1
|
Shi H, Al-Sayyad N, Wasko KM, Trinidad MI, Doherty EE, Vohra K, Boger RS, Colognori D, Cofsky JC, Skopintsev P, Bryant Z, Doudna JA. Rapid two-step target capture ensures efficient CRISPR-Cas9-guided genome editing. Mol Cell 2025; 85:1730-1742.e9. [PMID: 40273916 DOI: 10.1016/j.molcel.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
RNA-guided CRISPR-Cas enzymes initiate programmable genome editing by recognizing a ∼20-base-pair DNA sequence next to a short protospacer-adjacent motif (PAM). To uncover the molecular determinants of high-efficiency editing, we conducted biochemical, biophysical, and cell-based assays on Streptococcus pyogenes Cas9 (SpyCas9) variants with wide-ranging genome-editing efficiencies that differ in PAM-binding specificity. Our results show that reduced PAM specificity causes persistent non-selective DNA binding and recurrent failures to engage the target sequence through stable guide RNA hybridization, leading to reduced genome-editing efficiency in cells. These findings reveal a fundamental trade-off between broad PAM recognition and genome-editing effectiveness. We propose that high-efficiency RNA-guided genome editing relies on an optimized two-step target capture process, where selective but low-affinity PAM binding precedes rapid DNA unwinding. This model provides a foundation for engineering more effective CRISPR-Cas and related RNA-guided genome editors.
Collapse
Affiliation(s)
- Honglue Shi
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Noor Al-Sayyad
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Kevin M Wasko
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marena I Trinidad
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erin E Doherty
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kamakshi Vohra
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ron S Boger
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David Colognori
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joshua C Cofsky
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Petr Skopintsev
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University Medical Center, Stanford, CA 94305, USA.
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Li Ka Shing Center for Genomic Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Shi H, Al-Sayyad N, Wasko KM, Trinidad MI, Doherty EE, Vohra K, Boger RS, Colognori D, Cofsky JC, Skopintsev P, Bryant Z, Doudna JA. Rapid two-step target capture ensures efficient CRISPR-Cas9-guided genome editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.01.616117. [PMID: 40376084 PMCID: PMC12080945 DOI: 10.1101/2024.10.01.616117] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
RNA-guided CRISPR-Cas enzymes initiate programmable genome editing by recognizing a 20-base-pair DNA sequence adjacent to a short protospacer-adjacent motif (PAM). To uncover the molecular determinants of high-efficiency editing, we conducted biochemical, biophysical and cell-based assays on S. pyogenes Cas9 ( Spy Cas9) variants with wide-ranging genome editing efficiencies that differ in PAM binding specificity. Our results show that reduced PAM specificity causes persistent non-selective DNA binding and recurrent failures to engage the target sequence through stable guide RNA hybridization, leading to reduced genome editing efficiency in cells. These findings reveal a fundamental trade-off between broad PAM recognition and genome editing effectiveness. We propose that high-efficiency RNA-guided genome editing relies on an optimized two-step target capture process, where selective but low-affinity PAM binding precedes rapid DNA unwinding. This model provides a foundation for engineering more effective CRISPR-Cas and related RNA-guided genome editors.
Collapse
|
3
|
Karneyeva K, Kolesnik M, Livenskyi A, Zgoda V, Zubarev V, Trofimova A, Artamonova D, Ispolatov Y, Severinov K. Interference Requirements of Type III CRISPR-Cas Systems from Thermus thermophilus. J Mol Biol 2024; 436:168448. [PMID: 38266982 DOI: 10.1016/j.jmb.2024.168448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/26/2024]
Abstract
Among the diverse prokaryotic adaptive immunity mechanisms, the Type III CRISPR-Cas systems are the most complex. The multisubunit Type III effectors recognize RNA targets complementary to CRISPR RNAs (crRNAs). Target recognition causes synthesis of cyclic oligoadenylates that activate downstream auxiliary effectors, which affect cell physiology in complex and poorly understood ways. Here, we studied the ability of III-A and III-B CRISPR-Cas subtypes from Thermus thermophilus to interfere with plasmid transformation. We find that for both systems, requirements for crRNA-target complementarity sufficient for interference depend on the target transcript abundance, with more abundant targets requiring shorter complementarity segments. This result and thermodynamic calculations indicate that Type III effectors bind their targets in a simple bimolecular reaction with more extensive crRNA-target base pairing compensating for lower target abundance. Since the targeted RNA used in our work is non-essential for either the host or the plasmid, the results also establish that a certain number of target-bound effector complexes must be present in the cell to interfere with plasmid establishment. For the more active III-A system, we determine the minimal length of RNA-duplex sufficient for interference and show that the position of this minimal duplex can vary within the effector. Finally, we show that the III-A immunity is dependent on the HD nuclease domain of the Cas10 subunit. Since this domain is absent from the III-B system the result implies that the T. thermophilus III-B system must elicit a more efficient cyclic oligoadenylate-dependent response to provide the immunity.
Collapse
Affiliation(s)
- Karyna Karneyeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Matvey Kolesnik
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Alexei Livenskyi
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, Moscow 119435, Russia
| | - Vasiliy Zubarev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Anna Trofimova
- Laboratory of Molecular Genetics of Microorganisms, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Daria Artamonova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Yaroslav Ispolatov
- Departamento de Física, Center for Interdisciplinary Research in Astrophysics and Space Science, Universidad de Santiago de Chile, Victor Jara 3493, Santiago, Chile
| | | |
Collapse
|
4
|
Mojtaba Mousavi S, Alireza Hashemi S, Yari Kalashgrani M, Rahmanian V, Riazi M, Omidifar N, Hamed Althomali R, Rahman MM, Chiang WH, Gholami A. Recent Progress in Prompt Molecular Detection of Exosomes Using CRISPR/Cas and Microfluidic-Assisted Approaches Toward Smart Cancer Diagnosis and Analysis. ChemMedChem 2024; 19:e202300359. [PMID: 37916531 DOI: 10.1002/cmdc.202300359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/03/2023]
Abstract
Exosomes are essential indicators of molecular mechanisms involved in interacting with cancer cells and the tumor environment. As nanostructures based on lipids and nucleic acids, exosomes provide a communication pathway for information transfer by transporting biomolecules from the target cell to other cells. Importantly, these extracellular vesicles are released into the bloodstream by the most invasive cells, i. e., cancer cells; in this way, they could be considered a promising specific biomarker for cancer diagnosis. In this matter, CRISPR-Cas systems and microfluidic approaches could be considered practical tools for cancer diagnosis and understanding cancer biology. CRISPR-Cas systems, as a genome editing approach, provide a way to inactivate or even remove a target gene from the cell without affecting intracellular mechanisms. These practical systems provide vital information about the factors involved in cancer development that could lead to more effective cancer treatment. Meanwhile, microfluidic approaches can also significantly benefit cancer research due to their proper sensitivity, high throughput, low material consumption, low cost, and advanced spatial and temporal control. Thereby, employing CRISPR-Cas- and microfluidics-based approaches toward exosome monitoring could be considered a valuable source of information for cancer therapy and diagnosis. This review assesses the recent progress in these promising diagnosis approaches toward accurate cancer therapy and in-depth study of cancer cell behavior.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Health Policy Research Center, Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Vahid Rahmanian
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Mohsen Riazi
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| |
Collapse
|
5
|
Belato HB, Lisi GP. The Many (Inter)faces of Anti-CRISPRs: Modulation of CRISPR-Cas Structure and Dynamics by Mechanistically Diverse Inhibitors. Biomolecules 2023; 13:biom13020264. [PMID: 36830633 PMCID: PMC9953297 DOI: 10.3390/biom13020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
The discovery of protein inhibitors of CRISPR-Cas systems, called anti-CRISPRs (Acrs), has enabled the development of highly controllable and precise CRISPR-Cas tools. Anti-CRISPRs share very little structural or sequential resemblance to each other or to other proteins, which raises intriguing questions regarding their modes of action. Many structure-function studies have shed light on the mechanism(s) of Acrs, which can act as orthosteric or allosteric inhibitors of CRISPR-Cas machinery, as well as enzymes that irreversibly modify CRISPR-Cas components. Only recently has the breadth of diversity of Acr structures and functions come to light, and this remains a rapidly evolving field. Here, we draw attention to a plethora of Acr mechanisms, with particular focus on how their action toward Cas proteins modulates conformation, dynamic (allosteric) signaling, nucleic acid binding, and cleavage ability.
Collapse
Affiliation(s)
- Helen B. Belato
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02903, USA
- Graduate Program in Therapeutic Sciences, Brown University, Providence, RI 02903, USA
| | - George P. Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02903, USA
- Correspondence:
| |
Collapse
|
6
|
Li T, Yang Y, Qi H, Cui W, Zhang L, Fu X, He X, Liu M, Li PF, Yu T. CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduct Target Ther 2023; 8:36. [PMID: 36646687 PMCID: PMC9841506 DOI: 10.1038/s41392-023-01309-7] [Citation(s) in RCA: 233] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene-editing technology is the ideal tool of the future for treating diseases by permanently correcting deleterious base mutations or disrupting disease-causing genes with great precision and efficiency. A variety of efficient Cas9 variants and derivatives have been developed to cope with the complex genomic changes that occur during diseases. However, strategies to effectively deliver the CRISPR system to diseased cells in vivo are currently lacking, and nonviral vectors with target recognition functions may be the focus of future research. Pathological and physiological changes resulting from disease onset are expected to serve as identifying factors for targeted delivery or targets for gene editing. Diseases are both varied and complex, and the choice of appropriate gene-editing methods and delivery vectors for different diseases is important. Meanwhile, there are still many potential challenges identified when targeting delivery of CRISPR/Cas9 technology for disease treatment. This paper reviews the current developments in three aspects, namely, gene-editing type, delivery vector, and disease characteristics. Additionally, this paper summarizes successful examples of clinical trials and finally describes possible problems associated with current CRISPR applications.
Collapse
Affiliation(s)
- Tianxiang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, Qingdao, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, 266021, Qingdao, People's Republic of China
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, Qingdao, People's Republic of China
| | - Weigang Cui
- Department of Cardiology, People's Hospital of Rizhao, No. 126 Taian Road, 276827, Rizhao, People's Republic of China
| | - Lin Zhang
- Department of Microbiology, Linyi Center for Disease Control and Prevention, 276000, Linyi, People's Republic of China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000, Qingdao, People's Republic of China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000, Qingdao, People's Republic of China
| | - Meixin Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, Qingdao, People's Republic of China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, Qingdao, People's Republic of China.
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, Qingdao, People's Republic of China.
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000, Qingdao, People's Republic of China.
| |
Collapse
|
7
|
Shi YJ, Duan M, Ding JM, Wang FQ, Bi LL, Zhang CX, Zhang YZ, Duan JY, Huang AH, Lei XL, Yin H, Zhang Y. DNA topology regulates PAM-Cas9 interaction and DNA unwinding to enable near-PAMless cleavage by thermophilic Cas9. Mol Cell 2022; 82:4160-4175.e6. [DOI: 10.1016/j.molcel.2022.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/04/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
|
8
|
Liu X, Cui S, Qi Q, Lei H, Zhang Y, Shen W, Fu F, Tian T, Zhou X. G-quadruplex-guided RNA engineering to modulate CRISPR-based genomic regulation. Nucleic Acids Res 2022; 50:11387-11400. [PMID: 36263801 PMCID: PMC9638906 DOI: 10.1093/nar/gkac870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/14/2022] Open
Abstract
It is important to develop small moelcule-based methods to modulate gene editing and expression in human cells. The roles of the G-quadruplex (G4) in biological systems have been widely studied. Here, G4-guided RNA engineering is performed to generate guide RNA with G4-forming units (G4-gRNA). We further demonstrate that chemical targeting of G4-gRNAs holds promise as a general approach for modulating gene editing and expression in human cells. The rich structural diversity of RNAs offers a reservoir of targets for small molecules to bind, thus creating the potential to modulate RNA biology.
Collapse
Affiliation(s)
- Xingyu Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Shuangyu Cui
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Huajun Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Yutong Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Shen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Fang Fu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
9
|
Pacesa M, Lin CH, Cléry A, Saha A, Arantes PR, Bargsten K, Irby MJ, Allain FHT, Palermo G, Cameron P, Donohoue PD, Jinek M. Structural basis for Cas9 off-target activity. Cell 2022; 185:4067-4081.e21. [PMID: 36306733 PMCID: PMC10103147 DOI: 10.1016/j.cell.2022.09.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/01/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Abstract
The target DNA specificity of the CRISPR-associated genome editor nuclease Cas9 is determined by complementarity to a 20-nucleotide segment in its guide RNA. However, Cas9 can bind and cleave partially complementary off-target sequences, which raises safety concerns for its use in clinical applications. Here, we report crystallographic structures of Cas9 bound to bona fide off-target substrates, revealing that off-target binding is enabled by a range of noncanonical base-pairing interactions within the guide:off-target heteroduplex. Off-target substrates containing single-nucleotide deletions relative to the guide RNA are accommodated by base skipping or multiple noncanonical base pairs rather than RNA bulge formation. Finally, PAM-distal mismatches result in duplex unpairing and induce a conformational change in the Cas9 REC lobe that perturbs its conformational activation. Together, these insights provide a structural rationale for the off-target activity of Cas9 and contribute to the improved rational design of guide RNAs and off-target prediction algorithms.
Collapse
Affiliation(s)
- Martin Pacesa
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Chun-Han Lin
- Caribou Biosciences, 2929 Seventh Street Suite 105, Berkeley, CA 94710, USA
| | - Antoine Cléry
- Institute of Biochemistry, ETH Zurich, Hönggerbergring 64, 8093 Zurich, Switzerland
| | - Aakash Saha
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, USA
| | - Pablo R Arantes
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, USA
| | - Katja Bargsten
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthew J Irby
- Caribou Biosciences, 2929 Seventh Street Suite 105, Berkeley, CA 94710, USA
| | - Frédéric H-T Allain
- Institute of Biochemistry, ETH Zurich, Hönggerbergring 64, 8093 Zurich, Switzerland
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, USA
| | - Peter Cameron
- Caribou Biosciences, 2929 Seventh Street Suite 105, Berkeley, CA 94710, USA
| | - Paul D Donohoue
- Caribou Biosciences, 2929 Seventh Street Suite 105, Berkeley, CA 94710, USA
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
10
|
Pacesa M, Loeff L, Querques I, Muckenfuss LM, Sawicka M, Jinek M. R-loop formation and conformational activation mechanisms of Cas9. Nature 2022; 609:191-196. [PMID: 36002571 PMCID: PMC9433323 DOI: 10.1038/s41586-022-05114-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 07/14/2022] [Indexed: 12/25/2022]
Abstract
Cas9 is a CRISPR-associated endonuclease capable of RNA-guided, site-specific DNA cleavage1-3. The programmable activity of Cas9 has been widely utilized for genome editing applications4-6, yet its precise mechanisms of target DNA binding and off-target discrimination remain incompletely understood. Here we report a series of cryo-electron microscopy structures of Streptococcus pyogenes Cas9 capturing the directional process of target DNA hybridization. In the early phase of R-loop formation, the Cas9 REC2 and REC3 domains form a positively charged cleft that accommodates the distal end of the target DNA duplex. Guide-target hybridization past the seed region induces rearrangements of the REC2 and REC3 domains and relocation of the HNH nuclease domain to assume a catalytically incompetent checkpoint conformation. Completion of the guide-target heteroduplex triggers conformational activation of the HNH nuclease domain, enabled by distortion of the guide-target heteroduplex, and complementary REC2 and REC3 domain rearrangements. Together, these results establish a structural framework for target DNA-dependent activation of Cas9 that sheds light on its conformational checkpoint mechanism and may facilitate the development of novel Cas9 variants and guide RNA designs with enhanced specificity and activity.
Collapse
Affiliation(s)
- Martin Pacesa
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Luuk Loeff
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Irma Querques
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Lena M Muckenfuss
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Marta Sawicka
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA. Nat Commun 2022; 13:3999. [PMID: 35810160 PMCID: PMC9271037 DOI: 10.1038/s41467-022-31740-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022] Open
Abstract
Recent advances in biointerfaces have led to the development of wearable devices that can provide insights into personal health. As wearable modules, microneedles can extract analytes of interest from interstitial fluid in a minimally invasive fashion. However, some microneedles are limited by their ability to perform highly effective extraction and real-time monitoring for macromolecule biomarkers simultaneously. Here we show the synergetic effect of CRISPR-activated graphene biointerfaces, and report an on-line wearable microneedle patch for extraction and in vivo long-term monitoring of universal cell-free DNA. In this study, this wearable system enables real-time monitoring of Epstein-Barr virus, sepsis, and kidney transplantation cell-free DNA, with anti-interference ability of 60% fetal bovine serum, and has satisfactory stable sensitivity for 10 days in vivo. The experimental results of immunodeficient mouse models shows the feasibility and practicability of this proposed method. This wearable patch holds great promise for long-term in vivo monitoring of cell-free DNA and could potentially be used for early disease screening and prognosis. Real-time sensing of biomarkers via the use of wearable devices is a major aim of personalised medicine. Here, authors demonstrate an on-line wearable microneedle patch for real-time capture and monitoring of universal cell-free DNA.
Collapse
|
12
|
Cofsky JC, Soczek KM, Knott GJ, Nogales E, Doudna JA. CRISPR-Cas9 bends and twists DNA to read its sequence. Nat Struct Mol Biol 2022; 29:395-402. [PMID: 35422516 PMCID: PMC9189902 DOI: 10.1038/s41594-022-00756-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/01/2022] [Indexed: 12/28/2022]
Abstract
In bacterial defense and genome editing applications, the CRISPR-associated protein Cas9 searches millions of DNA base pairs to locate a 20-nucleotide, guide RNA-complementary target sequence that abuts a protospacer-adjacent motif (PAM). Target capture requires Cas9 to unwind DNA at candidate sequences using an unknown ATP-independent mechanism. Here we show that Cas9 sharply bends and undertwists DNA on PAM binding, thereby flipping DNA nucleotides out of the duplex and toward the guide RNA for sequence interrogation. Cryogenic-electron microscopy (cryo-EM) structures of Cas9-RNA-DNA complexes trapped at different states of the interrogation pathway, together with solution conformational probing, reveal that global protein rearrangement accompanies formation of an unstacked DNA hinge. Bend-induced base flipping explains how Cas9 'reads' snippets of DNA to locate target sites within a vast excess of nontarget DNA, a process crucial to both bacterial antiviral immunity and genome editing. This mechanism establishes a physical solution to the problem of complementarity-guided DNA search and shows how interrogation speed and local DNA geometry may influence genome editing efficiency.
Collapse
Affiliation(s)
- Joshua C Cofsky
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Katarzyna M Soczek
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Gavin J Knott
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Gladstone Institutes, University of California, San Francisco, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
| |
Collapse
|
13
|
A tweak and a peek: How Cas9 pries open double-stranded DNA to check its sequence. Nat Struct Mol Biol 2022; 29:286-288. [PMID: 35422517 DOI: 10.1038/s41594-022-00763-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Macchia E, Torricelli F, Bollella P, Sarcina L, Tricase A, Di Franco C, Österbacka R, Kovács-Vajna ZM, Scamarcio G, Torsi L. Large-Area Interfaces for Single-Molecule Label-free Bioelectronic Detection. Chem Rev 2022; 122:4636-4699. [PMID: 35077645 DOI: 10.1021/acs.chemrev.1c00290] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioelectronic transducing surfaces that are nanometric in size have been the main route to detect single molecules. Though enabling the study of rarer events, such methodologies are not suited to assay at concentrations below the nanomolar level. Bioelectronic field-effect-transistors with a wide (μm2-mm2) transducing interface are also assumed to be not suited, because the molecule to be detected is orders of magnitude smaller than the transducing surface. Indeed, it is like seeing changes on the surface of a one-kilometer-wide pond when a droplet of water falls on it. However, it is a fact that a number of large-area transistors have been shown to detect at a limit of detection lower than femtomolar; they are also fast and hence innately suitable for point-of-care applications. This review critically discusses key elements, such as sensing materials, FET-structures, and target molecules that can be selectively assayed. The amplification effects enabling extremely sensitive large-area bioelectronic sensing are also addressed.
Collapse
Affiliation(s)
- Eleonora Macchia
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Paolo Bollella
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Centre for Colloid and Surface Science - Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Angelo Tricase
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Cinzia Di Franco
- CNR, Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125 Bari, Italy
| | - Ronald Österbacka
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Zsolt M Kovács-Vajna
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Gaetano Scamarcio
- CNR, Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125 Bari, Italy.,Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Luisa Torsi
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland.,Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Centre for Colloid and Surface Science - Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| |
Collapse
|
15
|
Sohail M, Qin L, Li S, Chen Y, Zaman MH, Zhang X, Li B, Huang H. Molecular reporters for CRISPR/Cas: from design principles to engineering for bioanalytical and diagnostic applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Dhanjal JK, Vora D, Radhakrishnan N, Sundar D. Computational Approaches for Designing Highly Specific and Efficient sgRNAs. Methods Mol Biol 2022; 2349:147-166. [PMID: 34718995 DOI: 10.1007/978-1-0716-1585-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The easily programmable CRISPR/Cas9 system has found applications in biomedical research as well as microbial and crop applications, due to its ability to create site-specific edits. This powerful and flexible system has also been modified to enable inducible gene regulation, epigenome modifications and high-throughput screens. Designing efficient and specific guides for the nuclease is a key step and also a major challenge in effective application. This chapter describes rules for sgRNA design and important features to consider while touching upon bioinformatics advances in predicting efficient guides. Computational tools that suggest improved guides, depending on application, or predict off-targets have also been mentioned and compared.
Collapse
Affiliation(s)
- Jaspreet Kaur Dhanjal
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Dhvani Vora
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Navaneethan Radhakrishnan
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.
| |
Collapse
|
17
|
Shebanova R, Nikitchina N, Shebanov N, Mekler V, Kuznedelov K, Ulashchik E, Vasilev R, Sharko O, Shmanai V, Tarassov I, Severinov K, Entelis N, Mazunin I. Efficient target cleavage by Type V Cas12a effectors programmed with split CRISPR RNA. Nucleic Acids Res 2021; 50:1162-1173. [PMID: 34951459 PMCID: PMC8789034 DOI: 10.1093/nar/gkab1227] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR RNAs (crRNAs) that direct target DNA cleavage by Type V Cas12a nucleases consist of constant repeat-derived 5′-scaffold moiety and variable 3′-spacer moieties. Here, we demonstrate that removal of most of the 20-nucleotide scaffold has only a slight effect on in vitro target DNA cleavage by a Cas12a ortholog from Acidaminococcus sp. (AsCas12a). In fact, residual cleavage was observed even in the presence of a 20-nucleotide crRNA spacer moiety only. crRNAs split into separate scaffold and spacer RNAs catalyzed highly specific and efficient cleavage of target DNA by AsCas12a in vitro and in lysates of human cells. In addition to dsDNA target cleavage, AsCas12a programmed with split crRNAs also catalyzed specific ssDNA target cleavage and non-specific ssDNA degradation (collateral activity). V-A effector nucleases from Francisella novicida (FnCas12a) and Lachnospiraceae bacterium (LbCas12a) were also functional with split crRNAs. Thus, the ability of V-A effectors to use split crRNAs appears to be a general property. Though higher concentrations of split crRNA components are needed to achieve efficient target cleavage, split crRNAs open new lines of inquiry into the mechanisms of target recognition and cleavage and may stimulate further development of single-tube multiplex and/or parallel diagnostic tests based on Cas12a nucleases.
Collapse
Affiliation(s)
- Regina Shebanova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Natalia Nikitchina
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia.,UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg and Centre National de la Recherche Scientifique (C.N.R.S.), Strasbourg 67000, France
| | - Nikita Shebanov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Vladimir Mekler
- Waksman Institute of Microbiology, Rutgers The State University of New Jersey, Piscataway 08854, USA
| | - Konstantin Kuznedelov
- Waksman Institute of Microbiology, Rutgers The State University of New Jersey, Piscataway 08854, USA
| | - Egor Ulashchik
- Laboratory of Bioconjugate Chemistry, Institute of Physical Organic Chemistry, National Academy of Science of Belarus, Minsk 220072, Belarus
| | - Ruslan Vasilev
- Kurchatov Genomics Center, National Research Center "Kurchatov Institute", Moscow 123098, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Olga Sharko
- Laboratory of Bioconjugate Chemistry, Institute of Physical Organic Chemistry, National Academy of Science of Belarus, Minsk 220072, Belarus
| | - Vadim Shmanai
- Laboratory of Bioconjugate Chemistry, Institute of Physical Organic Chemistry, National Academy of Science of Belarus, Minsk 220072, Belarus
| | - Ivan Tarassov
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg and Centre National de la Recherche Scientifique (C.N.R.S.), Strasbourg 67000, France
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia.,Waksman Institute of Microbiology, Rutgers The State University of New Jersey, Piscataway 08854, USA.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Nina Entelis
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg and Centre National de la Recherche Scientifique (C.N.R.S.), Strasbourg 67000, France
| | - Ilya Mazunin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| |
Collapse
|
18
|
Zhang Q, Chen Z, Wang F, Zhang S, Chen H, Gu X, Wen F, Jin J, Zhang X, Huang X, Shen B, Sun B. Efficient DNA interrogation of SpCas9 governed by its electrostatic interaction with DNA beyond the PAM and protospacer. Nucleic Acids Res 2021; 49:12433-12444. [PMID: 34850124 PMCID: PMC8643646 DOI: 10.1093/nar/gkab1139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pyogenes Cas9 (SpCas9), a programmable RNA-guided DNA endonuclease, has been widely repurposed for biological and medical applications. Critical interactions between SpCas9 and DNA confer the high specificity of the enzyme in genome engineering. Here, we unveil that an essential SpCas9–DNA interaction located beyond the protospacer adjacent motif (PAM) is realized through electrostatic forces between four positively charged lysines among SpCas9 residues 1151–1156 and the negatively charged DNA backbone. Modulating this interaction by substituting lysines with amino acids that have distinct charges revealed a strong dependence of DNA target binding and cleavage activities of SpCas9 on the charge. Moreover, the SpCas9 mutants show markedly distinguishable DNA interaction sites beyond the PAM compared with wild-type SpCas9. Functionally, this interaction governs DNA sampling and participates in protospacer DNA unwinding during DNA interrogation. Overall, a mechanistic and functional understanding of this vital interaction explains how SpCas9 carries out efficient DNA interrogation.
Collapse
Affiliation(s)
- Qian Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziting Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fangzhu Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Gusu School, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Siqi Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Gusu School, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Xueying Gu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Gusu School, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Fengcai Wen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiachuan Jin
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Gusu School, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Xia Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Gene Editing Center, ShanghaiTech University, Shanghai 201210, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Gusu School, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Gene Editing Center, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
19
|
Tang Y, Gao L, Feng W, Guo C, Yang Q, Li F, Le XC. The CRISPR-Cas toolbox for analytical and diagnostic assay development. Chem Soc Rev 2021; 50:11844-11869. [PMID: 34611682 DOI: 10.1039/d1cs00098e] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) systems have revolutionized biological and biomedical sciences in many ways. The last few years have also seen tremendous interest in deploying the CRISPR-Cas toolbox for analytical and diagnostic assay development because CRISPR-Cas is one of the most powerful classes of molecular machineries for the recognition and manipulation of nucleic acids. In the short period of development, many CRISPR-enabled assays have already established critical roles in clinical diagnostics, biosensing, and bioimaging. We describe in this review the recent advances and design principles of CRISPR mediated analytical tools with an emphasis on the functional roles of CRISPR-Cas machineries as highly efficient binders and molecular scissors. We highlight the diverse engineering approaches for molecularly modifying CRISPR-Cas machineries and for devising better readout platforms. We discuss the potential roles of these new approaches and platforms in enhancing assay sensitivity, specificity, multiplexity, and clinical outcomes. By illustrating the biochemical and analytical processes, we hope this review will help guide the best use of the CRISPR-Cas toolbox in detecting, quantifying and imaging biologically and clinically important molecules and inspire new ideas, technological advances and engineering strategies for addressing real-world challenges such as the on-going COVID-19 pandemic.
Collapse
Affiliation(s)
- Yanan Tang
- Analytical & Testing Center, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China.
| | - Lu Gao
- Analytical & Testing Center, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China.
| | - Wei Feng
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Chen Guo
- Analytical & Testing Center, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China.
| | - Qianfan Yang
- Analytical & Testing Center, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China.
| | - Feng Li
- Analytical & Testing Center, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China. .,Department of Chemistry, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Alberta, T6G 2G3, Canada
| |
Collapse
|
20
|
Yang M, Sun R, Deng P, Yang Y, Wang W, Liu JJG, Chen C. Nonspecific interactions between SpCas9 and dsDNA sites located downstream of the PAM mediate facilitated diffusion to accelerate target search. Chem Sci 2021; 12:12776-12784. [PMID: 34703564 PMCID: PMC8494019 DOI: 10.1039/d1sc02633j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/19/2021] [Indexed: 12/27/2022] Open
Abstract
RNA-guided Streptococcus pyogenes Cas9 (SpCas9) is a sequence-specific DNA endonuclease that works as one of the most powerful genetic editing tools. However, how Cas9 locates its target among huge amounts of dsDNAs remains elusive. Here, combining biochemical and single-molecule fluorescence assays, we revealed that Cas9 uses both three-dimensional and one-dimensional diffusion to find its target with high efficiency. We further observed surprising apparent asymmetric target search regions flanking PAM sites on dsDNA under physiological salt conditions, which accelerates the target search efficiency of Cas9 by ∼10-fold. Illustrated by a cryo-EM structure of the Cas9/sgRNA/dsDNA dimer, non-specific interactions between DNA ∼8 bp downstream of the PAM site and lysines within residues 1151–1156 of Cas9, especially lys1153, are the key elements to mediate the one-dimensional diffusion of Cas9 and cause asymmetric target search regions flanking the PAM. Disrupting these non-specific interactions, such as mutating these lysines to alanines, diminishes the contribution of one-dimensional diffusion and reduces the target search rate by several times. In addition, low ionic concentrations or mutations on PAM recognition residues that modulate interactions between Cas9 and dsDNA alter apparent asymmetric target search behaviors. Together, our results reveal a unique searching mechanism of Cas9 under physiological salt conditions, and provide important guidance for both in vitro and in vivo applications of Cas9. Nonspecific interactions between DNA ∼8 bp downstream of the PAM and lysines within residues 1151–1156 of Cas9 mediate one-dimensional diffusion and cause asymmetric target search regions flanking the PAM.![]()
Collapse
Affiliation(s)
- Mengyi Yang
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University Beijing China .,Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health Beijing 100045 China
| | - Ruirui Sun
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University Beijing China
| | - Pujuan Deng
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University Beijing China
| | - Yuzhuo Yang
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University Beijing China
| | - Wenjuan Wang
- School of Life Sciences, Technology Center for Protein Sciences, Tsinghua University Beijing China
| | - Jun-Jie Gogo Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University Beijing China
| | - Chunlai Chen
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University Beijing China
| |
Collapse
|
21
|
Banerjee T, Takahashi H, Subekti DRG, Kamagata K. Engineering of the genome editing protein Cas9 to slide along DNA. Sci Rep 2021; 11:14165. [PMID: 34239016 PMCID: PMC8266852 DOI: 10.1038/s41598-021-93685-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
The genome editing protein Cas9 faces engineering challenges in improving off-target DNA cleavage and low editing efficiency. In this study, we aimed to engineer Cas9 to be able to slide along DNA, which might facilitate genome editing and reduce off-target cleavage. We used two approaches to achieve this: reducing the sliding friction along DNA by removing the interactions of Cas9 residues with DNA and facilitating sliding by introducing the sliding-promoting tail of Nhp6A. Seven engineered mutants of Cas9 were prepared, and their performance was tested using single-molecule fluorescence microscopy. Comparison of the mutations enabled the identification of key residues of Cas9 to enhance the sliding along DNA in the presence and absence of single guide RNA (sgRNA). The attachment of the tail to Cas9 mutants enhanced sliding along DNA, particularly in the presence of sgRNA. Together, using the proposed approaches, the sliding ability of Cas9 was improved up to eightfold in the presence of sgRNA. A sliding model of Cas9 and its engineering action are discussed herein.
Collapse
Affiliation(s)
- Trishit Banerjee
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Hiroto Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Dwiky Rendra Graha Subekti
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.
- Department of Chemistry, Graduate School of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.
| |
Collapse
|
22
|
Montagud-Martínez R, Heras-Hernández M, Goiriz L, Daròs JA, Rodrigo G. CRISPR-Mediated Strand Displacement Logic Circuits with Toehold-Free DNA. ACS Synth Biol 2021; 10:950-956. [PMID: 33900064 PMCID: PMC8489798 DOI: 10.1021/acssynbio.0c00649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 12/11/2022]
Abstract
DNA nanotechnology, and DNA computing in particular, has grown extensively over the past decade to end with a variety of functional stable structures and dynamic circuits. However, the use as designer elements of regular DNA pieces, perfectly complementary double strands, has remained elusive. Here, we report the exploitation of CRISPR-Cas systems to engineer logic circuits based on isothermal strand displacement that perform with toehold-free double-stranded DNA. We designed and implemented molecular converters for signal detection and amplification, showing good interoperability between enzymatic and nonenzymatic processes. Overall, these results contribute to enlarge the repertoire of substrates and reactions (hardware) for DNA computing.
Collapse
Affiliation(s)
| | - María Heras-Hernández
- I2SysBio, CSIC − Universitat València, Cat. Agustín Escardino 9, 46980 Paterna, Spain
| | - Lucas Goiriz
- I2SysBio, CSIC − Universitat València, Cat. Agustín Escardino 9, 46980 Paterna, Spain
| | - José-Antonio Daròs
- IBMCP, CSIC − Universitat
Politècnica València, Av. Naranjos s/n, 46022 Valencia, Spain
| | - Guillermo Rodrigo
- I2SysBio, CSIC − Universitat València, Cat. Agustín Escardino 9, 46980 Paterna, Spain
| |
Collapse
|
23
|
Nierzwicki Ł, Arantes PR, Saha A, Palermo G. Establishing the allosteric mechanism in CRISPR-Cas9. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2021; 11:e1503. [PMID: 34322166 PMCID: PMC8315640 DOI: 10.1002/wcms.1503] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022]
Abstract
Allostery is a fundamental property of proteins, which regulates biochemical information transfer between spatially distant sites. Here, we report on the critical role of molecular dynamics (MD) simulations in discovering the mechanism of allosteric communication within CRISPR-Cas9, a leading genome editing machinery with enormous promises for medicine and biotechnology. MD revealed how allostery intervenes during at least three steps of the CRISPR-Cas9 function: affecting DNA recognition, mediating the cleavage and interfering with the off-target activity. An allosteric communication that activates concerted DNA cleavages was found to led through the L1/L2 loops, which connect the HNH and RuvC catalytic domains. The identification of these "allosteric transducers" inspired the development of novel variants of the Cas9 protein with improved specificity, opening a new avenue for controlling the CRISPR-Cas9 activity. Discussed studies also highlight the critical role of the recognition lobe in the conformational activation of the catalytic HNH domain. Specifically, the REC3 region was found to modulate the dynamics of HNH by sensing the formation of the RNA:DNA hybrid. The role of REC3 was revealed to be particularly relevant in the presence of DNA mismatches. Indeed, interference of REC3 with the RNA:DNA hybrid containing mismatched pairs at specific positions resulted in locking HNH in an inactive "conformational checkpoint" conformation, thereby hampering off-target cleavages. Overall, MD simulations established the fundamental mechanisms underlying the allosterism of CRISPR-Cas9, aiding engineering strategies to develop new CRISPR-Cas9 variants for improved genome editing.
Collapse
Affiliation(s)
- Łukasz Nierzwicki
- Department of Bioengineering, University of California Riverside, Riverside, California
| | - Pablo Ricardo Arantes
- Department of Bioengineering, University of California Riverside, Riverside, California
| | - Aakash Saha
- Department of Bioengineering, University of California Riverside, Riverside, California
| | - Giulia Palermo
- Department of Bioengineering and Department of Chemistry, University of California Riverside, Riverside, California
| |
Collapse
|
24
|
CRISPR/Cas9-Based Lateral Flow and Fluorescence Diagnostics. Bioengineering (Basel) 2021; 8:bioengineering8020023. [PMID: 33673107 PMCID: PMC7918862 DOI: 10.3390/bioengineering8020023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR/Cas) proteins can be designed to bind specified DNA and RNA sequences and hold great promise for the accurate detection of nucleic acids for diagnostics. We integrated commercially available reagents into a CRISPR/Cas9-based lateral flow assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences with single-base specificity. This approach requires minimal equipment and represents a simplified platform for field-based deployment. We also developed a rapid, multiplex fluorescence CRISPR/Cas9 nuclease cleavage assay capable of detecting and differentiating SARS-CoV-2, influenza A and B, and respiratory syncytial virus in a single reaction. Our findings provide proof-of-principle for CRISPR/Cas9 point-of-care diagnosis as well as a scalable fluorescent platform for identifying respiratory viral pathogens with overlapping symptomology.
Collapse
|
25
|
Workman RE, Pammi T, Nguyen BTK, Graeff LW, Smith E, Sebald SM, Stoltzfus MJ, Euler CW, Modell JW. A natural single-guide RNA repurposes Cas9 to autoregulate CRISPR-Cas expression. Cell 2021; 184:675-688.e19. [PMID: 33421369 DOI: 10.1016/j.cell.2020.12.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/24/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
CRISPR-Cas systems provide prokaryotes with acquired immunity against viruses and plasmids, but how these systems are regulated to prevent autoimmunity is poorly understood. Here, we show that in the S. pyogenes CRISPR-Cas system, a long-form transactivating CRISPR RNA (tracr-L) folds into a natural single guide that directs Cas9 to transcriptionally repress its own promoter (Pcas). Further, we demonstrate that Pcas serves as a critical regulatory node. De-repression causes a dramatic 3,000-fold increase in immunization rates against viruses; however, heightened immunity comes at the cost of increased autoimmune toxicity. Using bioinformatic analyses, we provide evidence that tracrRNA-mediated autoregulation is widespread in type II-A CRISPR-Cas systems. Collectively, we unveil a new paradigm for the intrinsic regulation of CRISPR-Cas systems by natural single guides, which may facilitate the frequent horizontal transfer of these systems into new hosts that have not yet evolved their own regulatory strategies.
Collapse
Affiliation(s)
- Rachael E Workman
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Teja Pammi
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Binh T K Nguyen
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leonardo W Graeff
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erika Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Suzanne M Sebald
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marie J Stoltzfus
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chad W Euler
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua W Modell
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
26
|
Kim H, Lee S, Seo HW, Kang B, Moon J, Lee KG, Yong D, Kang H, Jung J, Lim EK, Jeong J, Park HG, Ryu CM, Kang T. Clustered Regularly Interspaced Short Palindromic Repeats-Mediated Surface-Enhanced Raman Scattering Assay for Multidrug-Resistant Bacteria. ACS NANO 2020; 14:17241-17253. [PMID: 33216524 DOI: 10.1021/acsnano.0c07264] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Antimicrobial resistance and multidrug resistance are slower-moving pandemics than the fast-spreading coronavirus disease 2019; however, they have potential to cause a much greater threat to global health. Here, we report a clustered regularly interspaced short palindromic repeats (CRISPR)-mediated surface-enhanced Raman scattering (SERS) assay for multidrug-resistant (MDR) bacteria. This assay was developed via a synergistic combination of the specific gene-recognition ability of the CRISPR system, superb sensitivity of SERS, and simple separation property of magnetic nanoparticles. This assay detects three multidrug-resistant (MDR) bacteria, species Staphylococcus aureus, Acinetobacter baumannii, and Klebsiella pneumoniae, without purification or gene amplification steps. Furthermore, MDR A. baumannii-infected mice were successfully diagnosed using the assay. Finally, we demonstrate the on-site capture and detection of MDR bacteria through a combination of the three-dimensional nanopillar array swab and CRISPR-mediated SERS assay. This method may prove effective for the accurate diagnosis of MDR bacterial pathogens, thus preventing severe infection by ensuring appropriate antibiotic treatment.
Collapse
Affiliation(s)
| | | | | | | | - Jeong Moon
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyoung G Lee
- Nanobio Application Team, National NanoFab Center (NNFC), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | | | | | | | | | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | | | | |
Collapse
|
27
|
Carlaw TM, Zhang LH, Ross CJD. CRISPR/Cas9 Editing: Sparking Discussion on Safety in Light of the Need for New Therapeutics. Hum Gene Ther 2020; 31:794-807. [PMID: 32586150 DOI: 10.1089/hum.2020.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent advances in genome sequencing have greatly improved our ability to understand and identify the causes of genetic diseases. However, there remains an urgent need for innovative, safe, and effective treatments for these diseases. CRISPR-based genome editing systems have become important and powerful tools in the laboratory, and efforts are underway to translate these into patient therapies. Therapeutic base editing is one form of genome engineering that has gained much interest because of its simplicity, specificity, and effectiveness. Base editors are a fusion of a partially deactivated Cas9 enzyme with nickase function, together with a base-modifying enzyme. They are capable of precisely targeting and repairing a pathogenic mutation to restore the normal function of a gene, ideally without disturbing the rest of the genome. In the past year, research has identified new safety concerns of base editors and sparked new innovations to improve their safety. In this review, we provide an overview of the recent advances in the safety and effectiveness of therapeutic base editors and prime editing.
Collapse
Affiliation(s)
| | - Lin-Hua Zhang
- Faculty of Pharmaceutical Sciences; University of British Columbia, Vancouver, Canada
| | - Colin J D Ross
- Faculty of Pharmaceutical Sciences; University of British Columbia, Vancouver, Canada
| |
Collapse
|
28
|
Choudhury A, Fankhauser RG, Freed EF, Oh EJ, Morgenthaler AB, Bassalo MC, Copley SD, Kaar JL, Gill RT. Determinants for Efficient Editing with Cas9-Mediated Recombineering in Escherichia coli. ACS Synth Biol 2020; 9:1083-1099. [PMID: 32298586 DOI: 10.1021/acssynbio.9b00440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In E. coli, editing efficiency with Cas9-mediated recombineering varies across targets due to differences in the level of Cas9:gRNA-mediated DNA double-strand break (DSB)-induced cell death. We found that editing efficiency with the same gRNA and repair template can also change with target position, cas9 promoter strength, and growth conditions. Incomplete editing, off-target activity, nontargeted mutations, and failure to cleave target DNA even if Cas9 is bound also compromise editing efficiency. These effects on editing efficiency were gRNA-specific. We propose that differences in the efficiency of Cas9:gRNA-mediated DNA DSBs, as well as possible differences in binding of Cas9:gRNA complexes to their target sites, account for the observed variations in editing efficiency between gRNAs. We show that editing behavior using the same gRNA can be modified by mutating the gRNA spacer, which changes the DNA DSB activity. Finally, we discuss how variable editing with different gRNAs could limit high-throughput applications and provide strategies to overcome these limitations.
Collapse
Affiliation(s)
- Alaksh Choudhury
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
- IAME, UMR 1137, INSERM, Universités Paris Diderot et Paris Nord, Paris, 75018, France
| | - Reilly G Fankhauser
- Renewable & Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Emily F Freed
- Renewable & Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Eun Joong Oh
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Renewable & Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Andrew B Morgenthaler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Marcelo C Bassalo
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Ryan T Gill
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Renewable & Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80303, United States
- Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, Copenhagen 2800, Denmark
| |
Collapse
|
29
|
Mekler V, Kuznedelov K, Severinov K. Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences. J Biol Chem 2020; 295:6509-6517. [PMID: 32241913 PMCID: PMC7212624 DOI: 10.1074/jbc.ra119.012239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/31/2020] [Indexed: 11/06/2022] Open
Abstract
The CRISPR/Cas9 nucleases have been widely applied for genome editing in various organisms. Cas9 nucleases complexed with a guide RNA (Cas9-gRNA) find their targets by scanning and interrogating the genomic DNA for sequences complementary to the gRNA. Recognition of the DNA target sequence requires a short protospacer adjacent motif (PAM) located outside this sequence. Given that the efficiency of target location may depend on the strength of interactions that promote target recognition, here we sought to compare affinities of different Cas9 nucleases for their cognate PAM sequences. To this end, we measured affinities of Cas9 nucleases from Streptococcus pyogenes, Staphylococcus aureus, and Francisella novicida complexed with guide RNAs (gRNAs) (SpCas9-gRNA, SaCas9-gRNA, and FnCas9-gRNA, respectively) and of three engineered SpCas9-gRNA variants with altered PAM specificities for short, PAM-containing DNA probes. We used a "beacon" assay that measures the relative affinities of DNA probes by determining their ability to competitively affect the rate of Cas9-gRNA binding to fluorescently labeled target DNA derivatives called "Cas9 beacons." We observed significant differences in the affinities for cognate PAM sequences among the studied Cas9 enzymes. The relative affinities of SpCas9-gRNA and its engineered variants for canonical and suboptimal PAMs correlated with previous findings on the efficiency of these PAM sequences in genome editing. These findings suggest that high affinity of a Cas9 nuclease for its cognate PAM promotes higher genome-editing efficiency.
Collapse
Affiliation(s)
- Vladimir Mekler
- Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854
| | - Konstantin Kuznedelov
- Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
30
|
Bratovič M, Fonfara I, Chylinski K, Gálvez EJC, Sullivan TJ, Boerno S, Timmermann B, Boettcher M, Charpentier E. Bridge helix arginines play a critical role in Cas9 sensitivity to mismatches. Nat Chem Biol 2020; 16:587-595. [PMID: 32123387 DOI: 10.1038/s41589-020-0490-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/30/2020] [Indexed: 12/31/2022]
Abstract
The RNA-programmable DNA-endonuclease Cas9 is widely used for genome engineering, where a high degree of specificity is required. To investigate which features of Cas9 determine the sensitivity to mismatches along the target DNA, we performed in vitro biochemical assays and bacterial survival assays in Escherichia coli. We demonstrate that arginines in the Cas9 bridge helix influence guide RNA, and target DNA binding and cleavage. They cluster in two groups that either increase or decrease the Cas9 sensitivity to mismatches. We show that the bridge helix is essential for R-loop formation and that R63 and R66 reduce Cas9 specificity by stabilizing the R-loop in the presence of mismatches. Additionally, we identify Q768 that reduces sensitivity of Cas9 to protospacer adjacent motif-distal mismatches. The Cas9_R63A/Q768A variant showed increased specificity in human cells. Our results provide a firm basis for function- and structure-guided mutagenesis to increase Cas9 specificity for genome engineering.
Collapse
Affiliation(s)
- Majda Bratovič
- Max Planck Unit for the Science of Pathogens, Berlin, Germany.,Department of Regulation in Infection Biology, Max Planck Institute for Infection Biology, Berlin, Germany.,Institute for Biology, Humboldt University, Berlin, Germany.,Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ines Fonfara
- Department of Regulation in Infection Biology, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,The Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Krzysztof Chylinski
- The Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Department of Molecular Biology, Umeå University, Umeå, Sweden.,Max F. Perutz Laboratories, University of Vienna, Vienna, Austria.,Protein Technologies Facility, The Vienna Biocenter Core Facilities GmbH (VBCF), Vienna, Austria
| | - Eric J C Gálvez
- Max Planck Unit for the Science of Pathogens, Berlin, Germany.,Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Stefan Boerno
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michael Boettcher
- Max Planck Unit for the Science of Pathogens, Berlin, Germany.,Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, Berlin, Germany. .,Department of Regulation in Infection Biology, Max Planck Institute for Infection Biology, Berlin, Germany. .,Institute for Biology, Humboldt University, Berlin, Germany. .,Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany. .,The Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Department of Molecular Biology, Umeå University, Umeå, Sweden.
| |
Collapse
|
31
|
Tian Y, Liu RR, Xian WD, Xiong M, Xiao M, Li WJ. A novel thermal Cas12b from a hot spring bacterium with high target mismatch tolerance and robust DNA cleavage efficiency. Int J Biol Macromol 2020; 147:376-384. [DOI: 10.1016/j.ijbiomac.2020.01.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022]
|
32
|
Jiang W, Singh J, Allen A, Li Y, Kathiresan V, Qureshi O, Tangprasertchai N, Zhang X, Parameshwaran HP, Rajan R, Qin PZ. CRISPR-Cas12a Nucleases Bind Flexible DNA Duplexes without RNA/DNA Complementarity. ACS OMEGA 2019; 4:17140-17147. [PMID: 31656887 PMCID: PMC6811856 DOI: 10.1021/acsomega.9b01469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/25/2019] [Indexed: 05/03/2023]
Abstract
Cas12a (also known as "Cpf1") is a class 2 type V-A CRISPR-associated nuclease that can cleave double-stranded DNA at specific sites. The Cas12a effector enzyme comprises a single protein and a CRISPR-encoded small RNA (crRNA) and has been used for genome editing and manipulation. Work reported here examined in vitro interactions between the Cas12a effector enzyme and DNA duplexes with varying states of base-pairing between the two strands. The data revealed that in the absence of complementarity between the crRNA guide and the DNA target-strand, Cas12a binds duplexes with unpaired segments. These off-target duplexes were bound at the Cas12a site responsible for RNA-guided double-stranded DNA binding but were not cleaved due to the lack of RNA/DNA hybrid formation. Such promiscuous binding was attributed to increased DNA flexibility induced by the unpaired segment present next to the protospacer-adjacent-motif. The results suggest that target discrimination of Cas12a can be influenced by flexibility of the DNA. As such, in addition to the linear sequence, flexibility and other physical properties of the DNA should be considered in Cas12a-based genome engineering applications.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Jaideep Singh
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Aleique Allen
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Yue Li
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Venkatesan Kathiresan
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Omair Qureshi
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Narin Tangprasertchai
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Xiaojun Zhang
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Hari Priya Parameshwaran
- Department
of Chemistry and Biochemistry, Price Family Foundation Institute of
Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Rakhi Rajan
- Department
of Chemistry and Biochemistry, Price Family Foundation Institute of
Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Peter Z. Qin
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
- E-mail: . Phone: (213) 821-2461. Fax: (213) 740-2701
| |
Collapse
|
33
|
Cas9 Allosteric Inhibition by the Anti-CRISPR Protein AcrIIA6. Mol Cell 2019; 76:922-937.e7. [PMID: 31604602 DOI: 10.1016/j.molcel.2019.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022]
Abstract
In the arms race against bacteria, bacteriophages have evolved diverse anti-CRISPR proteins (Acrs) that block CRISPR-Cas immunity. Acrs play key roles in the molecular coevolution of bacteria with their predators, use a variety of mechanisms of action, and provide tools to regulate Cas-based genome manipulation. Here, we present structural and functional analyses of AcrIIA6, an Acr from virulent phages, exploring its unique anti-CRISPR action. Our cryo-EM structures and functional data of AcrIIA6 binding to Streptococcus thermophilus Cas9 (St1Cas9) show that AcrIIA6 acts as an allosteric inhibitor and induces St1Cas9 dimerization. AcrIIA6 reduces St1Cas9 binding affinity for DNA and prevents DNA binding within cells. The PAM and AcrIIA6 recognition sites are structurally close and allosterically linked. Mechanistically, AcrIIA6 affects the St1Cas9 conformational dynamics associated with PAM binding. Finally, we identify a natural St1Cas9 variant resistant to AcrIIA6 illustrating Acr-driven mutational escape and molecular diversification of Cas9 proteins.
Collapse
|
34
|
Francisella novicida Cas9 interrogates genomic DNA with very high specificity and can be used for mammalian genome editing. Proc Natl Acad Sci U S A 2019; 116:20959-20968. [PMID: 31570623 DOI: 10.1073/pnas.1818461116] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genome editing using the CRISPR/Cas9 system has been used to make precise heritable changes in the DNA of organisms. Although the widely used Streptococcus pyogenes Cas9 (SpCas9) and its engineered variants have been efficiently harnessed for numerous gene-editing applications across different platforms, concerns remain regarding their putative off-targeting at multiple loci across the genome. Here we report that Francisella novicida Cas9 (FnCas9) shows a very high specificity of binding to its intended targets and negligible binding to off-target loci. The specificity is determined by its minimal binding affinity with DNA when mismatches to the target single-guide RNA (sgRNA) are present in the sgRNA:DNA heteroduplex. FnCas9 produces staggered cleavage, higher homology-directed repair rates, and very low nonspecific genome editing compared to SpCas9. We demonstrate FnCas9-mediated correction of the sickle cell mutation in patient-derived induced pluripotent stem cells and propose that it can be used for precise therapeutic genome editing for a wide variety of genetic disorders.
Collapse
|
35
|
Shen BA, Landick R. Transcription of Bacterial Chromatin. J Mol Biol 2019; 431:4040-4066. [PMID: 31153903 PMCID: PMC7248592 DOI: 10.1016/j.jmb.2019.05.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Decades of research have probed the interplay between chromatin (genomic DNA associated with proteins and RNAs) and transcription by RNA polymerase (RNAP) in all domains of life. In bacteria, chromatin is compacted into a membrane-free region known as the nucleoid that changes shape and composition depending on the bacterial state. Transcription plays a key role in both shaping the nucleoid and organizing it into domains. At the same time, chromatin impacts transcription by at least five distinct mechanisms: (i) occlusion of RNAP binding; (ii) roadblocking RNAP progression; (iii) constraining DNA topology; (iv) RNA-mediated interactions; and (v) macromolecular demixing and heterogeneity, which may generate phase-separated condensates. These mechanisms are not mutually exclusive and, in combination, mediate gene regulation. Here, we review the current understanding of these mechanisms with a focus on gene silencing by H-NS, transcription coordination by HU, and potential phase separation by Dps. The myriad questions about transcription of bacterial chromatin are increasingly answerable due to methodological advances, enabling a needed paradigm shift in the field of bacterial transcription to focus on regulation of genes in their native state. We can anticipate answers that will define how bacterial chromatin helps coordinate and dynamically regulate gene expression in changing environments.
Collapse
Affiliation(s)
- Beth A Shen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
36
|
Abstract
The development of the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has become a revolutionary step for genome engineering because it enables modification of target genomes. However, many biological applications with the CRISPR/Cas9 system are impeded by off-target effects and loci-dependent nuclease activity with various sgRNAs. Commonly used label-strategy-based CRISPR/Cas9 assays often suffer from possible disturbances to Cas9 activity and a time-consuming labeling procedure. Herein, we for the first time propose a DNA-templated CuNPs-based label-free CRISPR/Cas9 assay, with a low LOD of 0.13 nM and rapid detection in 35 min after CRISPR/Cas9 cleavage. Additionally, the site specificity of the DNA substrate was demonstrated. Through the proposed label-free strategy, a single-base change at a specific loci could lead to a significant reduction of the Cas9 cleavage effect, while the other common genetic modifications might be accepted by the CRIPR/Cas9 system. Therefore, the proposed label-free Cas9 assay may provide a new paradigm for the a priori in vitro CRISPR/Cas9 assay and exploration for in vivo biological applications.
Collapse
Affiliation(s)
- Jianyu Hu
- College of Architecture and Environment , Sichuan University , Chengdu 610064 , China
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Min Jiang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Rui Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Yi Lv
- Analytical and Testing Center , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
37
|
Hajian R, Balderston S, Tran T, deBoer T, Etienne J, Sandhu M, Wauford NA, Chung JY, Nokes J, Athaiya M, Paredes J, Peytavi R, Goldsmith B, Murthy N, Conboy IM, Aran K. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng 2019; 3:427-437. [PMID: 31097816 PMCID: PMC6556128 DOI: 10.1038/s41551-019-0371-x] [Citation(s) in RCA: 384] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 02/19/2019] [Indexed: 12/25/2022]
Abstract
Most methods for the detection of nucleic acids require many reagents and expensive and bulky instrumentation. Here, we report the development and testing of a graphene-based field-effect transistor that uses clustered regularly interspaced short palindromic repeats (CRISPR) technology to enable the digital detection of a target sequence within intact genomic material. Termed CRISPR-Chip, the biosensor uses the gene-targeting capacity of catalytically deactivated CRISPR-associated protein 9 (Cas9) complexed with a specific single-guide RNA and immobilized on the transistor to yield a label-free nucleic-acid-testing device whose output signal can be measured with a simple handheld reader. We used CRISPR-Chip to analyse DNA samples collected from HEK293T cell lines expressing blue fluorescent protein, and clinical samples of DNA with two distinct mutations at exons commonly deleted in individuals with Duchenne muscular dystrophy. In the presence of genomic DNA containing the target gene, CRISPR-Chip generates, within 15 min, with a sensitivity of 1.7 fM and without the need for amplification, a significant enhancement in output signal relative to samples lacking the target sequence. CRISPR-Chip expands the applications of CRISPR-Cas9 technology to the on-chip electrical detection of nucleic acids.
Collapse
Affiliation(s)
- Reza Hajian
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Sarah Balderston
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Thanhtra Tran
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Tara deBoer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jessy Etienne
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Mandeep Sandhu
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Noreen A Wauford
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jing-Yi Chung
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | - Mitre Athaiya
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Jacobo Paredes
- Tecnun, School of Engineering, University of Navarra, San Sebastián, Spain
| | | | | | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Irina M Conboy
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Kiana Aran
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Nanosens Innovations, San Diego, CA, USA.
| |
Collapse
|
38
|
Jain I, Minakhin L, Mekler V, Sitnik V, Rubanova N, Severinov K, Semenova E. Defining the seed sequence of the Cas12b CRISPR-Cas effector complex. RNA Biol 2019; 16:413-422. [PMID: 30022698 PMCID: PMC6546406 DOI: 10.1080/15476286.2018.1495492] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022] Open
Abstract
Target binding by CRISPR-Cas ribonucleoprotein effectors is initiated by the recognition of double-stranded PAM motifs by the Cas protein moiety followed by destabilization, localized melting, and interrogation of the target by the guide part of CRISPR RNA moiety. The latter process depends on seed sequences, parts of the target that must be strictly complementary to CRISPR RNA guide. Mismatches between the target and CRISPR RNA guide outside the seed have minor effects on target binding, thus contributing to off-target activity of CRISPR-Cas effectors. Here, we define the seed sequence of the Type V Cas12b effector from Bacillus thermoamylovorans. While the Cas12b seed is just five bases long, in contrast to all other effectors characterized to date, the nucleotide base at the site of target cleavage makes a very strong contribution to target binding. The generality of this additional requirement was confirmed during analysis of target recognition by Cas12b effector from Alicyclobacillus acidoterrestris. Thus, while the short seed may contribute to Cas12b promiscuity, the additional specificity determinant at the site of cleavage may have a compensatory effect making Cas12b suitable for specialized genome editing applications.
Collapse
Affiliation(s)
- Ishita Jain
- Department of Rutgers University, Rutgers The State University of New Jersey, Waksman Institute of Microbiology, Piscataway, NJ, USA
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Skolkovo, Russia
| | - Leonid Minakhin
- Department of Rutgers University, Rutgers The State University of New Jersey, Waksman Institute of Microbiology, Piscataway, NJ, USA
| | - Vladimir Mekler
- Department of Rutgers University, Rutgers The State University of New Jersey, Waksman Institute of Microbiology, Piscataway, NJ, USA
| | - Vasily Sitnik
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Skolkovo, Russia
| | - Natalia Rubanova
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Skolkovo, Russia
| | - Konstantin Severinov
- Department of Rutgers University, Rutgers The State University of New Jersey, Waksman Institute of Microbiology, Piscataway, NJ, USA
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Skolkovo, Russia
| | - Ekaterina Semenova
- Department of Rutgers University, Rutgers The State University of New Jersey, Waksman Institute of Microbiology, Piscataway, NJ, USA
| |
Collapse
|
39
|
Phaneuf CR, Seamon KJ, Eckles TP, Sinha A, Schoeniger JS, Harmon B, Meagher RJ, Abhyankar V, Koh CY. Ultrasensitive Multi-Species Detection of CRISPR-Cas9 by a Portable Centrifugal Microfluidic Platform. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:559-565. [PMID: 31565079 PMCID: PMC6764754 DOI: 10.1039/c8ay02726a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The discovery of the RNA-guided DNA nuclease CRISPR-Cas9 has enabled the targeted editing of genomes from diverse organisms, but the permanent and inheritable nature of genome modification also poses immense risks. The potential for accidental exposure, malicious use, or undesirable persistence of Cas9 therapeutics and off-target genome effects highlight the need for detection assays. Here we report a centrifugal microfluidic platform for the measurement of both Cas9 protein levels and nuclease activity. Because Cas9 from many bacterial species have been adapted for biotechnology applications, we developed the capability to detect Cas9 from the widely-used S. pyogenes, as well as S. aureus, N. meningitides, and S. thermophilus using commercially-available antibodies. Further, we show that the phage-derived anti-CRISPR protein AcrIIC1, which binds to Cas9 from several species, can be used as a capture reagent to broaden the species range of detection. As genome modification generally requires Cas9 nuclease activity, a fluorescence-based sedimentation nuclease assay was also incorporated to allow the sensitive and simultaneous measurement of both Cas9 protein and activity in a single biological sample.
Collapse
Affiliation(s)
- Christopher R. Phaneuf
- Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Kyle J. Seamon
- Systems Biology, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Tyler P. Eckles
- Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Anchal Sinha
- Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA 94550, USA
| | | | - Brooke Harmon
- Systems Biology, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Robert J. Meagher
- Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Vinay Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14627, USA
| | - Chung-Yan Koh
- Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA 94550, USA
| |
Collapse
|
40
|
Lebar T, Verbič A, Ljubetič A, Jerala R. Polarized displacement by transcription activator-like effectors for regulatory circuits. Nat Chem Biol 2019; 15:80-87. [PMID: 30455466 DOI: 10.1038/s41589-018-0163-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/05/2018] [Indexed: 01/26/2023]
Abstract
The interplay between DNA-binding proteins plays an important role in transcriptional regulation and could increase the precision and complexity of designed regulatory circuits. Here we show that a transcription activator-like effector (TALE) can displace another TALE protein from DNA in a highly polarized manner, displacing only the 3'- but not 5'-bound overlapping or adjacent TALE. We propose that the polarized displacement by TALEs is based on its multipartite nature of binding to DNA. The polarized TALE displacement provides strategies for the specific regulation of gene expression, for construction of all two-input Boolean genetic logic circuits based on the robust propagation of the displacement across multiple neighboring sites, for displacement of zinc finger-based transcription factors and for suppression of Cas9-gRNA-mediated genome cleavage, enriching the synthetic biology toolbox and contributing to the understanding of the underlying principles of the facilitated displacement.
Collapse
Affiliation(s)
- Tina Lebar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Anže Verbič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
41
|
Mekler V, Kuznedelov K, Minakhin L, Murugan K, Sashital DG, Severinov K. CRISPR-Cas molecular beacons as tool for studies of assembly of CRISPR-Cas effector complexes and their interactions with DNA. Methods Enzymol 2018; 616:337-363. [PMID: 30691650 PMCID: PMC6930961 DOI: 10.1016/bs.mie.2018.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CRISPR-Cas systems protect prokaryotic cells from invading phages and plasmids by recognizing and cleaving foreign nucleic acid sequences specified by CRISPR RNA spacer sequences. Several CRISPR-Cas systems have been widely used as tool for genetic engineering. In DNA-targeting CRISPR-Cas nucleoprotein effector complexes, the CRISPR RNA forms a hybrid with the complementary strand of foreign DNA, displacing the noncomplementary strand to form an R-loop. The DNA interrogation and R-loop formation involve several distinct steps the molecular details of which are not fully understood. This chapter describes a recently developed fluorometric Cas beacon assay that may be used for measuring of specific affinity of various CRISPR-Cas complexes for unlabeled target DNA and model DNA probes. The Cas beacon approach also can provide a sensitive method for monitoring the kinetics of assembly of CRISPR-Cas complexes.
Collapse
Affiliation(s)
- Vladimir Mekler
- Waksman Institute of Microbiology and Department of Molecular Biology and Biochemistry, Rutgers, State University of New Jersey, Piscataway, NJ, United States.
| | - Konstantin Kuznedelov
- Waksman Institute of Microbiology and Department of Molecular Biology and Biochemistry, Rutgers, State University of New Jersey, Piscataway, NJ, United States
| | - Leonid Minakhin
- Waksman Institute of Microbiology and Department of Molecular Biology and Biochemistry, Rutgers, State University of New Jersey, Piscataway, NJ, United States
| | - Karthik Murugan
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Ames, IA, United States
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Ames, IA, United States
| | - Konstantin Severinov
- Waksman Institute of Microbiology and Department of Molecular Biology and Biochemistry, Rutgers, State University of New Jersey, Piscataway, NJ, United States; Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia; Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
42
|
Elmonem MA, Berlingerio SP, van den Heuvel LP, de Witte PA, Lowe M, Levtchenko EN. Genetic Renal Diseases: The Emerging Role of Zebrafish Models. Cells 2018; 7:cells7090130. [PMID: 30200518 PMCID: PMC6162634 DOI: 10.3390/cells7090130] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
The structural and functional similarity of the larval zebrafish pronephros to the human nephron, together with the recent development of easier and more precise techniques to manipulate the zebrafish genome have motivated many researchers to model human renal diseases in the zebrafish. Over the last few years, great advances have been made, not only in the modeling techniques of genetic diseases in the zebrafish, but also in how to validate and exploit these models, crossing the bridge towards more informative explanations of disease pathophysiology and better designed therapeutic interventions in a cost-effective in vivo system. Here, we review the significant progress in these areas giving special attention to the renal phenotype evaluation techniques. We further discuss the future applications of such models, particularly their role in revealing new genetic diseases of the kidney and their potential use in personalized medicine.
Collapse
Affiliation(s)
- Mohamed A Elmonem
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, 11628 Cairo, Egypt.
| | - Sante Princiero Berlingerio
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
| | - Lambertus P van den Heuvel
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
- Department of Pediatric Nephrology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Peter A de Witte
- Laboratory for Molecular Bio-Discovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium.
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Elena N Levtchenko
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
| |
Collapse
|
43
|
Giant viruses as protein-coated amoeban mitochondria? Virus Res 2018; 253:77-86. [DOI: 10.1016/j.virusres.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
|
44
|
Seamon KJ, Light YK, Saada EA, Schoeniger JS, Harmon B. Versatile High-Throughput Fluorescence Assay for Monitoring Cas9 Activity. Anal Chem 2018; 90:6913-6921. [DOI: 10.1021/acs.analchem.8b01155] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kyle J. Seamon
- Systems Biology Department, Sandia National Laboratories, P.O. Box
969, Livermore, California 94550, United States
| | - Yooli K. Light
- Systems Biology Department, Sandia National Laboratories, P.O. Box
969, Livermore, California 94550, United States
| | - Edwin A. Saada
- Systems Biology Department, Sandia National Laboratories, P.O. Box
969, Livermore, California 94550, United States
| | - Joseph S. Schoeniger
- Systems Biology Department, Sandia National Laboratories, P.O. Box
969, Livermore, California 94550, United States
| | - Brooke Harmon
- Systems Biology Department, Sandia National Laboratories, P.O. Box
969, Livermore, California 94550, United States
| |
Collapse
|
45
|
Cho S, Choe D, Lee E, Kim SC, Palsson B, Cho BK. High-Level dCas9 Expression Induces Abnormal Cell Morphology in Escherichia coli. ACS Synth Biol 2018; 7:1085-1094. [PMID: 29544049 DOI: 10.1021/acssynbio.7b00462] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Along with functional advances in the use of CRISPR/Cas9 for genome editing, endonuclease-deficient Cas9 (dCas9) has provided a versatile molecular tool for exploring gene functions. In principle, differences in cell phenotypes that result from the RNA-guided modulation of transcription levels by dCas9 are critical for inferring with gene function; however, the effect of intracellular dCas9 expression on bacterial morphology has not been systematically elucidated. Here, we observed unexpected morphological changes in Escherichia coli mediated by dCas9, which were then characterized using RNA sequencing (RNA-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq). Growth rates were severely decreased, to approximately 50% of those of wild type cells, depending on the expression levels of dCas9. Cell shape was changed to abnormal filamentous morphology, indicating that dCas9 affects bacterial cell division. RNA-Seq revealed that 574 genes were differentially transcribed in the presence of high expression levels of dCas9. Genes associated with cell division were upregulated, which was consistent with the observed atypical morphologies. In contrast, 221 genes were downregulated, and these mostly encoded proteins located in the cell membrane. Further, ChIP-Seq results showed that dCas9 directly binds upstream of 37 genes without single-guide RNA, including fimA, which encodes bacterial fimbriae. These results support the fact that dCas9 has critical effects on cell division as well as inner and outer membrane structure. Thus, to precisely understand gene functions using dCas9-driven transcriptional modulation, the regulation of intracellular levels of dCas9 is pivotal to avoid unexpected morphological changes in E. coli.
Collapse
Affiliation(s)
- Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Donghui Choe
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Eunju Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon 305-701, Republic of Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California 92122, United States
- Department of Pediatrics, University of California San Diego, La Jolla, California 92122, United States
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon 305-701, Republic of Korea
| |
Collapse
|
46
|
Klompe SE, Sternberg SH. Harnessing "A Billion Years of Experimentation": The Ongoing Exploration and Exploitation of CRISPR-Cas Immune Systems. CRISPR J 2018; 1:141-158. [PMID: 31021200 PMCID: PMC6636882 DOI: 10.1089/crispr.2018.0012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The famed physicist-turned-biologist, Max Delbrück, once remarked that, for physicists, "the field of bacterial viruses is a fine playground for serious children who ask ambitious questions." Early discoveries in that playground helped establish molecular genetics, and half a century later, biologists delving into the same field have ushered in the era of precision genome engineering. The focus has of course shifted-from bacterial viruses and their mechanisms of infection to the bacterial hosts and their mechanisms of immunity-but it is the very same evolutionary arms race that continues to awe and inspire researchers worldwide. In this review, we explore the remarkable diversity of CRISPR-Cas adaptive immune systems, describe the molecular components that mediate nucleic acid targeting, and outline the use of these RNA-guided machines for biotechnology applications. CRISPR-Cas research has yielded far more than just Cas9-based genome-editing tools, and the wide-reaching, innovative impacts of this fascinating biological playground are sure to be felt for years to come.
Collapse
Affiliation(s)
- Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York
| |
Collapse
|
47
|
Singh D, Ha T. Understanding the Molecular Mechanisms of the CRISPR Toolbox Using Single Molecule Approaches. ACS Chem Biol 2018; 13:516-526. [PMID: 29394047 DOI: 10.1021/acschembio.7b00905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adaptive immunity against foreign genetic elements conferred by the CRISPR systems in microbial species has been repurposed as a revolutionary technology for wide-ranging biological applications-chiefly genome engineering. Biochemical, structural, genetic, and genomics studies have revealed important insights into their function and mechanisms, but most ensemble studies cannot observe structural changes of these molecules during their function and are often blind to key reaction intermediates. Here, we review the use of single molecule approaches such as fluorescent particle tracking, FRET, magnetic tweezers, and atomic force microscopy imaging in improving our understanding of the CRISPR toolbox.
Collapse
Affiliation(s)
- Digvijay Singh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
48
|
Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The Biology of CRISPR-Cas: Backward and Forward. Cell 2018. [DOI: 10.1016/j.cell.2017.11.032] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
|
50
|
Harrington LB, Doxzen KW, Ma E, Liu JJ, Knott GJ, Edraki A, Garcia B, Amrani N, Chen JS, Cofsky JC, Kranzusch PJ, Sontheimer EJ, Davidson AR, Maxwell KL, Doudna JA. A Broad-Spectrum Inhibitor of CRISPR-Cas9. Cell 2017; 170:1224-1233.e15. [PMID: 28844692 PMCID: PMC5875921 DOI: 10.1016/j.cell.2017.07.037] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/29/2017] [Accepted: 07/21/2017] [Indexed: 12/17/2022]
Abstract
CRISPR-Cas9 proteins function within bacterial immune systems to target and destroy invasive DNA and have been harnessed as a robust technology for genome editing. Small bacteriophage-encoded anti-CRISPR proteins (Acrs) can inactivate Cas9, providing an efficient off switch for Cas9-based applications. Here, we show that two Acrs, AcrIIC1 and AcrIIC3, inhibit Cas9 by distinct strategies. AcrIIC1 is a broad-spectrum Cas9 inhibitor that prevents DNA cutting by multiple divergent Cas9 orthologs through direct binding to the conserved HNH catalytic domain of Cas9. A crystal structure of an AcrIIC1-Cas9 HNH domain complex shows how AcrIIC1 traps Cas9 in a DNA-bound but catalytically inactive state. By contrast, AcrIIC3 blocks activity of a single Cas9 ortholog and induces Cas9 dimerization while preventing binding to the target DNA. These two orthogonal mechanisms allow for separate control of Cas9 target binding and cleavage and suggest applications to allow DNA binding while preventing DNA cutting by Cas9.
Collapse
Affiliation(s)
- Lucas B Harrington
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kevin W Doxzen
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Enbo Ma
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jun-Jie Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gavin J Knott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alireza Edraki
- RNA Therapeutics Institute, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Bianca Garcia
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nadia Amrani
- RNA Therapeutics Institute, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Janice S Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joshua C Cofsky
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Philip J Kranzusch
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alan R Davidson
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|