information apparently equivalent and complementary to CS. A further validation of proposed method and cut-offs is needed in a larger, separate study.
Collapse
|
31
|
L-Glucose: Another Path to Cancer Cells. Cancers (Basel) 2020; 12:cancers12040850. [PMID: 32244695 PMCID: PMC7225996 DOI: 10.3390/cancers12040850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/31/2023] Open
Abstract
Cancerous tumors comprise cells showing metabolic heterogeneity. Among numerous efforts to understand this property, little attention has been paid to the possibility that cancer cells take up and utilize otherwise unusable substrates as fuel. Here we discuss this issue by focusing on l-glucose, the mirror image isomer of naturally occurring d-glucose; l-glucose is an unmetabolizable sugar except in some bacteria. By combining relatively small fluorophores with l-glucose, we generated fluorescence-emitting l-glucose tracers (fLGs). To our surprise, 2-NBDLG, one of these fLGs, which we thought to be merely a control substrate for the fluorescent d-glucose tracer 2-NBDG, was specifically taken up into tumor cell aggregates (spheroids) that exhibited nuclear heterogeneity, a major cytological feature of malignancy in cancer diagnosis. Changes in mitochondrial activity were also associated with the spheroids taking up fLG. To better understand these phenomena, we review here the Warburg effect as well as key studies regarding glucose uptake. We also discuss tumor heterogeneity involving aberrant uptake of glucose and mitochondrial changes based on the data obtained by fLG. We then consider the use of fLGs as novel markers for visualization and characterization of malignant tumor cells.
Collapse
|
32
|
Huang Y, Situ B, Huang L, Cao Y, Sui H, Ye X, Jiang X, Liang A, Tao M, Luo S, Zhang Y, Zhong M, Zheng L. Nondestructive Identification of Rare Trophoblastic Cells by Endoplasmic Reticulum Staining for Noninvasive Prenatal Testing of Monogenic Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903354. [PMID: 32274316 PMCID: PMC7141004 DOI: 10.1002/advs.201903354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/27/2020] [Indexed: 05/06/2023]
Abstract
Noninvasive prenatal detection of monogenic diseases based on cell-free DNA is hampered by challenges in obtaining a sufficient fraction and adequate quality of fetal DNA. Analyzing rare trophoblastic cells from Papanicolaou smears carrying the entire fetal genome provides an alternative method for noninvasive detection of monogenic diseases. However, intracellular labeling for identification of target cells can affect the quality of DNA in varying degrees. Here, a new approach is developed for nondestructive identification of rare fetal cells from abundant maternal cells based on endoplasmic reticulum staining and linear discriminant analysis (ER-LDA). Compared with traditional methods, ER-LDA has little effect on cell quality, allowing trophoblastic cells to be analyzed on the single-cell level. Using ER-LDA, high-purity of trophoblastic cells can be identified and isolated at single cell resolution from 60 pregnancies between 4 and 38 weeks of gestation. Pathogenic variants, including -SEA/ deletion mutation and point mutations, in 11 fetuses at risk for α- or β-thalassemia can be accurately detected by this test. The detection platform can also be extended to analyze the mutational profiles of other monogenic diseases. This simple, low-cost, and noninvasive test can provide valuable fetal cells for fetal genotyping and holds promise for prenatal detection of monogenic diseases.
Collapse
Affiliation(s)
- Yifang Huang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Bo Situ
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Liping Huang
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
| | - Yingsi Cao
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
| | - Hong Sui
- Department of Laboratory MedicineDongguan Kanghua HospitalDongguan523080P. R. China
| | - Xinyi Ye
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Xiujuan Jiang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Aifen Liang
- Department of Laboratory MedicineDongguan Kanghua HospitalDongguan523080P. R. China
| | - Maliang Tao
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Shihua Luo
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Ye Zhang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Mei Zhong
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
| | - Lei Zheng
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| |
Collapse
|
33
|
Xu X, Wang J, Wu L, Guo J, Song Y, Tian T, Wang W, Zhu Z, Yang C. Microfluidic Single-Cell Omics Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903905. [PMID: 31544338 DOI: 10.1002/smll.201903905] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/26/2019] [Indexed: 05/27/2023]
Abstract
The commonly existing cellular heterogeneity plays a critical role in biological processes such as embryonic development, cell differentiation, and disease progress. Single-cell omics-based heterogeneous studies have great significance for identifying different cell populations, discovering new cell types, revealing informative cell features, and uncovering significant interrelationships between cells. Recently, microfluidics has evolved to be a powerful technology for single-cell omics analysis due to its merits of throughput, sensitivity, and accuracy. Herein, the recent advances of microfluidic single-cell omics analysis, including different microfluidic platform designs, lysis strategies, and omics analysis techniques, are reviewed. Representative applications of microfluidic single-cell omics analysis in complex biological studies are then summarized. Finally, a few perspectives on the future challenges and development trends of microfluidic-assisted single-cell omics analysis are discussed.
Collapse
Affiliation(s)
- Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Junxia Wang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jingjing Guo
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanling Song
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tian Tian
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
34
|
D'Oronzo S, Lovero D, Palmirotta R, Stucci LS, Tucci M, Felici C, Cascardi E, Giardina C, Cafforio P, Silvestris F. Dissection of major cancer gene variants in subsets of circulating tumor cells in advanced breast cancer. Sci Rep 2019; 9:17276. [PMID: 31754145 PMCID: PMC6872745 DOI: 10.1038/s41598-019-53660-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Enumeration of circulating tumor cells (CTCs) may reflect the metastatic potential of breast cancer (BC). By using the DEPArray, we investigated CTCs with respect to their epithelial-to-mesenchymal transition phenotype and compared their genomic heterogeneity with tissue biopsies. Seventeen stage IV BC patients were enrolled. Pre-enriched CTC suspensions were stained with fluorescent-labeled antibodies to epithelial (E) and mesenchymal (M) markers. CTC samples were processed by DEPArray system and clustered in relation to their markers. DNA from CTCs, as well as from primary tumor samples, was sequenced by next generation sequencing to assess the mutational state of 50 major cancer-related genes. We identified four different CTC subsets that harbored different gene variants. The most heterogenous CTC subsets included the M+/E- phenotype, which, however, expressed only 7 repeatedly mutated genes, while in the M-/E+ subset multiple mutations affected only 2 out of 50 genes. When matching all gene variants among CTC subsets, a small number of mutations was shared by only 4 genes, namely ATM, FGFR3, PIK3CA, and TP53 that, however, were absent in primary tumors. Our results postulate that the detected mutations in all CTC subsets may be considered as genomic markers of metastatic dissemination to be investigated during early stages of BC.
Collapse
Affiliation(s)
- Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
- I.R.C.C.S-Giovanni Paolo II Cancer Institute, 70124, Bari, Italy
| | - Domenica Lovero
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Raffaele Palmirotta
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Luigia Stefania Stucci
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
- I.R.C.C.S-Giovanni Paolo II Cancer Institute, 70124, Bari, Italy
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Eliano Cascardi
- Department of Emergency and Organs Transplant, Division of Pathology, University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Carmela Giardina
- Department of Emergency and Organs Transplant, Division of Pathology, University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Paola Cafforio
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy.
| |
Collapse
|
35
|
Liquid biopsy-based single-cell metabolic phenotyping of lung cancer patients for informative diagnostics. Nat Commun 2019; 10:3856. [PMID: 31451693 PMCID: PMC6710267 DOI: 10.1038/s41467-019-11808-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 08/01/2019] [Indexed: 12/31/2022] Open
Abstract
Accurate prediction of chemo- or targeted therapy responses for patients with similar driver oncogenes through a simple and least-invasive assay represents an unmet need in the clinical diagnosis of non-small cell lung cancer. Using a single-cell on-chip metabolic cytometry and fluorescent metabolic probes, we show metabolic phenotyping on the rare disseminated tumor cells in pleural effusions across a panel of 32 lung adenocarcinoma patients. Our results reveal extensive metabolic heterogeneity of tumor cells that differentially engage in glycolysis and mitochondrial oxidation. The cell number ratio of the two metabolic phenotypes is found to be predictive for patient therapy response, physiological performance, and survival. Transcriptome analysis reveals that the glycolytic phenotype is associated with mesenchymal-like cell state with elevated expression of the resistant-leading receptor tyrosine kinase AXL and immune checkpoint ligands. Drug targeting AXL induces a significant cell killing in the glycolytic cells without affecting the cells with active mitochondrial oxidation. Non-invasive methods to predict treatment response are urgently needed. Here in lung cancer, the authors develop a single-cell on-chip cytometry method to metabolically phenotype disseminated tumor cells, revealing metabolic heterogeneity and predictors of therapy response and survival.
Collapse
|
36
|
|
37
|
Steinfort DP, Kranz S, Dowers A, Leas L, Dimitriadis V, Pham K, Hsu A, Bozinovski S, Irving LB, Loveland P, Christie M. Sensitive molecular testing methods can demonstrate NSCLC driver mutations in malignant pleural effusion despite non-malignant cytology. Transl Lung Cancer Res 2019; 8:513-518. [PMID: 31555523 DOI: 10.21037/tlcr.2019.07.05] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Malignant pleural effusion (MPE) may be diagnosed by cytologic evaluation of pleural fluid, though false negative results can occur. Pleural effusions may provide a source of tumour material for genotyping in lung cancer patients. Detection of MPE may be improved through use of highly sensitive molecular techniques. We identified five patients with non-small cell lung cancer (NSCLC) with initial pleural fluid samples that were non-malignant on cytology, but were subsequently clinically confirmed to have MPE. Tumour mutation status was confirmed via routine testing of diagnostic clinical specimens. Cytologically negative pleural fluid cell-block specimens were analysed by amplicon-based parallel sequencing (APS) for somatic mutations commonly detected in NSCLC, and selected cases by improved and complete enrichment CO-amplification at lower denaturation temperature PCR (ICECOLD PCR) for known mutations. Mutations were detected in three out of three (sensitivity 100%) cytologically non-malignant pleural fluids from patients with a known mutation: two patients with known Kirsten rat sarcoma (KRAS) mutation demonstrated the same KRAS mutation in their pleural fluids by APS, both at approximately 2% mutant allele frequency. In one patient with a known KRAS mutation, ICECOLD PCR detected the same KRAS variant at 0.7% frequency. No mutations were detected in patients with wild-type findings from reference samples (specificity 100%). Sensitive DNA sequencing methods can detect cancer-driver mutations in cytologically non-malignant pleural fluid specimens from NSCLC patients with MPE. Our findings demonstrate the feasibility of sensitive molecular diagnostic techniques for improvement of diagnostic assessment of pleural effusions in patients with lung cancer.
Collapse
Affiliation(s)
- Daniel P Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Parkville, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - Sevastjan Kranz
- Department of Pathology, Royal Melbourne Hospital, Parkville, Australia
| | - Anthony Dowers
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Leakhena Leas
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Voula Dimitriadis
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Kym Pham
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Arthur Hsu
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Louis B Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital, Parkville, Australia
| | - Paula Loveland
- Department of Respiratory Medicine, Royal Melbourne Hospital, Parkville, Australia
| | - Michael Christie
- Department of Pathology, Royal Melbourne Hospital, Parkville, Australia.,Department of Pathology, University of Melbourne, Parkville, Australia
| |
Collapse
|
38
|
Bibby AC, Dorn P, Psallidas I, Porcel JM, Janssen J, Froudarakis M, Subotic D, Astoul P, Licht P, Schmid R, Scherpereel A, Rahman NM, Maskell NA, Cardillo G. ERS/EACTS statement on the management of malignant pleural effusions. Eur J Cardiothorac Surg 2019; 55:116-132. [PMID: 30060030 DOI: 10.1093/ejcts/ezy258] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 03/28/2018] [Indexed: 12/26/2022] Open
Abstract
Malignant pleural effusions (MPE) are a common pathology, treated by respiratory physicians and thoracic surgeons alike. In recent years, several well-designed randomized clinical trials have been published that have changed the landscape of MPE management. The European Respiratory Society (ERS) and the European Association for Cardio-Thoracic Surgery (EACTS) established a multidisciplinary collaboration of clinicians with expertise in the management of MPE with the aim of producing a comprehensive review of the scientific literature. Six areas of interest were identified, including the optimum management of symptomatic MPE, management of trapped lung in MPE, management of loculated MPE, prognostic factors in MPE, whether there is a role for oncological therapies prior to intervention for MPE and whether a histological diagnosis is always required in MPE. The literature revealed that talc pleurodesis and indwelling pleural catheters effectively manage the symptoms of MPE. There was limited evidence regarding the management of trapped lung or loculated MPE. The LENT score was identified as a validated tool for predicting survival in MPE, with Brims' prognostic score demonstrating utility in mesothelioma prognostication. There was no evidence to support the use of oncological therapies as an alternative to MPE drainage, and the literature supported the use of tissue biopsy as the gold standard for diagnosis and treatment planning.Management options for malignant pleural effusions have advanced over the past decade, with high-quality randomized trial evidence informing practice in many areas. However, uncertainties remain and further research is required http://ow.ly/rNt730jOxOS.
Collapse
Affiliation(s)
- Anna C Bibby
- Academic Respiratory Unit, University of Bristol Medical School Translational Health Sciences, Bristol, UK
- North Bristol Lung Centre, North Bristol NHS Trust, Bristol, UK
| | - Patrick Dorn
- Division of Thoracic Surgery, University Hospital Bern, Bern, Switzerland
| | | | - Jose M Porcel
- Pleural Medicine Unit, Arnau de Vilanova University Hospital, IRB Lleida, Lleida, Spain
| | - Julius Janssen
- Department of Pulmonary Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Marios Froudarakis
- Department of Respiratory Medicine, Medical School of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dragan Subotic
- Clinic for Thoracic Surgery, Clinical Center of Serbia, Belgrade, Serbia
| | - Phillippe Astoul
- Department of Thoracic Oncology, Pleural Diseases and Interventional Pulmonology, Hospital North Aix-Marseille University, Marseille, France
| | - Peter Licht
- Department of Cardiothoracic Surgery, Odense University Hospital, Odense, Denmark
| | - Ralph Schmid
- Division of Thoracic Surgery, University Hospital Bern, Bern, Switzerland
| | - Arnaud Scherpereel
- Pulmonary and Thoracic Oncology Department, Hospital of the University (CHU) of Lille, Lille, France
| | - Najib M Rahman
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
- Oxford Centre for Respiratory Medicine, University Hospitals, NHS Foundation Trust, Oxford, UK
| | - Nick A Maskell
- Academic Respiratory Unit, University of Bristol Medical School Translational Health Sciences, Bristol, UK
- North Bristol Lung Centre, North Bristol NHS Trust, Bristol, UK
- Task force chairperson
| | - Giuseppe Cardillo
- Task force chairperson
- Department of Thoracic Surgery, Carlo Forlanini Hospital, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| |
Collapse
|
39
|
Abstract
Single-cell omics studies provide unique information regarding cellular heterogeneity at various levels of the molecular biology central dogma. This knowledge facilitates a deeper understanding of how underlying molecular and architectural changes alter cell behavior, development, and disease processes. The emerging microchip-based tools for single-cell omics analysis are enabling the evaluation of cellular omics with high throughput, improved sensitivity, and reduced cost. We review state-of-the-art microchip platforms for profiling genomics, epigenomics, transcriptomics, proteomics, metabolomics, and multi-omics at single-cell resolution. We also discuss the background of and challenges in the analysis of each molecular layer and integration of multiple levels of omics data, as well as how microchip-based methodologies benefit these fields. Additionally, we examine the advantages and limitations of these approaches. Looking forward, we describe additional challenges and future opportunities that will facilitate the improvement and broad adoption of single-cell omics in life science and medicine.
Collapse
Affiliation(s)
- Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA; , ,
| | - Amanda Finck
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA; , ,
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA; , ,
| |
Collapse
|
40
|
Wang K, Zhou L, Zhao S, Cheng Z, Qiu S, Lu Y, Wu Z, Abdel Wahab AHA, Mao H, Zhao J. A microfluidic platform for high-purity separating circulating tumor cells at the single-cell level. Talanta 2019; 200:169-176. [PMID: 31036170 DOI: 10.1016/j.talanta.2019.03.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
Circulating tumor cells (CTCs) are rare cancer cells that are shed from the tumors into the peripheral blood and are instrumental in distant metastasis. Early detection of CTCs can therefore improve prognoses and help design patient-specific treatment regimen. However, the current CTC isolation techniques have poor efficacy and selectivity, owing to the rarity and heterogeneity of the CTCs. We designed a microchip for integrated single-cell isolation of CTCs - based on cell size and immuno-phenotype - and analysis. Each isolation unit consisted of a trap channel, a bypass channel, and a release channel. The larger cells were preferentially captured at the trap channels and flushed out selectively via release microvalves according to their immuno-phenotype. The average recovery rate and purity of lung cancer cells isolated from a spiked WBC population were respectively 92.5% and 94% using the microchip, which were significantly higher compared to that obtained using anti-CD45 magnetic beads. In addition, the isolated cancer cells were analyzed on chip for the surface markers of epithelial mesenchymal transition. Taken together, the integrated microchip is a promising tool for the isolation and analysis of CTCs in the clinical setting.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Lin Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Simin Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200050, China
| | - Zule Cheng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Shihui Qiu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Yunxing Lu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | | | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
41
|
Wang C, Yang L, Wang Z, He J, Shi Q. Highly multiplexed profiling of cell surface proteins on single circulating tumor cells based on antibody and cellular barcoding. Anal Bioanal Chem 2019; 411:5373-5382. [PMID: 30820628 DOI: 10.1007/s00216-019-01666-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/26/2019] [Accepted: 02/04/2019] [Indexed: 11/27/2022]
Abstract
Circulating tumor cells (CTCs) are extraordinarily rare in blood samples and represent a real-time "liquid biopsy" of tumors. Although genetic and transcriptional sequencing of single CTCs has been reported, these methods fail to provide phenotypic and functional information of CTCs such as protein levels of surface proteins. Studies of single-cell proteomic assays of CTCs have been rare because of a lack of single-cell proteomic methods to handle and analyze rare cells in a high background of non-target cells with high sensitivity, throughput, and multiplexing capacity. Here, we develop a microchip-assisted single-cell proteomic method for profiling surface proteins of CTCs based on antibody and cellular DNA barcoding strategy. We combine DNA-encoded antibody tags and cell indexes to profile 15 proteins in ~ 100 single rare cells simultaneously, and use high-throughput sequencing as the readout to generate surface protein profiles of CTCs according to their cell indexes and antibody-derived protein barcodes. A 6400-well microchip and the automated puncher are used to rapidly retrieve single CTCs from enriched CTC population with minimal cell loss (~ 10%). This technological platform integrates reliable isolation and proteomic analysis of single CTCs and can be extendable to ~ 100 proteins in hundreds of rare cells with single-cell precision.
Collapse
Affiliation(s)
- Chunying Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Minhang District, Shanghai, 200240, China
| | - Liu Yang
- Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Zhuo Wang
- Minhang Branch, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201100, China
| | - Jianjun He
- Abmart (Shanghai) Inc., Shanghai, 200233, China
| | - Qihui Shi
- Minhang Branch, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201100, China.
| |
Collapse
|
42
|
Lu J, Han B. Liquid Biopsy Promotes Non-Small Cell Lung Cancer Precision Therapy. Technol Cancer Res Treat 2019; 17:1533033818801809. [PMID: 30244652 PMCID: PMC6153525 DOI: 10.1177/1533033818801809] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The range of potential applications of liquid biopsies for non-small cell lung cancer management is expanded by the use of circulating tumor deoxyribonucleic acid and circulating tumor cells. Principal studies have demonstrated the predictive accuracy of droplet digital polymerase chain reaction detection, next-generation sequencing, and circulating tumor cells detection in patients with non-small cell lung cancer. The translational potential of these liquid biopsy technologies promotes the improvement of sensitivity and specificity in genomic and molecular methods. Here, we highlight the realities and challenges associated with the use of liquid biopsies for the detection of non-small cell lung cancer in patients. However, liquid biopsy technologies including circulating tumor cells detection, droplet digital polymerase chain reaction detection, and next-generation sequencing detection for precision therapy in non-small cell lung cancer will show substantive clinical applications in the future.
Collapse
Affiliation(s)
- Jun Lu
- 1 Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Baohui Han
- 1 Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
43
|
Dong Z, Tang C, Zhao L, Xu J, Wu Y, Tang X, Zhou W, He R, Zhao R, Xu L, Zhang Z, Fang X. A Microwell-Assisted Multiaptamer Immunomagnetic Platform for Capture and Genetic Analysis of Circulating Tumor Cells. Adv Healthc Mater 2018; 7:e1801231. [PMID: 30565898 DOI: 10.1002/adhm.201801231] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/31/2018] [Indexed: 12/28/2022]
Abstract
Detection of circulating tumor cells (CTCs) in peripheral blood is of paramount significance for cancer diagnosis, progress evaluation, and individualized therapy. However, the rareness and heterogeneity of CTCs introduces significant challenges in the capture of cancer cells as well as downstream genetic analysis. In this work, a microwell-assisted multiaptamer immunomagnetic platform (MMAIP) is proposed for highly efficient capture of CTCs with minimum influence of heterogeneity. Assisted by a microwell chip, the purity of CTCs is greatly improved, thus meeting the requirement of downstream gene analysis. This is, as far as is known, the first aptamer based platform enabling mutation analysis of the captured CTCs from cancer patients, which will contribute to the practical application of aptamers in clinics.
Collapse
Affiliation(s)
- Zaizai Dong
- Beijing National Research Center for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Chuanhao Tang
- Department of Medical Oncology; Peking University International Hospital; Beijing 102206 P. R. China
| | - Libo Zhao
- Echo Biotech Co., Ltd; Beijing 102206 P. R. China
| | - Jiachao Xu
- Beijing National Research Center for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Yayun Wu
- Beijing National Research Center for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Xiaojun Tang
- Beijing National Research Center for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Wei Zhou
- Beijing National Research Center for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Rongxiang He
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices; Ministry of Education; Jianghan University; Wuhan 430056 P. R. China
| | - Rong Zhao
- Beijing National Research Center for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Li Xu
- Beijing National Research Center for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Zhen Zhang
- Beijing National Research Center for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Xiaohong Fang
- Beijing National Research Center for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
44
|
Song Y, Lin B, Tian T, Xu X, Wang W, Ruan Q, Guo J, Zhu Z, Yang C. Recent Progress in Microfluidics-Based Biosensing. Anal Chem 2018; 91:388-404. [DOI: 10.1021/acs.analchem.8b05007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yanling Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bingqian Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tian Tian
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xing Xu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qingyu Ruan
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jingjing Guo
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
45
|
Shao S, Li Z, Cheng H, Wang S, Perkins NG, Sarkar P, Wei W, Xue M. A Chemical Approach for Profiling Intracellular AKT Signaling Dynamics from Single Cells. J Am Chem Soc 2018; 140:13586-13589. [PMID: 30351133 DOI: 10.1021/jacs.8b08931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present here a novel chemical method to continuously analyze intracellular AKT signaling activities at single-cell resolution, without genetic manipulations. A pair of cyclic peptide-based fluorescent probes were developed to recognize the phosphorylated Ser474 site and a distal epitope on AKT. A Förster resonance energy transfer signal is generated upon concurrent binding of the two probes onto the same AKT protein, which is contingent upon the Ser474 phosphorylation. Intracellular delivery of the probes enabled dynamic measurements of the AKT signaling activities. We further implemented this detection strategy on a microwell single-cell platform, and interrogated the AKT signaling dynamics in a human glioblastoma cell line. We resolved unique features of the single-cell signaling dynamics following different perturbations. Our study provided the first example of monitoring the temporal evolution of cellular signaling heterogeneities and unveiled biological information that was inaccessible to other methods.
Collapse
Affiliation(s)
- Shiqun Shao
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Zhonghan Li
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Hanjun Cheng
- Institute for Systems Biology , Seattle , Washington 98109 , United States
| | - Siwen Wang
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Nicole G Perkins
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Priyanka Sarkar
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Wei Wei
- Institute for Systems Biology , Seattle , Washington 98109 , United States
| | - Min Xue
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| |
Collapse
|
46
|
Campbell JM, Balhoff JB, Landwehr GM, Rahman SM, Vaithiyanathan M, Melvin AT. Microfluidic and Paper-Based Devices for Disease Detection and Diagnostic Research. Int J Mol Sci 2018; 19:E2731. [PMID: 30213089 PMCID: PMC6164778 DOI: 10.3390/ijms19092731] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Recent developments in microfluidic devices, nanoparticle chemistry, fluorescent microscopy, and biochemical techniques such as genetic identification and antibody capture have provided easier and more sensitive platforms for detecting and diagnosing diseases as well as providing new fundamental insight into disease progression. These advancements have led to the development of new technology and assays capable of easy and early detection of pathogenicity as well as the enhancement of the drug discovery and development pipeline. While some studies have focused on treatment, many of these technologies have found initial success in laboratories as a precursor for clinical applications. This review highlights the current and future progress of microfluidic techniques geared toward the timely and inexpensive diagnosis of disease including technologies aimed at high-throughput single cell analysis for drug development. It also summarizes novel microfluidic approaches to characterize fundamental cellular behavior and heterogeneity.
Collapse
Affiliation(s)
- Joshua M Campbell
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Joseph B Balhoff
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Grant M Landwehr
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Sharif M Rahman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
47
|
Turetta M, Bulfoni M, Brisotto G, Fasola G, Zanello A, Biscontin E, Mariuzzi L, Steffan A, Di Loreto C, Cesselli D, Del Ben F. Assessment of the Mutational Status of NSCLC Using Hypermetabolic Circulating Tumor Cells. Cancers (Basel) 2018; 10:cancers10080270. [PMID: 30110953 PMCID: PMC6115779 DOI: 10.3390/cancers10080270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/01/2018] [Accepted: 08/10/2018] [Indexed: 01/11/2023] Open
Abstract
Molecular characterization is currently a key step in NSCLC therapy selection. Circulating tumor cells (CTC) are excellent candidates for downstream analysis, but technology is still lagging behind. In this work, we show that the mutational status of NSCLC can be assessed on hypermetabolic CTC, detected by their increased glucose uptake. We validated the method in 30 Stage IV NSCLC patients: peripheral blood samples were incubated with a fluorescent glucose analog (2-NBDG) and analyzed by flow cytometry. Cells with the highest glucose uptake were sorted out. EGFR and KRAS mutations were detected by ddPCR. In sorted cells, mutated DNA was found in 85% of patients, finding an exact match with primary tumor in 70% of cases. Interestingly, in two patients multiple KRAS mutations were detected. Two patients displayed different mutations with respect to the primary tumor, and in two out of the four patients with a wild type primary tumor, new mutations were highlighted: EGFR p.746_750del and KRAS p.G12V. Hypermetabolic CTC can be enriched without the need of dedicated equipment and their mutational status can successfully be assessed by ddPCR. Finally, the finding of new mutations supports the possibility of probing tumor heterogeneity.
Collapse
Affiliation(s)
- Matteo Turetta
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Michela Bulfoni
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Giulia Brisotto
- Immunopathology and Cancer Biomarkers, C.R.O. Aviano National Cancer Institute IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
- IOV-IRCCS, Immunology and Molecular Oncology Unit, V. Gattamelata 64, 35128 Padova, Italy.
- DISCOG, University of Padova, V. Giustiniani 2, 35128 Padova, Italy.
| | - Gianpiero Fasola
- Udine Academic Hospital, P.le Santa Maria della Misericordia 15, 33100 Udine, Italy.
| | - Andrea Zanello
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Eva Biscontin
- Immunopathology and Cancer Biomarkers, C.R.O. Aviano National Cancer Institute IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| | - Laura Mariuzzi
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
- Udine Academic Hospital, P.le Santa Maria della Misericordia 15, 33100 Udine, Italy.
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, C.R.O. Aviano National Cancer Institute IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| | - Carla Di Loreto
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
- Udine Academic Hospital, P.le Santa Maria della Misericordia 15, 33100 Udine, Italy.
| | - Daniela Cesselli
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
- Udine Academic Hospital, P.le Santa Maria della Misericordia 15, 33100 Udine, Italy.
| | - Fabio Del Ben
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
- Immunopathology and Cancer Biomarkers, C.R.O. Aviano National Cancer Institute IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| |
Collapse
|
48
|
Bibby AC, Dorn P, Psallidas I, Porcel JM, Janssen J, Froudarakis M, Subotic D, Astoul P, Licht P, Schmid R, Scherpereel A, Rahman NM, Cardillo G, Maskell NA. ERS/EACTS statement on the management of malignant pleural effusions. Eur Respir J 2018; 52:13993003.00349-2018. [DOI: 10.1183/13993003.00349-2018] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023]
Abstract
Malignant pleural effusions (MPE) are a common pathology, treated by respiratory physicians and thoracic surgeons alike. In recent years, several well-designed randomised clinical trials have been published that have changed the landscape of MPE management. The European Respiratory Society (ERS) and the European Association for Cardio-Thoracic Surgery (EACTS) established a multidisciplinary collaboration of clinicians with expertise in the management of MPE with the aim of producing a comprehensive review of the scientific literature.Six areas of interest were identified, including the optimum management of symptomatic MPE, management of trapped lung in MPE, management of loculated MPE, prognostic factors in MPE, whether there is a role for oncological therapies prior to intervention for MPE and whether a histological diagnosis is always required in MPE.The literature revealed that talc pleurodesis and indwelling pleural catheters effectively manage the symptoms of MPE. There was limited evidence regarding the management of trapped lung or loculated MPE. The LENT score was identified as a validated tool for predicting survival in MPE, with Brims' prognostic score demonstrating utility in mesothelioma prognostication. There was no evidence to support the use of oncological therapies as an alternative to MPE drainage, and the literature supported the use of tissue biopsy as the gold standard for diagnosis and treatment planning.
Collapse
|
49
|
Liu J, Zhang Y, Zhao Q, Situ B, Zhao J, Luo S, Li B, Yan X, Vadgama P, Su L, Ma W, Wang W, Zheng L. Bifunctional aptamer-mediated catalytic hairpin assembly for the sensitive and homogenous detection of rare cancer cells. Anal Chim Acta 2018; 1029:58-64. [PMID: 29907291 DOI: 10.1016/j.aca.2018.04.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022]
Abstract
The presence of cancer cells in body fluids confirms the occurrence of metastasis and guides treatment. A simple, fast, and homogeneous fluorescent method was developed to detect cancer cells based on catalytic hairpin assembly (CHA) and bifunctional aptamers. The bifunctional aptamer had a recognition domain for binding to target cancer cells and an initiator domain for triggering the CHA reaction. In the presence of target cells, the bifunctional aptamer was released from the inhibitor and initiated a cascade reaction of assembly and disassembly of the hairpins. Separation of the fluorophores from the quenchers produced fluorescence signals. The proposed strategy showed high specificity for discriminating normal cells and leukocytes, and the detection limit was 10 cells/mL, which was lower than that of previous aptasensors. This assay was further tested using four kinds of clinical samples spiked with target cells to confirm its applicability. We developed a simple, rapid, and cost-effective method for the detection of cancer cells that did not require purification, and the approach holds great potential for bioanalysis and early diagnosis.
Collapse
Affiliation(s)
- Jumei Liu
- Department of Laboratory Medicine/Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, PR China
| | - Ye Zhang
- Department of Laboratory Medicine/Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, PR China
| | - Qianwen Zhao
- Department of Laboratory Medicine/Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, PR China
| | - Bo Situ
- Department of Laboratory Medicine/Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, PR China
| | - Jiamin Zhao
- Department of Laboratory Medicine, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, 528000, Guangdong Province, PR China
| | - Shihua Luo
- Department of Laboratory Medicine/Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, PR China
| | - Bo Li
- Department of Laboratory Medicine/Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, PR China
| | - Xiaohui Yan
- Clinical Experimental Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, PR China
| | - Pankaj Vadgama
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Lei Su
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Wen Ma
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, 518100, Guangdong Province, PR China
| | - Wen Wang
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; Department of Laboratory Medicine/Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, PR China.
| | - Lei Zheng
- Department of Laboratory Medicine/Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, PR China.
| |
Collapse
|
50
|
Neoh KH, Hassan AA, Chen A, Sun Y, Liu P, Xu KF, Wong AS, Han RP. Rethinking liquid biopsy: Microfluidic assays for mobile tumor cells in human body fluids. Biomaterials 2018; 150:112-124. [DOI: 10.1016/j.biomaterials.2017.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 12/27/2022]
|