1
|
Khadka S, Kinney EL, Ryan BE, Mike LA. Mechanisms governing bacterial capsular polysaccharide attachment and chain length. Ann N Y Acad Sci 2025. [PMID: 40369709 DOI: 10.1111/nyas.15364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Capsular polysaccharides (CPSs) are high-molecular weight glycopolymers that form a capsule layer on the surface of many bacterial species. This layer serves as a crucial barrier between bacteria and their environment, protecting them from host immune responses and environmental stressors while facilitating adaptation to host niches. The capsule also affects other critical virulence factors of plant and human pathogens such as biofilm production and exchange of antimicrobial-resistance genes. Bacterial pathogens modulate several CPS properties including abundance, chain length, and cell surface retainment to optimize niche-specific fitness. CPS composition varies greatly among bacterial species due to differences in sugar units comprising the polymer. Despite the diversity in composition, three conserved CPS biosynthetic systems are common across bacterial species. Although less explored than CPS polymerization and export, the processes of chain length control and attachment are also broadly conserved among bacterial species. Here, we discuss the common strategies that bacteria use to retain CPS to their cell surface and the mechanisms by which bacteria define and control CPS chain length. Additionally, we highlight the outstanding questions related to these processes, identifying areas where future research is needed to gain better insights into these crucial CPS systems.
Collapse
Affiliation(s)
- Saroj Khadka
- Department of Medicine/Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emily L Kinney
- Department of Medicine/Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brooke E Ryan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Laura A Mike
- Department of Medicine/Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Nguyen M, Bauda E, Boyat C, Laguri C, Freton C, Chouquet A, Gallet B, Baudoin M, Wong YS, Grangeasse C, Moriscot C, Durmort C, Zapun A, Morlot C. Teichoic acids in the periplasm and cell envelope of Streptococcus pneumoniae. eLife 2025; 14:RP105132. [PMID: 40265569 PMCID: PMC12017771 DOI: 10.7554/elife.105132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.
Collapse
Affiliation(s)
- Mai Nguyen
- Univ. Grenoble Alpes, CNRS, CEA, IBSGrenobleFrance
| | - Elda Bauda
- Univ. Grenoble Alpes, CNRS, CEA, IBSGrenobleFrance
| | - Célia Boyat
- Univ. Grenoble Alpes, CNRS, CEA, IBSGrenobleFrance
| | | | | | | | | | | | | | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, Université de Lyon, CNRSLyonFrance
| | - Christine Moriscot
- Molecular Microbiology and Structural Biochemistry, Université de Lyon, CNRSLyonFrance
| | | | - André Zapun
- Univ. Grenoble Alpes, CNRS, CEA, IBSGrenobleFrance
| | | |
Collapse
|
3
|
Chua WZ, Wong RLE, Chun YY, Shien NNC, Su T, Maiwald M, Chew KL, Lin RTP, Hockenberry AM, Luo M, Sham LT. Massively parallel barcode sequencing revealed the interchangeability of capsule transporters in Streptococcus pneumoniae. SCIENCE ADVANCES 2025; 11:eadr0162. [PMID: 39854462 PMCID: PMC11759038 DOI: 10.1126/sciadv.adr0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025]
Abstract
Multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) family transporters are essential in glycan synthesis, flipping lipid-linked precursors across cell membranes. Yet, how they select their substrates remains enigmatic. Here, we investigate the substrate specificity of the MOP transporters in the capsular polysaccharide (CPS) synthesis pathway in Streptococcus pneumoniae. These capsule flippases collectively transport more than 100 types of capsule precursors. To determine whether they can substitute for one another, we developed a high-throughput approach to systematically examine nearly 6000 combinations of flippases and substrates. CPS flippases fall into three groups: relaxed, type-specific, and strictly specific. Cargo size and CPS acetylation affect transport, and we isolated additional gain-of-function flippase variants that can substitute for the peptidoglycan flippase YtgP (MurJ). We also showed that combining flippase variants in a single cassette allows various CPS precursors to be flipped, which may aid glycoengineering. This study reveals that MOP flippases exhibit broad specificity, shaping the evolution of glycan synthesis.
Collapse
Affiliation(s)
- Wan-Zhen Chua
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rachel Lyn Ee Wong
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ye-Yu Chun
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicole Ng Chyi Shien
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tong Su
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthias Maiwald
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
- Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
| | - Kean Lee Chew
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Raymond Tzer-Pin Lin
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
- National Public Health Laboratory, Ministry of Health, Singapore, Singapore
| | - Alyson M. Hockenberry
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| | - Min Luo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Hager-Mair FF, Bloch S, Schäffer C. Glycolanguage of the oral microbiota. Mol Oral Microbiol 2024; 39:291-320. [PMID: 38515284 DOI: 10.1111/omi.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
The oral cavity harbors a diverse and dynamic bacterial biofilm community which is pivotal to oral health maintenance and, if turning dysbiotic, can contribute to various diseases. Glycans as unsurpassed carriers of biological information are participating in underlying processes that shape oral health and disease. Bacterial glycoinfrastructure-encompassing compounds as diverse as glycoproteins, lipopolysaccharides (LPSs), cell wall glycopolymers, and exopolysaccharides-is well known to influence bacterial fitness, with direct effects on bacterial physiology, immunogenicity, lifestyle, and interaction and colonization capabilities. Thus, understanding oral bacterias' glycoinfrastructure and encoded glycolanguage is key to elucidating their pathogenicity mechanisms and developing targeted strategies for therapeutic intervention. Driven by their known immunological role, most research in oral glycobiology has been directed onto LPSs, whereas, recently, glycoproteins have been gaining increased interest. This review draws a multifaceted picture of the glycolanguage, with a focus on glycoproteins, manifested in prominent oral bacteria, such as streptococci, Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum. We first define the characteristics of the different glycoconjugate classes and then summarize the current status of knowledge of the structural diversity of glycoconjugates produced by oral bacteria, describe governing biosynthetic pathways, and list biological roles of these energetically costly compounds. Additionally, we highlight emerging research on the unraveling impact of oral glycoinfrastructure on dental caries, periodontitis, and systemic conditions. By integrating current knowledge and identifying knowledge gaps, this review underscores the importance of studying the glycolanguage oral bacteria speak to advance our understanding of oral microbiology and develop novel antimicrobials.
Collapse
Affiliation(s)
- Fiona F Hager-Mair
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Susanne Bloch
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
5
|
Li Y, Cao X, Huang X, Liu Y, Wang J, Jin Q, Liu J, Zhang JR, Zheng H. Novel manufacturing process of pneumococcal capsular polysaccharides using advanced sterilization methods. Front Bioeng Biotechnol 2024; 12:1451881. [PMID: 39170064 PMCID: PMC11335687 DOI: 10.3389/fbioe.2024.1451881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Pneumococcal disease is caused by Streptococcus pneumoniae, including pneumonia, meningitis and sepsis. Capsular polysaccharides (CPSs) have been shown as effective antigens to stimulate protective immunity against pneumococcal disease. A major step in the production of pneumococcal vaccines is to prepare CPSs that meet strict quality standards in immunogenicity and safety. The major impurities come from bacterial proteins, nucleic acids and cell wall polysaccharides. Traditionally, the impurity level of refined CPSs is reduced by optimization of purification process. In this study, we investigated new aeration strategy and advanced sterilization methods by formaldehyde or β-propiolactone (BPL) to increase the amount of soluble polysaccharide in fermentation supernatant and to prevent bacterial lysis during inactivation. Furthermore, we developed a simplified process for the CPS purification, which involves ultrafiltration and diafiltration, followed by acid and alcohol precipitation, and finally diafiltration and lyophilization to obtain pure polysaccharide. The CPSs prepared from formaldehyde and BPL sterilization contained significantly lower level of residual impurities compared to the refined CPSs obtained from traditional deoxycholate sterilization. Finally, we showed that this novel approach of CPS preparation can be scaled up for polysaccharide vaccine production.
Collapse
Affiliation(s)
- Yuelong Li
- Beijing Minhai Biotechnology Co. Ltd., Beijing, China
| | - Xin Cao
- Beijing Minhai Biotechnology Co. Ltd., Beijing, China
| | - Xueting Huang
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Yanli Liu
- Beijing Minhai Biotechnology Co. Ltd., Beijing, China
| | - Jianlong Wang
- Beijing Minhai Biotechnology Co. Ltd., Beijing, China
| | - Qian Jin
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Jiankai Liu
- Beijing Minhai Biotechnology Co. Ltd., Beijing, China
| | - Jing-Ren Zhang
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Haifa Zheng
- Beijing Minhai Biotechnology Co. Ltd., Beijing, China
| |
Collapse
|
6
|
Deng JZ, Chen Z, Small J, Yuan Y, Cox K, Tang A, Roman J, Guan L, Feller K, Ansbro F, Vora K. Identification and Quantification of a Pneumococcal Cell Wall Polysaccharide by Antibody-Enhanced Chromatography Assay. Vaccines (Basel) 2024; 12:469. [PMID: 38793720 PMCID: PMC11126027 DOI: 10.3390/vaccines12050469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Multivalent pneumococcal vaccines have been developed successfully to combat invasive pneumococcal diseases (IPD) and reduce the associated healthcare burden. These vaccines employ pneumococcal capsular polysaccharides (PnPs), either conjugated or unconjugated, as antigens to provide serotype-specific protection. Pneumococcal capsular polysaccharides used for vaccine often contain residual levels of cell wall polysaccharides (C-Ps), which can generate a non-serotype specific immune response and complicate the desired serotype-specific immunity. Therefore, the C-P level in a pneumococcal vaccine needs to be controlled in the vaccine process and the anti C-P responses need to be dialed out in clinical assays. Currently, two types of cell-wall polysaccharide structures have been identified: a mono-phosphocholine substituted cell-wall polysaccharide C-Ps1 and a di-phosphocholine substituted C-Ps2 structure. In our effort to develop a next-generation novel pneumococcal conjugate vaccine (PCV), we have generated a monoclonal antibody (mAb) specific to cell-wall polysaccharide C-Ps2 structure. An antibody-enhanced HPLC assay (AE-HPLC) has been established for serotype-specific quantification of pneumococcal polysaccharides in our lab. With the new anti C-Ps2 mAb, we herein extend the AE-HPLC assay to the quantification and identification of C-Ps2 species in pneumococcal polysaccharides used for vaccines.
Collapse
Affiliation(s)
- James Z. Deng
- Vaccine Analytical Research & Development, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, PA 19486, USA
| | - Zhifeng Chen
- Infectious Diseases and Vaccines Research, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, PA 19486, USA; (Z.C.); (K.C.); (A.T.); (K.V.)
| | - James Small
- Analytical Enabling Capabilities, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, PA 19486, USA; (J.S.); (Y.Y.)
| | - Yue Yuan
- Analytical Enabling Capabilities, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, PA 19486, USA; (J.S.); (Y.Y.)
| | - Kara Cox
- Infectious Diseases and Vaccines Research, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, PA 19486, USA; (Z.C.); (K.C.); (A.T.); (K.V.)
| | - Aimin Tang
- Infectious Diseases and Vaccines Research, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, PA 19486, USA; (Z.C.); (K.C.); (A.T.); (K.V.)
| | - Jeanette Roman
- Cell Potency Assays, MRL Analytical Research & Development, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, PA 19486, USA; (J.R.); (L.G.); (K.F.); (F.A.)
| | - Liming Guan
- Cell Potency Assays, MRL Analytical Research & Development, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, PA 19486, USA; (J.R.); (L.G.); (K.F.); (F.A.)
| | - Katrina Feller
- Cell Potency Assays, MRL Analytical Research & Development, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, PA 19486, USA; (J.R.); (L.G.); (K.F.); (F.A.)
| | - Frances Ansbro
- Cell Potency Assays, MRL Analytical Research & Development, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, PA 19486, USA; (J.R.); (L.G.); (K.F.); (F.A.)
| | - Kalpit Vora
- Infectious Diseases and Vaccines Research, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, PA 19486, USA; (Z.C.); (K.C.); (A.T.); (K.V.)
| |
Collapse
|
7
|
Abdul Rahman NA, Mohd Desa MN, Masri SN, Taib NM, Sulaiman N, Hazman H, John J. The Molecular Approaches and Challenges of Streptococcus pneumoniae Serotyping for Epidemiological Surveillance in the Vaccine Era. Pol J Microbiol 2023; 72:103-115. [PMID: 37314355 DOI: 10.33073/pjm-2023-023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/15/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) belongs to the Gram-positive cocci. This bacterium typically colonizes the nasopharyngeal region of healthy individuals. It has a distinct polysaccharide capsule - a virulence factor allowing the bacteria to elude the immune defense mechanisms. Consequently, it might trigger aggressive conditions like septicemia and meningitis in immunocompromised or older individuals. Moreover, children below five years of age are at risk of morbidity and mortality. Studies have found 101 S. pneumoniae capsular serotypes, of which several correlate with clinical and carriage isolates with distinct disease aggressiveness. Introducing pneumococcal conjugate vaccines (PCV) targets the most common disease-associated serotypes. Nevertheless, vaccine selection pressure leads to replacing the formerly dominant vaccine serotypes (VTs) by non-vaccine types (NVTs). Therefore, serotyping must be conducted for epidemiological surveillance and vaccine assessment. Serotyping can be performed using numerous techniques, either by the conventional antisera-based (Quellung and latex agglutination) or molecular-based approaches (sequetyping, multiplex PCR, real-time PCR, and PCR-RFLP). A cost-effective and practical approach must be used to enhance serotyping accuracy to monitor the prevalence of VTs and NVTs. Therefore, dependable pneumococcal serotyping techniques are essential to precisely monitor virulent lineages, NVT emergence, and genetic associations of isolates. This review discusses the principles, associated benefits, and drawbacks of the respective available conventional and molecular approaches, and potentially the whole genome sequencing (WGS) to be directed for future exploration.
Collapse
Affiliation(s)
- Nurul Asyikin Abdul Rahman
- 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- 2School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Kuala Pilah, Malaysia
| | - Mohd Nasir Mohd Desa
- 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Norbaya Masri
- 3Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Niazlin Mohd Taib
- 3Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nurshahira Sulaiman
- 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hazmin Hazman
- 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - James John
- 4Department of Medical Laboratory Technology, School of Allied Health Science, Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|
8
|
Nakamoto R, Bamyaci S, Blomqvist K, Normark S, Henriques-Normark B, Sham LT. The divisome but not the elongasome organizes capsule synthesis in Streptococcus pneumoniae. Nat Commun 2023; 14:3170. [PMID: 37264013 DOI: 10.1038/s41467-023-38904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
The bacterial cell envelope consists of multiple layers, including the peptidoglycan cell wall, one or two membranes, and often an external layer composed of capsular polysaccharides (CPS) or other components. How the synthesis of all these layers is precisely coordinated remains unclear. Here, we identify a mechanism that coordinates the synthesis of CPS and peptidoglycan in Streptococcus pneumoniae. We show that CPS synthesis initiates from the division septum and propagates along the long axis of the cell, organized by the tyrosine kinase system CpsCD. CpsC and the rest of the CPS synthesis complex are recruited to the septum by proteins associated with the divisome (a complex involved in septal peptidoglycan synthesis) but not the elongasome (involved in peripheral peptidoglycan synthesis). Assembly of the CPS complex starts with CpsCD, then CpsA and CpsH, the glycosyltransferases, and finally CpsJ. Remarkably, targeting CpsC to the cell pole is sufficient to reposition CPS synthesis, leading to diplococci that lack CPS at the septum. We propose that septal CPS synthesis is important for chain formation and complement evasion, thereby promoting bacterial survival inside the host.
Collapse
Affiliation(s)
- Rei Nakamoto
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Sarp Bamyaci
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
| | - Karin Blomqvist
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
| | - Staffan Normark
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| |
Collapse
|
9
|
Minhas V, Domenech A, Synefiaridou D, Straume D, Brendel M, Cebrero G, Liu X, Costa C, Baldry M, Sirard JC, Perez C, Gisch N, Hammerschmidt S, Håvarstein LS, Veening JW. Competence remodels the pneumococcal cell wall exposing key surface virulence factors that mediate increased host adherence. PLoS Biol 2023; 21:e3001990. [PMID: 36716340 PMCID: PMC9910801 DOI: 10.1371/journal.pbio.3001990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/09/2023] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Competence development in the human pathogen Streptococcus pneumoniae controls several features such as genetic transformation, biofilm formation, and virulence. Competent bacteria produce so-called "fratricins" such as CbpD that kill noncompetent siblings by cleaving peptidoglycan (PGN). CbpD is a choline-binding protein (CBP) that binds to phosphorylcholine residues found on wall and lipoteichoic acids (WTA and LTA) that together with PGN are major constituents of the pneumococcal cell wall. Competent pneumococci are protected against fratricide by producing the immunity protein ComM. How competence and fratricide contribute to virulence is unknown. Here, using a genome-wide CRISPRi-seq screen, we show that genes involved in teichoic acid (TA) biosynthesis are essential during competence. We demonstrate that LytR is the major enzyme mediating the final step in WTA formation, and that, together with ComM, is essential for immunity against CbpD. Importantly, we show that key virulence factors PspA and PspC become more surface-exposed at midcell during competence, in a CbpD-dependent manner. Together, our work supports a model in which activation of competence is crucial for host adherence by increased surface exposure of its various CBPs.
Collapse
Affiliation(s)
- Vikrant Minhas
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, Switzerland
| | - Arnau Domenech
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, Switzerland
| | - Dimitra Synefiaridou
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, Switzerland
| | - Daniel Straume
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Max Brendel
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, Universität Greifswald, Greifswald, Germany
| | | | - Xue Liu
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, Switzerland,Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Charlotte Costa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Mara Baldry
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Claude Sirard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camilo Perez
- Biozentrum, University of Basel, Basel, Switzerland
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, Universität Greifswald, Greifswald, Germany
| | - Leiv Sigve Håvarstein
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway,* E-mail: (LSH); (J-WV)
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, Switzerland,* E-mail: (LSH); (J-WV)
| |
Collapse
|
10
|
Glanville DG, Gazioglu O, Marra M, Tokars VL, Kushnir T, Habtom M, Croucher NJ, Nebenzahl YM, Mondragón A, Yesilkaya H, Ulijasz AT. Pneumococcal capsule expression is controlled through a conserved, distal cis-regulatory element during infection. PLoS Pathog 2023; 19:e1011035. [PMID: 36719895 PMCID: PMC9888711 DOI: 10.1371/journal.ppat.1011035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the major cause of bacterial pneumonia in the US and worldwide. Studies have shown that the differing chemical make-up between serotypes of its most important virulence factor, the capsule, can dictate disease severity. Here we demonstrate that control of capsule synthesis is also critical for infection and facilitated by two broadly conserved transcription factors, SpxR and CpsR, through a distal cis-regulatory element we name the 37-CE. Strikingly, changing only three nucleotides within this sequence is sufficient to render pneumococcus avirulent. Using in vivo and in vitro approaches, we present a model where SpxR interacts as a unique trimeric quaternary structure with the 37-CE to enable capsule repression in the airways. Considering its dramatic effect on infection, variation of the 37-CE between serotypes suggests this molecular switch could be a critical contributing factor to this pathogen's serotype-specific disease outcomes.
Collapse
Affiliation(s)
- David G. Glanville
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Ozcan Gazioglu
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester, United Kingdom
| | - Michela Marra
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Valerie L. Tokars
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Tatyana Kushnir
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of The Negev, Beer-Sheva, Israel
| | - Medhanie Habtom
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester, United Kingdom
| | - Nicholas J. Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Sir Michael Uren Hub, Imperial College London, London, United Kingdom
| | - Yaffa Mizrachi Nebenzahl
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of The Negev, Beer-Sheva, Israel
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester, United Kingdom
| | - Andrew T. Ulijasz
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
11
|
Fuji N, Pichichero M, Kaur R. Pathogenesis of Streptococcus pneumoniae serotype 3 during natural colonization and infections among children and its IgG correlate of protection in a mouse model. Vaccine 2022; 40:6412-6421. [PMID: 36192274 DOI: 10.1016/j.vaccine.2022.09.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 01/27/2023]
Abstract
Current licensed pneumococcal conjugate vaccines (PCVs) are effective against pneumococcal diseases caused by the serotypes contained in the PCvs However; several studies evaluating pneumococcal colonization and acute otitis-media (AOM) prevention in young children vaccinated with PCV13, observed less effectiveness against serotype-3. One possible reason for less effectiveness may be release of the capsular polysaccharide (CPS) of serotype-3 (CPS-3) as an immune evasion mechanism. Here we evaluated free CPS-3 levels released from 6 clinical isolates from young children compared to WU2 strain and to serotype-19A CPS (CPS-19A) released in vitro when interacting with nasopharyngeal, middle-ear and lung cell-lines. Clinical serotype-3 strains showed greater release of CPS than WU2 with the interaction to 2 cell-lines and all 6 clinical serotype-19A strains. We next evaluated CPS-3 vs CPS-19A levels in middle-ear fluid (MEF) and the nasopharynx (NP) of young children and found higher levels of CPS-3 compared to CPS-19A in MEF during AOM but not in NP secretions during colonization. With anti-CPS-3 IgG in MEF and NP secretions at time of health and onset of AOM, a significant negative correlation (r = -0.75, p < 0.05) between unbound anti-CPS-3 IgG levels and free- anti-CPS-3 in MEF were found, and a significant lower detection of unbound anti-CPS-3 IgG in NP at the time of health with serotype-3 SPN (p < 0.05) compared to irrelevant SPN serotypes were found. In a mouse model of AOM and pneumonia, we sought a correlate of protection against serotype-3 infection using human serum-derived anti-CPS-3 IgG. We conclude that serotype-3 clinical isolates from children release more capsule than WU2 strains or 19A strains during in vitro testing; release more capsule in the MEF of children during AOM than serotype 19A; unbound anti-CPS-3 IgG levels negatively correlate with free-anti-CPS-3; and a level of 2.8 µg/ml anti-CPS-3 antibody protects mice from AOM and pneumonia but not colonization.
Collapse
Affiliation(s)
- Naoko Fuji
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY, United States
| | - Michael Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY, United States
| | - Ravinder Kaur
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY, United States.
| |
Collapse
|
12
|
Encapsulation of the septal cell wall protects Streptococcus pneumoniae from its major peptidoglycan hydrolase and host defenses. PLoS Pathog 2022; 18:e1010516. [PMID: 35731836 PMCID: PMC9216600 DOI: 10.1371/journal.ppat.1010516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Synthesis of the capsular polysaccharide, a major virulence factor for many pathogenic bacteria, is required for bacterial survival within the infected host. In Streptococcus pneumoniae, Wze, an autophosphorylating tyrosine kinase, and Wzd, a membrane protein required for Wze autophosphorylation, co-localize at the division septum and guarantee the presence of capsule at this subcellular location. To determine how bacteria regulate capsule synthesis, we studied pneumococcal proteins that interact with Wzd and Wze using bacterial two hybrid assays and fluorescence microscopy. We found that Wzd interacts with Wzg, the putative ligase that attaches capsule to the bacterial cell wall, and recruits it to the septal area. This interaction required residue V56 of Wzd and both the transmembrane regions and DNA-PPF domain of Wzg. When compared to the wild type, Wzd null pneumococci lack capsule at midcell, bind the peptidoglycan hydrolase LytA better and are more susceptible to LytA-induced lysis, and are less virulent in a zebrafish embryo infection model. In this manuscript, we propose that the Wzd/Wze pair guarantees full encapsulation of pneumococcal bacteria by recruiting Wzg to the division septum, ensuring that capsule attachment is coordinated with peptidoglycan synthesis. Impairing the encapsulation process, at localized subcellular sites, may facilitate elimination of bacteria by strategies that target the pneumococcal peptidoglycan.
Collapse
|
13
|
The bacterial tyrosine kinase system CpsBCD governs the length of capsule polymers. Proc Natl Acad Sci U S A 2021; 118:2103377118. [PMID: 34732571 DOI: 10.1073/pnas.2103377118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
Many pathogenic bacteria are encased in a layer of capsular polysaccharide (CPS). This layer is important for virulence by masking surface antigens, preventing opsonophagocytosis, and avoiding mucus entrapment. The bacterial tyrosine kinase (BY-kinase) regulates capsule synthesis and helps bacterial pathogens to survive different host niches. BY-kinases autophosphorylate at the C-terminal tyrosine residues upon external stimuli, but the role of phosphorylation is still unclear. Here, we report that the BY-kinase CpsCD is required for growth in Streptococcus pneumoniae Cells lacking a functional cpsC or cpsD accumulated low molecular weight CPS and lysed because of the lethal sequestration of the lipid carrier undecaprenyl phosphate, resulting in inhibition of peptidoglycan (PG) synthesis. CpsC interacts with CpsD and the polymerase CpsH. CpsD phosphorylation reduces the length of CPS polymers presumably by controlling the activity of CpsC. Finally, pulse-chase experiments reveal the spatiotemporal coordination between CPS and PG synthesis. This coordination is dependent on CpsC and CpsD. Together, our study provides evidence that BY-kinases regulate capsule polymer length by fine-tuning CpsC activity through autophosphorylation.
Collapse
|
14
|
High-Throughput Mutagenesis and Cross-Complementation Experiments Reveal Substrate Preference and Critical Residues of the Capsule Transporters in Streptococcus pneumoniae. mBio 2021; 12:e0261521. [PMID: 34724815 PMCID: PMC8561386 DOI: 10.1128/mbio.02615-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MOP (Multidrug/Oligosaccharidyl-lipid/Polysaccharide) family transporters are found in almost all life forms. They are responsible for transporting lipid-linked precursors across the cell membrane to support the synthesis of various glycoconjugates. While significant progress has been made in elucidating their transport mechanism, how these transporters select their substrates remains unclear. Here, we systematically tested the MOP transporters in the Streptococcus pneumoniae capsule pathway for their ability to translocate noncognate capsule precursors. Sequence similarity cannot predict whether these transporters are interchangeable. We showed that subtle changes in the central aqueous cavity of the transporter are sufficient to accommodate a different cargo. These changes can occur naturally, suggesting a potential mechanism of expanding substrate selectivity. A directed evolution experiment was performed to identify gain-of-function variants that translocate a noncognate cargo. Coupled with a high-throughput mutagenesis and sequencing (Mut-seq) experiment, residues that are functionally important for the capsule transporter were revealed. Lastly, we showed that the expression of a flippase that can transport unfinished precursors resulted in an increased susceptibility to bacitracin and mild cell shape defects, which may be a driving force to maintain transporter specificity. IMPORTANCE All licensed pneumococcal vaccines target the capsular polysaccharide (CPS). This layer is highly variable and is important for virulence in many bacterial pathogens. Most of the CPSs are produced by the Wzx/Wzy mechanism. In this pathway, CPS repeating units are synthesized in the cytoplasm, which must be flipped across the cytoplasmic membrane before polymerization. This step is mediated by the widely conserved MOP (Multidrug/Oligosaccharidyl-lipid/Polysaccharide) family transporters. Here, we systematically evaluated the interchangeability of these transporters and identified the residues important for substrate specificity and function. Understanding how CPS is synthesized will inform glycoengineering, vaccine development, and antimicrobial discovery.
Collapse
|
15
|
Nonpneumococcal Strains Recently Recovered from Carriage Specimens and Expressing Capsular Serotypes Highly Related or Identical to Pneumococcal Serotypes 2, 4, 9A, 13, and 23A. mBio 2021; 12:mBio.01037-21. [PMID: 34006665 PMCID: PMC8262907 DOI: 10.1128/mbio.01037-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The polysaccharide capsule is a key virulence factor of Streptococcus pneumoniae There are numerous epidemiologically important pneumococcal capsular serotypes, and recent findings have demonstrated that several of them are commonly found among nonpathogenic commensal species. Here, we describe 9 nonpneumococcal strains carrying close homologs of pneumococcal capsular biosynthetic (cps) loci that were discovered during recent pneumococcal carriage studies of adults in the United States and Kenya. Two distinct Streptococcus infantis strains cross-reactive with pneumococcal serotype 4 and carrying cps4-like capsular biosynthetic (cps) loci were recovered. Opsonophagocytic killing assays employing rabbit antisera raised against S. infantis US67cps4 revealed serotype 4-specific killing of both pneumococcal and nonpneumococcal strains. An S. infantis strain and two Streptococcus oralis strains, all carrying cps9A-like loci, were cross-reactive with pneumococcal serogroup 9 strains in immunodiffusion assays. Antiserum raised against S. infantis US64cps9A specifically promoted killing of serotype 9A and 9V pneumococcal strains as well as S. oralis serotype 9A strains. Serotype-specific PCR of oropharyngeal specimens from a recent adult carriage study in the United States indicated that such nonpneumococcal strains were much more common in this population than serotype 4 and serogroup 9 pneumococci. We also describe S. oralis and S. infantis strains expressing serotypes identical or highly related to serotypes 2, 13, and 23A. This study has expanded the known overlap of pneumococcal capsular serotypes with related commensal species. The frequent occurrence of nonpneumococcal strains in the upper respiratory tract that share vaccine and nonvaccine capsular serotypes with pneumococci could affect population immunity to circulating pneumococcal strains.IMPORTANCE The distributions and frequencies of individual pneumococcal capsular serotypes among nonpneumococcal strains in the upper respiratory tract are unknown and potentially affect pneumococcal serotype distributions among the population and immunity to circulating pneumococcal strains. Repeated demonstration that these nonpneumococcal strains expressing so-called pneumococcal serotypes are readily recovered from current carriage specimens is likely to be relevant to pneumococcal epidemiology, niche biology, and even to potential strategies of employing commensal live vaccines. Here, we describe multiple distinct nonpneumococcal counterparts for each of the pneumococcal conjugate vaccine (PCV) serotypes 4 and 9V. Additional data from contemporary commensal isolates expressing serotypes 2, 13, and 23A further demonstrate the ubiquity of such strains. Increased focus upon this serological overlap between S. pneumoniae and its close relatives may eventually prove that most, or possibly all, pneumococcal serotypes have counterparts expressed by the common upper respiratory tract commensal species Streptococcus mitis, Streptococcus oralis, and Streptococcus infantis.
Collapse
|
16
|
Li W, Yin Y, Meng Y, Ma Z, Lin H, Fan H. The phosphorylation of phosphoglucosamine mutase GlmM by Ser/Thr kinase STK mediates cell wall synthesis and virulence in Streptococcus suis serotype 2. Vet Microbiol 2021; 258:109102. [PMID: 33991786 DOI: 10.1016/j.vetmic.2021.109102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen that causes serious economic losses in the pig industry. Phosphorylation is an important mechanism of protein modification. Recent studies have reported that the serine/threonine kinase (STK) gene contributes to the growth and virulence of SS2. However, the mechanism underlying the regulatory functions of STK in SS2 has not been thoroughly elucidated to date. In this study, phosphoproteomic analysis was performed to determine substrates of the STK protein. Twenty-two proteins with different cell functions were identified as potential substrates of STK. Phosphoglucosamine mutase (GlmM) was selected for further investigation among them. In vitro phosphorylation assay and immunoprecipitation assay indicated that GlmM was phosphorylated by STK at the Ser-101 site and the phosphorylation level of GlmM can be affected. We observed that compared to the wild-type strain ZY05719, the glmM-deficient strain (ΔglmM) and the glmM S101A point mutation strain (CΔglmM S101A) showed aberrant cell morphology and attenuated virulence, including enlarged cell volume, absent capsule, decreased resistance, lower survival caused by unusual peptidoglycan synthesis, and significantly attenuated pathogenicity in a mouse infection model. Additionally, compared to ZY05719 and CΔglmM, GlmM enzyme acivities and peptidoglycan concentrations of the stk-deficient strain (Δstk), CΔglmM S101A decreased significantly. These experiments revealed that STK phosphorylates GlmM at the Ser-101 site to impact GlmM enzyme activity and control cell wall peptidoglycan synthesis to affect SS2 pathogenicity.
Collapse
Affiliation(s)
- Weiyi Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifan Yin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
17
|
Cho HS, Choi M, Lee Y, Jeon H, Ahn B, Soundrarajan N, Hong K, Kim JH, Park C. High-Quality Nucleic Acid Isolation from Hard-to-Lyse Bacterial Strains Using PMAP-36, a Broad-Spectrum Antimicrobial Peptide. Int J Mol Sci 2021; 22:ijms22084149. [PMID: 33923762 PMCID: PMC8073543 DOI: 10.3390/ijms22084149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 01/03/2023] Open
Abstract
The efficiency of existing cell lysis methods to isolate nucleic acids from diverse bacteria varies depending on cell wall structures. This study tested a novel idea of using broad-spectrum antimicrobial peptides to improve the lytic efficiency of hard-to-lyse bacteria and characterized their differences. The lysis conditions of Staphylococcus aureus using recombinant porcine myeloid antimicrobial peptide 36 (PMAP-36), a broad-spectrum pig cathelicidin, was optimized, and RNA isolation was performed with cultured pellets of ten bacterial species using various membranolytic proteins. Additionally, three other antimicrobial peptides, protegrin-1 (PG-1), melittin, and nisin, were evaluated for their suitability as the membranolytic agents of bacteria. However, PMAP-36 use resulted in the most successful outcomes in RNA isolation from diverse bacterial species. The amount of total RNA obtained using PMAP-36 increased by ~2-fold compared to lysozyme in Salmonella typhimurium. Streptococci species were refractory to all lytic proteins tested, although the RNA yield from PMAP-36 treatment was slightly higher than that from other methods. PMAP-36 use produced high-quality RNA, and reverse transcription PCR showed the efficient amplification of the 16S rRNA gene from all tested strains. Additionally, the results of genomic DNA isolation were similar to those of RNA isolation. Thus, our findings present an additional option for high quality and unbiased nucleic acid isolation from microbiomes or challenging bacterial strains.
Collapse
|
18
|
Zeng Y, Charkowski AO. The Role of ATP-Binding Cassette Transporters in Bacterial Phytopathogenesis. PHYTOPATHOLOGY 2021; 111:600-610. [PMID: 33225831 DOI: 10.1094/phyto-06-20-0212-rvw] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bacteria use selective membrane transporting strategies to support cell survival in different environments. Of the membrane transport systems, ATP-binding cassette (ABC) transporters, which utilize the energy of ATP hydrolysis to deliver substrate across the cytoplasmic membrane, are the largest and most diverse superfamily. These transporters import nutrients, export molecules, and are required for diverse cell functions, including cell division and morphology, gene regulation, surface motility, chemotaxis, and interspecies competition. Phytobacterial pathogens encode numerous ABC transporter homologs compared with related nonphytopathogens, with up to 160 transporters per genome, suggesting that plant pathogens must be able to import or respond to a greater number of molecules compared with saprophytes or animal pathogens. Despite their importance, ABC transporters have been little examined in plant pathogens. To understand bacterial phytopathogenesis and evolution, we need to understand the roles that ABC transporters play in plant-microbe interactions. In this review, we outline a multitude of roles that bacterial ABC transporters play, using both plant and animal pathogens as examples, to emphasize the importance of exploring these transporters in phytobacteriology.
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| | - Amy O Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
19
|
LytR-CpsA-Psr Glycopolymer Transferases: Essential Bricks in Gram-Positive Bacterial Cell Wall Assembly. Int J Mol Sci 2021; 22:ijms22020908. [PMID: 33477538 PMCID: PMC7831098 DOI: 10.3390/ijms22020908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/28/2022] Open
Abstract
The cell walls of Gram-positive bacteria contain a variety of glycopolymers (CWGPs), a significant proportion of which are covalently linked to the peptidoglycan (PGN) scaffolding structure. Prominent CWGPs include wall teichoic acids of Staphylococcus aureus, streptococcal capsules, mycobacterial arabinogalactan, and rhamnose-containing polysaccharides of lactic acid bacteria. CWGPs serve important roles in bacterial cellular functions, morphology, and virulence. Despite evident differences in composition, structure and underlaying biosynthesis pathways, the final ligation step of CWGPs to the PGN backbone involves a conserved class of enzymes-the LytR-CpsA-Psr (LCP) transferases. Typically, the enzymes are present in multiple copies displaying partly functional redundancy and/or preference for a distinct CWGP type. LCP enzymes require a lipid-phosphate-linked glycan precursor substrate and catalyse, with a certain degree of promiscuity, CWGP transfer to PGN of different maturation stages, according to in vitro evidence. The prototype attachment mode is that to the C6-OH of N-acetylmuramic acid residues via installation of a phosphodiester bond. In some cases, attachment proceeds to N-acetylglucosamine residues of PGN-in the case of the Streptococcus agalactiae capsule, even without involvement of a phosphate bond. A novel aspect of LCP enzymes concerns a predicted role in protein glycosylation in Actinomyces oris. Available crystal structures provide further insight into the catalytic mechanism of this biologically important class of enzymes, which are gaining attention as new targets for antibacterial drug discovery to counteract the emergence of multidrug resistant bacteria.
Collapse
|
20
|
Luck JN, Tettelin H, Orihuela CJ. Sugar-Coated Killer: Serotype 3 Pneumococcal Disease. Front Cell Infect Microbiol 2020; 10:613287. [PMID: 33425786 PMCID: PMC7786310 DOI: 10.3389/fcimb.2020.613287] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Capsular polysaccharide (CPS), which surrounds the bacteria, is one of the most significant and multifaceted contributors to Streptococcus pneumoniae virulence. Capsule prevents entrapment in mucus during colonization, traps water to protect against desiccation, can serve as an energy reserve, and protects the bacterium against complement-mediated opsonization and immune cell phagocytosis. To date, 100 biochemically and serologically distinct capsule types have been identified for S. pneumoniae; 20 to 30 of which have well-defined propensity to cause opportunistic human infection. Among these, serotype 3 is perhaps the most problematic as serotype 3 infections are characterized as having severe clinical manifestations including empyema, bacteremia, cardiotoxicity, and meningitis; consequently, with a fatality rate of 30%-47%. Moreover, serotype 3 resists antibody-mediated clearance despite its inclusion in the current 13-valent conjugate vaccine formulation. This review covers the role of capsule in pneumococcal pathogenesis and the importance of serotype 3 on human disease. We discuss how serotype 3 capsule synthesis and presentation on the bacterial surface is distinct from other serotypes, the biochemical and physiological properties of this capsule type that facilitate its ability to cause disease, and why existing vaccines are unable to confer protection. We conclude with discussion of the clonal properties of serotype 3 and how these have changed since introduction of the 13-valent vaccine in 2000.
Collapse
Affiliation(s)
- Jennifer N. Luck
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Carlos J. Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
21
|
Su T, Nakamoto R, Chun YY, Chua WZ, Chen JH, Zik JJ, Sham LT. Decoding capsule synthesis in Streptococcus pneumoniae. FEMS Microbiol Rev 2020; 45:6041728. [PMID: 33338218 DOI: 10.1093/femsre/fuaa067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae synthesizes more than one hundred types of capsular polysaccharides (CPS). While the diversity of the enzymes and transporters involved is enormous, it is not limitless. In this review, we summarized the recent progress on elucidating the structure-function relationships of CPS, the mechanisms by which they are synthesized, how their synthesis is regulated, the host immune response against them, and the development of novel pneumococcal vaccines. Based on the genetic and structural information available, we generated provisional models of the CPS repeating units that remain unsolved. In addition, to facilitate cross-species comparisons and assignment of glycosyltransferases, we illustrated the biosynthetic pathways of the known CPS in a standardized format. Studying the intricate steps of pneumococcal CPS assembly promises to provide novel insights for drug and vaccine development as well as improve our understanding of related pathways in other species.
Collapse
Affiliation(s)
- Tong Su
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Rei Nakamoto
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Ye Yu Chun
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Wan Zhen Chua
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Jia Hui Chen
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Justin J Zik
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| |
Collapse
|
22
|
Whitfield C, Wear SS, Sande C. Assembly of Bacterial Capsular Polysaccharides and Exopolysaccharides. Annu Rev Microbiol 2020; 74:521-543. [PMID: 32680453 DOI: 10.1146/annurev-micro-011420-075607] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polysaccharides are dominant features of most bacterial surfaces and are displayed in different formats. Many bacteria produce abundant long-chain capsular polysaccharides, which can maintain a strong association and form a capsule structure enveloping the cell and/or take the form of exopolysaccharides that are mostly secreted into the immediate environment. These polymers afford the producing bacteria protection from a wide range of physical, chemical, and biological stresses, support biofilms, and play critical roles in interactions between bacteria and their immediate environments. Their biological and physical properties also drive a variety of industrial and biomedical applications. Despite the immense variation in capsular polysaccharide and exopolysaccharide structures, patterns are evident in strategies used for their assembly and export. This review describes recent advances in understanding those strategies, based on a wealth of biochemical investigations of select prototypes, supported by complementary insight from expanding structural biology initiatives. This provides a framework to identify and distinguish new systems emanating from genomic studies.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| | - Samantha S Wear
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| | - Caitlin Sande
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| |
Collapse
|
23
|
Lee C, Chun HJ, Park M, Kim RK, Whang YH, Choi SK, Baik YO, Park SS, Lee I. Quality Improvement of Capsular Polysaccharide in Streptococcus pneumoniae by Purification Process Optimization. Front Bioeng Biotechnol 2020; 8:39. [PMID: 32117921 PMCID: PMC7011675 DOI: 10.3389/fbioe.2020.00039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/16/2020] [Indexed: 11/26/2022] Open
Abstract
Streptococcus pneumoniae is the causative agent of many diseases, most notably pneumonia. Most of the currently used vaccines to protect against this pathogen employ pneumococcal capsular polysaccharides (CPSs) as antigens, but purifying CPS of sufficient quality has been challenging. A purification process for CPS comprising conventional methods such as ultrafiltration, CTAB precipitation, and chromatography was previously established; however, this method resulted in high cell wall polysaccharide (CWPS) contamination, especially for serotype 5. Thus, a better purification method that yields CPS of a higher quality is needed for vaccine development. In this study, we significantly reduced CWPS contamination in serotype 5 CPS by improving the ultrafiltration and CTAB precipitation steps. Moreover, by applying an acid precipitation process to further remove other impurities, serotype 5 CPS was obtained with a lower impurity such as decreased nucleic acid contamination. This improved method was also successfully applied to 14 other serotypes (1, 3, 4, 6A, 6B, 7F, 9V, 11A, 14, 18C, 19A, 19F, 22F, and 23F). To assess the immunogenicity of the CPS from the 15 serotypes, two sets of 15-valent pneumococcal conjugate vaccines were prepared using the previous purification method and the improved method developed here; these vaccines were administered to a rabbit model. Enzyme-linked immunosorbent assay and opsonophagocytic assay demonstrated higher immunogenicity of the conjugate vaccine prepared using CPS produced by the improved purification process.
Collapse
Affiliation(s)
- Chankyu Lee
- R&D Center, EuBiologics Co., Ltd., Chuncheon-si, South Korea.,Department of Biotechnology, Korea University, Seoul, South Korea
| | - Hee Jin Chun
- R&D Center, EuBiologics Co., Ltd., Chuncheon-si, South Korea
| | - Minchul Park
- R&D Center, EuBiologics Co., Ltd., Chuncheon-si, South Korea
| | - Rock Ki Kim
- R&D Center, EuBiologics Co., Ltd., Chuncheon-si, South Korea
| | - Yoon Hee Whang
- R&D Center, EuBiologics Co., Ltd., Chuncheon-si, South Korea
| | - Seuk Keun Choi
- R&D Center, EuBiologics Co., Ltd., Chuncheon-si, South Korea
| | - Yeong Ok Baik
- R&D Center, EuBiologics Co., Ltd., Chuncheon-si, South Korea
| | - Sung Soo Park
- Department of Biotechnology, Korea University, Seoul, South Korea
| | - Inhwan Lee
- R&D Center, EuBiologics Co., Ltd., Chuncheon-si, South Korea
| |
Collapse
|
24
|
Ayoola MB, Shack LA, Nakamya MF, Thornton JA, Swiatlo E, Nanduri B. Polyamine Synthesis Effects Capsule Expression by Reduction of Precursors in Streptococcus pneumoniae. Front Microbiol 2019; 10:1996. [PMID: 31555234 PMCID: PMC6727871 DOI: 10.3389/fmicb.2019.01996] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus, Spn) colonizes the human nasopharynx asymptomatically but can cause infections such as otitis media, and invasive pneumococcal disease such as community-acquired pneumonia, meningitis, and sepsis. Although the success of Spn as a pathogen can be attributed to its ability to synthesize and regulate capsular polysaccharide (CPS) for survival in the host, the mechanisms of CPS regulation are not well-described. Recent studies from our lab demonstrate that deletion of a putative polyamine biosynthesis gene (ΔcadA) in Spn TIGR4 results in the loss of the capsule. In this study, we characterized the transcriptome and metabolome of ΔcadA and identified specific mechanisms that could explain the regulatory role of polyamines in pneumococcal CPS biosynthesis. Our data indicate that impaired polyamine synthesis impacts galactose to glucose interconversion via the Leloir pathway which limits the availability of UDP-galactose, a precursor of serotype 4 CPS, and UDP-N-acetylglucosamine (UDP-GlcNAc), a nucleotide sugar precursor that is at the intersection of CPS and peptidoglycan repeat unit biosynthesis. Reduced carbon flux through glycolysis, coupled with altered fate of glycolytic intermediates further supports impaired synthesis of UDP-GlcNAc. A significant increase in the expression of transketolases indicates a potential shift in carbon flow toward the pentose phosphate pathway (PPP). Higher PPP activity could constitute oxidative stress responses in ΔcadA which warrants further investigation. The results from this study clearly demonstrate the potential of polyamine synthesis, targeted for cancer therapy in human medicine, for the development of novel prophylactic and therapeutic strategies for treating bacterial infections.
Collapse
Affiliation(s)
- Moses B Ayoola
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Leslie A Shack
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Mary F Nakamya
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Justin A Thornton
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Edwin Swiatlo
- Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA, United States
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
25
|
van Tonder AJ, Gladstone RA, Lo SW, Nahm MH, du Plessis M, Cornick J, Kwambana-Adams B, Madhi SA, Hawkins PA, Benisty R, Dagan R, Everett D, Antonio M, Klugman KP, von Gottberg A, Breiman RF, McGee L, Bentley SD. Putative novel cps loci in a large global collection of pneumococci. Microb Genom 2019; 5. [PMID: 31184299 PMCID: PMC6700660 DOI: 10.1099/mgen.0.000274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pneumococcus produces a polysaccharide capsule, encoded by the cps locus, that provides protection against phagocytosis and determines serotype. Nearly 100 serotypes have been identified with new serotypes still being discovered, especially in previously understudied regions. Here we present an analysis of the cps loci of more than 18 000 genomes from the Global Pneumococcal Sequencing (GPS) project with the aim of identifying novel cps loci with the potential to produce previously unrecognized capsule structures. Serotypes were assigned using whole genome sequence data and 66 of the approximately 100 known serotypes were included in the final dataset. Closer examination of each serotype’s sequences identified nine putative novel cps loci (9X, 11X, 16X, 18X1, 18X2, 18X3, 29X, 33X and 36X) found in ~2.6 % of the genomes. The large number and global distribution of GPS genomes provided an unprecedented opportunity to identify novel cps loci and consider their phylogenetic and geographical distribution. Nine putative novel cps loci were identified and examples of each will undergo subsequent structural and immunological analysis.
Collapse
Affiliation(s)
- Andries J van Tonder
- Parasites and Microbes, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Rebecca A Gladstone
- Parasites and Microbes, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Stephanie W Lo
- Parasites and Microbes, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Moon H Nahm
- Division of Pulmonary Medicine, Departments of Medicine and Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mignon du Plessis
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa.,School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Shabir A Madhi
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Paulina A Hawkins
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Rachel Benisty
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheeba, Beer-Sheva, Israel
| | - Ron Dagan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheeba, Beer-Sheva, Israel
| | - Dean Everett
- Queens Research Institute, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Martin Antonio
- Vaccines and Immunity Theme, MRC Unit, Banjul, The Gambia
| | - Keith P Klugman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa.,School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Robert F Breiman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Queens Research Institute, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Lesley McGee
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen D Bentley
- Parasites and Microbes, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Emory Global Health Institute, Emory University, Atlanta, GA, USA
| | -
- https://www.pneumogen.net/gps/
| |
Collapse
|
26
|
Vollmer W, Massidda O, Tomasz A. The Cell Wall of Streptococcus pneumoniae. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0018-2018. [PMID: 31172911 PMCID: PMC11026078 DOI: 10.1128/microbiolspec.gpp3-0018-2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae has a complex cell wall that plays key roles in cell shape maintenance, growth and cell division, and interactions with components of the human host. The peptidoglycan has a heterogeneous composition with more than 50 subunits (muropeptides)-products of several peptidoglycan-modifying enzymes. The amidation of glutamate residues in the stem peptide is needed for efficient peptide cross-linking, and peptides with a dipeptide branch prevail in some beta-lactam-resistant strains. The glycan strands are modified by deacetylation of N-acetylglucosamine residues and O-acetylation of N-acetylmuramic acid residues, and both modifications contribute to pneumococcal resistance to lysozyme. The glycan strands carry covalently attached wall teichoic acid and capsular polysaccharide. Pneumococci are unique in that the wall teichoic acid and lipoteichoic acid contain the same unusually complex repeating units decorated with phosphoryl choline residues, which anchor the choline-binding proteins. The structures of lipoteichoic acid and the attachment site of wall teichoic acid to peptidoglycan have recently been revised. During growth, pneumococci assemble their cell walls at midcell in coordinated rounds of cell elongation and division, leading to the typical ovococcal cell shape. Cell wall growth depends on the cytoskeletal FtsA and FtsZ proteins and is regulated by several morphogenesis proteins that also show patterns of dynamic localization at midcell. Some of the key regulators are phosphorylated by StkP and dephosphorylated by PhpP to facilitate robust selection of the division site and plane and to maintain cell shape.
Collapse
Affiliation(s)
- Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, The Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Orietta Massidda
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | |
Collapse
|
27
|
Paton JC, Trappetti C. Streptococcus pneumoniae Capsular Polysaccharide. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0019-2018. [PMID: 30977464 PMCID: PMC11590643 DOI: 10.1128/microbiolspec.gpp3-0019-2018] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 11/20/2022] Open
Abstract
The polysaccharide capsule of Streptococcus pneumoniae is the dominant surface structure of the organism and plays a critical role in virulence, principally by interfering with host opsonophagocytic clearance mechanisms. The capsule is the target of current pneumococcal vaccines, but there are 98 currently recognised polysaccharide serotypes and protection is strictly serotype-specific. Widespread use of these vaccines is driving changes in serotype prevalence in both carriage and disease. This chapter summarises current knowledge on the role of the capsule and its regulation in pathogenesis, the mechanisms of capsule synthesis, the genetic basis for serotype differences, and provides insights into how so many structurally distinct capsular serotypes have evolved. Such knowledge will inform ongoing refinement of pneumococcal vaccination strategies.
Collapse
Affiliation(s)
- James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Claudia Trappetti
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
28
|
Structure and Mechanism of LcpA, a Phosphotransferase That Mediates Glycosylation of a Gram-Positive Bacterial Cell Wall-Anchored Protein. mBio 2019; 10:mBio.01580-18. [PMID: 30782654 PMCID: PMC6381275 DOI: 10.1128/mbio.01580-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In Gram-positive bacteria, the conserved LCP family enzymes studied to date are known to attach glycopolymers, including wall teichoic acid, to the cell envelope. It is unknown if these enzymes catalyze glycosylation of surface proteins. We show here in the actinobacterium Actinomyces oris by X-ray crystallography and biochemical analyses that A. oris LcpA is an LCP homolog, possessing pyrophosphatase and phosphotransferase activities known to belong to LCP enzymes that require conserved catalytic Arg residues, while harboring a unique disulfide bond critical for protein stability. Importantly, LcpA mediates glycosylation of the surface protein GspA via phosphotransferase activity. Our studies provide the first experimental evidence of an archetypal LCP enzyme that promotes glycosylation of a cell wall-anchored protein in Gram-positive bacteria. The widely conserved LytR-CpsA-Psr (LCP) family of enzymes in Gram-positive bacteria is known to attach glycopolymers, including wall teichoic acid, to the cell envelope. However, it is undetermined if these enzymes are capable of catalyzing glycan attachment to surface proteins. In the actinobacterium Actinomyces oris, an LCP homolog here named LcpA is genetically linked to GspA, a glycoprotein that is covalently attached to the bacterial peptidoglycan by the housekeeping sortase SrtA. Here we show by X-ray crystallography that LcpA adopts an α-β-α structural fold, akin to the conserved LCP domain, which harbors characteristic catalytic arginine residues. Consistently, alanine substitution for these residues, R149 and R266, abrogates GspA glycosylation, leading to accumulation of an intermediate form termed GspALMM, which is also observed in the lcpA mutant. Unlike other LCP proteins characterized to date, LcpA contains a stabilizing disulfide bond, mutations of which severely affect LcpA stability. In line with the established role of disulfide bond formation in oxidative protein folding in A. oris, deletion of vkor, coding for the thiol-disulfide oxidoreductase VKOR, also significantly reduces LcpA stability. Biochemical studies demonstrated that the recombinant LcpA enzyme possesses pyrophosphatase activity, enabling hydrolysis of diphosphate bonds. Furthermore, this recombinant enzyme, which weakly interacts with GspA in solution, catalyzes phosphotransfer to GspALMM. Altogether, the findings support that A. oris LcpA is an archetypal LCP enzyme that glycosylates a cell wall-anchored protein, a process that may be conserved in Actinobacteria, given the conservation of LcpA and GspA in these high-GC-content organisms.
Collapse
|
29
|
Morais V, Dee V, Suárez N. Purification of Capsular Polysaccharides of Streptococcus pneumoniae: Traditional and New Methods. Front Bioeng Biotechnol 2018; 6:145. [PMID: 30370268 PMCID: PMC6194195 DOI: 10.3389/fbioe.2018.00145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/24/2018] [Indexed: 11/13/2022] Open
Abstract
Pneumonia caused by Streptococcus pneumoniae is a major bacterial disease responsible for many deaths worldwide each year and is particularly dangerous in children under 5 years old and adults over 50. The capsular polysaccharide (CPS) constitutes the outermost layer of the bacterial cell and is the main virulence factor. Regardless of whether pharmaceutical agents are composed of CPS alone or protein-conjugated CPS, CPS purification is essential for the development of vaccines against S. pneumoniae. These vaccines are effective and safe but remain quite expensive. This review describes the methods currently available for CPS purification. Advances in CPS purification methods are aimed at improvements in quality and yield and, above all, process simplification.
Collapse
Affiliation(s)
- Victor Morais
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Valerie Dee
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Norma Suárez
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| |
Collapse
|
30
|
Pathak A, Bergstrand J, Sender V, Spelmink L, Aschtgen MS, Muschiol S, Widengren J, Henriques-Normark B. Factor H binding proteins protect division septa on encapsulated Streptococcus pneumoniae against complement C3b deposition and amplification. Nat Commun 2018; 9:3398. [PMID: 30139996 PMCID: PMC6107515 DOI: 10.1038/s41467-018-05494-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 07/05/2018] [Indexed: 01/20/2023] Open
Abstract
Streptococcus pneumoniae evades C3-mediated opsonization and effector functions by expressing an immuno-protective polysaccharide capsule and Factor H (FH)-binding proteins. Here we use super-resolution microscopy, mutants and functional analysis to show how these two defense mechanisms are functionally and spatially coordinated on the bacterial cell surface. We show that the pneumococcal capsule is less abundant at the cell wall septum, providing C3/C3b entry to underlying nucleophilic targets. Evasion of C3b deposition at division septa and lateral amplification underneath the capsule requires localization of the FH-binding protein PspC at division sites. Most pneumococcal strains have one PspC protein, but successful lineages in colonization and disease may have two, PspC1 and PspC2, that we show affect virulence differently. We find that spatial localization of these FH-recruiting proteins relative to division septa and capsular layer is instrumental for pneumococci to resist complement-mediated opsonophagocytosis, formation of membrane-attack complexes, and for the function as adhesins. Streptococcus pneumoniae evades the action of the complement system by expressing an immuno-protective polysaccharide capsule as well as Factor H-binding proteins. Here, Pathak et al. show that these two defence mechanisms are functionally and spatially coordinated on the bacterial cell surface.
Collapse
Affiliation(s)
- Anuj Pathak
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Jan Bergstrand
- Department Applied Physics, Royal Institute of Technology (KTH), Experimental Biomolecular Physics, SE-106 91, Stockholm, Sweden
| | - Vicky Sender
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Laura Spelmink
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Marie-Stephanie Aschtgen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Sandra Muschiol
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Jerker Widengren
- Department Applied Physics, Royal Institute of Technology (KTH), Experimental Biomolecular Physics, SE-106 91, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden. .,Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 639798, Singapore. .,Department of Clinical Microbiology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
31
|
Song JY, Lim JH, Lim S, Yong Z, Seo HS. Progress toward a group B streptococcal vaccine. Hum Vaccin Immunother 2018; 14:2669-2681. [PMID: 29995578 PMCID: PMC6314413 DOI: 10.1080/21645515.2018.1493326] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/18/2018] [Accepted: 06/19/2018] [Indexed: 01/31/2023] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) is a leading cause of severe invasive disease in neonate, elderly, and immunocompromised patients worldwide. Despite recent advances in the diagnosis and intrapartum antibiotic prophylaxis (IAP) of GBS infections, it remains one of the most common causes of neonatal morbidity and mortality, causing serious infections. Furthermore, recent studies reported an increasing number of GBS infections in pregnant women and elderly. Although IAP is effective, it has several limitations, including increasing antimicrobial resistance and late GBS infection after negative antenatal screening. Maternal immunization is the most promising and effective countermeasure against GBS infection in neonates. However, no vaccine is available to date, but two types of vaccines, protein subunit and capsular polysaccharide conjugate vaccines, were investigated in clinical trials. Here, we provide an overview of the GBS vaccine development status and recent advances in the development of immunoassays to evaluate the GBS vaccine clinical efficacy.
Collapse
Affiliation(s)
- Joon Young Song
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Hyang Lim
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Sangyong Lim
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Zhi Yong
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Ho Seong Seo
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
32
|
Desvaux M, Candela T, Serror P. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front Microbiol 2018; 9:100. [PMID: 29491848 PMCID: PMC5817068 DOI: 10.3389/fmicb.2018.00100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Thomas Candela
- EA4043 Unité Bactéries Pathogènes et Santé, Châtenay-Malabry, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|