1
|
Trainer D, Latt KZ, Cheng X, Dandu NK, Curtiss LA, Ulloa SE, Ngo AT, Masson E, Hla SW. Gating Single Molecules with Counterions. ACS NANO 2025; 19:15272-15280. [PMID: 40250830 PMCID: PMC12044691 DOI: 10.1021/acsnano.4c12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/20/2025]
Abstract
We report atomic-scale gating and visualization of local charge distribution within individual rare-earth-based molecular complexes on a metallic surface. The complexes are formed by a positively charged lanthanum ion coordinated to a (pcam)3 molecule and a negatively charged counterion trapped underneath via electrostatic interactions on a Au(111) surface. Local gating is performed by adding an additional negatively charged counterion to one side of the complex, which results in the redistribution of charges within the complex and a positive shift of the frontier orbitals. This is caused by the internal Stark effect induced by the added counterion. This effect is directly captured using tunneling spectroscopy and spectroscopic mapping at 5 K substrate temperature. The polarizability of the complex is corroborated by density functional theory and analytical calculations based on experimental findings. Furthermore, the influence of charge polarization on nearby complexes is investigated in a cluster purposely assembled using three complexes, which reveals maintaining the charge states as in single complexes. These findings will enable the design of robust charged rare-earth complexes to be tailored for potential solid-state applications.
Collapse
Affiliation(s)
- Daniel
J. Trainer
- Nanoscience
and Technology Division, Argonne National
Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Kyaw Zin Latt
- Nanoscience
and Technology Division, Argonne National
Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
- Nanoscale
and Quantum Phenomena Institute, and Department of Physics & Astronomy, Ohio University, Athens, Ohio 45701, United States
| | - Xinyue Cheng
- Department
of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Naveen Kumar Dandu
- Chemical
Engineering Department, University of Illinois
at Chicago, Chicago, Illinois 60608, United States
- Materials
Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Larry A. Curtiss
- Materials
Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Sergio E. Ulloa
- Nanoscale
and Quantum Phenomena Institute, and Department of Physics & Astronomy, Ohio University, Athens, Ohio 45701, United States
| | - Anh T. Ngo
- Chemical
Engineering Department, University of Illinois
at Chicago, Chicago, Illinois 60608, United States
- Materials
Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Eric Masson
- Department
of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Saw Wai Hla
- Nanoscience
and Technology Division, Argonne National
Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
- Materials
Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
- Nanoscale
and Quantum Phenomena Institute, and Department of Physics & Astronomy, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
2
|
Masuya-Suzuki A. Emergent mutual separation strategy for rare-earth elements based on crystallization of coordination compounds. ANAL SCI 2025:10.1007/s44211-025-00768-y. [PMID: 40266529 DOI: 10.1007/s44211-025-00768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/01/2025] [Indexed: 04/24/2025]
Abstract
Over the past several decades, rare-earth (RE) elements have been widely used in industrial products due to their exceptional physical, chemical, and mechanical properties. The discovery and industrial applications of RE elements have largely been driven by advances in their mutual separation, as RE ions exhibit highly similar chemical properties. In recent years, the growing production of RE-based products has highlighted concerns over supply risks. Recovering RE ions from end-of-life industrial products, often referred to as "urban mines," offers a sustainable solution and supports a circular RE economy. To promote RE recycling, there is a pressing need to develop separation methods with higher selectivity and lower environmental impact. This mini-review focuses on a novel strategy for RE separation based on the crystallization of coordination compounds, as reported over the past decade. First, separation systems utilizing the crystallization of coordination polymers constructed with RE ions and organic bridging ligands are summarized. Then, separation through the crystallization of discrete RE complexes with organic ligands is described, with particular emphasis on ligand structure, separation factors, and crystallization conditions.
Collapse
Affiliation(s)
- Atsuko Masuya-Suzuki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan.
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
3
|
Wan S, Liu WJ, Tan G, Yu HQ. Boosted recovery of rare earth elements from mining wastes and discarded NdFeB magnets by tributyl phosphate-grafted ZIF-8. Proc Natl Acad Sci U S A 2025; 122:e2423217122. [PMID: 39993192 DOI: 10.1073/pnas.2423217122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/16/2025] [Indexed: 02/26/2025] Open
Abstract
The escalating demand for rare earth elements (REEs) highlights the necessity for their sustainable recovery from waste streams and secondary resources. However, this process requires materials with exceptional selectivity and capacity for REEs due to their low concentration and high presence of interfering ions. Herein, we synthesized zeolitic imidazolate framework-8 (ZIF-8) and subsequently modified it with tributyl phosphate (TBP) to enhance its affinity and selectivity for the recovery of REEs. The distribution coefficients (Kd) of ZIF-8-TBP for REEs (neodymium, Nd, and dysprosium, Dy) were orders of magnitude higher than the Kd of main interfering ions (e.g., Mg, Ni Al, and Fe). Particularly, the maximum sorption capacities (qm) for Nd and Dy were 475 and 529 mg g-1, respectively. In addition, the separation factor between Dy (a representative of heavy REE) and Nd (a representative of light REE) reached 24, greatly exceeding the figures reported previously. Importantly, the outstanding ability of ZIF-8-TBP for selective separation and recovery of REEs was demonstrated via its application to real samples including mining wastewater, and leaching solutions from REE filter cakes and discarded NdFeB magnets. Multiscale simulations reveal that ZIF-8-TBP possessed a stronger binding strength and greater sorption energy for REE ions. These results indicate that ZIF-8-TBP could effectively harvest REEs from wastes and offers an efficient alternative for industrial applications in REE recovery.
Collapse
Affiliation(s)
- Shun Wan
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wu-Jun Liu
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guangcai Tan
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Jordan RB. The Lanthanide Contraction: What is Abnormal and Why? Inorg Chem 2025; 64:2207-2216. [PMID: 39874460 DOI: 10.1021/acs.inorgchem.4c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The lanthanide contraction is a widely known phenomenon in which the ionic radii of the Ln3+ ions decrease across the series from La3+ to Lu3+. As a result, the distance d(Ln-Y), where Y is a ligand donor atom, decreases across the series. As shown previously, the decrease normally has a linear dependence on the number of 4f Ln3+ electrons, n, and the net change, Δ', is between 0.15 and 0.20 Å. However, previous reports have shown that Δ' can be much larger than normal, and it is shown here that Δ' can be much smaller than normal. The present study seeks to determine the source and a possible explanation of these anomalies. A definitive conclusion is that the large Δ' is due to large d(Ln-Y) for the early lanthanides. The small Δ' can result from chelate constraints and intramolecular H-bonding. As an outgrowth of this search, it is shown that consistent radii for donor atoms, r(Y), can be obtained if the system satisfies certain conditions. Finally, the impact of the results on the normal and inverse trans influences is discussed.
Collapse
Affiliation(s)
- Robert B Jordan
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
5
|
Wang Q, Yu J, Zhong Z, Hui C, Zhang Y, Liu H, Yang L. A lanmodulin-based fluorescent assay for the rapid and sensitive detection of rare earth elements. Analyst 2025; 150:750-759. [PMID: 39844641 DOI: 10.1039/d4an01196a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Sensitive and rapid detection methods for rare earth elements (REEs), including lanthanides (Lns), will facilitate the mining and recovery of these elements. Here, we innovated a rapid, highly selective and sensitive fluorescence detection method for Lns, based on Hans-Lanmodulin, a newly discovered protein with high selectivity and binding affinity for rare earth elements. By labelling the fluorescein moiety FITC onto Hans-Lanmodulin, named as FITC-Hans-LanM. When rare earth ions are present in solution, FITC-Hans-LanM will specifically bind rare earth ions undergoing a conformational change from a disordered state to a dimer, in which the FITC molecules come close to each other, resulting in decreasing fluorescence intensity or even quenching. The assay was responsive to light, medium and heavy rare earth ions. The fluorescence signal has a good linear relationship with Nd3+ concentration in the range of 1-20 nM. The detection limit of the method was 0.512 nM, within 1 min. This method could become a useful technique for the detection and quantification of rare earth elements in environmental and industrial samples.
Collapse
Affiliation(s)
- QiKe Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Key Laboratory of Green and High-Value Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - JieMiao Yu
- Key Laboratory of Green and High-Value Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - ZhaoXiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Cai Hui
- Key Laboratory of Green and High-Value Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- National Engineering Research Center for Petroleum Refining Technology and Catalyst, China
| | - Huizhou Liu
- Key Laboratory of Green and High-Value Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - LiangRong Yang
- Key Laboratory of Green and High-Value Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
6
|
Larrinaga WB, Jung JJ, Lin CY, Boal AK, Cotruvo JA. Modulating metal-centered dimerization of a lanthanide chaperone protein for separation of light lanthanides. Proc Natl Acad Sci U S A 2024; 121:e2410926121. [PMID: 39467132 PMCID: PMC11551332 DOI: 10.1073/pnas.2410926121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/22/2024] [Indexed: 10/30/2024] Open
Abstract
Elucidating details of biology's selective uptake and trafficking of rare earth elements, particularly the lanthanides, has the potential to inspire sustainable biomolecular separations of these essential metals for myriad modern technologies. Here, we biochemically and structurally characterize Methylobacterium (Methylorubrum) extorquens LanD, a periplasmic protein from a bacterial gene cluster for lanthanide uptake. This protein provides only four ligands at its surface-exposed lanthanide-binding site, allowing for metal-centered protein dimerization that favors the largest lanthanide, LaIII. However, the monomer prefers NdIII and SmIII, which are disfavored lanthanides for cellular utilization. Structure-guided mutagenesis of a metal-ligand and an outer-sphere residue weakens metal binding to the LanD monomer and enhances dimerization for PrIII and NdIII by 100-fold. Selective dimerization enriches high-value PrIII and NdIII relative to low-value LaIII and CeIII in an all-aqueous process, achieving higher separation factors than lanmodulins and comparable or better separation factors than common industrial extractants. Finally, we show that LanD interacts with lanmodulin (LanM), a previously characterized periplasmic protein that shares LanD's preference for NdIII and SmIII. Our results suggest that LanD's unusual metal-binding site transfers less-desirable lanthanides to LanM to siphon them away from the pathway for cytosolic import. The properties of LanD show how relatively weak chelators can achieve high selectivity, and they form the basis for the design of protein dimers for separation of adjacent lanthanide pairs and other metal ions.
Collapse
Affiliation(s)
- Wyatt B. Larrinaga
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - Jonathan J. Jung
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - Chi-Yun Lin
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - Amie K. Boal
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| |
Collapse
|
7
|
Gao Y, Licup GL, Bigham NP, Cantu DC, Wilson JJ. Chelator-Assisted Precipitation-Based Separation of the Rare Earth Elements Neodymium and Dysprosium from Aqueous Solutions. Angew Chem Int Ed Engl 2024; 63:e202410233. [PMID: 39030817 DOI: 10.1002/anie.202410233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
The rare earth elements (REEs) are critical resources for many clean energy technologies, but are difficult to obtain in their elementally pure forms because of their nearly identical chemical properties. Here, an analogue of macropa, G-macropa, was synthesized and employed for an aqueous precipitation-based separation of Nd3+ and Dy3+. G-macropa maintains the same thermodynamic preference for the large REEs as macropa, but shows smaller thermodynamic stability constants. Molecular dynamics studies demonstrate that the binding affinity differences of these chelators for Nd3+ and Dy3+ is a consequence of the presence or absence of an inner-sphere water molecule, which alters the donor strength of the macrocyclic ethers. Leveraging the small REE affinity of G-macropa, we demonstrate that within aqueous solutions of Nd3+, Dy3+, and G-macropa, the addition of HCO3 - selectively precipitates Dy2(CO3)3, leaving the Nd3+-G-macropa complex in solution. With this method, remarkably high separation factors of 841 and 741 are achieved for 50 : 50 and 75 : 25 mixtures. Further studies involving Nd3+:Dy3+ ratios of 95 : 5 in authentic magnet waste also afford an efficient separation as well. Lastly, G-macropa is recovered via crystallization with HCl and used for subsequent extractions, demonstrating its good recyclability.
Collapse
Affiliation(s)
- Yangyang Gao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, 93106, United States
| | - Gerra L Licup
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, 89557, United States
| | - Nicholas P Bigham
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, United States
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, 89557, United States
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, 93106, United States
| |
Collapse
|
8
|
Xin W, Cui Y, Qian Y, Liu T, Kong XY, Ling H, Chen W, Zhang Z, Hu Y, Jiang L, Wen L. High-efficiency dysprosium-ion extraction enabled by a biomimetic nanofluidic channel. Nat Commun 2024; 15:5876. [PMID: 38997277 PMCID: PMC11245470 DOI: 10.1038/s41467-024-50237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Biological ion channels exhibit high selectivity and permeability of ions because of their asymmetrical pore structures and surface chemistries. Here, we demonstrate a biomimetic nanofluidic channel (BNC) with an asymmetrical structure and glycyl-L-proline (GLP) -functionalization for ultrafast, selective, and unidirectional Dy3+ extraction over other lanthanide (Ln3+) ions with very similar electronic configurations. The selective extraction mainly depends on the amplified chemical affinity differences between the Ln3+ ions and GLPs in nanoconfinement. In particular, the conductivities of Ln3+ ions across the BNC even reach up to two orders of magnitude higher than in a bulk solution, and a high Dy3+/Nd3+ selectivity of approximately 60 could be achieved. The designed BNC can effectively extract Dy3+ ions with ultralow concentrations and thereby purify Nd3+ ions to an ultimate content of 99.8 wt.%, which contribute to the recycling of rare earth resources and environmental protection. Theoretical simulations reveal that the BNC preferentially binds to Dy3+ ion due to its highest affinity among Ln3+ ions in nanoconfinement, which attributes to the coupling of ion radius and coordination matching. These findings suggest that BNC-based ion selectivity system provides alternative routes to achieving highly efficient lanthanide separation.
Collapse
Affiliation(s)
- Weiwen Xin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yanglansen Cui
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Tianchi Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China.
| | - Haoyang Ling
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuhao Hu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China.
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China.
| |
Collapse
|
9
|
Tricoire M, Hsueh FC, Keener M, Rajeshkumar T, Scopelliti R, Zivkovic I, Maron L, Mazzanti M. Siloxide tripodal ligands as a scaffold for stabilizing lanthanides in the +4 oxidation state. Chem Sci 2024; 15:6874-6883. [PMID: 38725506 PMCID: PMC11077534 DOI: 10.1039/d4sc00051j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/21/2024] [Indexed: 05/12/2024] Open
Abstract
Synthetic strategies to isolate molecular complexes of lanthanides, other than cerium, in the +4 oxidation state remain elusive, with only four complexes of Tb(iv) isolated so far. Herein, we present a new approach for the stabilization of Tb(iv) using a siloxide tripodal trianionic ligand, which allows the control of unwanted ligand rearrangements, while tuning the Ln(iii)/Ln(iv) redox-couple. The Ln(iii) complexes, [LnIII((OSiPh2Ar)3-arene)(THF)3] (1-LnPh) and [K(toluene){LnIII((OSiPh2Ar)3-arene)(OSiPh3)}] (2-LnPh) (Ln = Ce, Tb, Pr), of the (HOSiPh2Ar)3-arene ligand were prepared. The redox properties of these complexes were compared to those of the Ln(iii) analogue complexes, [LnIII((OSi(OtBu)2Ar)3-arene)(THF)] (1-LnOtBu) and [K(THF)6][LnIII((OSi(OtBu)2Ar)3-arene)(OSiPh3)] (2-LnOtBu) (Ln = Ce, Tb), of the less electron-donating siloxide trianionic ligand, (HOSi(OtBu)2Ar)3-arene. The cyclic voltammetry studies showed a cathodic shift in the oxidation potential for the cerium and terbium complexes of the more electron-donating phenyl substituted scaffold (1-LnPh) compared to those of the tert-butoxy (1-LnOtBu) ligand. Furthermore, the addition of the -OSiPh3 ligand further shifts the potential cathodically, making the Ln(iv) ion even more accessible. Notably, the Ce(iv) complexes, [CeIV((OSi(OtBu)2Ar)3-arene)(OSiPh3)] (3-CeOtBu) and [CeIV((OSiPh2Ar)3-arene)(OSiPh3)(THF)2] (3-CePh), were prepared by chemical oxidation of the Ce(iii) analogues. Chemical oxidation of the Tb(iii) and Pr(iii) complexes (2-LnPh) was also possible, in which the Tb(iv) complex, [TbIV((OSiPh2Ar)3-arene)(OSiPh3)(MeCN)2] (3-TbPh), was isolated and crystallographically characterized, yielding the first example of a Tb(iv) supported by a polydentate ligand. The versatility and robustness of these siloxide arene-anchored platforms will allow further development in the isolation of more oxidizing Ln(iv) ions, widening the breadth of high-valent Ln chemistry.
Collapse
Affiliation(s)
- Maxime Tricoire
- Group of Coordiantion Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Fang-Che Hsueh
- Group of Coordiantion Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Megan Keener
- Group of Coordiantion Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées Cedex 4 31077 Toulouse France
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées Cedex 4 31077 Toulouse France
| | - Marinella Mazzanti
- Group of Coordiantion Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
10
|
Wang M, Xiong Q, Wang M, Lewis NHC, Ying D, Yan G, Hoenig E, Han Y, Lee OS, Peng G, Zhou H, Schatz GC, Liu C. Lanthanide transport in angstrom-scale MoS 2-based two-dimensional channels. SCIENCE ADVANCES 2024; 10:eadh1330. [PMID: 38489373 PMCID: PMC10942105 DOI: 10.1126/sciadv.adh1330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
Rare earth elements (REEs), critical to modern industry, are difficult to separate and purify, given their similar physicochemical properties originating from the lanthanide contraction. Here, we systematically study the transport of lanthanide ions (Ln3+) in artificially confined angstrom-scale two-dimensional channels using MoS2-based building blocks in an aqueous environment. The results show that the uptake and permeability of Ln3+ assume a well-defined volcano shape peaked at Sm3+. This transport behavior is rooted from the tradeoff between the barrier for dehydration and the strength of interactions of lanthanide ions in the confinement channels, reminiscent of the Sabatier principle. Molecular dynamics simulations reveal that Sm3+, with moderate hydration free energy and intermediate affinity for channel interaction, exhibit the smallest dehydration degree, consequently resulting in the highest permeability. Our work not only highlights the distinct mass transport properties under extreme confinement but also demonstrates the potential of dialing confinement dimension and chemistry for greener REEs separation.
Collapse
Affiliation(s)
- Mingzhan Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Qinsi Xiong
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Maoyu Wang
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Nicholas H. C. Lewis
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Dongchen Ying
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Gangbin Yan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Eli Hoenig
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Yu Han
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - One-Sun Lee
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Guiming Peng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Hua Zhou
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - George C. Schatz
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Chong Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Scott J, Maenaga ML, Woodside AJ, Guo VW, Cheriel AR, Gau MR, Rablen PR, Graves CR. Reversible O-H Bond Activation by Tripodal tris(Nitroxide) Aluminum and Gallium Complexes. Inorg Chem 2024; 63:4028-4038. [PMID: 38386423 PMCID: PMC10915791 DOI: 10.1021/acs.inorgchem.3c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Herein, we report the preparation and characterization of the Group 13 metal complexes of a tripodal tris(nitroxide)-based ligand, designated (TriNOx3-)M (M = Al (1), Ga (2), In (3)). Complexes 1 and 2 both activate the O-H bond of a range of alcohols spanning a ∼10 pKa unit range via an element-ligand cooperative pathway to afford the zwitterionic complexes (HTriNOx2-)M-OR. Structures of these alcohol adduct products are discussed. We demonstrate that the thermodynamic and kinetic aspects of the reactions are both influenced by the identity of the metal, with 1 having higher reaction equilibrium constants and proceeding at a faster rate relative to 2 for any given alcohol. These parameters are also influenced by the pKa of the alcohol, with more acidic alcohols reacting both to more completion and faster than their less acidic counterparts. Possible mechanistic pathways for the O-H activation are discussed.
Collapse
Affiliation(s)
- Joseph
S. Scott
- Department
of Chemistry & Biochemistry, Swarthmore
College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Mika L. Maenaga
- Department
of Chemistry & Biochemistry, Swarthmore
College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Audra J. Woodside
- Department
of Chemistry & Biochemistry, Swarthmore
College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Vivian W. Guo
- Department
of Chemistry & Biochemistry, Swarthmore
College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Alex R. Cheriel
- Department
of Chemistry & Biochemistry, Swarthmore
College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Michael R. Gau
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Paul R. Rablen
- Department
of Chemistry & Biochemistry, Swarthmore
College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Christopher R. Graves
- Department
of Chemistry & Biochemistry, Swarthmore
College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| |
Collapse
|
12
|
Kuvayskaya A, Mallos TJ, Douair I, Chang C, Larsen RE, Jensen MP, Sellinger A. Controlling Extraction of Rare Earth Elements Using Functionalized Aryl-vinyl Phosphonic Acid Esters. Inorg Chem 2023; 62:16343-16353. [PMID: 37751598 DOI: 10.1021/acs.inorgchem.3c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Ligands that can discriminate between individual rare earth elements are important for production of these critical elements. A set of aryl-vinyl phosphonic acid ligands for extracting rare earth elements were designed and synthesized under the hypothesis that the strength of the rare earth-ligand interactions could be tuned by changing the dipole moment of the ligand. The ligands were synthesized via a two-step reaction procedure using a Heck coupling reaction to functionalize vinyl phosphonic acid, followed by Steglich esterification to obtain high-purity styryl phosphonic acid monoesters with varying dipole moments along the P-C bond. The metal binding strength and composition of the rare earth complexes formed with these styryl phosphonic acid monoesters were experimentally studied by liquid-liquid extraction techniques, while DFT calculations were performed to determine the dipole moments of the free and complexed ligands and the electronic structure of the complexes formed. All three prepared ligands were much stronger extracting agents for europium(III) than the dialkylphosphonic acids usually used for this separation. However, the order of increasing extraction strength was found to match the order of the decreasing calculated dipole moment along the P-C bond of the three styryl-based ligands, rather than correlating with increasing ligand basicity, as reflected by the pKa of the ligands. These findings suggest that this approach can be used to systematically alter the extraction strength of aromatic phosphonic monoesters for rare earth element purification.
Collapse
Affiliation(s)
- Anastasia Kuvayskaya
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Thomas J Mallos
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Iskander Douair
- National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, Colorado 80401, United States
| | - Christopher Chang
- National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, Colorado 80401, United States
| | - Ross E Larsen
- National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, Colorado 80401, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Mark P Jensen
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
- Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Alan Sellinger
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
- National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, Colorado 80401, United States
- Materials Science Program, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| |
Collapse
|
13
|
Mattocks JA, Jung JJ, Lin CY, Dong Z, Yennawar NH, Featherston ER, Kang-Yun CS, Hamilton TA, Park DM, Boal AK, Cotruvo JA. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer. Nature 2023; 618:87-93. [PMID: 37259003 PMCID: PMC10232371 DOI: 10.1038/s41586-023-05945-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/13/2023] [Indexed: 06/02/2023]
Abstract
Technologically critical rare-earth elements are notoriously difficult to separate, owing to their subtle differences in ionic radius and coordination number1-3. The natural lanthanide-binding protein lanmodulin (LanM)4,5 is a sustainable alternative to conventional solvent-extraction-based separation6. Here we characterize a new LanM, from Hansschlegelia quercus (Hans-LanM), with an oligomeric state sensitive to rare-earth ionic radius, the lanthanum(III)-induced dimer being >100-fold tighter than the dysprosium(III)-induced dimer. X-ray crystal structures illustrate how picometre-scale differences in radius between lanthanum(III) and dysprosium(III) are propagated to Hans-LanM's quaternary structure through a carboxylate shift that rearranges a second-sphere hydrogen-bonding network. Comparison to the prototypal LanM from Methylorubrum extorquens reveals distinct metal coordination strategies, rationalizing Hans-LanM's greater selectivity within the rare-earth elements. Finally, structure-guided mutagenesis of a key residue at the Hans-LanM dimer interface modulates dimerization in solution and enables single-stage, column-based separation of a neodymium(III)/dysprosium(III) mixture to >98% individual element purities. This work showcases the natural diversity of selective lanthanide recognition motifs, and it reveals rare-earth-sensitive dimerization as a biological principle by which to tune the performance of biomolecule-based separation processes.
Collapse
Affiliation(s)
- Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Jonathan J Jung
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Chi-Yun Lin
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Ziye Dong
- Critical Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Emily R Featherston
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Christina S Kang-Yun
- Critical Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Timothy A Hamilton
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Dan M Park
- Critical Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Amie K Boal
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
14
|
Falco A, Neri M, Melegari M, Baraldi L, Bonfant G, Tegoni M, Serpe A, Marchiò L. Semirigid Ligands Enhance Different Coordination Behavior of Nd and Dy Relevant to Their Separation and Recovery in a Non-aqueous Environment. Inorg Chem 2022; 61:16110-16121. [PMID: 36177719 PMCID: PMC9554911 DOI: 10.1021/acs.inorgchem.2c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/30/2022]
Abstract
Rare-earth elements are widely used in high-end technologies, the production of permanent magnets (PMs) being one of the sectors with the greatest current demand and likely greater future demand. The combination of Nd and Dy in NdFeB PMs enhances their magnetic properties but makes their recycling more challenging. Due to the similar chemical properties of Nd and Dy, their separation is expensive and currently limited to the small scale. It is therefore crucially important to devise efficient and selective methods that can recover and then reuse those critical metals. To address these issues, a series of heptadentate Trensal-based ligands were used for the complexation of Dy3+ and Nd3+ ions, with the goal of indicating the role of coordination and solubility equilibria in the selective precipitation of Ln3+-metal complexes from multimetal non-water solutions. Specifically, for a 1:1 Nd/Dy mixture, a selective and fast precipitation of the Dy complex occurred in acetone with the Trensalp-OMe ligand at room temperature, with a concomitant enrichment of Nd in the solution phase. In acetone, complexes of Nd and Dy with Trensalp-OMe were characterized by very similar formation constants of 7.0(2) and 7.3(2), respectively. From the structural analysis of an array of Dy and Nd complexes with TrensalR ligands, we showed that Dy invariably provided complexes with coordination number (cn) of 7, whereas the larger Nd experienced an expansion of the coordination sphere by recruiting additional solvent molecules and giving a cn of >7. The significant structural differences have been identified as the main premises upon which a suitable separation strategy can be devised with these kind of ligands, as well as other preorganized polydentate ligands that can exploit the small differences in Ln3+ coordination requirements.
Collapse
Affiliation(s)
- Alex Falco
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Martina Neri
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Melegari
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Laura Baraldi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Giulia Bonfant
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Tegoni
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Angela Serpe
- Department
of Civil and Environmental Engineering and Architecture (DICAAR) and
Research Unit of INSTM, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Environmental
Geology and Geoengineering Institute of the National Research Council
(IGAG-CNR), Piazza d’Armi, 09123 Cagliari, Italy
| | - Luciano Marchiò
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
15
|
Higgins RF, Ruoff KP, Kumar A, Schelter EJ. Coordination Chemistry-Driven Approaches to Rare Earth Element Separations. Acc Chem Res 2022; 55:2616-2627. [PMID: 36041177 DOI: 10.1021/acs.accounts.2c00312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Current projections for global mining indicate that unsustainable practices will cause supply problems for many elements, called critical raw materials, in the next 20 years. These include elements necessary for renewable technologies as well as artisanal sources. Energy critical elements (ECEs) comprise a group used for clean, renewable energy applications that are in low abundance in the Earth's crust or require an economic premium to extract from ores. Sustainable practices of acquiring ECEs is an important problem to address through fundamental research to provide alternative energy technologies such as wind turbines and electric vehicles at cheaper costs for our global energy generation and usage. Some of these green technologies incorporate rare-earth (RE) metals (Sc, Y and the lanthanides), which are challenging to separate from mineral sources because of their similar sizes (i.e., ionic radii) and chemical properties. The current process used to provide REs at requisite purities for these applications is counter-current solvent-solvent extraction, which is scalable and works efficiently for any ore composition. However, this method produces large amounts of caustic waste that is environmentally damaging, especially to areas in China that house major separation facilities. Advancement of the selectivity of this process is challenging since exact molecular speciation that affords separations is still relatively unknown. In this context, we developed a program to investigate new RE separations systems that were aimed at minimizing solvent use, controlled by molecular speciation, and could be targeted at problems in recycling these critical metals.The first ligand system that was developed to impart solubility differences between light and heavy rare-earth ions was [{(2-tBuNO)C6H4CH2}3N]3- (TriNOx3-) (graphic below). A differential solubility allowed for a separation of Nd and Dy of SFNd:Dy = ∼300 in a single step. In other words, a 50:50 Nd/Dy sample was enriched to give 95% pure Nd and Dy through a simple filtration, which is potentially impactful to recycling magnetic materials found in wind turbines. This separations system compares favorably to other state-of-the-art molecular extractants that are based on energetic differences of the thermodynamic parameter to affect separations for neighboring elements. This straightforward, thermodynamically driven method to separate REs primed our future research for new coordination chemistry approaches to separations.Another separations system was accomplished through the variable rate of a redox event from one arm of the TriNOx3- ligand. It was determined that the rate of this one electron oxidation, which operated through an electrochemical-chemical-electrochemical mechanism, was dependent on the identity of the RE ion. This kinetically driven separation afforded a separation factor (SF) of SFEu:Y = 75. We have also described other transformations such as ligand exchange, substituent dependent, and redox-driven chelation processes with well-defined speciation to afford purified RE materials. Recently, we determined that magnetic properties can be used to enhance both thermodynamic and kinetic RE separations processes to give an approximately 100% boost for pairs of paramagnetic/diamagnetic REs. These results have shown that both thermodynamic and kinetic RE separations were efficient for different selected RE binary pairs through coordination chemistry. The focus of this Account will detail the differences that are observed for RE separations when promoted by thermodynamic or kinetic factors. Overall, the development of rationally adjusted speciation of REs provides a basis for future industrial separations processes for technologies applied to ECEs derived from wind turbines, batteries for electric vehicles, and LEDs.
Collapse
Affiliation(s)
- Robert F Higgins
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
| | - Kevin P Ruoff
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
| | - Amit Kumar
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Wang D, Said A, Liu Y, Niu H, Liu C, Wang G, Li Z, Tung CH, Wang Y. Cr-Ti Mixed Oxide Molecular Cages: Synthesis, Structure, Photoresponse, and Photocatalytic Properties. Inorg Chem 2022; 61:14887-14898. [PMID: 36063420 DOI: 10.1021/acs.inorgchem.2c02605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The solvothermal reaction of titanium isopropoxide and chromate in the presence of benzoate produced two novel host-guest clusters encapsulating Cs+ or H3O+, (H3O)@Ti7Cr14 and Cs@Ti7Cr14. The most remarkable feature is that the Ti7O7 ring is concentrically embraced by a Cr14O14 ring to form a rigid Ti7Cr14 host. ESI-MS and 133Cs NMR revealed that the overall framework structures are preserved, whereas the benzoate ligands on the two clusters may be labile in solutions. Both (H3O)@Ti7Cr14 and Cs@Ti7Cr14 exhibit good UV-vis light-responsive properties and photocatalytic activities, with absorption edges extending up to 780 nm. Cs@Ti7Cr14 is an effective visible-light-responsive photocatalyst in both the heterogeneous methylene dye degradation and homogeneous CO2 cycloaddition reaction under mild conditions like room temperature and 1 bar of CO2. According to the mechanism studies, Cs+, as a rigid guest, can significantly improve the photogenerated charge separation efficiency of the Ti7Cr14 host, thereby improving its interface charge separation properties, photocurrent, and photocatalytic activities. Our findings not only provide new members of heterometallic titanium oxide clusters to enrich the metal oxide cluster family but also open up new possibilities for their photoresponses, which may play an important role in solar energy harvesting for sustainable chemistry.
Collapse
Affiliation(s)
- Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Amir Said
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Huihui Niu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Caiyun Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
17
|
O'Connell-Danes JG, Ngwenya BT, Morrison CA, Love JB. Selective separation of light rare-earth elements by supramolecular encapsulation and precipitation. Nat Commun 2022; 13:4497. [PMID: 35922415 PMCID: PMC9349306 DOI: 10.1038/s41467-022-32178-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
Supramolecular chemical strategies for Rare Earth (RE) element separations are emerging which amplify the small changes in properties across the series to bias selectivity in extraction or precipitation. These advances are important as the REs are crucial to modern technologies yet their extraction, separation, and recycling using conventional techniques remain challenging. We report here a pre-organised triamidoarene platform which, under acidic, biphasic conditions, uniquely and selectively precipitates light RE nitratometalates as supramolecular capsules. The capsules exhibit both intra- and intermolecular hydrogen bonds that dictate selectivity, promote precipitation, and facilitate the straightforward release of the RE and recycling of the receptor. This work provides a self-assembly route to metal separations that exploits size and shape complementarity and has the potential to integrate into conventional processes due to its compatibility with acidic metal feed streams.
Collapse
Affiliation(s)
| | - Bryne T Ngwenya
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FE, UK
| | - Carole A Morrison
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Jason B Love
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
18
|
Matsuda S, Yokoyama K, Yaita T, Kobayashi T, Kaneta Y, Simonnet M, Sekiguchi T, Honda M, Shimojo K, Doi R, Nakashima N. Marking actinides for separation: Resonance-enhanced multiphoton charge transfer in actinide complexes. SCIENCE ADVANCES 2022; 8:eabn1991. [PMID: 35584222 PMCID: PMC9116592 DOI: 10.1126/sciadv.abn1991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Precise separation and purification of f-block elements are important and challenging especially for the reduction of nuclear waste and the recycling of rare metals but are practically difficult mainly because of their chemical similarity. A promising way to overcome this difficulty is controlling their oxidation state by nonchemical processes. Here, we show resonance-enhanced multiphoton charge transfer in actinide complexes, which leads to element-specific control of their oxidation states owing to the distinct electronic spectra arising from resonant transitions between f orbitals. We observed oxidation of trivalent americium in nitric acid. In addition, we found that the coordination of nitrates is essential for promoting the oxidation reaction, which is the first finding ever relevant to the primary process of photoexcitation via resonant transitions of f-block elements. The resonance-enhanced photochemical process could be used in the nuclear waste management, as it would facilitate the mutual separation of actinides, such as americium and curium.
Collapse
Affiliation(s)
- Shohei Matsuda
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Keiichi Yokoyama
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tsuyoshi Yaita
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tohru Kobayashi
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yui Kaneta
- Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Marie Simonnet
- Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Tetsuhiro Sekiguchi
- Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Mitsunori Honda
- Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Kojiro Shimojo
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Reisuke Doi
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Nobuaki Nakashima
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Institute for Laser Technology, 1-8-4 Utsubo-honmachi, Nishi-ku, Osaka 550-0004, Japan
| |
Collapse
|
19
|
Masuya-Suzuki A, Hosobori K, Sawamura R, Abe Y, Karashimada R, Iki N. Selective crystallization of dysprosium complex from neodymium/dysprosium mixture enabled by cooperation of coordination and crystallization. Chem Commun (Camb) 2022; 58:2283-2286. [PMID: 35015004 DOI: 10.1039/d1cc06174g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Designing a molecular-level Ln3+ separation system remains a challenge for developing next-generation separation methodologies. Herein, we report crystallization-based Nd3+/Dy3+ separation using a tripodal Schiff base ligand. Highly selective crystallization of the Dy3+ complex was enabled by cooperation between the coordination and crystallization processes.
Collapse
Affiliation(s)
- Atsuko Masuya-Suzuki
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Koji Hosobori
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Ryota Sawamura
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Yumika Abe
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Ryunosuke Karashimada
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Nobuhiko Iki
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
20
|
Kumar A, Geng H, Schelter EJ. Harnessing magnetic fields for rare-earth complex crystallization–separations in aqueous solutions. RSC Adv 2022; 12:27895-27898. [PMID: 36320235 PMCID: PMC9521326 DOI: 10.1039/d2ra04729b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Magnetic field-directed crystallization separation of rare-earth (RE) metals is emerging as a new direction in the field of separation science, due to its simplicity, low energy input, and low cost of operation, as compared to traditional separation methods such as solvent extraction. Here, we report the use of Fe14Nd2B magnets for selective crystallization of paramagnetic Nd, Dy, Er, and Tm rare earth compounds from a mixture with diamagnetic La ones using the RE–DOTA complex system. All the separations were performed at milder temperatures of 3 °C to provide a thermal gradient, and the crystallizations were set up in aqueous solutions using the benign solvents water and acetone. A four-fold increase in the separation factor (41.4 ± 0.6) was observed for the Dy/La pair in the presence of a magnetic field as compared to the separation factor (10.5 ± 0.9) obtained without the application of the field. These results indicate that the use of the magnetic crystallization method for RE separations is effective in aqueous systems and can be a useful strategy for energy-efficient molecular separations of RE metals. Magnetic crystallization was used as an energy-efficient technique for selective separation of paramagnetic rare-earth ions from lanthanum ions. An air-stable and simple RE-DOTA complex system was used to achieve separation in aqueous conditions.![]()
Collapse
Affiliation(s)
- Amit Kumar
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, PA, 19104, USA
| | - Han Geng
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, PA, 19104, USA
| | - Eric J. Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, PA, 19104, USA
| |
Collapse
|
21
|
Dong Z, Mattocks JA, Deblonde GJP, Hu D, Jiao Y, Cotruvo JA, Park DM. Bridging Hydrometallurgy and Biochemistry: A Protein-Based Process for Recovery and Separation of Rare Earth Elements. ACS CENTRAL SCIENCE 2021; 7:1798-1808. [PMID: 34841054 PMCID: PMC8614107 DOI: 10.1021/acscentsci.1c00724] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 05/20/2023]
Abstract
The extraction and subsequent separation of individual rare earth elements (REEs) from REE-bearing feedstocks represent a challenging yet essential task for the growth and sustainability of renewable energy technologies. As an important step toward overcoming the technical and environmental limitations of current REE processing methods, we demonstrate a biobased, all-aqueous REE extraction and separation scheme using the REE-selective lanmodulin protein. Lanmodulin was conjugated onto porous support materials using thiol-maleimide chemistry to enable tandem REE purification and separation under flow-through conditions. Immobilized lanmodulin maintains the attractive properties of the soluble protein, including remarkable REE selectivity, the ability to bind REEs at low pH, and high stability over numerous low-pH adsorption/desorption cycles. We further demonstrate the ability of immobilized lanmodulin to achieve high-purity separation of the clean-energy-critical REE pair Nd/Dy and to transform a low-grade leachate (0.043 mol % REEs) into separate heavy and light REE fractions (88 mol % purity of total REEs) in a single column run while using ∼90% of the column capacity. This ability to achieve, for the first time, tandem extraction and grouped separation of REEs from very complex aqueous feedstock solutions without requiring organic solvents establishes this lanmodulin-based approach as an important advance for sustainable hydrometallurgy.
Collapse
Affiliation(s)
- Ziye Dong
- Critical
Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph A. Mattocks
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Gauthier J.-P. Deblonde
- Critical
Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Glenn
T. Seaborg Institute, Lawrence Livermore
National Laboratory, Livermore, California 94550, United States
| | - Dehong Hu
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Yongqin Jiao
- Critical
Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph A. Cotruvo
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- E-mail:
| | - Dan M. Park
- Critical
Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- E-mail:
| |
Collapse
|
22
|
Sgarlata C, Schneider BL, Zito V, Migliore R, Tegoni M, Pecoraro VL, Arena G. Lanthanide Identity Governs Guest-Induced Dimerization in Ln III [15-MC Cu II N(L-pheHA) -5]) 3+ Metallacrowns. Chemistry 2021; 27:17669-17675. [PMID: 34637566 DOI: 10.1002/chem.202103263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 11/09/2022]
Abstract
Series of lanthanide-containing metallic coordination complexes are frequently presented as structurally analogous, due to the similar chemical and coordinative properties of the lanthanides. In the case of chiral (LnIII [15-MC Cu II N(L-pheHA) -5])3+ metallacrowns (MCs), which are well established supramolecular hosts, the formation of dimers templated by a dicarboxylate guest (muconate) in solution of neutral pH is herein shown to have a unique dependence on the identity of the MC's central lanthanide. Calorimetric data and nuclear magnetic resonance diffusion studies demonstrate that MCs containing larger or smaller lanthanides as the central metal only form monomeric host-guest complexes whereas analogues with intermediate lanthanides (for example, Eu, Gd, Dy) participate in formation of dimeric host-guest-host compartments. The driving force for the dimerization event across the series is thought to be a competition between formation of highly stable MCs (larger lanthanides) and optimally linked bridging guests (smaller lanthanides).
Collapse
Affiliation(s)
- Carmelo Sgarlata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | | | - Valeria Zito
- Institute of Crystallography, National Research Council (CNR), S.S. Catania, Via P. Gaifami 18, 95126, Catania, Italy
| | - Rossella Migliore
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Matteo Tegoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17 A, 43124, Parma, Italy
| | - Vincent L Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Giuseppe Arena
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
23
|
Dismantling of Printed Circuit Boards Enabling Electronic Components Sorting and Their Subsequent Treatment Open Improved Elemental Sustainability Opportunities. SUSTAINABILITY 2021. [DOI: 10.3390/su131810357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This critical review focuses on advanced recycling strategies to enable or increase recovery of chemical elements present in waste printed circuit boards (WPCBs). Conventional recycling involves manual removal of high value electronic components (ECs), followed by raw crushing of WPCBs, to recover main elements (by weight or value). All other elements remain unrecovered and end up highly diluted in post-processing wastes or ashes. To retrieve these elements, it is necessary to enrich the waste streams, which requires a change of paradigm in WPCB treatment: the disassembly of WPCBs combined with the sorting of ECs. This allows ECs to be separated by composition and to drastically increase chemical element concentration, thus making their recovery economically viable. In this report, we critically review state-of-the-art processes that dismantle and sort ECs, including some unpublished foresight from our laboratory work, which could be implemented in a recycling plant. We then identify research, business opportunities and associated advanced retrieval methods for those elements that can therefore be recovered, such as refractory metals (Ta, Nb, W, Mo), gallium, or lanthanides, or those, such as the platinum group elements, that can be recovered in a more environmentally friendly way than pyrometallurgy. The recovery methods can be directly tuned and adapted to the corresponding stream.
Collapse
|
24
|
Salviulo G, Lavagnolo MC, Dabalà M, Bernardo E, Polimeno A, Sambi M, Bonollo F, Gross S. Enabling Circular Economy: The Overlooked Role of Inorganic Materials Chemistry. Chemistry 2021; 27:6676-6695. [PMID: 33749911 DOI: 10.1002/chem.202002844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Circular economy is considered a new chance to build a more sustainable world from both the social and the economic point of view. In this Essay, the possible contribution of inorganic chemistry towards a smooth transition to circularity in inorganic materials design and production is discussed by adopting an interdisciplinary approach.
Collapse
Affiliation(s)
- Gabriella Salviulo
- Dipartimento di Geoscienze, Università degli Studi di Padova, Via Gradenigo, 6, 35131, Padova, Italy.,Centro di Ateneo per i Diritti Umani "Antonio Papisca", Università di Padova, Via Martiri della Libertà 2, 35131, Padova, Italy
| | - Maria Cristina Lavagnolo
- Dipartimento di Ingegneria Civile, Edile e Ambientale, Università degli Studi di Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Manuele Dabalà
- Dipartimento di Ingegneria Industriale, Università degli Studi di Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Enrico Bernardo
- Dipartimento di Ingegneria Industriale, Università degli Studi di Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Antonino Polimeno
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Mauro Sambi
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Franco Bonollo
- Dipartimento di Tecnica e Gestione dei Sistemi Industriali, Università degli Studi di Padova, Str. S. Nicola, 3, 36100, Vicenza, Italy
| | - Silvia Gross
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
25
|
Wu J, Li Z, Tan H, Du S, Liu T, Yuan Y, Liu X, Qiu H. Highly Selective Separation of Rare Earth Elements by Zn-BTC Metal-Organic Framework/Nanoporous Graphene via In Situ Green Synthesis. Anal Chem 2020; 93:1732-1739. [PMID: 33355452 DOI: 10.1021/acs.analchem.0c04407] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rare earth elements (REEs) are used widely in devices of many fields, but it is still a troublesome task to achieve their selective separation and purification. Metal-organic frameworks (MOFs) as an emerging porous crystalline material have been used for selective separation of REEs using the size-selective crystallization properties. However, so far, almost all MOFs cannot be used directly for selective separation of REEs in strong acid via solid-state adsorption. Herein, a zinc-trimesic acid (Zn-BTC) MOF is grown by solid synthesis in situ on ZnO nanoparticles covering nanoporous graphene for preparing Zn-BTC MOF/nanoporous graphene composites with strong acid resistance. The adsorption capacity of the resulting composites to REEs is highly sensitive to the ionic radius, which may be attributed to the fact that the REE ions coordinate with O to form a stable structure. The selectivity of Ce/Lu is ≈10,000, and it is extremely important that the selectivity between adjacent REEs (e.g., Nd/Pr) is as high as ≈9.8, so the composite exhibits the best separation performance so far. This work provides a green, facile, scale, and effective synthesis strategy of Zn-BTC MOF/nanoporous graphene, which is hopefully applied directly in the separation industries of REEs.
Collapse
Affiliation(s)
- Jinsheng Wu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.,Lanzhou Ecological Environment Monitoring Center of Gansu Province, Lanzhou 730000, China
| | - Zhan Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Hongxin Tan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shaobo Du
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tianqi Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yanli Yuan
- Lanzhou Ecological Environment Monitoring Center of Gansu Province, Lanzhou 730000, China
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
26
|
Thiele NA, Fiszbein DJ, Woods JJ, Wilson JJ. Tuning the Separation of Light Lanthanides Using a Reverse-Size Selective Aqueous Complexant. Inorg Chem 2020; 59:16522-16530. [DOI: 10.1021/acs.inorgchem.0c02413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nikki A. Thiele
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - David J. Fiszbein
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joshua J. Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
27
|
Mattocks JA, Cotruvo JA. Biological, biomolecular, and bio-inspired strategies for detection, extraction, and separations of lanthanides and actinides. Chem Soc Rev 2020; 49:8315-8334. [PMID: 33057507 DOI: 10.1039/d0cs00653j] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lanthanides and actinides are elements of ever-increasing technological importance in the modern world. However, the similar chemical and physical properties within these groups make purification of individual elements a challenge. Current industrial standards for the extraction, separation, and purification of these metals from natural sources, recycled materials, and industrial waste are inefficient, relying upon harsh conditions, repetitive steps, and ligands with only modest selectivity. Biological, biomolecular, and bio-inspired strategies towards improving these separations and making them more environmentally sustainable have been researched for many years; however, these methods often have insufficient selectivity for practical application. Recent developments in the understanding of how lanthanides are selectively acquired and used by certain bacteria offer the opportunity for a newer, more efficient take on these designs, as well as the possibility for fundamentally new designs and strategies. Herein, we review current cell-based and biomolecular (primarily small-molecule and protein-based) methods for detection, extraction, and separations of f-block elements. We discuss how the increasing knowledge regarding the selective recognition, uptake, trafficking, and storage of these elements in biological systems has informed and will continue to promote development of novel approaches to achieve these ends.
Collapse
Affiliation(s)
- Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
28
|
Prodius D, Klocke M, Smetana V, Alammar T, Perez Garcia M, Windus TL, Nlebedim IC, Mudring AV. Rationally designed rare earth separation by selective oxalate solubilization. Chem Commun (Camb) 2020; 56:11386-11389. [PMID: 32894275 DOI: 10.1039/d0cc02270e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A simple, environmentally benign, and efficient chemical separation of rare earth oxalates (CSEREOX) within two rare earth element (REE) subgroups has been developed. The protocol allows for selective solubilization of water-insoluble oxalates of rare earth elements, and results in efficient REE extraction even at low initial concentrations (<5%) from processed magnet wastes.
Collapse
Affiliation(s)
- Denis Prodius
- Ames Laboratory, US Department of Energy and Critical Materials Institute, Ames, Iowa 50011-3020, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Featherston ER, Cotruvo JA. The biochemistry of lanthanide acquisition, trafficking, and utilization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118864. [PMID: 32979423 DOI: 10.1016/j.bbamcr.2020.118864] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
Lanthanides are relative newcomers to the field of cell biology of metals; their specific incorporation into enzymes was only demonstrated in 2011, with the isolation of a bacterial lanthanide- and pyrroloquinoline quinone-dependent methanol dehydrogenase. Since that discovery, the efforts of many investigators have revealed that lanthanide utilization is widespread in environmentally important bacteria, and parallel efforts have focused on elucidating the molecular details involved in selective recognition and utilization of these metals. In this review, we discuss the particular chemical challenges and advantages associated with biology's use of lanthanides, as well as the currently known lanthano-enzymes and -proteins (the lanthanome). We also review the emerging understanding of the coordination chemistry and biology of lanthanide acquisition, trafficking, and regulatory pathways. These studies have revealed significant parallels with pathways for utilization of other metals in biology. Finally, we discuss some of the many unresolved questions in this burgeoning field and their potentially far-reaching applications.
Collapse
Affiliation(s)
- Emily R Featherston
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States of America.
| |
Collapse
|
30
|
Lumpe H, Menke A, Haisch C, Mayer P, Kabelitz A, Yusenko KV, Guilherme Buzanich A, Block T, Pöttgen R, Emmerling F, Daumann LJ. The Earlier the Better: Structural Analysis and Separation of Lanthanides with Pyrroloquinoline Quinone. Chemistry 2020; 26:10133-10139. [PMID: 32497263 PMCID: PMC7496819 DOI: 10.1002/chem.202002653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 12/18/2022]
Abstract
Lanthanides (Ln) are critical raw materials, however, their mining and purification have a considerable negative environmental impact and sustainable recycling and separation strategies for these elements are needed. In this study, the precipitation and solubility behavior of Ln complexes with pyrroloquinoline quinone (PQQ), the cofactor of recently discovered lanthanide (Ln) dependent methanol dehydrogenase (MDH) enzymes, is presented. In this context, the molecular structure of a biorelevant europium PQQ complex was for the first time elucidated outside a protein environment. The complex crystallizes as an inversion symmetric dimer, Eu2 PQQ2 , with binding of Eu in the biologically relevant pocket of PQQ. LnPQQ and Ln1Ln2PQQ complexes were characterized by using inductively coupled plasma mass spectrometry (ICP-MS), infrared (IR) spectroscopy, 151 Eu-Mössbauer spectroscopy, X-ray total scattering, and extended X-ray absorption fine structure (EXAFS). It is shown that a natural enzymatic cofactor is capable to achieve separation by precipitation of the notoriously similar, and thus difficult to separate, lanthanides to some extent.
Collapse
Affiliation(s)
- Henning Lumpe
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstraße 5–1381377MünchenGermany
| | - Annika Menke
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstraße 5–1381377MünchenGermany
| | - Christoph Haisch
- Chair of Analytical Chemistry and Water ChemistryTechnical University of MunichMarchioninistraße 1781377MünchenGermany
| | - Peter Mayer
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstraße 5–1381377MünchenGermany
| | - Anke Kabelitz
- Division Structure AnalysisFederal Institute for Materials Research and Testing (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
| | - Kirill V. Yusenko
- Division Structure AnalysisFederal Institute for Materials Research and Testing (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
| | - Ana Guilherme Buzanich
- Division Structure AnalysisFederal Institute for Materials Research and Testing (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
| | - Theresa Block
- Institut für Anorganische und Analytische ChemieUniversität Münster (WWU)Corrensstraße 3048149MünsterGermany
| | - Rainer Pöttgen
- Institut für Anorganische und Analytische ChemieUniversität Münster (WWU)Corrensstraße 3048149MünsterGermany
| | - Franziska Emmerling
- Division Structure AnalysisFederal Institute for Materials Research and Testing (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
| | - Lena J. Daumann
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstraße 5–1381377MünchenGermany
| |
Collapse
|
31
|
High-throughput screening for discovery of benchtop separations systems for selected rare earth elements. Commun Chem 2020; 3:7. [PMID: 36703327 PMCID: PMC9814905 DOI: 10.1038/s42004-019-0253-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/12/2019] [Indexed: 01/29/2023] Open
Abstract
Rare earth (RE) elements (scandium, yttrium, and the lanthanides) are critical for their role in sustainable energy technologies. Problems with their supply chain have motivated research to improve separations methods to recycle these elements from end of life technology. Toward this goal, we report the synthesis and characterization of the ligand tris[(1-hydroxy-2-oxo-1,2-dihydropyridine-3-carboxamido)ethyl]amine, H31·TFA (TFA = trifluoroacetic acid), and complexes 1·RE (RE = La, Nd, Dy). A high-throughput experimentation (HTE) screen was developed to quantitatively determine the precipitation of 1·RE as a function of pH as well as equivalents of H31·TFA. This method rapidly determines optimal conditions for the separation of RE mixtures, while minimizing materials consumption. The HTE-predicted conditions are used to achieve the lab-scale separation of Nd/Dy (SFNd/Dy = 213 ± 34) and La/Nd (SFLa/Nd = 16.2 ± 0.2) mixtures in acidic aqueous media.
Collapse
|
32
|
Higgins RF, Cheisson T, Cole BE, Manor BC, Carroll PJ, Schelter EJ. Magnetic Field Directed Rare‐Earth Separations. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Robert F. Higgins
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Thibault Cheisson
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
- Eramet Ideas 1 rue Albert Einstein 78190 Trappes France
| | - Bren E. Cole
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Brian C. Manor
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Patrick J. Carroll
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Eric J. Schelter
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| |
Collapse
|
33
|
Higgins RF, Cheisson T, Cole BE, Manor BC, Carroll PJ, Schelter EJ. Magnetic Field Directed Rare‐Earth Separations. Angew Chem Int Ed Engl 2019; 59:1851-1856. [DOI: 10.1002/anie.201911606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/10/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Robert F. Higgins
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Thibault Cheisson
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
- Eramet Ideas 1 rue Albert Einstein 78190 Trappes France
| | - Bren E. Cole
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Brian C. Manor
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Patrick J. Carroll
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Eric J. Schelter
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| |
Collapse
|
34
|
Cotruvo JA. The Chemistry of Lanthanides in Biology: Recent Discoveries, Emerging Principles, and Technological Applications. ACS CENTRAL SCIENCE 2019; 5:1496-1506. [PMID: 31572776 PMCID: PMC6764073 DOI: 10.1021/acscentsci.9b00642] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Indexed: 05/18/2023]
Abstract
The essential biological role of rare earth elements lay hidden until the discovery in 2011 that lanthanides are specifically incorporated into a bacterial methanol dehydrogenase. Only recently has this observation gone from a curiosity to a major research area, with the appreciation for the widespread nature of lanthanide-utilizing organisms in the environment and the discovery of other lanthanide-binding proteins and systems for selective uptake. While seemingly exotic at first glance, biological utilization of lanthanides is very logical from a chemical perspective. The early lanthanides (La, Ce, Pr, Nd) primarily used by biology are abundant in the environment, perform similar chemistry to other biologically useful metals and do so more efficiently due to higher Lewis acidity, and possess sufficiently distinct coordination chemistry to allow for selective uptake, trafficking, and incorporation into enzymes. Indeed, recent advances in the field illustrate clear analogies with the biological coordination chemistry of other metals, particularly CaII and FeIII, but with unique twists-including cooperative metal binding to magnify the effects of small ionic radius differences-enabling selectivity. This Outlook summarizes the recent developments in this young but rapidly expanding field and looks forward to potential future discoveries, emphasizing continuity with principles of bioinorganic chemistry established by studies of other metals. We also highlight how a more thorough understanding of the central chemical question-selective lanthanide recognition in biology-may impact the challenging problems of sensing, capture, recycling, and separations of rare earths.
Collapse
Affiliation(s)
- Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State
University, University Park, Pennsylvania 16802, United
States
| |
Collapse
|
35
|
Cole BE, Cheisson T, Higgins RF, Nakamaru-Ogiso E, Manor BC, Carroll PJ, Schelter EJ. Redox-Driven Chelation and Kinetic Separation of Select Rare Earths Using a Tripodal Nitroxide Proligand. Inorg Chem 2019; 59:172-178. [DOI: 10.1021/acs.inorgchem.9b00975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bren E. Cole
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Thibault Cheisson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Robert F. Higgins
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Eiko Nakamaru-Ogiso
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Brian C. Manor
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J. Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Eric J. Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
36
|
Woodside AJ, Smith MA, Herb TM, Manor BC, Carroll PJ, Rablen PR, Graves CR. Synthesis and Characterization of a Tripodal Tris(nitroxide) Aluminum Complex and Its Catalytic Activity toward Carbonyl Hydroboration. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00933] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Audra J. Woodside
- Department of Chemistry & Biochemistry, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Mackinsey A. Smith
- Department of Chemistry & Biochemistry, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Thomas M. Herb
- Department of Chemistry & Biochemistry, Albright College, 13th and Bern Streets, Reading, Pennsylvania 19612, United States
| | - Brian C. Manor
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J. Carroll
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Paul R. Rablen
- Department of Chemistry & Biochemistry, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Christopher R. Graves
- Department of Chemistry & Biochemistry, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| |
Collapse
|
37
|
Mattocks JA, Ho JV, Cotruvo JA. A Selective, Protein-Based Fluorescent Sensor with Picomolar Affinity for Rare Earth Elements. J Am Chem Soc 2019; 141:2857-2861. [DOI: 10.1021/jacs.8b12155] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Joseph A. Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jackson V. Ho
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
38
|
Abstract
The rare earths (REs) are a family of 17 elements that exhibit pronounced chemical similarities as a group, while individually expressing distinctive and varied electronic properties. These atomistic electronic properties are extraordinarily useful and motivate the application of REs in many technologies and devices. From their discovery to the present day, a major challenge faced by chemists has been the separation of RE elements, which has evolved from tedious crystallization to highly engineered solvent extraction schemes. The increasing incorporation and dependence of REs in technology have raised concerns about their sustainability and motivated recent studies for improved separations to achieve a circular RE economy.
Collapse
|
39
|
Lu H, Guo X, Wang Y, Diefenbach K, Chen L, Wang JQ, Lin J, Wang S. Size-dependent selective crystallization using an inorganic mixed-oxoanion system for lanthanide separation. Dalton Trans 2019; 48:12808-12811. [DOI: 10.1039/c9dt02387a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique selective crystallization approach for simple and efficient lanthanide separation has been developed by employing an iodate–sulfate mixed-anion system.
Collapse
Affiliation(s)
- Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Xiaojing Guo
- Key Laboratory of Interfacial Physics and Technology
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Yaxing Wang
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123
- China
| | - Kariem Diefenbach
- Key Laboratory of Interfacial Physics and Technology
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Lanhua Chen
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123
- China
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Jian Lin
- Key Laboratory of Interfacial Physics and Technology
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Shuao Wang
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
40
|
Werner EJ, Biros SM. Supramolecular ligands for the extraction of lanthanide and actinide ions. Org Chem Front 2019. [DOI: 10.1039/c9qo00242a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A selection of supramolecular ligands designed to extract f-elements.
Collapse
Affiliation(s)
- Eric J. Werner
- Department of Chemistry
- Biochemistry and Physics
- The University of Tampa
- Tampa
- USA
| | - Shannon M. Biros
- Department of Chemistry
- Grand Valley State University
- Allendale
- USA
| |
Collapse
|
41
|
Wang Y, Lu H, Dai X, Duan T, Bai X, Cai Y, Yin X, Chen L, Diwu J, Du S, Zhou R, Chai Z, Albrecht-Schmitt TE, Liu N, Wang S. Facile and Efficient Decontamination of Thorium from Rare Earths Based on Selective Selenite Crystallization. Inorg Chem 2018; 57:1880-1887. [DOI: 10.1021/acs.inorgchem.7b02681] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yaxing Wang
- Key Laboratory of Radiation
Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
- State Key Laboratory of Radiation Medicine
and Protection, School for Radiological and Interdisciplinary Sciences
(RAD-X) and Collaborative Innovation Center of Radiation Medicine
of Jiangsu Higher Education Institutions, Soochow University, 215123 Suzhou, P. R. China
| | - Huangjie Lu
- State Key Laboratory of Radiation Medicine
and Protection, School for Radiological and Interdisciplinary Sciences
(RAD-X) and Collaborative Innovation Center of Radiation Medicine
of Jiangsu Higher Education Institutions, Soochow University, 215123 Suzhou, P. R. China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine
and Protection, School for Radiological and Interdisciplinary Sciences
(RAD-X) and Collaborative Innovation Center of Radiation Medicine
of Jiangsu Higher Education Institutions, Soochow University, 215123 Suzhou, P. R. China
| | - Tao Duan
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaojing Bai
- Engineering Laboratory of Specialty Fibers
and Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yawen Cai
- State Key Laboratory of Radiation Medicine
and Protection, School for Radiological and Interdisciplinary Sciences
(RAD-X) and Collaborative Innovation Center of Radiation Medicine
of Jiangsu Higher Education Institutions, Soochow University, 215123 Suzhou, P. R. China
| | - Xuemiao Yin
- State Key Laboratory of Radiation Medicine
and Protection, School for Radiological and Interdisciplinary Sciences
(RAD-X) and Collaborative Innovation Center of Radiation Medicine
of Jiangsu Higher Education Institutions, Soochow University, 215123 Suzhou, P. R. China
| | - Lanhua Chen
- State Key Laboratory of Radiation Medicine
and Protection, School for Radiological and Interdisciplinary Sciences
(RAD-X) and Collaborative Innovation Center of Radiation Medicine
of Jiangsu Higher Education Institutions, Soochow University, 215123 Suzhou, P. R. China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine
and Protection, School for Radiological and Interdisciplinary Sciences
(RAD-X) and Collaborative Innovation Center of Radiation Medicine
of Jiangsu Higher Education Institutions, Soochow University, 215123 Suzhou, P. R. China
| | - Shiyu Du
- Engineering Laboratory of Specialty Fibers
and Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Ruhong Zhou
- State Key Laboratory of Radiation Medicine
and Protection, School for Radiological and Interdisciplinary Sciences
(RAD-X) and Collaborative Innovation Center of Radiation Medicine
of Jiangsu Higher Education Institutions, Soochow University, 215123 Suzhou, P. R. China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine
and Protection, School for Radiological and Interdisciplinary Sciences
(RAD-X) and Collaborative Innovation Center of Radiation Medicine
of Jiangsu Higher Education Institutions, Soochow University, 215123 Suzhou, P. R. China
| | - Thomas E. Albrecht-Schmitt
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Ning Liu
- Key Laboratory of Radiation
Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine
and Protection, School for Radiological and Interdisciplinary Sciences
(RAD-X) and Collaborative Innovation Center of Radiation Medicine
of Jiangsu Higher Education Institutions, Soochow University, 215123 Suzhou, P. R. China
| |
Collapse
|
42
|
Blake AV, Fetrow TV, Theiler ZJ, Vlaisavljevich B, Daly SR. Homoleptic uranium and lanthanide phosphinodiboranates. Chem Commun (Camb) 2018; 54:5602-5605. [DOI: 10.1039/c8cc02862a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and structures of a new class of homoleptic f-metal borohydride complexes (phosphinodiboranates) are described with U, Nd, and Er.
Collapse
Affiliation(s)
| | | | | | | | - Scott R. Daly
- Department of Chemistry
- The University of Iowa
- Iowa City
- USA
| |
Collapse
|
43
|
Cole BE, Falcones IB, Cheisson T, Manor BC, Carroll PJ, Schelter EJ. A molecular basis to rare earth separations for recycling: tuning the TriNOx ligand properties for improved performance. Chem Commun (Camb) 2018; 54:10276-10279. [DOI: 10.1039/c8cc04409k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A methoxy-substituted tripodal hydroxylamine ligand, H3TriNOxOMe, was synthesized and coordinated to rare earth cations for separation purposes.
Collapse
Affiliation(s)
- Bren E. Cole
- P. Roy and Diana T. Vagelos Laboratories
- Department of Chemistry, University of Pennsylvania
- Philadelphia
- USA
| | - Ingemar B. Falcones
- P. Roy and Diana T. Vagelos Laboratories
- Department of Chemistry, University of Pennsylvania
- Philadelphia
- USA
| | - Thibault Cheisson
- P. Roy and Diana T. Vagelos Laboratories
- Department of Chemistry, University of Pennsylvania
- Philadelphia
- USA
| | - Brian C. Manor
- P. Roy and Diana T. Vagelos Laboratories
- Department of Chemistry, University of Pennsylvania
- Philadelphia
- USA
| | - Patrick J. Carroll
- P. Roy and Diana T. Vagelos Laboratories
- Department of Chemistry, University of Pennsylvania
- Philadelphia
- USA
| | - Eric J. Schelter
- P. Roy and Diana T. Vagelos Laboratories
- Department of Chemistry, University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
44
|
Fang H, Cole BE, Qiao Y, Bogart JA, Cheisson T, Manor BC, Carroll PJ, Schelter EJ. Electro‐kinetic Separation of Rare Earth Elements Using a Redox‐Active Ligand. Angew Chem Int Ed Engl 2017; 56:13450-13454. [DOI: 10.1002/anie.201706894] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Huayi Fang
- Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Bren E. Cole
- Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Yusen Qiao
- Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Justin A. Bogart
- Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Thibault Cheisson
- Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Brian C. Manor
- Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Patrick J. Carroll
- Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Eric J. Schelter
- Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| |
Collapse
|
45
|
Fang H, Cole BE, Qiao Y, Bogart JA, Cheisson T, Manor BC, Carroll PJ, Schelter EJ. Electro‐kinetic Separation of Rare Earth Elements Using a Redox‐Active Ligand. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Huayi Fang
- Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Bren E. Cole
- Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Yusen Qiao
- Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Justin A. Bogart
- Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Thibault Cheisson
- Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Brian C. Manor
- Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Patrick J. Carroll
- Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Eric J. Schelter
- Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| |
Collapse
|