1
|
Defendini H, Prunier-Leterme N, Robin S, Lameiras S, Baulande S, Simon JC, Jaquiéry J. The release of sexual conflict after sex loss is associated with evolutionary changes in gene expression. Proc Biol Sci 2025; 292:20242631. [PMID: 39876718 PMCID: PMC11775605 DOI: 10.1098/rspb.2024.2631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Sexual conflict can arise because males and females, while sharing most of their genome, can have different phenotypic optima. Sexually dimorphic gene expression may help reduce conflict, but the expression of many genes may remain sub-optimal owing to unresolved tensions between the sexes. Asexual lineages lack such conflict, making them relevant models for understanding the extent to which sexual conflict influences gene expression. We investigate the evolution of sexual conflict subsequent to sex loss by contrasting the gene expression patterns of sexual and asexual lineages in the pea aphid Acyrthosiphon pisum. Although asexual lineages of this aphid produce a small number of males in autumn, their mating opportunities are limited because of geographic isolation between sexual and asexual lineages. Therefore, gene expression in parthenogenetic females of asexual lineages is no longer constrained by that of other morphs. We found that the expression of genes in males from asexual lineages tended towards the parthenogenetic female optimum, in agreement with theoretical predictions. Surprisingly, males and parthenogenetic females of asexual lineages overexpressed genes normally found in the ovaries and testes of sexual morphs. These changes in gene expression in asexual lineages may arise from the relaxation of selection or the dysregulation of gene networks otherwise used in sexual lineages.
Collapse
Affiliation(s)
- Hélène Defendini
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Nathalie Prunier-Leterme
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Stéphanie Robin
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Sonia Lameiras
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, Paris75005, France
| | - Sylvain Baulande
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, Paris75005, France
| | - Jean-Christophe Simon
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Julie Jaquiéry
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| |
Collapse
|
2
|
Harris SE, Alexis MS, Giri G, Cavazos FF, Hu Y, Murn J, Aleman MM, Burge CB, Dominguez D. Understanding species-specific and conserved RNA-protein interactions in vivo and in vitro. Nat Commun 2024; 15:8400. [PMID: 39333159 PMCID: PMC11436793 DOI: 10.1038/s41467-024-52231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/28/2024] [Indexed: 09/29/2024] Open
Abstract
While evolution is often considered from a DNA- and protein-centric view, RNA-based regulation can also impact gene expression and protein sequences. Here we examine interspecies differences in RNA-protein interactions using the conserved neuronal RNA-binding protein, Unkempt (UNK) as model. We find that roughly half of mRNAs bound in human are also bound in mouse. Unexpectedly, even when transcript-level binding was conserved across species differential motif usage was prevalent. To understand the biochemical basis of UNK-RNA interactions, we reconstitute the human and mouse UNK-RNA interactomes using a high-throughput biochemical assay. We uncover detailed features driving binding, show that in vivo patterns are captured in vitro, find that highly conserved sites are the strongest bound, and associate binding strength with downstream regulation. Furthermore, subtle sequence differences surrounding motifs are key determinants of species-specific binding. We highlight the complex features driving protein-RNA interactions and how these evolve to confer species-specific regulation.
Collapse
Affiliation(s)
- Sarah E Harris
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Maria S Alexis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Remix Therapeutics, Cambridge, MA, USA
| | - Gilbert Giri
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Francisco F Cavazos
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Yue Hu
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, CA, USA
- Center for RNA Biology and Medicine, Riverside, CA, USA
| | - Maria M Aleman
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel Dominguez
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA.
- RNA Discovery Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Karollus A, Hingerl J, Gankin D, Grosshauser M, Klemon K, Gagneur J. Species-aware DNA language models capture regulatory elements and their evolution. Genome Biol 2024; 25:83. [PMID: 38566111 PMCID: PMC10985990 DOI: 10.1186/s13059-024-03221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The rise of large-scale multi-species genome sequencing projects promises to shed new light on how genomes encode gene regulatory instructions. To this end, new algorithms are needed that can leverage conservation to capture regulatory elements while accounting for their evolution. RESULTS Here, we introduce species-aware DNA language models, which we trained on more than 800 species spanning over 500 million years of evolution. Investigating their ability to predict masked nucleotides from context, we show that DNA language models distinguish transcription factor and RNA-binding protein motifs from background non-coding sequence. Owing to their flexibility, DNA language models capture conserved regulatory elements over much further evolutionary distances than sequence alignment would allow. Remarkably, DNA language models reconstruct motif instances bound in vivo better than unbound ones and account for the evolution of motif sequences and their positional constraints, showing that these models capture functional high-order sequence and evolutionary context. We further show that species-aware training yields improved sequence representations for endogenous and MPRA-based gene expression prediction, as well as motif discovery. CONCLUSIONS Collectively, these results demonstrate that species-aware DNA language models are a powerful, flexible, and scalable tool to integrate information from large compendia of highly diverged genomes.
Collapse
Affiliation(s)
- Alexander Karollus
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Johannes Hingerl
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Dennis Gankin
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Martin Grosshauser
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Kristian Klemon
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Munich Center for Machine Learning, Munich, Germany.
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
- Munich Data Science Institute, Technical University of Munich, Garching, Germany.
| |
Collapse
|
4
|
Harris SE, Alexis MS, Giri G, Cavazos FF, Murn J, Aleman MM, Burge CB, Dominguez D. Understanding species-specific and conserved RNA-protein interactions in vivo and in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577729. [PMID: 38352439 PMCID: PMC10862761 DOI: 10.1101/2024.01.29.577729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
While evolution is often considered from a DNA- and protein-centric view, RNA-based regulation can also impact gene expression and protein sequences. Here we examined interspecies differences in RNA-protein interactions using the conserved neuronal RNA binding protein, Unkempt (UNK) as model. We find that roughly half of mRNAs bound in human are also bound in mouse. Unexpectedly, even when transcript-level binding was conserved across species differential motif usage was prevalent. To understand the biochemical basis of UNK-RNA interactions, we reconstituted the human and mouse UNK-RNA interactomes using a high-throughput biochemical assay. We uncover detailed features driving binding, show that in vivo patterns are captured in vitro, find that highly conserved sites are the strongest bound, and associate binding strength with downstream regulation. Furthermore, subtle sequence differences surrounding motifs are key determinants of species-specific binding. We highlight the complex features driving protein-RNA interactions and how these evolve to confer species-specific regulation.
Collapse
Affiliation(s)
- Sarah E. Harris
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC
| | - Maria S. Alexis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
- Current address: Remix Therapeutics, Cambridge, MA
| | - Gilbert Giri
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC
| | | | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, CA
- Center for RNA Biology and Medicine, Riverside, CA
| | - Maria M. Aleman
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC
| | | | - Daniel Dominguez
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC
- RNA Discovery Center, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
5
|
Kershaw CJ, Nelson MG, Castelli LM, Jennings MD, Lui J, Talavera D, Grant CM, Pavitt GD, Hubbard SJ, Ashe MP. Translation factor and RNA binding protein mRNA interactomes support broader RNA regulons for posttranscriptional control. J Biol Chem 2023; 299:105195. [PMID: 37633333 PMCID: PMC10562868 DOI: 10.1016/j.jbc.2023.105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023] Open
Abstract
The regulation of translation provides a rapid and direct mechanism to modulate the cellular proteome. In eukaryotes, an established model for the recruitment of ribosomes to mRNA depends upon a set of conserved translation initiation factors. Nevertheless, how cells orchestrate and define the selection of individual mRNAs for translation, as opposed to other potential cytosolic fates, is poorly understood. We have previously found significant variation in the interaction between individual mRNAs and an array of translation initiation factors. Indeed, mRNAs can be separated into different classes based upon these interactions to provide a framework for understanding different modes of translation initiation. Here, we extend this approach to include new mRNA interaction profiles for additional proteins involved in shaping the cytoplasmic fate of mRNAs. This work defines a set of seven mRNA clusters, based on their interaction profiles with 12 factors involved in translation and/or RNA binding. The mRNA clusters share both physical and functional characteristics to provide a rationale for the interaction profiles. Moreover, a comparison with mRNA interaction profiles from a host of RNA binding proteins suggests that there are defined patterns in the interactions of functionally related mRNAs. Therefore, this work defines global cytoplasmic mRNA binding modules that likely coordinate the synthesis of functionally related proteins.
Collapse
Affiliation(s)
- Christopher J Kershaw
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Michael G Nelson
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Lydia M Castelli
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Martin D Jennings
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Jennifer Lui
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, School of Medical Sciences, The University of Manchester, Manchester, UK
| | - Chris M Grant
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK.
| | - Simon J Hubbard
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK.
| | - Mark P Ashe
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
7
|
He S, Valkov E, Cheloufi S, Murn J. The nexus between RNA-binding proteins and their effectors. Nat Rev Genet 2023; 24:276-294. [PMID: 36418462 DOI: 10.1038/s41576-022-00550-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/25/2022]
Abstract
RNA-binding proteins (RBPs) regulate essentially every event in the lifetime of an RNA molecule, from its production to its destruction. Whereas much has been learned about RNA sequence specificity and general functions of individual RBPs, the ways in which numerous RBPs instruct a much smaller number of effector molecules, that is, the core engines of RNA processing, as to where, when and how to act remain largely speculative. Here, we survey the known modes of communication between RBPs and their effectors with a particular focus on converging RBP-effector interactions and their roles in reducing the complexity of RNA networks. We discern the emerging unifying principles and discuss their utility in our understanding of RBP function, regulation of biological processes and contribution to human disease.
Collapse
Affiliation(s)
- Shiyang He
- Department of Biochemistry, University of California, Riverside, CA, USA
- Center for RNA Biology and Medicine, Riverside, CA, USA
| | - Eugene Valkov
- RNA Biology Laboratory & Center for Structural Biology, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, USA
| | - Sihem Cheloufi
- Department of Biochemistry, University of California, Riverside, CA, USA.
- Center for RNA Biology and Medicine, Riverside, CA, USA.
- Stem Cell Center, University of California, Riverside, CA, USA.
| | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, CA, USA.
- Center for RNA Biology and Medicine, Riverside, CA, USA.
| |
Collapse
|
8
|
Roy SW. Digest: Detecting genomic adaptation to sexual selection at scale using available data. Evolution 2022; 76:3071-3072. [PMID: 36097360 DOI: 10.1111/evo.14627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/15/2022] [Indexed: 01/22/2023]
Abstract
The availability of genome sequences from large numbers of species offers the prospect of studying genotype-phenotype correlations across various phylogenetic scales using only available data. A new study illustrates the power of this approach, showing an association across primates between morphological sexual dimorphism and the prevalence of a class of DNA elements that stimulate gene expression in response to male androgens.
Collapse
Affiliation(s)
- Scott William Roy
- Department of Biology, San Francisco State University, San Francisco, California, 94132
| |
Collapse
|
9
|
Smirnov A. How global RNA-binding proteins coordinate the behaviour of RNA regulons: an information approach. Comput Struct Biotechnol J 2022; 20:6317-6338. [DOI: 10.1016/j.csbj.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
10
|
Sadée C, Hagler LD, Becker WR, Jarmoskaite I, Vaidyanathan PP, Denny SK, Greenleaf WJ, Herschlag D. A comprehensive thermodynamic model for RNA binding by the Saccharomyces cerevisiae Pumilio protein PUF4. Nat Commun 2022; 13:4522. [PMID: 35927243 PMCID: PMC9352680 DOI: 10.1038/s41467-022-31968-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Genomic methods have been valuable for identifying RNA-binding proteins (RBPs) and the genes, pathways, and processes they regulate. Nevertheless, standard motif descriptions cannot be used to predict all RNA targets or test quantitative models for cellular interactions and regulation. We present a complete thermodynamic model for RNA binding to the S. cerevisiae Pumilio protein PUF4 derived from direct binding data for 6180 RNAs measured using the RNA on a massively parallel array (RNA-MaP) platform. The PUF4 model is highly similar to that of the related RBPs, human PUM2 and PUM1, with one marked exception: a single favorable site of base flipping for PUF4, such that PUF4 preferentially binds to a non-contiguous series of residues. These results are foundational for developing and testing cellular models of RNA-RBP interactions and function, for engineering RBPs, for understanding the biophysical nature of RBP binding and the evolutionary landscape of RNAs and RBPs.
Collapse
Affiliation(s)
- Christoph Sadée
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren D Hagler
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Winston R Becker
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Inga Jarmoskaite
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Pavanapuresan P Vaidyanathan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Protillion Biosciences, Burlingame, CA, USA
| | - Sarah K Denny
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
- Scribe Therapeutics, Alameda, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- ChEM-H Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Bartholomai BM, Gladfelter AS, Loros JJ, Dunlap JC. PRD-2 mediates clock-regulated perinuclear localization of clock gene RNAs within the circadian cycle of Neurospora. Proc Natl Acad Sci U S A 2022; 119:e2203078119. [PMID: 35881801 PMCID: PMC9351534 DOI: 10.1073/pnas.2203078119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/24/2022] [Indexed: 02/02/2023] Open
Abstract
The transcription-translation negative feedback loops underlying animal and fungal circadian clocks are remarkably similar in their molecular regulatory architecture and, although much is understood about their central mechanism, little is known about the spatiotemporal dynamics of the gene products involved. A common feature of these circadian oscillators is a significant temporal delay between rhythmic accumulation of clock messenger RNAs (mRNAs) encoding negative arm proteins, for example, frq in Neurospora and Per1-3 in mammals, and the appearance of the clock protein complexes assembled from the proteins they encode. Here, we report use of single-molecule RNA fluorescence in situ hybridization (smFISH) to show that the fraction of nuclei actively transcribing the clock gene frq changes in a circadian manner, and that these mRNAs cycle in abundance with fewer than five transcripts per nucleus at any time. Spatial point patterning statistics reveal that frq is spatially clustered near nuclei in a time of day-dependent manner and that clustering requires an RNA-binding protein, PRD-2 (PERIOD-2), recently shown also to bind to mRNA encoding another core clock component, casein kinase 1. An intrinsically disordered protein, PRD-2 displays behavior in vivo and in vitro consistent with participation in biomolecular condensates. These data are consistent with a role for phase-separating RNA-binding proteins in spatiotemporally organizing clock mRNAs to facilitate local translation and assembly of clock protein complexes.
Collapse
Affiliation(s)
- Bradley M. Bartholomai
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Amy S. Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jennifer J. Loros
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jay C. Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
12
|
Son SH, Jang SY, Park HS. Functions of PUF Family RNA-Binding Proteins in Aspergillus nidulans. J Microbiol Biotechnol 2021; 31:676-685. [PMID: 33746193 PMCID: PMC9706018 DOI: 10.4014/jmb.2101.01011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
RNA-binding proteins are involved in RNA metabolism and posttranscriptional regulation of various fundamental biological processes. The PUF family of RNA-binding proteins is highly conserved in eukaryotes, and its members regulate gene expression, mitochondrial biogenesis, and RNA processing. However, their biological functions in Aspergillus species remain mostly unknown in filamentous fungi. Here we have characterized the puf genes in the model organism Aspergillus nidulans. We generated deletion mutant strains for the five putative puf genes present in the A. nidulans genome and investigated their developmental phenotypes. Deletion of pufA or pufE affected fungal growth and asexual development. pufA mutants exhibited decreased production of asexual spores and reduced mRNA expression of genes regulating asexual development. The pufE deletion reduced colony growth, increased formation of asexual spores, and delayed production of sexual fruiting bodies. In addition, the absence of pufE reduced both sterigmatocystin production and the mRNA levels of genes in the sterigmatocystin cluster. Finally, pufE deletion mutants showed reduced trehalose production and lower resistance to thermal stress. Overall, these results demonstrate that PufA and PufE play roles in the development and sterigmatocystin metabolism in A. nidulans.
Collapse
Affiliation(s)
- Sung-Hun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seo-Yeong Jang
- Department of Integrative Biology, Kyungpook National University; Daegu 41566, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea,Department of Integrative Biology, Kyungpook National University; Daegu 41566, Republic of Korea,Corresponding author Phone: +82-53-950-5751 Fax: +82-53-950-6750 E-mail:
| |
Collapse
|
13
|
Ho JJD, Man JHS, Schatz JH, Marsden PA. Translational remodeling by RNA-binding proteins and noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1647. [PMID: 33694288 DOI: 10.1002/wrna.1647] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Responsible for generating the proteome that controls phenotype, translation is the ultimate convergence point for myriad upstream signals that influence gene expression. System-wide adaptive translational reprogramming has recently emerged as a pillar of cellular adaptation. As classic regulators of mRNA stability and translation efficiency, foundational studies established the concept of collaboration and competition between RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) on individual mRNAs. Fresh conceptual innovations now highlight stress-activated, evolutionarily conserved RBP networks and ncRNAs that increase the translation efficiency of populations of transcripts encoding proteins that participate in a common cellular process. The discovery of post-transcriptional functions for long noncoding RNAs (lncRNAs) was particularly intriguing given their cell-type-specificity and historical definition as nuclear-functioning epigenetic regulators. The convergence of RBPs, lncRNAs, and microRNAs on functionally related mRNAs to enable adaptive protein synthesis is a newer biological paradigm that highlights their role as "translatome (protein output) remodelers" and reinvigorates the paradigm of "RNA operons." Together, these concepts modernize our understanding of cellular stress adaptation and strategies for therapeutic development. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- J J David Ho
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jeffrey H S Man
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Respirology, University Health Network, Latner Thoracic Research Laboratories, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Philip A Marsden
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Kelliher CM, Lambreghts R, Xiang Q, Baker CL, Loros JJ, Dunlap JC. PRD-2 directly regulates casein kinase I and counteracts nonsense-mediated decay in the Neurospora circadian clock. eLife 2020; 9:64007. [PMID: 33295874 PMCID: PMC7746235 DOI: 10.7554/elife.64007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/08/2020] [Indexed: 01/22/2023] Open
Abstract
Circadian clocks in fungi and animals are driven by a functionally conserved transcription–translation feedback loop. In Neurospora crassa, negative feedback is executed by a complex of Frequency (FRQ), FRQ-interacting RNA helicase (FRH), and casein kinase I (CKI), which inhibits the activity of the clock’s positive arm, the White Collar Complex (WCC). Here, we show that the prd-2 (period-2) gene, whose mutation is characterized by recessive inheritance of a long 26 hr period phenotype, encodes an RNA-binding protein that stabilizes the ck-1a transcript, resulting in CKI protein levels sufficient for normal rhythmicity. Moreover, by examining the molecular basis for the short circadian period of upf-1prd-6 mutants, we uncovered a strong influence of the Nonsense-Mediated Decay pathway on CKI levels. The finding that circadian period defects in two classically derived Neurospora clock mutants each arise from disruption of ck-1a regulation is consistent with circadian period being exquisitely sensitive to levels of casein kinase I.
Collapse
Affiliation(s)
- Christina M Kelliher
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Randy Lambreghts
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Qijun Xiang
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Christopher L Baker
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States.,The Jackson Laboratory, Bar Harbor, United States
| | - Jennifer J Loros
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Jay C Dunlap
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
15
|
Garrido-Godino AI, Gupta I, Gutiérrez-Santiago F, Martínez-Padilla AB, Alekseenko A, Steinmetz LM, Pérez-Ortín JE, Pelechano V, Navarro F. Rpb4 and Puf3 imprint and post-transcriptionally control the stability of a common set of mRNAs in yeast. RNA Biol 2020; 18:1206-1220. [PMID: 33094674 DOI: 10.1080/15476286.2020.1839229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gene expression involving RNA polymerase II is regulated by the concerted interplay between mRNA synthesis and degradation, crosstalk in which mRNA decay machinery and transcription machinery respectively impact transcription and mRNA stability. Rpb4, and likely dimer Rpb4/7, seem the central components of the RNA pol II governing these processes. In this work we unravel the molecular mechanisms participated by Rpb4 that mediate the posttranscriptional events regulating mRNA imprinting and stability. By RIP-Seq, we analysed genome-wide the association of Rpb4 with mRNAs and demonstrated that it targeted a large population of more than 1400 transcripts. A group of these mRNAs was also the target of the RNA binding protein, Puf3. We demonstrated that Rpb4 and Puf3 physically, genetically, and functionally interact and also affect mRNA stability, and likely the imprinting, of a common group of mRNAs. Furthermore, the Rpb4 and Puf3 association with mRNAs depends on one another. We also demonstrated, for the first time, that Puf3 associates with chromatin in an Rpb4-dependent manner. Our data also suggest that Rpb4 could be a key element of the RNA pol II that coordinates mRNA synthesis, imprinting and stability in cooperation with RBPs.
Collapse
Affiliation(s)
- A I Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | - I Gupta
- Department of Biochemical Engineering and Biotechnology, IIT Delhi, Hauz Khas, India
| | - F Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | - A B Martínez-Padilla
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | - A Alekseenko
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - L M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.,Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA.,Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - J E Pérez-Ortín
- E.R.I. Biotecmed, Facultad de Biológicas, Universitat de València, Burjassot, Spain
| | - V Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - F Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain.,Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
16
|
Bhondeley M, Liu Z. Mitochondrial Biogenesis Is Positively Regulated by Casein Kinase I Hrr25 Through Phosphorylation of Puf3 in Saccharomyces cerevisiae. Genetics 2020; 215:463-482. [PMID: 32317286 PMCID: PMC7268985 DOI: 10.1534/genetics.120.303191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/20/2020] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial biogenesis requires coordinated expression of genes encoding mitochondrial proteins, which in Saccharomyces cerevisiae is achieved in part via post-transcriptional control by the Pumilio RNA-binding domain protein Puf3 Puf3 binds to the 3'-UTR of many messenger RNAs (mRNAs) that encode mitochondrial proteins, regulating their turnover, translation, and/or mitochondrial targeting. Puf3 hyperphosphorylation correlates with increased mitochondrial biogenesis; however, the kinase responsible for Puf3 phosphorylation is unclear. Here, we show that the casein kinase I protein Hrr25 negatively regulates Puf3 by mediating its phosphorylation. An hrr25 mutation results in reduced phosphorylation of Puf3 in vivo and a puf3 deletion mutation reverses growth defects of hrr25 mutant cells grown on medium with a nonfermentable carbon source. We show that Hrr25 directly phosphorylates Puf3, and that the interaction between Puf3 and Hrr25 is mediated through the N-terminal domain of Puf3 and the kinase domain of Hrr25 We further found that an hrr25 mutation reduces GFP expression from GFP reporter constructs carrying the 3'-UTR of Puf3 targets. Downregulation of GFP expression due to an hrr25 mutation can be reversed either by puf3Δ or by mutations to the Puf3-binding sites in the 3'-UTR of the GFP reporter constructs. Together, our data indicate that Hrr25 is a positive regulator of mitochondrial biogenesis by phosphorylating Puf3 and inhibiting its function in downregulating target mRNAs encoding mitochondrial proteins.
Collapse
Affiliation(s)
- Manika Bhondeley
- Department of Biological Sciences, University of New Orleans, Louisiana 70148
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, Louisiana 70148
| |
Collapse
|
17
|
Jarmoskaite I, Denny SK, Vaidyanathan PP, Becker WR, Andreasson JOL, Layton CJ, Kappel K, Shivashankar V, Sreenivasan R, Das R, Greenleaf WJ, Herschlag D. A Quantitative and Predictive Model for RNA Binding by Human Pumilio Proteins. Mol Cell 2019; 74:966-981.e18. [PMID: 31078383 DOI: 10.1101/403006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/31/2019] [Accepted: 04/05/2019] [Indexed: 05/20/2023]
Abstract
High-throughput methodologies have enabled routine generation of RNA target sets and sequence motifs for RNA-binding proteins (RBPs). Nevertheless, quantitative approaches are needed to capture the landscape of RNA-RBP interactions responsible for cellular regulation. We have used the RNA-MaP platform to directly measure equilibrium binding for thousands of designed RNAs and to construct a predictive model for RNA recognition by the human Pumilio proteins PUM1 and PUM2. Despite prior findings of linear sequence motifs, our measurements revealed widespread residue flipping and instances of positional coupling. Application of our thermodynamic model to published in vivo crosslinking data reveals quantitative agreement between predicted affinities and in vivo occupancies. Our analyses suggest a thermodynamically driven, continuous Pumilio-binding landscape that is negligibly affected by RNA structure or kinetic factors, such as displacement by ribosomes. This work provides a quantitative foundation for dissecting the cellular behavior of RBPs and cellular features that impact their occupancies.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah K Denny
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Scribe Therapeutics, Berkeley, CA, 94704, USA
| | | | - Winston R Becker
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johan O L Andreasson
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Curtis J Layton
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kalli Kappel
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Raashi Sreenivasan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Jarmoskaite I, Denny SK, Vaidyanathan PP, Becker WR, Andreasson JOL, Layton CJ, Kappel K, Shivashankar V, Sreenivasan R, Das R, Greenleaf WJ, Herschlag D. A Quantitative and Predictive Model for RNA Binding by Human Pumilio Proteins. Mol Cell 2019; 74:966-981.e18. [PMID: 31078383 DOI: 10.1016/j.molcel.2019.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/31/2019] [Accepted: 04/05/2019] [Indexed: 01/09/2023]
Abstract
High-throughput methodologies have enabled routine generation of RNA target sets and sequence motifs for RNA-binding proteins (RBPs). Nevertheless, quantitative approaches are needed to capture the landscape of RNA-RBP interactions responsible for cellular regulation. We have used the RNA-MaP platform to directly measure equilibrium binding for thousands of designed RNAs and to construct a predictive model for RNA recognition by the human Pumilio proteins PUM1 and PUM2. Despite prior findings of linear sequence motifs, our measurements revealed widespread residue flipping and instances of positional coupling. Application of our thermodynamic model to published in vivo crosslinking data reveals quantitative agreement between predicted affinities and in vivo occupancies. Our analyses suggest a thermodynamically driven, continuous Pumilio-binding landscape that is negligibly affected by RNA structure or kinetic factors, such as displacement by ribosomes. This work provides a quantitative foundation for dissecting the cellular behavior of RBPs and cellular features that impact their occupancies.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah K Denny
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Scribe Therapeutics, Berkeley, CA, 94704, USA
| | | | - Winston R Becker
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johan O L Andreasson
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Curtis J Layton
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kalli Kappel
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Raashi Sreenivasan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Bhat VD, McCann KL, Wang Y, Fonseca DR, Shukla T, Alexander JC, Qiu C, Wickens M, Lo TW, Tanaka Hall TM, Campbell ZT. Engineering a conserved RNA regulatory protein repurposes its biological function in vivo. eLife 2019; 8:43788. [PMID: 30652968 PMCID: PMC6351103 DOI: 10.7554/elife.43788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
PUF (PUmilio/FBF) RNA-binding proteins recognize distinct elements. In C. elegans, PUF-8 binds to an 8-nt motif and restricts proliferation in the germline. Conversely, FBF-2 recognizes a 9-nt element and promotes mitosis. To understand how motif divergence relates to biological function, we first determined a crystal structure of PUF-8. Comparison of this structure to that of FBF-2 revealed a major difference in a central repeat. We devised a modified yeast 3-hybrid screen to identify mutations that confer recognition of an 8-nt element to FBF-2. We identified several such mutants and validated structurally and biochemically their binding to 8-nt RNA elements. Using genome engineering, we generated a mutant animal with a substitution in FBF-2 that confers preferential binding to the PUF-8 element. The mutant largely rescued overproliferation in animals that spontaneously generate tumors in the absence of puf-8. This work highlights the critical role of motif length in the specification of biological function.
Collapse
Affiliation(s)
- Vandita D Bhat
- Department of Biological Sciences, University of Texas Dallas, Richardson, United States
| | - Kathleen L McCann
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Yeming Wang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | | | - Tarjani Shukla
- Department of Biological Sciences, University of Texas Dallas, Richardson, United States
| | | | - Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Marv Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Te-Wen Lo
- Department of Biology, Ithaca College, Ithaca, United States
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas Dallas, Richardson, United States
| |
Collapse
|
20
|
Webster MW, Stowell JA, Passmore LA. RNA-binding proteins distinguish between similar sequence motifs to promote targeted deadenylation by Ccr4-Not. eLife 2019; 8:40670. [PMID: 30601114 PMCID: PMC6340701 DOI: 10.7554/elife.40670] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
The Ccr4-Not complex removes mRNA poly(A) tails to regulate eukaryotic mRNA stability and translation. RNA-binding proteins contribute to specificity by interacting with both Ccr4-Not and target mRNAs, but this is not fully understood. Here, we reconstitute accelerated and selective deadenylation of RNAs containing AU-rich elements (AREs) and Pumilio-response elements (PREs). We find that the fission yeast homologues of Tristetraprolin/TTP and Pumilio/Puf (Zfs1 and Puf3) interact with Ccr4-Not via multiple regions within low-complexity sequences, suggestive of a multipartite interface that extends beyond previously defined interactions. Using a two-color assay to simultaneously monitor poly(A) tail removal from different RNAs, we demonstrate that Puf3 can distinguish between RNAs of very similar sequence. Analysis of binding kinetics reveals that this is primarily due to differences in dissociation rate constants. Consequently, motif quality is a major determinant of mRNA stability for Puf3 targets in vivo and can be used for the prediction of mRNA targets. When a cell needs to make a particular protein, it first copies the instructions from the matching gene into a molecule known as a messenger RNA (or an mRNA for short). The more mRNA copies it makes, the more protein it can produce. A simple way to control protein production is to raise or lower the number of these mRNA messages, and living cells have lots of ways to make this happen. One method involves codes built into the mRNAs themselves. The mRNAs can carry short sequences of genetic letters that can trigger their own destruction. Known as “destabilising motifs”, these sequences attract the attention of a group of proteins called Ccr4-Not. Together these proteins shorten the end of the mRNAs, preparing the molecules for degradation. But how does Ccr4-Not choose which mRNAs to target? Different mRNAs carry different destabilising motifs. This means that when groups of mRNAs all carry the same motif, the cell can destroy them all together. This allows the cell to switch networks of related genes off together without affecting the mRNAs it still needs. What is puzzling is that the destabilising motifs that control different groups of mRNAs can be very similar, and scientists do not yet know how Ccr4-Not can tell the difference, or what triggers it to start breaking down groups of mRNAs. To find out, Webster et al. recreated the system in the laboratory using purified molecules. The test-tube system confirmed previous suggestions that a protein called Puf3 forms a bridge between Ccr4-Not and mRNAs. It acts as a tether, recognising a destabilising motif and linking it to Ccr4-Not. Labelling different mRNAs with two colours of fluorescent dye showed how Puf3 helps the cell to choose which to destroy. Puf3 allows Ccr4-Not to select specific mRNAs from a mixture of molecules. Puf3 could distinguish between mRNAs that differed in a single letter of genetic code. When it matched with the wrong mRNA, it disconnected much faster than when it matched with the right one, preventing Ccr4-Not from linking up. The ability to destroy specific mRNA messages is critical for cell survival. It happens when cells divide, during immune responses such as inflammation, and in early development. Understanding the targets of tethers like Puf3 could help scientists to predict which genes will switch off and when. This could reveal genes that work together, helping to unravel their roles inside cells.
Collapse
Affiliation(s)
| | | | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
21
|
Qiu C, Bhat VD, Rajeev S, Zhang C, Lasley AE, Wine RN, Campbell ZT, Hall TMT. A crystal structure of a collaborative RNA regulatory complex reveals mechanisms to refine target specificity. eLife 2019; 8:48968. [PMID: 31397673 PMCID: PMC6697444 DOI: 10.7554/elife.48968] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/09/2019] [Indexed: 01/09/2023] Open
Abstract
In the Caenorhabditis elegans germline, fem-3 Binding Factor (FBF) partners with LST-1 to maintain stem cells. A crystal structure of an FBF-2/LST-1/RNA complex revealed that FBF-2 recognizes a short RNA motif different from the characteristic 9-nt FBF binding element, and compact motif recognition coincided with curvature changes in the FBF-2 scaffold. Previously, we engineered FBF-2 to favor recognition of shorter RNA motifs without curvature change (Bhat et al., 2019). In vitro selection of RNAs bound by FBF-2 suggested sequence specificity in the central region of the compact element. This bias, reflected in the crystal structure, was validated in RNA-binding assays. FBF-2 has the intrinsic ability to bind to this shorter motif. LST-1 weakens FBF-2 binding affinity for short and long motifs, which may increase target selectivity. Our findings highlight the role of FBF scaffold flexibility in RNA recognition and suggest a new mechanism by which protein partners refine target site selection.
Collapse
Affiliation(s)
- Chen Qiu
- Epigenetics and Stem Cell Biology LaboratoryNational Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkUnited States
| | - Vandita D Bhat
- Department of Biological SciencesUniversity of Texas at DallasRichardsonUnited States
| | - Sanjana Rajeev
- Department of Biological SciencesUniversity of Texas at DallasRichardsonUnited States
| | - Chi Zhang
- Department of Biological SciencesUniversity of Texas at DallasRichardsonUnited States
| | - Alexa E Lasley
- Department of Biological SciencesUniversity of Texas at DallasRichardsonUnited States
| | - Robert N Wine
- Epigenetics and Stem Cell Biology LaboratoryNational Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkUnited States
| | - Zachary T Campbell
- Department of Biological SciencesUniversity of Texas at DallasRichardsonUnited States
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology LaboratoryNational Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkUnited States
| |
Collapse
|
22
|
Abstract
Cells regulate the activity of genes in a variety of ways. For example, they regulate transcription through DNA binding proteins called transcription factors, and they regulate mRNA stability and processing through RNA binding proteins. Based on current knowledge, transcriptional regulation is more widespread and is involved in many more evolutionary adaptations than posttranscriptional regulation. The reason could be that transcriptional regulation is studied more intensely. We suggest instead that transcriptional regulation harbors an intrinsic evolutionary advantage: when mutations change transcriptional regulation, they are more likely to bring forth novel patterns of such regulation. That is, transcriptional regulation is more evolvable. Our analysis suggests a reason why a specific kind of gene regulation is especially abundant in the living world. Much of gene regulation is carried out by proteins that bind DNA or RNA molecules at specific sequences. One class of such proteins is transcription factors, which bind short DNA sequences to regulate transcription. Another class is RNA binding proteins, which bind short RNA sequences to regulate RNA maturation, transport, and stability. Here, we study the robustness and evolvability of these regulatory mechanisms. To this end, we use experimental binding data from 172 human and fruit fly transcription factors and RNA binding proteins as well as human polymorphism data to study the evolution of binding sites in vivo. We find little difference between the robustness of regulatory protein–RNA interactions and transcription factor–DNA interactions to DNA mutations. In contrast, we find that RNA-mediated regulation is less evolvable than transcriptional regulation, because mutations are less likely to create interactions of an RNA molecule with a new RNA binding protein than they are to create interactions of a gene regulatory region with a new transcription factor. Our observations are consistent with the high level of conservation observed for interactions between RNA binding proteins and their target molecules as well as the evolutionary plasticity of regulatory regions bound by transcription factors. They may help explain why transcriptional regulation is implicated in many more evolutionary adaptations and innovations than RNA-mediated gene regulation.
Collapse
|
23
|
Lapointe CP, Stefely JA, Jochem A, Hutchins PD, Wilson GM, Kwiecien NW, Coon JJ, Wickens M, Pagliarini DJ. Multi-omics Reveal Specific Targets of the RNA-Binding Protein Puf3p and Its Orchestration of Mitochondrial Biogenesis. Cell Syst 2018; 6:125-135.e6. [PMID: 29248374 PMCID: PMC5799006 DOI: 10.1016/j.cels.2017.11.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/14/2017] [Accepted: 11/19/2017] [Indexed: 12/31/2022]
Abstract
Coenzyme Q (CoQ) is a redox-active lipid required for mitochondrial oxidative phosphorylation (OxPhos). How CoQ biosynthesis is coordinated with the biogenesis of OxPhos protein complexes is unclear. Here, we show that the Saccharomyces cerevisiae RNA-binding protein (RBP) Puf3p regulates CoQ biosynthesis. To establish the mechanism for this regulation, we employed a multi-omic strategy to identify mRNAs that not only bind Puf3p but also are regulated by Puf3p in vivo. The CoQ biosynthesis enzyme Coq5p is a critical Puf3p target: Puf3p regulates the abundance of Coq5p and prevents its detrimental hyperaccumulation, thereby enabling efficient CoQ production. More broadly, Puf3p represses a specific set of proteins involved in mitochondrial protein import, translation, and OxPhos complex assembly (pathways essential to prime mitochondrial biogenesis). Our data reveal a mechanism for post-transcriptionally coordinating CoQ production with OxPhos biogenesis, and they demonstrate the power of multi-omics for defining genuine targets of RBPs.
Collapse
Affiliation(s)
| | | | - Adam Jochem
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Paul D Hutchins
- Genome Center of Wisconsin, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gary M Wilson
- Genome Center of Wisconsin, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nicholas W Kwiecien
- Genome Center of Wisconsin, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J Coon
- Genome Center of Wisconsin, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - David J Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53715, USA.
| |
Collapse
|
24
|
Reply to Hogan: Direct evidence of RNA–protein interactions and rewiring. Proc Natl Acad Sci U S A 2017; 114:E10854-E10855. [DOI: 10.1073/pnas.1717585114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Clarifying results and prevailing models for the evolution of Puf proteins and their RNA targets. Proc Natl Acad Sci U S A 2017; 114:E10853. [DOI: 10.1073/pnas.1716625114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Bisogno LS, Keene JD. RNA regulons in cancer and inflammation. Curr Opin Genet Dev 2017; 48:97-103. [PMID: 29175729 DOI: 10.1016/j.gde.2017.11.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 01/05/2023]
Abstract
Gene expression is the fundamental driving force that coordinates normal cellular processes and adapts to dysfunctional conditions such as oncogenic development and progression. While transcription is the basal process of gene expression, RNA transcripts are both the templates that encode proteins as well as perform functions that directly regulate diverse cellular processes. All levels of gene expression require coordination to optimize available resources, but how global gene expression drives cancers or responds to disrupting oncogenic mutations is not understood. Post-transcriptional coordination is controlled by RNA regulons that are governed by RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) that bind and regulate multiple overlapping groups of functionally related RNAs. RNA regulons have been demonstrated to affect many biological functions and diseases, and many examples are known to regulate protein production in cancer and immune cells. In this review, we discuss RNA regulons demonstrated to coordinate global post-transcriptional mechanisms in carcinogenesis and inflammation.
Collapse
Affiliation(s)
- Laura Simone Bisogno
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Jack Donald Keene
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
27
|
The rewiring of transcription circuits in evolution. Curr Opin Genet Dev 2017; 47:121-127. [PMID: 29120735 DOI: 10.1016/j.gde.2017.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/24/2022]
Abstract
The binding of transcription regulators to cis-regulatory sequences is a key step through which all cells regulate expression of their genes. Due to gains and losses of cis-regulatory sequences and changes in the transcription regulators themselves, the binding connections between regulators and their target genes rapidly change over evolutionary time and constitute a major source of biological novelty. This review covers recent work, carried out in a wide range of species, that addresses the overall extent of these evolutionary changes, their consequences, and some of the molecular mechanisms that lie behind them.
Collapse
|
28
|
Lapointe CP, Preston MA, Wilinski D, Saunders HAJ, Campbell ZT, Wickens M. Architecture and dynamics of overlapped RNA regulatory networks. RNA (NEW YORK, N.Y.) 2017; 23:1636-1647. [PMID: 28768715 PMCID: PMC5648032 DOI: 10.1261/rna.062687.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
A single protein can bind and regulate many mRNAs. Multiple proteins with similar specificities often bind and control overlapping sets of mRNAs. Yet little is known about the architecture or dynamics of overlapped networks. We focused on three proteins with similar structures and related RNA-binding specificities-Puf3p, Puf4p, and Puf5p of S. cerevisiae Using RNA Tagging, we identified a "super-network" comprised of four subnetworks: Puf3p, Puf4p, and Puf5p subnetworks, and one controlled by both Puf4p and Puf5p. The architecture of individual subnetworks, and thus the super-network, is determined by competition among particular PUF proteins to bind mRNAs, their affinities for binding elements, and the abundances of the proteins. The super-network responds dramatically: The remaining network can either expand or contract. These strikingly opposite outcomes are determined by an interplay between the relative abundance of the RNAs and proteins, and their affinities for one another. The diverse interplay between overlapping RNA-protein networks provides versatile opportunities for regulation and evolution.
Collapse
Affiliation(s)
- Christopher P Lapointe
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Melanie A Preston
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Daniel Wilinski
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Harriet A J Saunders
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Zachary T Campbell
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|