1
|
Kuralay A, McDonough MC, Resch JM. Control of sodium appetite by hindbrain aldosterone-sensitive neurons. Mol Cell Endocrinol 2024; 592:112323. [PMID: 38936597 PMCID: PMC11381173 DOI: 10.1016/j.mce.2024.112323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Mineralocorticoids play a key role in hydromineral balance by regulating sodium retention and potassium wasting. Through favoring sodium, mineralocorticoids can cause hypertension from fluid overload under conditions of hyperaldosteronism, such as aldosterone-secreting tumors. An often-overlooked mechanism by which aldosterone functions to increase sodium is through stimulation of salt appetite. To drive sodium intake, aldosterone targets neurons in the hindbrain which uniquely express 11β-hydroxysteroid dehydrogenase type 2 (HSD2). This enzyme is a necessary precondition for aldosterone-sensing cells as it metabolizes glucocorticoids - preventing their activation of the mineralocorticoid receptor. In this review, we will consider the role of hindbrain HSD2 neurons in regulating sodium appetite by discussing HSD2 expression in the brain, regulation of hindbrain HSD2 neuron activity, and the circuitry mediating the effects of these aldosterone-sensitive neurons. Reducing the activity of hindbrain HSD2 neurons may be a viable strategy to reduce sodium intake and cardiovascular risk, particularly for conditions of hyperaldosteronism.
Collapse
Affiliation(s)
- Ahmet Kuralay
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA
| | - Miriam C McDonough
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Jon M Resch
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Peters C, He S, Fermani F, Lim H, Ding W, Mayer C, Klein R. Transcriptomics reveals amygdala neuron regulation by fasting and ghrelin thereby promoting feeding. SCIENCE ADVANCES 2023; 9:eadf6521. [PMID: 37224253 DOI: 10.1126/sciadv.adf6521] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
The central amygdala (CeA) consists of numerous genetically defined inhibitory neurons that control defensive and appetitive behaviors including feeding. Transcriptomic signatures of cell types and their links to function remain poorly understood. Using single-nucleus RNA sequencing, we describe nine CeA cell clusters, of which four are mostly associated with appetitive and two with aversive behaviors. To analyze the activation mechanism of appetitive CeA neurons, we characterized serotonin receptor 2a (Htr2a)-expressing neurons (CeAHtr2a) that comprise three appetitive clusters and were previously shown to promote feeding. In vivo calcium imaging revealed that CeAHtr2a neurons are activated by fasting, the hormone ghrelin, and the presence of food. Moreover, these neurons are required for the orexigenic effects of ghrelin. Appetitive CeA neurons responsive to fasting and ghrelin project to the parabrachial nucleus (PBN) causing inhibition of target PBN neurons. These results illustrate how the transcriptomic diversification of CeA neurons relates to fasting and hormone-regulated feeding behavior.
Collapse
Affiliation(s)
- Christian Peters
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Songwei He
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Federica Fermani
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Hansol Lim
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Wenyu Ding
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Christian Mayer
- Laboratory of Neurogenomics, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Rüdiger Klein
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| |
Collapse
|
3
|
Zhang J, Song C, Dai J, Li L, Yang X, Chen Z. Mechanism of opioid addiction and its intervention therapy: Focusing on the reward circuitry and mu-opioid receptor. MedComm (Beijing) 2022; 3:e148. [PMID: 35774845 PMCID: PMC9218544 DOI: 10.1002/mco2.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/09/2022] Open
Abstract
Opioid abuse and addiction have become a global pandemic, posing tremendous health and social burdens. The rewarding effects and the occurrence of withdrawal symptoms are the two mainstays of opioid addiction. Mu-opioid receptors (MORs), a member of opioid receptors, play important roles in opioid addiction, mediating both the rewarding effects of opioids and opioid withdrawal syndrome (OWS). The underlying mechanism of MOR-mediated opioid rewarding effects and withdrawal syndrome is of vital importance to understand the nature of opioid addiction and also provides theoretical basis for targeting MORs to treat drug addiction. In this review, we first briefly introduce the basic concepts of MORs, including their structure, distribution in the nervous system, endogenous ligands, and functional characteristics. We focused on the brain circuitry and molecular mechanism of MORs-mediated opioid reward and withdrawal. The neuroanatomical and functional elements of the neural circuitry of the reward system underlying opioid addiction were thoroughly discussed, and the roles of MOR within the reward circuitry were also elaborated. Furthermore, we interrogated the roles of MORs in OWS, along with the structural basis and molecular adaptions of MORs-mediated withdrawal syndrome. Finally, current treatment strategies for opioid addiction targeting MORs were also presented.
Collapse
Affiliation(s)
- Jia‐Jia Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Chang‐Geng Song
- Department of NeurologyXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Ji‐Min Dai
- Department of Hepatobiliary SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Ling Li
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Xiang‐Min Yang
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
4
|
Wang R, Wang N, Liang W, Lin T, Qiao H. The role of central amygdaloid nucleus in regulating the nongenomic effect of aldosterone on sodium intake in the nucleus tractus solitary. Brain Behav 2022; 12:e2615. [PMID: 35588446 PMCID: PMC9226841 DOI: 10.1002/brb3.2615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/11/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The central nucleus of the amygdala (CeA) has dense downward fiber projections towards the nucleus tractus solitary (NTS) and can modulate the activity of NTS taste neurons. However, whether CeA affects the nongenomic role of aldosterone (ALD) in regulating sodium intake at the NTS level remains unclear. METHODS First, 40 adult male Sprague Dawley rats were divided into five groups, referring to different concentrations of ALD, to observe the sodium intake pattern compared with the vehicle (n = 8). ALD, the mineralocorticoid receptor antagonist spironolactone (SPI), and ALD + SPI were injected into the NTS. Then, the rats were divided into four groups (n = 16): bilateral/unilateral CeA electrolytic lesions, bilateral/unilateral CeA sham lesions. After recovery, one stainless steel 23-gauge cannula with two tubes was implanted into the rat NTS, and all rats underwent a recovery period of 7 days. Then, each group was divided into two subgroups that received aldosterone or control solution injection, and the cumulative intake of 0.3 mol/L NaCl solution was recorded within 30 min. RESULTS Bilateral CeA lesion eliminated the increased 0.3 mol/L NaCl intake induced by aldosterone microinjected into the NTS (CeA lesion: 0.3 ± 0.04 ml/30 min vs. sham lesion: 1.3 ± 0.3 ml/30 min). Unilateral CeA lesion reduced the increased NaCl intake induced by aldosterone microinjected into the NTS compared with the control group (p < .05) in the first 15 min but not in 15-30 min (p > .05). In sham lesion rats, aldosterone (5 ng/0.1 μl) still induced a significant increase in NaCl intake (aldosterone: 1.3 ± 0.3 ml/30 min vs. control: 0.25 ± 0.02 ml/30 min) (p < .05). CONCLUSION The results verified that the complete CeA may play an important role in aldosterone to regulate the nongenomic effect on rapid sodium intake.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- Department of Human Anatomy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Wenhui Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Tingting Lin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Hu Qiao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Abstract
BACKGROUND The endogenous opioid system affects metabolism, including weight regulation. Evidence from preclinical and clinical studies provides a rationale for targeting this system to mitigate weight-related side effects of antipsychotics. This review describes the role of the opioid system in regulating weight and metabolism, examines the effects of opioid receptor antagonism on those functions, and explores the use of opioid antagonists to mitigate antipsychotic-associated weight gain and/or metabolic effects. METHODS A PubMed literature search was conducted to identify representative opioid antagonists and associated preclinical and clinical studies examining their potential for the regulation of weight and metabolism. RESULTS The mu opioid receptor (MOR), delta opioid receptor (DOR), and kappa opioid receptor (KOR) types have overlapping but distinct patterns of central and peripheral expression, and each contributes to the regulation of body weight and metabolism. Three representative opioid antagonists (eg, naltrexone, samidorphan, and LY255582) were identified for illustration. These opioid antagonists differed in their receptor binding and pharmacokinetic profiles, including oral bioavailability, systemic clearance, and half-life, and were associated with varying effects on food intake, energy utilization, and metabolic dysregulation. CONCLUSIONS Preclinical and clinical data suggest that antagonism of the endogenous opioid system is a mechanism to address antipsychotic-associated weight gain and metabolic dysregulation. However, evidence suggests that the differing roles of MOR, DOR, and KOR in metabolism, together with the differences in receptor binding, pharmacokinetic, and functional activity profiles of the opioid receptor antagonists discussed in this review, likely contribute to their differential pharmacodynamic effects and clinical outcomes observed regarding antipsychotic-associated weight gain.
Collapse
|
6
|
NODA M, MATSUDA T. Central regulation of body fluid homeostasis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:283-324. [PMID: 35908954 PMCID: PMC9363595 DOI: 10.2183/pjab.98.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na+ concentration ([Na+]) in body fluids is maintained at 135-145 mM and is broadly conserved among terrestrial animals. Homeostatic osmoregulation by Na+ is vital for life because severe hyper- or hypotonicity elicits irreversible organ damage and lethal neurological trauma. To achieve "body fluid homeostasis" or "Na homeostasis", the brain continuously monitors [Na+] in body fluids and controls water/salt intake and water/salt excretion by the kidneys. These physiological functions are primarily regulated based on information on [Na+] and relevant circulating hormones, such as angiotensin II, aldosterone, and vasopressin. In this review, we discuss sensing mechanisms for [Na+] and hormones in the brain that control water/salt intake behaviors, together with the responsible sensors (receptors) and relevant neural pathways. We also describe mechanisms in the brain by which [Na+] increases in body fluids activate the sympathetic neural activity leading to hypertension.
Collapse
Affiliation(s)
- Masaharu NODA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
- Correspondence should be addressed to: Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan (e-mail: )
| | - Takashi MATSUDA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
7
|
Tong Y, Xu S, Huang L, Chen C. Obesity and insulin resistance: Pathophysiology and treatment. Drug Discov Today 2021; 27:822-830. [PMID: 34767960 DOI: 10.1016/j.drudis.2021.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022]
Abstract
The prevalence of obesity is a major cause of many chronic metabolic disorders, including type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), and cancer. Insulin resistance is often associated with metabolic unhealthy obesity (MUO). Therapeutic approaches aiming to improve insulin sensitivity are believed to be central for the prevention and treatment of MUO. However, current antiobesity drugs are reported as multitargeted and their insulin-sensitizing effects remain unclear. In this review, we discuss current understanding of the mechanisms of insulin resistance from the aspects of endocrine disturbance, inflammation, oxidative, and endoplasmic reticulum stress (ERS). We then summarize the antiobesity drugs, focusing on their effects on insulin sensitivity. Finally, we discuss strategies for obesity treatment.
Collapse
Affiliation(s)
- Yue Tong
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Sai Xu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
8
|
Robinson KC, Kemény LV, Fell GL, Hermann AL, Allouche J, Ding W, Yekkirala A, Hsiao JJ, Su MY, Theodosakis N, Kozak G, Takeuchi Y, Shen S, Berenyi A, Mao J, Woolf CJ, Fisher DE. Reduced MC4R signaling alters nociceptive thresholds associated with red hair. SCIENCE ADVANCES 2021; 7:eabd1310. [PMID: 33811065 PMCID: PMC11057701 DOI: 10.1126/sciadv.abd1310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Humans and mice with natural red hair have elevated basal pain thresholds and an increased sensitivity to opioid analgesics. We investigated the mechanisms responsible for higher nociceptive thresholds in red-haired mice resulting from a loss of melanocortin 1 receptor (MC1R) function and found that the increased thresholds are melanocyte dependent but melanin independent. MC1R loss of function decreases melanocytic proopiomelanocortin transcription and systemic melanocyte-stimulating hormone (MSH) levels in the plasma of red-haired (Mc1re/e ) mice. Decreased peripheral α-MSH derepresses the central opioid tone mediated by the opioid receptor OPRM1, resulting in increased nociceptive thresholds. We identified MC4R as the MSH-responsive receptor that opposes OPRM1 signaling and the periaqueductal gray area in the brainstem as a central area of opioid/melanocortin antagonism. This work highlights the physiologic role of melanocytic MC1R and circulating melanocortins in the regulation of nociception and provides a mechanistic framework for altered opioid signaling and pain sensitivity in red-haired individuals.
Collapse
Affiliation(s)
- Kathleen C Robinson
- Cutaneous Biology Research Center, Department of Dermatology and MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Lajos V Kemény
- Cutaneous Biology Research Center, Department of Dermatology and MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Gillian L Fell
- Cutaneous Biology Research Center, Department of Dermatology and MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Andrea L Hermann
- Cutaneous Biology Research Center, Department of Dermatology and MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- Doctoral School of Clinical Medicine, University of Szeged, Szeged 6720, Hungary
| | - Jennifer Allouche
- Cutaneous Biology Research Center, Department of Dermatology and MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Weihua Ding
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Ajay Yekkirala
- FM Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer J Hsiao
- Cutaneous Biology Research Center, Department of Dermatology and MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Mack Y Su
- Cutaneous Biology Research Center, Department of Dermatology and MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Nicholas Theodosakis
- Cutaneous Biology Research Center, Department of Dermatology and MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Gabor Kozak
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, Interdisciplinary Excellence Centre, University of Szeged, Szeged H-6720, Hungary
- University Neurology Hospital and Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Yuichi Takeuchi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, Interdisciplinary Excellence Centre, University of Szeged, Szeged H-6720, Hungary
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Neurocybernetics Excellence Center, University of Szeged, 10 Dom sqr, Szeged 6720, Hungary
- Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Shiqian Shen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Antal Berenyi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, Interdisciplinary Excellence Centre, University of Szeged, Szeged H-6720, Hungary
- Neurocybernetics Excellence Center, University of Szeged, 10 Dom sqr, Szeged 6720, Hungary
- Neuroscience Institute, New York University, New York City, NY 10016, USA
- HCEMM-USZ Magnetotherapeutics Research Group, University of Szeged, 10 Dom sqr, Szeged 6720, Hungary
| | - Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Clifford J Woolf
- FM Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology and MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
9
|
Macdonald J, Denoyer D, Henri J, Jamieson A, Burvenich IJ, Pouliot N, Shigdar S. Bifunctional Aptamer-Doxorubicin Conjugate Crosses the Blood-Brain Barrier and Selectively Delivers Its Payload to EpCAM-Positive Tumor Cells. Nucleic Acid Ther 2020; 30:117-128. [PMID: 32027209 PMCID: PMC7133447 DOI: 10.1089/nat.2019.0807] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The prognosis for breast cancer patients diagnosed with brain metastases is poor, with survival time measured merely in months. This can largely be attributed to the limited treatment options capable of reaching the tumor as a result of the highly restrictive blood-brain barrier (BBB). While methods of overcoming this barrier have been developed and employed with current treatment options, the majority are highly invasive and nonspecific, leading to severe neurotoxic side effects. A novel approach to address these issues is the development of therapeutics targeting receptor-mediated transport mechanisms on the BBB endothelial cell membranes. Using this approach, we intercalated doxorubicin (DOX) into a bifunctional aptamer targeting the transferrin receptor on the BBB and epithelial cell adhesion molecule (EpCAM) on metastatic cancer cells. The ability of the DOX-loaded aptamer to transcytose the BBB and selectively deliver the payload to EpCAM-positive tumors was evaluated in an in vitro model and confirmed for the first time in vivo using the MDA-MB-231 breast cancer metastasis model (MDA-MB-231Br). We show that colocalized aptamer and DOX are clearly detectable within the brain lesions 75 min postadministration. Collectively, results from this study demonstrate that through intercalation of a cytotoxic drug into the bifunctional aptamer, a therapeutic delivery vehicle can be developed for specific targeting of EpCAM-positive brain metastases.
Collapse
Affiliation(s)
- Joanna Macdonald
- School of Medicine, Deakin University, Geelong, Australia
- Centre for Molecular and Medical Research, Deakin University, Geelong, Australia
| | - Delphine Denoyer
- Matrix Microenvironment and Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Justin Henri
- School of Medicine, Deakin University, Geelong, Australia
| | | | - Ingrid J.G. Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Normand Pouliot
- Matrix Microenvironment and Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, Geelong, Australia
- Centre for Molecular and Medical Research, Deakin University, Geelong, Australia
- Address correspondence to: Sarah Shigdar, MSc, PhD, School of Medicine, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
10
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
11
|
Activation of Kappa Opioid Receptor Regulates the Hypothermic Response to Calorie Restriction and Limits Body Weight Loss. Curr Biol 2019; 29:4291-4299.e4. [PMID: 31786059 DOI: 10.1016/j.cub.2019.10.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/16/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022]
Abstract
Mammals maintain a nearly constant core body temperature (Tb) by balancing heat production and heat dissipation. This comes at a high metabolic cost that is sustainable if adequate calorie intake is maintained. When nutrients are scarce or experimentally reduced such as during calorie restriction (CR), endotherms can reduce energy expenditure by lowering Tb [1-6]. This adaptive response conserves energy, limiting the loss of body weight due to low calorie intake [7-10]. Here we show that this response is regulated by the kappa opioid receptor (KOR). CR is associated with increased hypothalamic levels of the endogenous opioid Leu-enkephalin, which is derived from the KOR agonist precursor dynorphin [11]. Pharmacological inhibition of KOR, but not of the delta or the mu opioid receptor subtypes, fully blocked CR-induced hypothermia and increased weight loss during CR independent of calorie intake. Similar results were seen with DIO mice subjected to CR. In contrast, inhibiting KOR did not change Tb in animals fed ad libitum (AL). Chemogenetic inhibition of KOR neurons in the hypothalamic preoptic area reduced the CR-induced hypothermia, whereas chemogenetic activation of prodynorphin-expressing neurons in the arcuate or the parabrachial nucleus lowered Tb. These data indicate that KOR signaling is a pivotal regulator of energy homeostasis and can affect body weight during dieting by modulating Tb and energy expenditure.
Collapse
|
12
|
The influence of opioid dependence on salt consumption and related psychological parameters in mice and humans. Drug Alcohol Depend 2019; 203:19-26. [PMID: 31400713 DOI: 10.1016/j.drugalcdep.2019.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND The consumption of dietary salt (NaCl) is controlled by neuronal pathways that are modulated by endogenous opioid signalling. The latter is disrupted by chronic use of exogenous opioid receptor agonists, such as morphine. Therefore, opioid dependence may influence salt consumption, which we investigated in two complimentary studies in humans and mice. METHODS Human study: three groups were recruited: i. Individuals who are currently opioid dependent and receiving opioid substitution treatment (OST); ii. Previously opioid dependent individuals, who are currently abstinent, and; iii. Healthy controls with no history of opioid dependence. Participants tasted solutions containing different salt concentrations and indicated levels of salt 'desire', salt 'liking', and perceptions of 'saltiness'. Mouse study: preference for 0.1 M versus 0.2 M NaCl and overall levels of salt consumption were recorded during and after chronic escalating morphine treatment. RESULTS Human study: Abstinent participants' 'desire' for and 'liking' of salt was shifted towards more highly concentrated salt solutions relative to control and OST individuals. Mouse study: Mice increased their total salt consumption during morphine treatment relative to vehicle controls, which persisted for 3 days after cessation of treatment. Preference for 'low' versus 'high' concentrations of salt were unchanged. CONCLUSION These findings suggest a possible common mechanistic cross-sensitization to salt that is present in both mice and humans and builds our understanding of how opioid dependence can influence dietary salt consumption. This research may help inform better strategies to improve the diet and overall wellbeing of the growing number of individuals who develop opioid dependence.
Collapse
|
13
|
Abstract
Fluid satiation, or quenching of thirst, is a critical homeostatic signal to stop drinking; however, its underlying neurocircuitry is not well characterized. Cutting-edge genetically encoded tools and techniques are now enabling researchers to pinpoint discrete neuronal populations that control fluid satiation, revealing that hindbrain regions, such as the nucleus of the solitary tract, area postrema, and parabrachial nucleus, primarily inhibit fluid intake. By contrast, forebrain regions such as the lamina terminalis, primarily stimulate thirst and fluid intake. One intriguing aspect of fluid satiation is that thirst is quenched tens of minutes before water reaches the circulation, and the amount of water ingested is accurately calibrated to match physiological needs. This suggests that 'preabsorptive' inputs from the oropharyngeal regions, esophagus or upper gastrointestinal tract anticipate the amount of fluid required to restore fluid homeostasis, and provide rapid signals to terminate drinking once this amount has been consumed. It is likely that preabsorptive signals are carried via the vagal nerve to the hindbrain. In this review, we explore our current understanding of the fluid satiation neurocircuitry, its inputs and outputs, and its interconnections within the brain, with a focus on recent studies of the hindbrain, particularly the parabrachial nucleus.
Collapse
Affiliation(s)
- Philip J Ryan
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Phenotyping neurons activated in the mouse brain during restoration of salt debt. J Chem Neuroanat 2019; 101:101665. [PMID: 31398430 DOI: 10.1016/j.jchemneu.2019.101665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 11/21/2022]
Abstract
Salt overconsumption contributes to hypertension, which is a major risk factor for stroke, heart and kidney disease. Characterising neuronal pathways that may control salt consumption is therefore important for developing novel approaches for reducing salt overconsumption. Here, we identify neurons within the mouse central amygdala (CeA), lateral parabrachial nucleus (LPBN), intermediate nucleus of the solitary tract (iNTS), and caudal NTS (cNTS) that are activated and display Fos immunoreactivity in mice that have consumed salt in order to restore a salt debt, relative to salt replete and salt depleted controls. Double-label immunohistochemical studies revealed that salt restoring mice had significantly greater densities of activated enkephalin neurons within the CeA and iNTS, while statistically significant changes within the LPBN and cNTS were not observed. Furthermore, within the CeA, restoration of salt debt conferred a significant increase in the density of activated calretinin neurons, while there was no change relative to control groups in the density of activated neurons that co-expressed protein kinase C delta (PKC-δ). Taken together, these studies highlight the importance of opioid systems within the CeA and iNTS in neuronal processes associated with salt restoration, and may aid the development of future pharmacological and other strategies for reducing salt overconsumption.
Collapse
|
15
|
Dadam F, Zádor F, Caeiro X, Szűcs E, Erdei AI, Samavati R, Gáspár R, Borsodi A, Vivas L. The effect of increased NaCl intake on rat brain endogenous μ-opioid receptor signalling. J Neuroendocrinol 2018; 30:e12585. [PMID: 29486102 DOI: 10.1111/jne.12585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 01/20/2023]
Abstract
Numerous studies demonstrate the significant role of central β-endorphin and its receptor, the μ-opioid receptor (MOR), in sodium intake regulation. The present study aimed to investigate the possible relationship between chronic high-NaCl intake and brain endogenous MOR functioning. We examined whether short-term (4 days) obligatory salt intake (2% NaCl solution) in rats induces changes in MOR mRNA expression, G-protein activity and MOR binding capacity in brain regions involved in salt intake regulation. Plasma osmolality and electrolyte concentrations after sodium overload and the initial and final body weight of the animals were also examined. After 4 days of obligatory hypertonic sodium chloride intake, there was clearly no difference in MOR mRNA expression and G-protein activity in the median preoptic nucleus (MnPO). In the brainstem, MOR binding capacity also remained unaltered, although the maximal efficacy of MOR G-protein significantly increased. Finally, no significant alterations were observed in plasma osmolality and electrolyte concentrations. Interestingly, animals that received sodium gained significantly less weight than control animals. In conclusion, we found no significant alterations in the MnPO and brainstem in the number of available cell surface MORs or de novo syntheses of MOR after hypertonic sodium intake. The increased MOR G-protein activity following acute sodium overconsumption may participate in the maintenance of normal blood pressure levels and/or in enhancing sodium taste aversion and sodium overload-induced anorexia.
Collapse
Affiliation(s)
- F Dadam
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - F Zádor
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - X Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - E Szűcs
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - A I Erdei
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - R Samavati
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - R Gáspár
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - A Borsodi
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - L Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
16
|
Abstract
The central nucleus of the amygdala (CEA) is a striatum-like structure orchestrating a diverse set of adaptive behaviors, including defensive and appetitive responses [1-3]. Studies using anatomical, electrophysiological, imaging and optogenetic approaches revealed that the CEA network consists of recurrent inhibitory circuits comprised of precisely connected functionally and genetically defined cell types that can select and control specific behavioral outputs [3,4,5•,6•,7-9,11,12]. While bivalent functionality of the CEA in adaptive behavior has been clearly demonstrated, we are just beginning to understand to which degree individual CEA circuit elements are functionally segregated or overlapping. Importantly, recent studies seem to suggest that optogenetic manipulations of the same, or overlapping cell populations can give rise to distinct, or sometimes even opposite, behavioral phenotypes [5•,6•,9-12]. In this review, we discuss recent progress in our understanding of how defined CEA circuits can control defensive and appetitive behaviors, and how seemingly contradictory results could point to an integrated concept of CEA function.
Collapse
Affiliation(s)
- Jonathan P Fadok
- Department of Psychology, Program in Neuroscience, and Brain Institute, Tulane University, New Orleans, United States
| | - Milica Markovic
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Philip Tovote
- University Hospital Würzburg, Institute of Clinical Neurobiology, Würzburg, Germany.
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Switzerland.
| |
Collapse
|
17
|
Yan JB, Hu ZH. [µ-opioid receptors in the central nucleus of the amygdala mediate sodium intake in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1195-1200. [PMID: 28951361 PMCID: PMC6765484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Indexed: 07/30/2024]
Abstract
OBJECTIVE To investigate the opioidergic mechanism of the central nucleus of the amygdala (CeA) for regulating sodium appetite in rats. METHDOS Using the elaborate invasive cerebral cannulation and brain microinjection method, we observed the effects of bilateral intra-CeA injections of DAMGO (a selective µ-opioid receptor agonist) and CTAP (a highly selective µ-opioid receptor antagonist), either alone or in combination, on NaCl solution (0.3 mol/L) and water intake by rats in different models of Na+ ingestion. RESULTS In the two-bottle tests, bilateral injections of DAMGO at 1, 2, and 4 nmol into the CeA induced a dose-related increase of NaCl and water intake in rats treated with water deprivation with partial rehydration (WD-PR), and pretreatment with 0.5, 1, and 2 nmol CTAP injected into the CeA significantly suppressed DAMGO-induced NaCl and water intake in a dose-dependent manner: in the one-bottle tests, bilateral injections of DAMGO (2 noml) into the CeA had no effect on water intake of the rats. In rats with subcutaneous injection of furosemide (FURO) combined with captopril (CAP) (FURO+CAP), bilateral intra-CeA injections of DAMGO (2 nmol) caused increased NaCl and water intake in the two-bottle tests, but such effects were suppressed by pretreatment with CTAP injection into the CeA; in the one-bottle tests, bilateral intra-CeA injections of DAMGO had no effect on water intake of the rats. CONCLUSION µ-opioid receptors in the CeA are involved in the excitatory regulation of sodium appetite to mediate sodium intake. µ-opioid receptor antagonists are expected to be targets for developing inhibitors of sodium appetite.
Collapse
Affiliation(s)
- Jun-Bao Yan
- Department of Physiology, Medical College of Henan University of Science and Technology, Luoyang 471023, China.E-mail:
| | | |
Collapse
|
18
|
Yan JB, Hu ZH. [µ-opioid receptors in the central nucleus of the amygdala mediate sodium intake in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1195-1200. [PMID: 28951361 PMCID: PMC6765484 DOI: 10.3969/j.issn.1673-4254.2017.09.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the opioidergic mechanism of the central nucleus of the amygdala (CeA) for regulating sodium appetite in rats. METHDOS Using the elaborate invasive cerebral cannulation and brain microinjection method, we observed the effects of bilateral intra-CeA injections of DAMGO (a selective µ-opioid receptor agonist) and CTAP (a highly selective µ-opioid receptor antagonist), either alone or in combination, on NaCl solution (0.3 mol/L) and water intake by rats in different models of Na+ ingestion. RESULTS In the two-bottle tests, bilateral injections of DAMGO at 1, 2, and 4 nmol into the CeA induced a dose-related increase of NaCl and water intake in rats treated with water deprivation with partial rehydration (WD-PR), and pretreatment with 0.5, 1, and 2 nmol CTAP injected into the CeA significantly suppressed DAMGO-induced NaCl and water intake in a dose-dependent manner: in the one-bottle tests, bilateral injections of DAMGO (2 noml) into the CeA had no effect on water intake of the rats. In rats with subcutaneous injection of furosemide (FURO) combined with captopril (CAP) (FURO+CAP), bilateral intra-CeA injections of DAMGO (2 nmol) caused increased NaCl and water intake in the two-bottle tests, but such effects were suppressed by pretreatment with CTAP injection into the CeA; in the one-bottle tests, bilateral intra-CeA injections of DAMGO had no effect on water intake of the rats. CONCLUSION µ-opioid receptors in the CeA are involved in the excitatory regulation of sodium appetite to mediate sodium intake. µ-opioid receptor antagonists are expected to be targets for developing inhibitors of sodium appetite.
Collapse
Affiliation(s)
- Jun-Bao Yan
- Department of Physiology, Medical College of Henan University of Science and Technology, Luoyang 471023, China.E-mail:
| | | |
Collapse
|
19
|
Mehta V. Addictive salt may not be solely responsible for causing hypertension: A sweet and fatty hypothesis. HIPERTENSION Y RIESGO VASCULAR 2017; 35:S1889-1837(17)30060-0. [PMID: 28927660 DOI: 10.1016/j.hipert.2017.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/11/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022]
Abstract
In literature, since many decades, it is often believed and condoned that excessive common salt (Nacl) ingestion can lead to hypertension. Hence, every health organisation, agencies and physicians have been advising salt restriction to hypertensive patients. However, there is no concrete evidence suggesting that salt restriction can reduce the risk of hypertension (HTN). The present article is based on the current literature search which was performed using MEDLINE, EMBASE, Google Scholar and PubMed. The meta-analysis, randomised control trials, clinical trials and review articles were chosen. The present review article suggests that consumption of high salt diet does not lead to hypertension and there are other factors which can lead to hypertension, sugar and fats being the main reasons. Salt can however lead to addiction and generally, these salty food items have a larger proportion of sugar and fats, which if over-consumed has a potential to cause obesity, hyperlipidaemia and subsequently, hypertension and other cardiovascular disorders. Hence, through the present review, I would like to suggest all the physicians to ask the hypertensive patients to cut down the intake of sugar and fat containing food items and keep a check on addiction of salty food items.
Collapse
Affiliation(s)
- V Mehta
- Mount Sinai Hospital, New York, US; MGM Medical College, Navi Mumbai, India.
| |
Collapse
|
20
|
Abstract
Due to the biological importance of sodium and its relative scarcity within many natural environments, 'salt appetite' has evolved whereby dietary salt is highly sought after and palatable when tasted. In addition to peripheral responses, salt depletion is detected within the brain via circumventricular organs and 11β-hydroxysteroid dehydrogenase type 2 (HSD2) neurons to increase salt appetite. Salt appetite is comprised of two main components. One component is the incentive salience or motivation for salt (i.e. how much salt is 'wanted'). Incentive salience is dynamic and largely depends on internal homeostatic conditions in combination with the detection of relevant cues. It involves the mesolimbic system and structures such as the central amygdala, and opioid signalling within these regions can increase salt intake in rodents. A second key feature is the hedonic palatability of salt (i.e. how much it is 'liked') when it is tasted. After detection on the tongue, gustatory information passes through the brainstem nucleus of the solitary tract and thalamus, before being consciously detected within the gustatory cerebral cortex. The positive or negative hedonic value of this stimulus is also dynamic, and is encoded by a network including the nucleus accumbens, ventral pallidum, and lateral parabrachial nucleus. Opioid signalling within these areas can alter salt intake, and 'liking'. The overconsumption of dietary salt likely contributes to hypertension and associated diseases, and hence further characterising the role played by opioid signalling has important implications for human health.
Collapse
Affiliation(s)
- Craig M Smith
- Faculty of Health, The School of Medicine, Deakin University, Geelong, VIC, 3220, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3052, Australia. .,The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3052, Australia.
| |
Collapse
|