1
|
Nian X, Wang B, Holford P, Beattie GAC, Tan S, Yuan W, Cen Y, He Y, Zhang S. Neuropeptide Ecdysis-Triggering Hormone and Its Receptor Mediate the Fecundity Improvement of 'Candidatus Liberibacter Asiaticus'-Infected Diaphorina citri Females and CLas Proliferation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412384. [PMID: 40112150 PMCID: PMC12079412 DOI: 10.1002/advs.202412384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/24/2024] [Indexed: 03/22/2025]
Abstract
The severe Asiatic form of huanglongbing (HLB), caused by "Candidatus Liberibacter asiaticus" (CLas), threatens global citrus production via the citrus psyllid, Diaphorina citri. Culturing challenges of CLas necessitate reducing D. citri populations for disease management. CLas boosts the fecundity of CLas-positive (CLas+) D. citri and fosters its own proliferation by modulating the insect host's juvenile hormone (JH), but the intricate endocrine regulatory mechanisms remain elusive. Here, it is reported that the D. citri ecdysis-triggering hormone (DcETH) and its receptor DcETHR play pivotal roles in the reciprocal benefits between CLas and D. citri within the ovaries, influencing energy metabolism and reproductive development in host insects; miR-210, negatively regulates DcETHR expression, contributing to this symbiotic interaction. CLas infection reduces 20-hydroxyecdysone (20E) levels and stimulates DcETH release, elevating JH production via DcETHR, enhancing fecundity and CLas proliferation. Furthermore, circulating JH levels suppress 20E production in CLas+ ovaries. Collectively, the orchestrated functional interplay involving 20E, ETH, and JH increases energy metabolism and promotes the fecundity of CLas+ D. citri and CLas proliferation. These insights not only broaden the knowledge of how plant pathogens manipulate the reproductive behavior of insect hosts but also offer novel targets and strategies for combatting HLB and D. citri.
Collapse
Affiliation(s)
- Xiaoge Nian
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural AffairsGuangdong Provincial Key Laboratory of High Technology for Plant ProtectionGuangzhou510640P.R. China
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Bo Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Paul Holford
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
| | | | - Shijian Tan
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Weiwei Yuan
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Yijing Cen
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Yurong He
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Songdou Zhang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural AffairsGuangdong Provincial Key Laboratory of High Technology for Plant ProtectionGuangzhou510640P.R. China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| |
Collapse
|
2
|
Zhang Y, Chen Y, Hou C, Wang C, Mu C. Analysis of cDNA microarrays revealed the effects of mating on the ovary and hepatopancreas of female swimming crab (Portunus trituberculatus) during the late stage of ovarian development. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101520. [PMID: 40315711 DOI: 10.1016/j.cbd.2025.101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/04/2025]
Abstract
To investigate the differences in the ovaries and hepatopancreas of mated and unmated female Portunus trituberculatus during late ovarian development. This study constructed a cDNA library of the P. trituberculatus. The 113,858 sequences were obtained from the cDNA library and the NCBI database, and a total of 109,533 probes were designed for the cDNA microarray. Microarray analysis was performed on ovaries and hepatopancreas of mated and unmated crabs after six months of aquaculture. A total of 2072 differentially expressed genes (DEGs) were identified in the ovaries, and 1897 DEGs were identified in the hepatopancreas. Enrichment analysis revealed two differential pathways in the ovary, including Hippo signaling pathway and endocytosis, and fourteen differential pathways in the hepatopancreas, including insect hormone biosynthesis and glycolysis. The findings suggest that during late ovarian development, the ovaries focus on efficient energy use, with enhanced foreign substance recognition and a decrease in Vitellogenin (Vn) synthesis/absorption. In the hepatopancreas, there is an emphasis on nerve signal conduction, hormonal regulation, and energy metabolism. The immune and antioxidant capacities of both tissues showed fluctuations. In conclusion, the primary purpose of the P. trituberculatus during this stage is not to promote rapid ovarian development but to regulate energy intake, utilization, and maintain overall physiological stability. This study could provide valuable insights for the optimized breeding of female P. trituberculatus during late ovarian development.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yiner Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Congcong Hou
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China.
| | - Chunlin Wang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Changkao Mu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Cao L, Wu X, Zhao H, Gao X, Qin X, Li Z. Chemical Change of Velvet Antler After Vinegar Processing Was Related With the Increased Fecundity in Drosophila melanogaster. Biomed Chromatogr 2025; 39:e70045. [PMID: 40033880 DOI: 10.1002/bmc.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/25/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
As a traditional Chinese medicine, velvet antler (VA) is usually processed with white wine according to the Chinese Pharmacopoeia. The practice of using aged vinegar to process VA is uncommon, which is only used in "GuiLingJi." In this study, we found significant chemical changes in vinegar processing. Network pharmacology analysis showed that 20 increased components mainly were related with fecundity through the regulation of biosynthesis of steroid hormones and the estrogen signaling pathway. Reproduction experiment using Drosophila melanogaster showed that both VA and vinegar-processed velvet antler (VPVA) could enhance the reproductive capacity and increase the steroid hormone levels in Drosophila, while VPVA was much superior to VA. In addition, metabolomics showed that energy metabolism was related with the mechanisms by which VA improves the fecundity of Drosophila. This study provides a theoretical basis for the rationale of vinegar processing of VA.
Collapse
Affiliation(s)
- Linxu Cao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Huichun Zhao
- Shanxi Guangyuyuan Chinese Medicine Co., Ltd., Jinzhong, Shanxi, China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|
4
|
Chen J, Zhu P, Jin S, Zhang Z, Jiang S, Li S, Liu S, Peng Q, Pan Y. A hormone-to-neuropeptide pathway inhibits sexual receptivity in immature Drosophila females. Proc Natl Acad Sci U S A 2025; 122:e2418481122. [PMID: 39982743 PMCID: PMC11874258 DOI: 10.1073/pnas.2418481122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Newborns, typically asexual, undergo a process of sexual transition to reach sexual maturity, but the regulatory mechanism underlying this transition is not clear. Here, we studied how female sexual behavior is modulated during sexual transition by hormones and neuromodulators in Drosophila. We found that neuropeptide Leucokinin (LK) inhibits female receptivity specifically during a sexual transition period in immature females, but not in younger or mature females. Moreover, the steroid hormone ecdysone, which is mainly synthesized in the female ovary during sexual maturation, acts on LK neurons via the ecdysone receptor to suppress sexual receptivity. We further found that LK suppresses female receptivity through its receptor LKR in central pC1 neurons, a decision center for female sexual behavior. These findings reveal a hormone-to-neuropeptide pathway that specifically inhibits sexual behavior during sexual maturation in female Drosophila, shedding light on how hormones and neuromodulators coordinate sexual development and behaviors.
Collapse
Affiliation(s)
- Jie Chen
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Peiwen Zhu
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Sihui Jin
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Zhaokun Zhang
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Simei Jiang
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou514779, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou514779, China
| | - Qionglin Peng
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong226019, China
| |
Collapse
|
5
|
Zhang Q, Li Z, Qiao J, Zheng C, Zheng W, Zhang H. METTL3/METTL14-mediated RNA m 6A modification is involved in male reproductive development in Bactrocera dorsalis. INSECT SCIENCE 2025. [PMID: 39972989 DOI: 10.1111/1744-7917.13510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 02/21/2025]
Abstract
RNA N6-methyladenine (m6A) modification represents a pivotal epigenetic modification that facilitates the remodeling of gene expression and regulates a variety of biological processes via certain post-transcriptional mechanisms. However, the specific function of RNA m6A modification in insect male reproduction remains unclear. In this study, we explored the molecular mechanism by which METTL3/METTL14-mediated RNA m6A modification regulates male reproduction in the invasive pest Bactrocera dorsalis. The results showed that BdMettl3 and BdMettl14 were highly expressed in fat body (FB) and male accessory glands (MAGs). Knockout of BdMettl3 or BdMettl14 decreased the expression level of m6A in B. dorsalis, resulting in testicular deformities and a significant reduction of viable sperm number. Specifically, BdMettl3 or BdMettl14 knockout reduced the titer of 20-hydroxyecdysone (20E, the active form of ecdysone) in males. The messenger RNA (mRNA) of Disembodied, one of the 20E synthesis genes, was modified by m6A, and its expression increased the titer of 20E. The mRNA m6A level of Disembodied obviously decreased after the knockout of BdMettl3 or BdMettl14, suggesting that RNA m6A modification regulates testis development and fecundity by modulating 20E synthesis. Taken together, this study indicates that METTL3/METTL14-mediated RNA m6A modification presents a new regulatory mechanism for male reproduction in B. dorsalis, serving as a potential target for the control of B. dorsalis.
Collapse
Affiliation(s)
- Qiuyuan Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziniu Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiao Qiao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chenjun Zheng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Zheng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Huang Y, Li J, Wang D, Ye Z, Wang L, Liu M. Diets supplemented with different solvents extracts of Lepista nuda alters longevity and fecundity, and the expression of related genes in Drosophila melanogaster (Diptera: Drosophilidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:403-415. [PMID: 39578891 DOI: 10.1093/jee/toae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/24/2024] [Accepted: 10/13/2024] [Indexed: 11/24/2024]
Abstract
Exploring the effects of different solvent extracts from Lepista nuda [(Bull. ex Fr.) Cooke] on the lifespan and reproductive capacity of Drosophila melanogaster (Diptera: Drosophilidae), the extracts of the fruiting body and mycelium of L. nuda were prepared using water, 75% ethanol, and petroleum ether, and the active components were identified. These extracts were then incorporated into culture media and administered to D. melanogaster. The impact of the extracts from different solvents on the life span and fertility, and the contents of ecdysone (20E), juvenile hormone (JH), and vitellogenin (Vg), as well as the effects of autophagy gene, 20E synthesis gene Halloween, 20E receptor gene ECR, JH methyltransferase gene JHAMT and Vg gene Yolk1 transcripts were analyzed. The extracts from the fruiting body and mycelium of L. nuda can reduce lifespan, a phenomenon associated with the varied expression of 15 compounds across 6 distinct groups. The average survival time of female fruit flies was lower than that of the male fruit flies. Fertility had also been significantly reduced, indicating a positive correlation between lifespan and fertility. In addition, with the extension of cultivation time, the content of 20E, JH, and Vg, as well as the transcripts of Halloween, ECR, JHAMT, and Yolk1 in the L. nuda fruiting body extract treatment group, all significantly decreased. Among the 3 solvent extracts, phenylalanine, citric acid, quinic acid, and punicalagin in the L. nuda aqueous extract exhibit the most potent collective toxicity toward fruit flies. The insecticidal properties of these compounds function by modulating autophagy and the expression of insect hormones.
Collapse
Affiliation(s)
- Yaqin Huang
- School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang, China
| | | | - Dezhi Wang
- School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Zhaowei Ye
- School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Lin Wang
- School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Minjie Liu
- School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang, China
| |
Collapse
|
7
|
Tang Y, Liu F, Lu L, Liu A, Ye H. Identification of ETH receptor and its possible roles in the mud crab Scylla paramamosain. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111692. [PMID: 38977174 DOI: 10.1016/j.cbpa.2024.111692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Ecdysis-triggering hormone (ETH) is a neuropeptide hormone characterized by a conserved KxxKxxPRx amide structure widely identified in arthropods. While its involvement in the regulation of molting and reproduction in insects is well-established, its role in crustaceans has been overlooked. This study aimed to de-orphanise a receptor for ETH in the mud crab Scylla paramamosain and explore its potential impact on ovarian development. A 513-amino-acid G protein-coupled receptor for ETH (SpETHR) was identified in S. paramamosain, exhibiting a dose-dependent activation by SpETH with an EC50 value of 75.18 nM. Tissue distribution analysis revealed SpETH was in the cerebral ganglion and thoracic ganglion, while SpETHR was specifically expressed in the ovary, hepatopancreas, and Y-organ of female crabs. In vitro experiments demonstrated that synthetic SpETH (at a concentration of 10-8 M) significantly increased the expression of SpVgR in the ovary and induced ecdysone biosynthesis in the Y-organ. In vivo experiments showed a significant upregulation of SpEcR in the ovary and Disembodied and Shadow in the Y-organ after 12 h of SpETH injection. Furthermore, a 16-day administration of SpETH significantly increased 20E titers in hemolymph, gonadosomatic index (GSI) and oocyte size of S. paramamosain. In conclusion, our findings suggest that SpETH may play stimulatory roles in ovarian development and ecdysone biosynthesis by the Y-organ.
Collapse
Affiliation(s)
- Yiwei Tang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China
| | - Fang Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China
| | - Li Lu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China
| | - An Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China.
| | - Haihui Ye
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China.
| |
Collapse
|
8
|
Chen J, Nouzová M, Noriega FG, Tatar M. Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin, and juvenile hormone. Proc Natl Acad Sci U S A 2024; 121:e2411987121. [PMID: 39413128 PMCID: PMC11513968 DOI: 10.1073/pnas.2411987121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 10/18/2024] Open
Abstract
Dietary restriction (DR) slows aging in many animals, while in some cases, the sensory signals from diet alone are sufficient to retard or accelerate lifespan. The digestive tract is a candidate location to sense nutrients, where neuropeptides secreted by enteroendocrine cells (EEC) produce systemic signals in response to food. Here, we measure how Drosophila neuropeptide F (NPF) is secreted into adult circulation by EEC and find that specific EEC differentially respond to dietary sugar and yeast. Female lifespan is increased when gut NPF is genetically depleted, and this manipulation is sufficient to blunt the longevity benefit conferred by DR. Depletion of NPF receptors at insulin-producing neurons of the brain also increases female lifespan, consistent with observations where loss of gut NPF decreases neuronal insulin secretion. The longevity conferred by repressing gut NPF and brain NPF receptors is reversed by treating adults with a juvenile hormone (JH) analog. JH is produced by the adult corpora allata, and inhibition of the insulin receptor at this tissue decreases JH titer and extends lifespan in both males and females, while this longevity is restored to wild type by treating adults with a JH analog. Overall, EEC of the gut modulate Drosophila aging through interorgan communication mediated by a gut-brain-corpora allata axis, and insulin produced in the brain impacts lifespan through its control of JH titer. These data suggest that we consider how human incretins and their analogs, which are used to treat obesity and diabetes, may impact aging.
Collapse
Affiliation(s)
- Jiangtian Chen
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI02912
| | - Marcela Nouzová
- Institute of Parasitology, Laboratory of Molecular Biology and Physiology of Mosquitoes, Biology Centre Czech Academy of Sciences, České Budějovice37005, Czech Republic
| | - Fernando G. Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL33199
- Department of Parasitology, University of South Bohemia, České Budějovice37005, Czech Republic
| | - Marc Tatar
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI02912
| |
Collapse
|
9
|
Khalid MZ, Liu J, Zhang J, Yang L, Sun Z, Zhong G. Pyriproxyfen enhances germline stem cell proliferation and reduces reproduction in Drosophila by up-regulating juvenile hormone signaling. PEST MANAGEMENT SCIENCE 2024; 80:5099-5111. [PMID: 38865711 DOI: 10.1002/ps.8234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Pyriproxyfen is an insect growth regulator (IGR) that is effective against various types of insect pests. However, the molecular mechanism underlying pyriproxyfen effects on insect reproduction remains unclear. Thus, in this study, we attempted to uncover the mechanisms underlying the impact of pyriproxyfen on the reproductive system of the model organism Drosophila melanogaster. RESULTS A significant decrease in Drosophila reproduction was observed after pyriproxyfen treatment. The juvenile hormone (JH) titer was significantly increased (120.4%) in the ovary samples of pyriproxyfen-treated flies. Likewise, the concentrations of key enzymes and the expression of key genes related to the JH signaling pathway were also increased in the pyriproxyfen-treated group compared with the control group. Furthermore, pyriproxyfen treatment significantly increased (15.6%) the number of germline stem cells (GSCs) and significantly decreased (17%) the number of cystoblasts (CBs). However, no significant differences were observed in the number of somatic cells. We performed RNA interference (RNAi) on five key genes (Met, Tai, gce, ftz-f1, and hairy) related to the JH signaling pathway in germ cells using the germ cell-specific Gal4 driver. Interestingly, RNAi of the selected genes significantly decreased the number of both GSCs and CBs in pyriproxyfen-treated transgenic flies. These results further validate that pyriproxyfen enhances GSC proliferation by up-regulating JH signaling. CONCLUSION Our results indicate that pyriproxyfen significantly decreases reproduction by affecting germ cells in female adult ovaries. The effect of pyriproxyfen on germ cell proliferation and differentiation is mediated by an increase in JH signaling. This study has significant implications for optimizing pest control strategies, developing sustainable agriculture practices, and understanding the mechanism of insecticide action. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammad Zaryab Khalid
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, P. R. China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P. R. China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jin Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, P. R. China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P. R. China
| | - Jing Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, P. R. China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P. R. China
| | - Liying Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, P. R. China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P. R. China
| | - Zhipeng Sun
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, P. R. China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P. R. China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, P. R. China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P. R. China
| |
Collapse
|
10
|
Zhang YK, Zhang HX, An HM, Wang K, Zhu F, Liu W, Wang XP. Key roles of insulin receptor InR1 in initiating reproductive diapause in males of the cabbage beetle Colaphellus bowringi (Coleoptera: Chrysomelidae). PEST MANAGEMENT SCIENCE 2024; 80:3852-3860. [PMID: 38511626 DOI: 10.1002/ps.8088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Reproductive diapause serves as a valuable strategy enabling insects to survive unfavorable seasonal conditions. However, forcing insects into diapause when the environment is conducive to their well-being can cause them to miss out on seasonal opportunities for reproduction. This outcome not only reduces insect populations but also minimizes crop losses caused by insect feeding. Therefore, altering the timing of diapause initiation presents a potential strategy for managing pests. In this study, we examined the possible role of the Insulin Receptor 1 (InR1) in controlling reproductive diapause entry in the male cabbage beetle, Colaphellus bowringi. RESULTS Compared to short-day (SD) conditions, long-day (LD) conditions led to reproductive diapause of C. bowringi males, characterized by arrested gonad development, increased Triglyceride (TG) accumulation, and upregulated expression of diapause protein 1 and genes associated with lipogenesis and stress tolerance. Upon employing RNA interference to knock down InR1 under SD conditions, males destined for reproduction were compelled into diapause, evidenced by arrested gonadal development, accumulation of TG, and elevated expression of diapause-related genes. Intriguingly, despite the common association of the absence of juvenile hormone (JH) with reproductive diapause in females, the knockdown of InR1 in males did not significant affect the expression of JH biosynthesis and JH response gene. CONCLUSION The study highlight InR1 is a key factor involved in regulating male reproductive diapause in C. bowringi. Consequently, targeting insulin signaling could be a viable approach to perturb diapause timing, offering a promising strategy for managing pests with reproductive diapause capabilities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Ke Zhang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Han-Xue Zhang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao-Min An
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kou Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fen Zhu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Liu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Chen J, Nouzova M, Noriega FG, Tatar M. Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin and juvenile hormone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600832. [PMID: 38979180 PMCID: PMC11230353 DOI: 10.1101/2024.06.26.600832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dietary restriction slows aging in many animals, while in some cases the sensory signals from diet alone are sufficient to retard or accelerate lifespan. The digestive tract is a candidate location to sense nutrients, where neuropeptides secreted by enteroendocrine cells (EEC) produce systemic signals in response to food. Here we measure how Drosophila neuropeptide F (NPF) is secreted into adult circulation by enteroendocrine cells and find that specific enteroendocrine cells differentially respond to dietary sugar and yeast. Lifespan is increased when gut NPF is genetically depleted, and this manipulation is sufficient to blunt the longevity benefit conferred by dietary restriction. Depletion of NPF receptors at insulin producing neurons of the brain also increases lifespan, consistent with observations where loss of gut NPF decreases neuronal insulin secretion. The longevity conferred by repressing gut NPF and brain NPF receptors is reversed by treating adults with a juvenile hormone (JH) analog. JH is produced by the adult corpora allata, and inhibition of the insulin receptor at this tissue decreases JH titer and extends lifespan, while this longevity is restored to wild type by treating adults with a JH analog. Overall, enteroendocrine cells of the gut modulate Drosophila aging through interorgan communication mediated by a gut-brain-corpora allata axis, and insulin produced in the brain impacts lifespan through its control of JH titer. These data suggest that we should consider how human incretins and their analogs, which are used to treat obesity and diabetes, may impact aging.
Collapse
Affiliation(s)
- Jiangtian Chen
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912 USA
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic, 37005
| | - Fernando G. Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199 USA
- Department of Parasitology, University of South Bohemia, České Budějovice, 37005 Czech Republic
| | - Marc Tatar
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912 USA
| |
Collapse
|
12
|
Tu S, Yu G, Ge F, Xu R, Jin Z, Xie X, Zhu D. Comparative transcriptomic characterization of the ovary in the spawning process of the mud crab Scylla paramamosain. Dev Growth Differ 2024; 66:274-284. [PMID: 38501505 DOI: 10.1111/dgd.12921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Oviposition is induced upon mating in most insects. Spawning is a physiological process that is fundamental for the reproduction of Scylla paramamosain. However, the molecular mechanisms underlying the spawning process in this species are poorly understood. Herein, comprehensive ovary transcriptomic analysis was conducted at the germinal vesicle breakdown stage (GVBD), spawning stage, 0.5 h post-spawning stage, and 24 h post-spawning stage of S. paramamosain for gene discovery. A total of 67,230 unigenes were generated, and 27,975 (41.61%) unigenes were annotated. Meanwhile, the differentially expressed genes (DEGs) between the different groups were identified, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was subsequently conducted. These results suggested that octopamine (OA) and tyramine (TA) could induce oviposition, while dopamine (DA) and serotonin (5-hydroxytryptamine [5-HT]) inhibit oviposition. The 20-hydroxyecdysone (20E) and methyl farnesoate (MF) signal pathways might be positively associated with oviposition. Furthermore, numerous transcripts that encode neuropeptides and their G-protein-coupled receptors (GPCRs), such as CNMamide, RYamide, ecdysis-triggering hormone (ETH), GPA2/GPB5 receptor, and Moody receptor, appear to be differentially expressed during the spawning process. Eleven unigenes were selected for qRT-PCR and the pattern was found to be consistent with the transcriptome expression pattern. Our work is the first spawning-related investigation of S. paramamosain focusing on the ovary at the whole transcriptome level. These findings assist in improving our understanding of spawning regulation in S. paramamosain and provide information for oviposition studies in other crustaceans.
Collapse
Affiliation(s)
- Shisheng Tu
- School of Marine Science, Ningbo University, Ningbo, China
| | - Guohong Yu
- School of Marine Science, Ningbo University, Ningbo, China
| | - Fuqiang Ge
- School of Marine Science, Ningbo University, Ningbo, China
| | - Rui Xu
- School of Marine Science, Ningbo University, Ningbo, China
| | - Zhongwen Jin
- Ningbo Ocean and Fisheries Research Institute of Zhejiang Province, Ningbo, China
| | - Xi Xie
- School of Marine Science, Ningbo University, Ningbo, China
| | - Dongfa Zhu
- School of Marine Science, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Andreenkova OV, Adonyeva NV, Efimov VM, Gruntenko NE. Fertility differences between two wild-type Drosophila melanogaster lines correlate with differences in the expression of the Jheh1 gene, which codes for an enzyme degrading juvenile hormone. Vavilovskii Zhurnal Genet Selektsii 2024; 28:185-189. [PMID: 38680182 PMCID: PMC11043515 DOI: 10.18699/vjgb-24-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/18/2023] [Indexed: 05/01/2024] Open
Abstract
Juvenile hormone plays a "status quo" role in Drosophila melanogaster larvae, preventing the untimely metamorphosis, and performs a gonadotropic function in imagoes, ensuring the ovaries' preparedness for vitellogenesis. The decreased level of juvenile hormone results in reproductive disorders in D. melanogaster females including a delay in the oviposition onset and a fertility decrease. Another factor that can affect the insect reproduction is an infection with the maternally inherited symbiotic α-proteobacterium Wolbachia. The present study is devoted to the analysis of the expression of two juvenile hormone metabolism genes encoding enzymes of its synthesis and degradation, juvenile hormone acid O-methyltransferase ( jhamt) and juvenile hormone epoxide hydrase (Jheh1), respectively, in four wild-type D. melanogaster lines, two of them being infected with Wolbachia. Lines w153 and Bi90 were both derived from an individual wild-caught females infected with Wolbachia, while lines w153T and Bi90T were derived from them by tetracycline treatment and are free of infection. Line Bi90 is known to be infected with the Wolbachia strain wMel, and line w153, with the Wolbachia strain wMelPlus belonging to the wMelCS genotype. It was found that infection with either Wolbachia strain does not affect the expression of the studied genes. At the same time, it was shown that the w153 and w153T lines differ from the Bi90 and Bi90T lines by an increased level of the Jheh1 gene expression and do not differ in the jhamt gene expression level. Analysis of the fertility of these four lines showed that it does not depend on Wolbachia infection either, but differs between lines with different nuclear genotypes: in w153 and w153T, it is significantly lower than in lines Bi90 and Bi90T. The data obtained allow us to reasonably propose that the inter-line D. melanogaster polymorphism in the metabolism of the juvenile hormone is determined by its degradation (not by its synthesis) and correlates with the fertility level.
Collapse
Affiliation(s)
- O V Andreenkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N V Adonyeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V M Efimov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N E Gruntenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
14
|
Kim DH, Jang YH, Yun M, Lee KM, Kim YJ. Long-term neuropeptide modulation of female sexual drive via the TRP channel in Drosophila melanogaster. Proc Natl Acad Sci U S A 2024; 121:e2310841121. [PMID: 38412134 PMCID: PMC10927590 DOI: 10.1073/pnas.2310841121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
Connectomics research has made it more feasible to explore how neural circuits can generate multiple outputs. Female sexual drive provides a good model for understanding reversible, long-term functional changes in motivational circuits. After emerging, female flies avoid male courtship, but they become sexually receptive over 2 d. Mating causes females to reject further mating for several days. Here, we report that pC1 neurons, which process male courtship and regulate copulation behavior, exhibit increased CREB (cAMP response element binding protein) activity during sexual maturation and decreased CREB activity after mating. This increased CREB activity requires the neuropeptide Dh44 (Diuretic hormone 44) and its receptors. A subset of the pC1 neurons secretes Dh44, which stimulates CREB activity and increases expression of the TRP channel Pyrexia (Pyx) in more pC1 neurons. This, in turn, increases pC1 excitability and sexual drive. Mating suppresses pyx expression and pC1 excitability. Dh44 is orthologous to the conserved corticotrophin-releasing hormone family, suggesting similar roles in other species.
Collapse
Affiliation(s)
- Do-Hyoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Yong-Hoon Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Minsik Yun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Kang-Min Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| |
Collapse
|
15
|
Liu S, Gao Y, Shi R, Huang H, Xu Y, Chen Z. Transcriptomics Provide Insights into the Photoperiodic Regulation of Reproductive Diapause in the Green Lacewing, Chrysoperla nipponensis (Okamoto) (Neuroptera: Chrysopidae). INSECTS 2024; 15:136. [PMID: 38392555 PMCID: PMC10889211 DOI: 10.3390/insects15020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Chrysoperla nipponensis (Okamoto) displays typical adult reproductive diapause under short photoperiods; however, our understanding of the molecular mechanism underlying photoperiod-sensitive reproduction remains limited. In this study, we performed transcriptome profiling of four treatments (the diapause-sensitive stage and pre-diapause phase under long and short photoperiods) of C. nipponensis using RNA sequencing (RNA-seq). A total of 71,654 unigenes were obtained from the samples. Enrichment analysis showed that fatty acid metabolism-related pathways were altered under a short photoperiod. Moreover, β-oxidation-related gene expression was active during the diapause-sensitive period under a short photoperiod. The knockdown of juvenile hormone acid methyltransferase 1 (Jhamt1) prolonged the pre-oviposition period but did not affect the reproductive ability of female individuals in C. nipponensis. These findings provided us with a more comprehensive understanding of the molecular mechanisms of photoperiod-sensitive diapause and show that groundwork is crucial for bolstering the long-term storage and biocontrol potential of C. nipponensis.
Collapse
Affiliation(s)
- Shaoye Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Yuqing Gao
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Rangjun Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyi Huang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Yongyu Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Zhenzhen Chen
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
16
|
Qi Z, Etebari K, Nouzova M, Noriega FG, Asgari S. Differential gene expression and microRNA profile in corpora allata-corpora cardiaca of Aedes aegypti mosquitoes with weak juvenile hormone signalling. BMC Genomics 2024; 25:113. [PMID: 38273232 PMCID: PMC10811912 DOI: 10.1186/s12864-024-10007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
The corpora allata-corpora cardiaca (CA-CC) is an endocrine gland complex that regulates mosquito development and reproduction through the synthesis of juvenile hormone (JH). Epoxidase (Epox) is a key enzyme in the production of JH. We recently utilized CRISPR/Cas9 to establish an epoxidase-deficient (epox-/-) Aedes aegypti line. The CA from epox-/- mutants do not synthesize epoxidated JH III but methyl farneosate (MF), a weak agonist of the JH receptor, and therefore have reduced JH signalling. Illumina sequencing was used to examine the differences in gene expression between the CA-CC from wild type (WT) and epox-/- adult female mosquitoes. From 18,034 identified genes, 317 were significantly differentially expressed. These genes are involved in many biological processes, including the regulation of cell proliferation and apoptosis, energy metabolism, and nutritional uptake. In addition, the same CA-CC samples were also used to examine the microRNA (miRNA) profiles of epox-/- and WT mosquitoes. A total of 197 miRNAs were detected, 24 of which were differentially regulated in epox-/- mutants. miRNA binding sites for these particular miRNAs were identified using an in silico approach; they target a total of 101 differentially expressed genes. Our results suggest that a lack of epoxidase, besides affecting JH synthesis, results in the diminishing of JH signalling that have significant effects on Ae. aegypti CA-CC transcriptome profiles, as well as its miRNA repertoire.
Collapse
Affiliation(s)
- Zhi Qi
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
17
|
Cao W, Zhang F, Li H, Zhang Y, Zhang Y, Zhang W, Guo X, Dong L, Li H, Zeng D, Li X, Yang X. A short neuropeptide F analog (sNPF), III-2 may particularly regulate juvenile hormone III to influence Spodoptera frugiperda metamorphosis and development. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105653. [PMID: 38072528 DOI: 10.1016/j.pestbp.2023.105653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023]
Abstract
Allatostatin (AS) or Allatotropin (AT) is a class of insect short neuropeptide F (sNPF) that affects insect growth and development by inhibiting or promote the synthesis of juvenile hormone (JH) in different insects. III-2 is a novel sNPF analog derived from a group of nitroaromatic groups connected by different amino acids. In this study, we found that III-2 showed high insecticidal activity against S. frugiperda larvae with a LC50 of 18.7 mg L-1. As demonstrated by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), III-2 particularly facilitated JH III and hindered 20E synthesis in S. frugiperda. The results of RNA-Seq and quantitative real-time polymerase chain reaction (qPCR) showed that III-2 treatment promoted the expression of key genes such as SfCYP15C1 in JH synthesis pathway and inhibited the expression of SfCYP314A1 and other genes in the 20E synthetic pathway. Significant differences were also observed in the expression of the genes related to cuticle formation. We report for the first time that sNPF compounds specifically interfere with the synthesis and secretion of a certain JH in insects, thus affecting the ecdysis and growth of insects, and leading to death. This study may provide a new plant conservation concept for us to seek the targeted control of certain insects based on specific interference with different JH.
Collapse
Affiliation(s)
- Wenjing Cao
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Fu Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Haolin Li
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Yimeng Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yongheng Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Wenjie Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiaxia Guo
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Linxi Dong
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Honghong Li
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Dongqiang Zeng
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China.
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
18
|
Zhang SX, Glantz EH, Miner LE, Rogulja D, Crickmore MA. Where does mating drive come from? EMBO Rep 2023; 24:e57771. [PMID: 37530645 PMCID: PMC10561160 DOI: 10.15252/embr.202357771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
Comment on "Asexuality in Drosophila juvenile males is organizational and independent of juvenile hormone" by Ji et al.
Collapse
Affiliation(s)
- Stephen X Zhang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Ethan H Glantz
- Department of NeurobiologyHarvard Medical SchoolBostonMAUSA
| | - Lauren E Miner
- FM Kirby Neurobiology Center, Boston Children's HospitalHarvard Medical SchoolBostonMAUSA
| | | | - Michael A Crickmore
- FM Kirby Neurobiology Center, Boston Children's HospitalHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
19
|
Yu H, Yang B, Wang L, Wang S, Wang K, Song Q, Zhang H. Neuropeptide hormone bursicon mediates female reproduction in the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Front Endocrinol (Lausanne) 2023; 14:1277439. [PMID: 37854192 PMCID: PMC10579919 DOI: 10.3389/fendo.2023.1277439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
Bursicon, a neuropeptide hormone comprising two subunits-bursicon (burs) and partner of burs (pburs), belongs to the cystine-knot protein family. Bursicon heterodimers and homodimers bind to the lucine-rich G-protein coupled receptor (LGR) encoded by rickets to regulate multiple physiological processes in arthropods. Notably, these processes encompass the regulation of female reproduction, a recent revelation in Tribolium castaneum. In this study we investigated the role of burs/pburs/rickets in mediating female vitellogenesis and reproduction in a hemipteran insect, the whitefly, Bemisia tabaci. Our investigation unveiled a synchronized expression of burs, pburs and rickets, with their transcripts persisting detectable in the days following eclosion. RNAi-mediated knockdown of burs, pburs or rickets significantly suppressed the transcript levels of vitellogenin (Vg) and Vg receptor in the female whiteflies. These effects also impaired ovarian maturation and female fecundity, as evidenced by a reduction in the number of eggs laid per female, a decrease in egg size and a decline in egg hatching rate. Furthermore, knockdown of burs, pburs or rickets led to diminished juvenile hormone (JH) titers and reduced transcript level of Kruppel homolog-1. However, this impact did not extend to genes in the insulin pathway or target of rapamycin pathway, deviating from the results observed in T. castaneum. Taken together, we conclude that burs/pburs/rickets regulates the vitellogenesis and reproduction in the whiteflies by coordinating with the JH signaling pathway.
Collapse
Affiliation(s)
- Hao Yu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Bin Yang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Liuhao Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Sijia Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Kui Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Hongwei Zhang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
20
|
Manoli G, Zandawala M, Yoshii T, Helfrich-Förster C. Characterization of clock-related proteins and neuropeptides in Drosophila littoralis and their putative role in diapause. J Comp Neurol 2023; 531:1525-1549. [PMID: 37493077 DOI: 10.1002/cne.25522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Insects from high latitudes spend the winter in a state of overwintering diapause, which is characterized by arrested reproduction, reduced food intake and metabolism, and increased life span. The main trigger to enter diapause is the decreasing day length in summer-autumn. It is thus assumed that the circadian clock acts as an internal sensor for measuring photoperiod and orchestrates appropriate seasonal changes in physiology and metabolism through various neurohormones. However, little is known about the neuronal organization of the circadian clock network and the neurosecretory system that controls diapause in high-latitude insects. We addressed this here by mapping the expression of clock proteins and neuropeptides/neurohormones in the high-latitude fly Drosophila littoralis. We found that the principal organization of both systems is similar to that in Drosophila melanogaster, but with some striking differences in neuropeptide expression levels and patterns. The small ventrolateral clock neurons that express pigment-dispersing factor (PDF) and short neuropeptide F (sNPF) and are most important for robust circadian rhythmicity in D. melanogaster virtually lack PDF and sNPF expression in D. littoralis. In contrast, dorsolateral clock neurons that express ion transport peptide in D. melanogaster additionally express allatostatin-C and appear suited to transfer day-length information to the neurosecretory system of D. littoralis. The lateral neurosecretory cells of D. littoralis contain more neuropeptides than D. melanogaster. Among them, the cells that coexpress corazonin, PDF, and diuretic hormone 44 appear most suited to control diapause. Our work sets the stage to investigate the roles of these diverse neuropeptides in regulating insect diapause.
Collapse
Affiliation(s)
- Giulia Manoli
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Meet Zandawala
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | |
Collapse
|
21
|
Guan GX, Yu XP, Li DT. Post-Mating Responses in Insects Induced by Seminal Fluid Proteins and Octopamine. BIOLOGY 2023; 12:1283. [PMID: 37886993 PMCID: PMC10604773 DOI: 10.3390/biology12101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Following insect mating, females often exhibit a series of physiological, behavioral, and gene expression changes. These post-mating responses (PMRs) are induced by seminal fluid components other than sperm, which not only form network proteins to assist sperm localization, supplement female-specific protein requirements, and facilitate the formation of specialized functional structures, but also activate neuronal signaling pathways in insects. This review primarily discusses the roles of seminal fluid proteins (SFPs) and octopamine (OA) in various PMRs in insects. It explores the regulatory mechanisms and mediation conditions by which they trigger PMRs, along with the series of gene expression differences they induce. Insect PMRs involve a transition from protein signaling to neuronal signaling, ultimately manifested through neural regulation and gene expression. The intricate signaling network formed as a result significantly influences female behavior and organ function, contributing to both successful reproduction and the outcomes of sexual conflict.
Collapse
Affiliation(s)
| | | | - Dan-Ting Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
22
|
Zhang X, Jin L, Li G. RNAi-Mediated Functional Analysis Reveals the Regulation of Oocyte Vitellogenesis by Ecdysone Signaling in Two Coleoptera Species. BIOLOGY 2023; 12:1284. [PMID: 37886994 PMCID: PMC10604093 DOI: 10.3390/biology12101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
Coleoptera is the largest taxa of animals by far. The robust reproductive capacity is one of the main reasons for such domination. Successful female reproduction partially relies on effective vitellogenesis. However, the hormone regulation of vitellogenesis remains to be explored. In the present paper, in vitro culture of Leptinotarsa decemlineata 1-day-old adult fat bodies in the 20E-contained median did not activate juvenile hormone production and insulin-like peptide pathways, but significantly stimulated the expression of two LdVg genes, in a cycloheximide-dependent pattern. In vivo RNA interference (RNAi) of either ecdysone receptor (LdEcR) or ultraspiracle (Ldusp) by injection of corresponding dsRNA into 1-day-old female adults inhibited oocyte development, dramatically repressed the transcription of LdVg genes in fat bodies and of LdVgR in ovaries; application of JH into the LdEcR or Ldusp RNAi L. decemlineata females did not restore the oocyte development, partially rescued the decreased LdVg mRNA levels but over-compensated LdVgR expression levels. The same RNAi experiments were performed in another Coleoptera species, Henosepilachna vigintioctopunctata. Little yolk substances were seen in the misshapen oocytes in the HvEcR or Hvusp RNAi ovaries, in contrast to larger amounts of yolk granules in the normal oocytes. Correspondingly, the transcript levels of HvVg in the fat bodies and ovaries decreased significantly in the HvEcR and Hvusp RNAi samples. Our results here show that 20E signaling is indispensable in the activation of vitellogenesis in the developing oocytes of the two beetle species.
Collapse
Affiliation(s)
| | | | - Guoqing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.Z.); (L.J.)
| |
Collapse
|
23
|
Clark JM, Gibbs AG. Starvation selection reduces and delays larval ecdysone production and signaling. J Exp Biol 2023; 226:jeb246144. [PMID: 37671530 PMCID: PMC10560552 DOI: 10.1242/jeb.246144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
Previous studies have shown that selection for starvation resistance in Drosophila melanogaster results in delayed eclosion and increased adult fat stores. It is assumed that these traits are caused by the starvation selection pressure, but its mechanism is unknown. We found that our starvation-selected (SS) population stores more fat during larval development and has extended larval development and pupal development time. Developmental checkpoints in the third instar associated with ecdysteroid hormone pulses are increasingly delayed. The delay in the late larval period seen in the SS population is indicative of reduced and delayed ecdysone signaling. An enzyme immunoassay for ecdysteroids (with greatest affinity to the metabolically active 20-hydroxyecdysone and the α-ecdysone precursor) confirmed that the SS population had reduced and delayed hormone production compared with that of fed control (FC) flies. Feeding third instar larvae on food supplemented with α-ecdysone partially rescued the developmental delay and reduced subsequent adult starvation resistance. This work suggests that starvation selection causes reduced and delayed production of ecdysteroids in the larval stage and affects the developmental delay phenotype that contributes to subsequent adult fat storage and starvation resistance.
Collapse
Affiliation(s)
- Jennifer M. Clark
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154-4004, USA
| | - Allen G. Gibbs
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154-4004, USA
| |
Collapse
|
24
|
Malhotra P, Basu S. The Intricate Role of Ecdysis Triggering Hormone Signaling in Insect Development and Reproductive Regulation. INSECTS 2023; 14:711. [PMID: 37623421 PMCID: PMC10455322 DOI: 10.3390/insects14080711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Insect growth is interrupted by molts, during which the insect develops a new exoskeleton. The exoskeleton confers protection and undergoes shedding between each developmental stage through an evolutionarily conserved and ordered sequence of behaviors, collectively referred to as ecdysis. Ecdysis is triggered by Ecdysis triggering hormone (ETH) synthesized and secreted from peripheral Inka cells on the tracheal surface and plays a vital role in the orchestration of ecdysis in insects and possibly in other arthropod species. ETH synthesized by Inka cells then binds to ETH receptor (ETHR) present on the peptidergic neurons in the central nervous system (CNS) to facilitate synthesis of various other neuropeptides involved in ecdysis. The mechanism of ETH function on ecdysis has been well investigated in holometabolous insects such as moths Manduca sexta and Bombyx mori, fruit fly Drosophila melanogaster, the yellow fever mosquito Aedes aegypti and beetle Tribolium castaneum etc. In contrast, very little information is available about the role of ETH in sequential and gradual growth and developmental changes associated with ecdysis in hemimetabolous insects. Recent studies have identified ETH precursors and characterized functional and biochemical features of ETH and ETHR in a hemimetabolous insect, desert locust, Schistocerca gregaria. Recently, the role of ETH in Juvenile hormone (JH) mediated courtship short-term memory (STM) retention and long-term courtship memory regulation and retention have also been investigated in adult male Drosophila. Our review provides a novel synthesis of ETH signaling cascades and responses in various insects triggering diverse functions in adults and juvenile insects including their development and reproductive regulation and might allow researchers to develop sustainable pest management strategies by identifying novel compounds and targets.
Collapse
Affiliation(s)
| | - Saumik Basu
- Department of Entomology, Washington State University, Pullman, WA 99164, USA;
| |
Collapse
|
25
|
Kurogi Y, Imura E, Mizuno Y, Hoshino R, Nouzova M, Matsuyama S, Mizoguchi A, Kondo S, Tanimoto H, Noriega FG, Niwa R. Female reproductive dormancy in Drosophila is regulated by DH31-producing neurons projecting into the corpus allatum. Development 2023; 150:dev201186. [PMID: 37218457 PMCID: PMC10233717 DOI: 10.1242/dev.201186] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023]
Abstract
Female insects can enter reproductive diapause, a state of suspended egg development, to conserve energy under adverse environments. In many insects, including the fruit fly, Drosophila melanogaster, reproductive diapause, also frequently called reproductive dormancy, is induced under low-temperature and short-day conditions by the downregulation of juvenile hormone (JH) biosynthesis in the corpus allatum (CA). In this study, we demonstrate that neuropeptide Diuretic hormone 31 (DH31) produced by brain neurons that project into the CA plays an essential role in regulating reproductive dormancy by suppressing JH biosynthesis in adult D. melanogaster. The CA expresses the gene encoding the DH31 receptor, which is required for DH31-triggered elevation of intracellular cAMP in the CA. Knocking down Dh31 in these CA-projecting neurons or DH31 receptor in the CA suppresses the decrease of JH titer, normally observed under dormancy-inducing conditions, leading to abnormal yolk accumulation in the ovaries. Our findings provide the first molecular genetic evidence demonstrating that CA-projecting peptidergic neurons play an essential role in regulating reproductive dormancy by suppressing JH biosynthesis.
Collapse
Affiliation(s)
- Yoshitomo Kurogi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Eisuke Imura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Yosuke Mizuno
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Ryo Hoshino
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Marcela Nouzova
- Department of Biological Sciences and BSI, Florida International University, 11200 SW 8th street, Miami, FL 33199, USA
- Institute of Parasitology, Biology Center of the Academy of Sciences of the Czech Republic,37005, České Budějovice, Czech Republic
| | - Shigeru Matsuyama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi 470-0195, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585, Japan
- Invertebrate Genetics Laboratory, National Institute of Genetics, Yata 111, Mishima, Shizuoka 411-8540, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Sendai, Miyagi 980-8577, Japan
| | - Fernando G. Noriega
- Department of Biological Sciences and BSI, Florida International University, 11200 SW 8th street, Miami, FL 33199, USA
- Department of Parasitology, University of South Bohemia, České Budějovice 37005, Czech Republic
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
26
|
Yang Z, Wang K, Liu S, Li X, Wang H, Wang L, Zhang H, Yu H. Identification and functional analysis of isopentenyl pyrophosphate isomerase genes in the whiteflies Bemisia tabaci (Hemiptera: Aleyrodidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:16. [PMID: 37335595 DOI: 10.1093/jisesa/iead041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/25/2023] [Indexed: 06/21/2023]
Abstract
The juvenile hormone (JH) plays a vital role in the regulation of a number of physiological processes, including development, reproduction, and ovarian maturation. Isopentenyl pyrophosphate isomerase (IPPI) is a key enzyme in the biosynthetic pathway of JH. In this study, we identified an isopentenyl pyrophosphate isomerase protein from Bemisia tabaci and named it BtabIPPI. The open reading frame (ORF) of BtabIPPI is 768 bp and encodes a protein of 255 amino acids that contains a conserved domain of the Nudix family. The temporal and spatial expression profiles showed that BtabIPPI was highly expressed in the female adults.RNA interference (RNAi)-mediated silencing of BtabIPPI reduced JH titers and the relative expression of vitellogenin receptor (VgR) and JH signaling pathway genes, resulting in a dramatic reduction in fecundity and hatchability. These results indicate that the BtabIPPI gene plays an important role in the female fecundity of B. tabaci. This study will broaden our understanding of the function of IPPI in regulating insect reproduction and provide a theoretical basis for targeting IPPI for pest control in the future.
Collapse
Affiliation(s)
- Zhifang Yang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Kui Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Shunxiao Liu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Department of Plant Protection, College of Agrarian Technology and Natural Resources, Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Xiang Li
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hongliang Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Liuhao Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hongwei Zhang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hao Yu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| |
Collapse
|
27
|
Yang Q, Li MM, Li BL, Wu YT, Li YY, Xu XL, Wu JX. The ecdysis triggering hormone system is essential for reproductive success in Mythimna separata (Walker). INSECT MOLECULAR BIOLOGY 2023; 32:213-227. [PMID: 36533723 DOI: 10.1111/imb.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Ecdysis triggering hormone (ETH) was originally discovered as a key hormone that regulates insect moulting via binding to its receptor, ETH receptor (ETHR). However, the precise role of ETH in moth reproduction remains to be explored in detail. ETH function was verified in vivo using Mythimna separata (Walker), an important cereal crop pest. RT-qPCR analysis revealed that transcriptional expression profiles of MsepETH showed evident sexual dimorphism in the adult stage. MsepETH expression increased in the females on day 3 and persisted thereafter till day 7, consistent with female ovarian maturation, and was merely detectable in males. Meanwhile, MsepETH expression levels were significantly higher in the trachea than in other tissues. MsepETHR-A and MsepETHR-B were expressed in both sexes and were significantly higher in the antennae than in other tissues. MsepETH and MsepETHR knockdown in females by RNA interference significantly reduced the expression of MsepETH, MsepETHR-A, MsepETHR-B, MsepJHAMT, and MsepVG, which delayed egg-laying and significantly reduced egg production. RNAi 20-hydroxyecdysone (20E) receptor (EcR) decreased MsepETH expression whereas injecting 20E restored egg production that had been disrupted by MsepETH interference. Meanwhile, RNAi juvenile hormone (JH) methoprene tolerant protein (Met) also decreased MsepETH expression and smearing JH analog methoprene (Meth) restored egg production. In conclusion, the reproduction roles of ETH, JH, and 20E were investigated in M. separata. These findings will lay the foundation for future research to develop an antagonist that reduces female reproduction and control strategies for pest insects.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Mei-Mei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Bo-Liao Li
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, People's Republic of China
| | - Yu-Ting Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yan-Ying Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiang-Li Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jun-Xiang Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
28
|
Veenstra JA. Differential expression of some termite neuropeptides and insulin/IGF-related hormones and their plausible functions in growth, reproduction and caste determination. PeerJ 2023; 11:e15259. [PMID: 37128206 PMCID: PMC10148640 DOI: 10.7717/peerj.15259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023] Open
Abstract
Background Insulin-like growth factor (IGF) and other insulin-like peptides (ilps) are important hormones regulating growth and development in animals. Whereas most animals have a single female and male adult phenotype, in some insect species the same genome may lead to different final forms. Perhaps the best known example is the honeybee where females can either develop into queens or workers. More extreme forms of such polyphenism occur in termites, where queens, kings, workers and soldiers coexist. Both juvenile hormone and insulin-like peptides are known to regulate growth and reproduction as well as polyphenism. In termites the role of juvenile hormone in reproduction and the induction of the soldier caste is well known, but the role of IGF and other ilps in these processes remains largely unknown. Here the various termite ilps are identified and hypotheses regarding their functions suggested. Methods Genome assemblies and transcriptome short read archives (SRAs) were used to identify insulin-like peptides and neuropeptides in termites and to determine their expression in different species, tissues and castes. Results and Discussion Termites have seven different ilps, i.e. gonadulin, IGF and an ortholog of Drosophila insulin-like peptide 7 (dilp7), which are commonly present in insects, and four smaller peptides, that have collectively been called short IGF-related peptides (sirps) and individually atirpin, birpin, cirpin and brovirpin. Gonadulin is lost from the higher termites which have however amplified the brovirpin gene, of which they often have two or three paralogs. Based on differential expression of these genes it seems likely that IGF is a growth hormone and atirpin an autocrine tissue factor that is released when a tissue faces metabolic stress. Birpin seems to be responsible for growth and in the absence of juvenile hormone this may lead to reproductive adults or, when juvenile hormone is present, to soldiers. Brovirpin is expressed both by the brain and the ovary and likely stimulates vitellogenesis, while the function of cirpin is less clear.
Collapse
|
29
|
Okamoto N, Watanabe A. Interorgan communication through peripherally derived peptide hormones in Drosophila. Fly (Austin) 2022; 16:152-176. [PMID: 35499154 PMCID: PMC9067537 DOI: 10.1080/19336934.2022.2061834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
In multicellular organisms, endocrine factors such as hormones and cytokines regulate development and homoeostasis through communication between different organs. For understanding such interorgan communications through endocrine factors, the fruit fly Drosophila melanogaster serves as an excellent model system due to conservation of essential endocrine systems between flies and mammals and availability of powerful genetic tools. In Drosophila and other insects, functions of neuropeptides or peptide hormones from the central nervous system have been extensively studied. However, a series of recent studies conducted in Drosophila revealed that peptide hormones derived from peripheral tissues also play critical roles in regulating multiple biological processes, including growth, metabolism, reproduction, and behaviour. Here, we summarise recent advances in understanding target organs/tissues and functions of peripherally derived peptide hormones in Drosophila and describe how these hormones contribute to various biological events through interorgan communications.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Watanabe
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
30
|
Tang J, Yu R, Zhang Y, Xie J, Song X, Feng F, Gao H, Li B. Molecular and functional analysis of eclosion hormone-like gene involved in post-eclosion behavior in a beetle. JOURNAL OF INSECT PHYSIOLOGY 2022; 142:104429. [PMID: 35964679 DOI: 10.1016/j.jinsphys.2022.104429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Eclosion hormone (EH) is a neurohormone that plays a key role in the regulation of insect pre-ecdysis behavior at the end of each molt. Previous research has reported more than one EH gene was found in certain insects, with their functions and mechanisms still unclear. Here, aside from the classical EH gene orthologous group, we characterized another novel orthologous cluster of eclosion hormone-like (EHL) genes in Arthropoda and investigated the roles of EHL during development in Tribolium castaneum. T. castaneum EHL (TcEHL) shows high expression levels during pupal - adult development, which also positively responded to 20-hydroxyecdysone (20E) treatment as well as RNA interference (RNAi) of ECR (20E nuclear receptor). Knockdown of TcEHL prevented the tanning of the adult cuticle and caused lethal phenotypes. Further analysis indicated that knockdown of TcEHL could upregulate expression levels of the classical TcEH, and downregulate the ecdysis behavior cascade genes, as well as tanning pathway enzymes. This suggests a critical role for TcEHL in adult eclosion and cuticle tanning. In addition, our data indicated that TcEHL is responsible for the female reproduction process. Taken together, these results suggest that TcEHL has specific roles in adult cuticle tanning during the post-eclosion process and female reproduction. They also suggest that EHL gene is the ancestral copy for the EH family and it is functionally shuffled by synfunctionalization.
Collapse
Affiliation(s)
- Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Runnan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Yonglei Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Fan Feng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
31
|
Knapp RA, Norman VC, Rouse JL, Duncan EJ. Environmentally responsive reproduction: neuroendocrine signalling and the evolution of eusociality. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100951. [PMID: 35863739 PMCID: PMC9586883 DOI: 10.1016/j.cois.2022.100951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 05/12/2023]
Abstract
Eusociality is a rare but successful life-history strategy that is defined by the reproductive division of labour. In eusocial species, most females forgo their own reproduction to support that of a dominant female or queen. In many eusocial insects, worker reproduction is inhibited via dominance hierarchies or by pheromones produced by the queen and her brood. Here, we consider whether these cues may act as generic 'environmental signals', similar to temperature or nutrition stress, which induce a state of reproductive dormancy in some solitary insects. We review the recent findings regarding the mechanisms of reproductive dormancy in insects and highlight key gaps in our understanding of how environmental cues inhibit reproduction.
Collapse
Affiliation(s)
- Rosemary A Knapp
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Victoria C Norman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - James L Rouse
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
32
|
Meiselman MR, Ganguly A, Dahanukar A, Adams ME. Endocrine modulation of primary chemosensory neurons regulates Drosophila courtship behavior. PLoS Genet 2022; 18:e1010357. [PMID: 35998183 PMCID: PMC9439213 DOI: 10.1371/journal.pgen.1010357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/02/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
The decision to engage in courtship depends on external cues from potential mates and internal cues related to maturation, health, and experience. Hormones allow for coordinated conveyance of such information to peripheral tissues. Here, we show Ecdysis-Triggering Hormone (ETH) is critical for courtship inhibition after completion of copulation in Drosophila melanogaster. ETH deficiency relieves post-copulation courtship inhibition (PCCI) and increases male-male courtship. ETH appears to modulate perception and attractiveness of potential mates by direct action on primary chemosensory neurons. Knockdown of ETH receptor (ETHR) expression in GR32A-expressing neurons leads to reduced ligand sensitivity and elevated male-male courtship. We find OR67D also is critical for normal levels of PCCI after mating. ETHR knockdown in OR67D-expressing neurons or GR32A-expressing neurons relieves PCCI. Finally, ETHR silencing in the corpus allatum (CA), the sole source of juvenile hormone, also relieves PCCI; treatment with the juvenile hormone analog methoprene partially restores normal post-mating behavior. We find that ETH, a stress-sensitive reproductive hormone, appears to coordinate multiple sensory modalities to guide Drosophila male courtship behaviors, especially after mating. The decision of when to reproduce is paramount for organismal survival. In models like mice and flies, we have a comprehensive understanding of neuronal substrates for perception of mates and courtship drive, but how these substrates adapt to malleable internal and external environments remains unclear. Here, we show that post-mating refractoriness depends upon a peptide hormone, Ecdysis-Triggering Hormone (ETH). We show repression of courtship toward recently-mated females depends upon pheromone cues and that ETH deficiency impairs perception of female matedness. ETH signaling appears to promote the activity and function of pheromone-sensing primary olfactory and gustatory sensory neurons. Additionally, ETH sets internal levels of Juvenile Hormone, a hormone known to inhibit courtship drive in flies. Elimination of ETH or its receptor in primary sensory neurons or the glandular source of Juvenile Hormone reduces male post-copulation courtship inhibition (PCCI), causing continued courtship toward female counterparts after successful mating. Our data suggest ETH and its targets are critical for post-mating refractoriness in males.
Collapse
Affiliation(s)
- Matthew R. Meiselman
- Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, California, United States of America
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California, United States of America
- * E-mail: (MRM); (MEA)
| | - Anindya Ganguly
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California, United States of America
- Graduate Program in Neuroscience, University of California, Riverside, California, United States of America
| | - Anupama Dahanukar
- Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, California, United States of America
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California, United States of America
- Graduate Program in Neuroscience, University of California, Riverside, California, United States of America
| | - Michael E. Adams
- Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, California, United States of America
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California, United States of America
- Graduate Program in Neuroscience, University of California, Riverside, California, United States of America
- Department of Entomology, University of California, Riverside, California, United States of America
- * E-mail: (MRM); (MEA)
| |
Collapse
|
33
|
Sterkel M, Volonté M, Albornoz MG, Wulff JP, Del Huerto Sánchez M, Terán PM, Ajmat MT, Ons S. The role of neuropeptides in regulating ecdysis and reproduction in the hemimetabolous insect Rhodnius prolixus. J Exp Biol 2022; 225:276563. [PMID: 35929492 DOI: 10.1242/jeb.244696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
In ecdysozoan animals, moulting entails the production of a new exoskeleton and shedding the old one during ecdysis. It is induced by a pulse of ecdysone that regulates the expression of different hormonal receptors and activates a peptide-mediated signalling cascade. In Holometabola, the peptidergic cascade regulating ecdysis has been well described. However, very little functional information regarding the neuroendocrine regulation of ecdysis is available for Hemimetabola, which displays an incomplete metamorphosis. We use Rhodnius prolixus as a convenient experimental model to test two hypotheses: (a) the role of neuropeptides that regulate ecdysis in Holometabola is conserved in hemimetabolous insects; (b) the neuropeptides regulating ecdysis play a role in the regulation of female reproduction during the adult stage. The RNA interference-mediated reduction of ETH expression in fourth-instar nymphs resulted in lethality at the expected time of ecdysis. Unlike in holometabolous insects, the knockdown of ETH and OKA did not affect oviposition in adult females, pointing to a different endocrine regulation of ovary maturation. However, ETH knockdown prevented egg hatching. The blockage of egg hatching appears to be a consequence of embryonic ecdysis failure. Most of the first-instar nymphs hatched from the eggs laid by females injected with dsEH, dsCCAP and dsOKA died at the expected time of ecdysis, indicating the crucial involvement of these genes in post-embryonic development. No phenotypes were observed upon CZ knockdown in nymphs or adult females. The results are relevant for evolutionary entomology and could reveal targets for neuropeptide-based pest control tools.
Collapse
Affiliation(s)
- Marcos Sterkel
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Mariano Volonté
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Maximiliano G Albornoz
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Juan Pedro Wulff
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Mariana Del Huerto Sánchez
- Instituto Superior de Investigaciones Biológicas (INSIBIO). Universidad Nacional de Tucumán. Chacabuco 461, T4000, S. M. de Tucumán, Tucumán
| | - Paula María Terán
- Instituto Superior de Investigaciones Biológicas (INSIBIO). Universidad Nacional de Tucumán. Chacabuco 461, T4000, S. M. de Tucumán, Tucumán
| | - María Teresa Ajmat
- Instituto Superior de Investigaciones Biológicas (INSIBIO). Universidad Nacional de Tucumán. Chacabuco 461, T4000, S. M. de Tucumán, Tucumán
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| |
Collapse
|
34
|
Jiao Z, Chen M, Jia L, Sun C, Yang L, Guo G. Ovomermis sinensis parasitism arrests midgut replacement by altering ecdysone and juvenile hormone in Helicoverpa armigera larvae. J Invertebr Pathol 2022; 194:107802. [PMID: 35931179 DOI: 10.1016/j.jip.2022.107802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Many entomopathogens regulate the development of their insect hosts. However, the influence of mermithid nematodes on the development of their host remains unclear. In the current study, we provide insights into how Ovomermis sinensis parasitism affects the development of Helicoverpa armigera. We observed that O. sinensis arrests host development, as evidenced by the reduced body size and failure of Helicoverpa armigera to pupate. Moreover, midgut replacement of the host was significantly blocked by parasitism. Furthermore, juvenile hormone (JHIII) titers of the host were dramatically elevated by parasitism, but JH esterase (JHE) activities were strongly inhibited. By contrast, steroid hormone (20-hydroxyecdysone, 20E) titers of the host were significantly depressed by parasitism on days 4-6. The expression profiles of hormone-related genes in the host also showed similar patterns with the hormone titer. For this reason, rescue experiments were performed by injecting 20E and JHIII into developmentally arrested hosts. Notably, the midgut replacement of the host was rescued by the injection of 20E, whereas JHIII injection resulted in negative effects. Altogether, O. sinensis arrests H. armigera midgut replacement by reducing 20E and maintaining JH, thereby causing developmental arrests. Our study is the first report of the possible mechanism of mermithid nematodes in regulating insect development.
Collapse
Affiliation(s)
- Zhenlong Jiao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Mingming Chen
- Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Lina Jia
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Chaoqin Sun
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - LongBing Yang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
35
|
White MA, Wolfner MF. The Effects of Male Seminal Fluid Proteins on Gut/Gonad Interactions in Drosophila. INSECTS 2022; 13:623. [PMID: 35886799 PMCID: PMC9324770 DOI: 10.3390/insects13070623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023]
Abstract
Mating initiates broad physiological changes encompassing multiple organ systems in females. Elucidating the complex inter- and intra-organ signaling events that coordinate these physiological changes is an important goal in the field of reproductive biology. Further characterization of these complex molecular and physiological interactions is key to understanding how females meet the energetic demands of offspring production. Many recent studies of the fruit fly, Drosophila melanogaster, have described the mechanisms of post-mating changes within the female reproductive tract and digestive system. Additionally, other studies have described post-mating signaling crosstalk between these systems. Interestingly, male seminal fluid proteins have been linked to post-mating responses within the female reproductive tract and gut, and to signaling events between the two organ systems. However, information about the hormonal and neuronal signaling pathways underlying the post-mating signaling events within and between the reproductive tract and digestive systems that are triggered by seminal fluid proteins has yet to be combined into a single view. In this article, we summarize and integrate these studies into a single "network schematic" of the known signaling events within and between the reproductive and digestive systems downstream of male seminal fluid proteins. This synthesis also draws attention to the incomplete parts of these pathways, so that outstanding questions may be addressed in future studies.
Collapse
Affiliation(s)
- Melissa A. White
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Baker Institute for Animal Health, Cornell University, Ithaca, NY 14853, USA
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
36
|
Dong Y, Ding Z, Song L, Zhang D, Xie C, Zhang S, Feng L, Liu H, Pang Q. Sodium Benzoate Delays the Development of Drosophila melanogaster Larvae and Alters Commensal Microbiota in Adult Flies. Front Microbiol 2022; 13:911928. [PMID: 35814654 PMCID: PMC9257017 DOI: 10.3389/fmicb.2022.911928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/16/2022] [Indexed: 12/05/2022] Open
Abstract
Sodium benzoate (SB), the sodium salt of benzoic acid, is widely used as a preservative in foods and drinks. The toxicity of SB to the human body attracted people’s attention due to the excessive use of preservatives and the increased consumption of processed and fast foods in modern society. The SB can inhibit the growth of bacteria, fungi, and yeast. However, less is known of the effect of SB on host commensal microbial community compositions and their functions. In this study, we investigated the effect of SB on the growth and development of Drosophila melanogaster larvae and whether SB affects the commensal microbial compositions and functions. We also attempted to clarify the interaction between SB, commensal microbiota and host development by detecting the response of commensal microbiota after the intervention. The results show that SB significantly retarded the development of D. melanogaster larvae, shortened the life span, and changed the commensal microbial community. In addition, SB changed the transcription level of endocrine coding genes such as ERR and DmJHAMT. These results indicate that the slow down in D. melanogaster larvae developmental timing and shortened life span of adult flies caused by SB intake may result from the changes in endocrine hormone levels and commensal microbiota. This study provided experimental data that indicate SB could affect host growth and development of D. melanogaster through altering endocrine hormone levels and commensal microbial composition.
Collapse
Affiliation(s)
- Yuling Dong
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- *Correspondence: Yuling Dong,
| | - Zhongfeng Ding
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Linxia Song
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Desheng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, China
| | - Changjian Xie
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Shujing Zhang
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Ling Feng
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Hongliang Liu
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Qiuxiang Pang
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- Qiuxiang Pang,
| |
Collapse
|
37
|
Yang L, Yao X, Liu B, Han Y, Ji R, Ju J, Zhang X, Wu S, Fang J, Sun Y. Caterpillar-Induced Rice Volatile (E)-β-Farnesene Impairs the Development and Survival of Chilo suppressalis Larvae by Disrupting Insect Hormone Balance. Front Physiol 2022; 13:904482. [PMID: 35711319 PMCID: PMC9196309 DOI: 10.3389/fphys.2022.904482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022] Open
Abstract
Significant research progress has recently been made on establishing the roles of tps46 in rice defense. (E)-β-farnesene (Eβf) is a major product of tps46 activity but its physiological functions and potential mechanisms against Chilo suppressalis have not yet been clarified. In the present study, C. suppressalis larvae were artificially fed a diet containing 0.8 g/kg Eβf and the physiological performance of the larvae was evaluated. In response to Eβf treatment, the average 2nd instar duration significantly increased from 4.78 d to 6.31 d while that of the 3rd instar significantly increased from 5.70 d to 8.00 d compared with the control. There were no significant differences between the control and Eβf-fed 4th and 5th instars in terms of their durations. The mortalities of the 2nd and 3rd Eβf-fed instars were 21.00-fold and 6.39-fold higher, respectively, than that of the control. A comparative transcriptome analysis revealed that multiple differentially expressed genes are involved in insect hormone biosynthesis. An insect hormone assay on the 3rd instars disclosed that Eβf disrupted the balance between the juvenile hormone and ecdysteroid levels. Eβf treatment increased the juvenile hormones titers but not those of the ecdysteroids. The qPCR results were consistent with those of the RNA-Seq. The foregoing findings suggested that Eβf impairs development and survival in C. suppressalis larvae by disrupting their hormone balance. Moreover, Eβf altered the pathways associated with carbohydrate and xenobiotic metabolism as well as those related to cofactors and vitamins in C. suppressalis larvae. The discoveries of this study may contribute to the development and implementation of an integrated control system for C. suppressalis infestations in rice.
Collapse
Affiliation(s)
- Lei Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Xiaomin Yao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Baosheng Liu
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Yangchun Han
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Rui Ji
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Jiafei Ju
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Xiaona Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Shuwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jichao Fang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Yang Sun
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China.,Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
38
|
Nunes-da-Fonseca R. Editorial overview: Development and regulation: Lessons from a multispecies approach. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100917. [PMID: 35358719 DOI: 10.1016/j.cois.2022.100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Rodrigo Nunes-da-Fonseca
- Institute of Biodiversity and Sustainability-NUPEM, Universidade Federal do Rio de Janeiro, Av. São José do Barreto 764 Zip Code: 27965-045, Brazil.
| |
Collapse
|
39
|
Chen SL, Liu BT, Lee WP, Liao SB, Deng YB, Wu CL, Ho SM, Shen BX, Khoo GH, Shiu WC, Chang CH, Shih HW, Wen JK, Lan TH, Lin CC, Tsai YC, Tzeng HF, Fu TF. WAKE-mediated modulation of cVA perception via a hierarchical neuro-endocrine axis in Drosophila male-male courtship behaviour. Nat Commun 2022; 13:2518. [PMID: 35523813 PMCID: PMC9076693 DOI: 10.1038/s41467-022-30165-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/19/2022] [Indexed: 12/18/2022] Open
Abstract
The nervous and endocrine systems coordinate with each other to closely influence physiological and behavioural responses in animals. Here we show that WAKE (encoded by wide awake, also known as wake) modulates membrane levels of GABAA receptor Resistance to Dieldrin (Rdl), in insulin-producing cells of adult male Drosophila melanogaster. This results in changes to secretion of insulin-like peptides which is associated with changes in juvenile hormone biosynthesis in the corpus allatum, which in turn leads to a decrease in 20-hydroxyecdysone levels. A reduction in ecdysone signalling changes neural architecture and lowers the perception of the male-specific sex pheromone 11-cis-vaccenyl acetate by odorant receptor 67d olfactory neurons. These finding explain why WAKE-deficient in Drosophila elicits significant male-male courtship behaviour. The authors show that the Drosophila master regulator WAKE modulates the secretion of insulin-like peptides, triggering a decrease in 20-hydroxyecdysone levels. This lowers the perception of a male-specific sex pheromone and explains why WAKE-deficient Drosophila flies show male-male courtship behaviour.
Collapse
Affiliation(s)
- Shiu-Ling Chen
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Bo-Ting Liu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Wang-Pao Lee
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sin-Bo Liao
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yao-Bang Deng
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Chia-Lin Wu
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Shuk-Man Ho
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Bing-Xian Shen
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Guan-Hock Khoo
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan
| | - Wei-Chiang Shiu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Chih-Hsuan Chang
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan.,Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hui-Wen Shih
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan
| | - Jung-Kun Wen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tsuo-Hung Lan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan.,Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan.,Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-Chien Lin
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chen Tsai
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan.
| | - Huey-Fen Tzeng
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.
| |
Collapse
|
40
|
The insect somatostatin pathway gates vitellogenesis progression during reproductive maturation and the post-mating response. Nat Commun 2022; 13:969. [PMID: 35181671 PMCID: PMC8857180 DOI: 10.1038/s41467-022-28592-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Vitellogenesis (yolk accumulation) begins upon eclosion and continues through the process of sexual maturation. Upon reaching sexual maturity, vitellogenesis is placed on hold until it is induced again by mating. However, the mechanisms that gate vitellogenesis in response to developmental and reproductive signals remain unclear. Here, we have identified the neuropeptide allatostatin-C (AstC)-producing neurons that gate both the initiation of vitellogenesis that occurs post-eclosion and its re-initiation post-mating. During sexual maturation, the AstC neurons receive excitatory inputs from Sex Peptide Abdominal Ganglion (SAG) neurons. In mature virgin females, high sustained activity of SAG neurons shuts off vitellogenesis via continuous activation of the AstC neurons. Upon mating, however, Sex Peptide inhibits SAG neurons, leading to deactivation of the AstC neurons. As a result, this permits both JH biosynthesis and the progression of vitellogenesis in mated females. Our work has uncovered a central neural circuit that gates the progression of oogenesis. In mammals, somatostatin plays a role in preventing the release of sex hormones before puberty begins. A Drosophila study uncovered the process by which insect somatostatin controls ovarian development in response to developmental and mating signals.
Collapse
|
41
|
Zhang X, Li S, Liu S. Juvenile Hormone Studies in Drosophila melanogaster. Front Physiol 2022; 12:785320. [PMID: 35222061 PMCID: PMC8867211 DOI: 10.3389/fphys.2021.785320] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
In the field of insect endocrinology, juvenile hormone (JH) is one of the most wondrous entomological terms. As a unique sesquiterpenoid hormone produced and released by the endocrine gland, corpus allatum (CA), JH is a critical regulator in multiple developmental and physiological processes, such as metamorphosis, reproduction, and behavior. Benefited from the precise genetic interventions and simplicity, the fruit fly, Drosophila melanogaster, is an indispensable model in JH studies. This review is aimed to present the regulatory factors on JH biosynthesis and an overview of the regulatory roles of JH in Drosophila. The future directions of JH studies are also discussed, and a few hot spots are highlighted.
Collapse
Affiliation(s)
- Xiaoshuai Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| |
Collapse
|
42
|
Silva V, Palacios-Muñoz A, Volonté M, Frenkel L, Ewer J, Ons S. Orcokinin neuropeptides regulate reproduction in the fruit fly, Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103676. [PMID: 34742859 DOI: 10.1016/j.ibmb.2021.103676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
In animals, neuropeptidergic signaling is essential for the regulation of survival and reproduction. In insects, Orcokinins are poorly studied, despite their high level of conservation among different orders. In particular, there are currently no reports on the role of Orcokinins in the experimental insect model, the fruit fly, Drosophila melanogaster. In the present work, we made use of the genetic tools available in this species to investigate the role of Orcokinins in the regulation of different innate behaviors including ecdysis, sleep, locomotor activity, oviposition, and courtship. We found that RNAi-mediated knockdown of the orcokinin gene caused a disinhibition of male courtship behavior, including the occurrence of male to male courtship, which is rarely seen in wildtype flies. In addition, orcokinin gene silencing caused a reduction in egg production. Orcokinin is emerging as an important neuropeptide family in the regulation of the physiology of insects from different orders. In the case of the fruit fly, our results suggest an important role in reproductive success.
Collapse
Affiliation(s)
- Valeria Silva
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Chile.
| | - Angelina Palacios-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Chile.
| | - Mariano Volonté
- Laboratorio de Neurobiología de Insectos. Centro Regional de Estudios Genómicos - Facultad de Ciencias Exactas. Universidad Nacional de La Plata. Argentina.
| | - Lía Frenkel
- Laboratorio de Neurociencias del Tiempo. Instituto de Biociencias, Biotecnología y Biología Traslacional. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Argentina.
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Chile; Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Chile.
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos. Centro Regional de Estudios Genómicos - Facultad de Ciencias Exactas. Universidad Nacional de La Plata. Argentina.
| |
Collapse
|
43
|
Tian Z, Guo S, Li JX, Zhu F, Liu W, Wang XP. Juvenile hormone biosynthetic genes are critical for regulating reproductive diapause in the cabbage beetle. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103654. [PMID: 34571141 DOI: 10.1016/j.ibmb.2021.103654] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
In insects, the juvenile hormone (JH) biosynthetic pathway regulates the in vivo JH titer. Thus, its downregulation potentially contributes to the lowering of JH titers typically observed in insects undergoing reproductive diapause, a developmental arrest at the adult stage. However, no systematic evidence has yet been presented to demonstrate the physiological and genetic roles of JH biosynthetic genes in reproductive diapause. In this work, we performed RNA interference (RNAi)-based reverse genetic analyses by targeting JH biosynthetic genes, followed by analysis of the reproductive diapause traits in Colaphellus bowringi, an economically important cabbage beetle. We identified a total of 22 genes encoding homologues of enzymes involved in the mevalonate pathway and the JH branch of JH biosynthesis in C. bowringi. Among these, 18 genes showed significant downregulation of their expression in the long day-induced diapausing females, compared to the short day-induced reproductive females. RNAi knockdown of almost any one of the 18 genes in reproductive females reduced the expression of the JH-responsive gene, Krüppel homolog1 (Kr-h1), indicating a lowered circulating JH. Most importantly, depleting transcripts of 3-hydroxy-3-methylglutaryl-CoA reductase 2 (HMGR2), farnesyl-pyrophosphate synthase 1 (FPPS1) and juvenile hormone acid methyltransferase 1 (JHAMT1) induced diapause-associated traits, including immature and inactive ovaries, large accumulations of lipids and adult burrowing behavior. Meanwhile, genes related to ovarian development, lipid accumulation and stress response showed expression patterns like those of diapausing females. RNAi-mediated diapause phenotypes could be reversed to reproductive phenotypes by application of methoprene, a JH receptor agonist. These results suggest that photoperiodic reproductive diapause in C. bowringi is triggered by transcriptional suppression of JH biosynthetic genes, with HMGR2, FPPS1 and JHAMT1 playing a critical role in this process. This work provides sufficient evidence to reveal the physiological roles of JH biosynthetic genes in reproductive diapause.
Collapse
Affiliation(s)
- Zhong Tian
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuang Guo
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Xu Li
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fen Zhu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Liu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
44
|
Luo W, Liu S, Zhang W, Yang L, Huang J, Zhou S, Feng Q, Palli SR, Wang J, Roth S, Li S. Juvenile hormone signaling promotes ovulation and maintains egg shape by inducing expression of extracellular matrix genes. Proc Natl Acad Sci U S A 2021; 118:e2104461118. [PMID: 34544864 PMCID: PMC8488625 DOI: 10.1073/pnas.2104461118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
It is well documented that the juvenile hormone (JH) can function as a gonadotropic hormone that stimulates vitellogenesis by activating the production and uptake of vitellogenin in insects. Here, we describe a phenotype associated with mutations in the Drosophila JH receptor genes, Met and Gce: the accumulation of mature eggs with reduced egg length in the ovary. JH signaling is mainly activated in ovarian muscle cells and induces laminin gene expression in these cells. Meanwhile, JH signaling induces collagen IV gene expression in the adult fat body, from which collagen IV is secreted and deposited onto the ovarian muscles. Laminin locally and collagen IV remotely contribute to the assembly of ovarian muscle extracellular matrix (ECM); moreover, the ECM components are indispensable for ovarian muscle contraction. Furthermore, ovarian muscle contraction externally generates a mechanical force to promote ovulation and maintain egg shape. This work reveals an important mechanism for JH-regulated insect reproduction.
Collapse
Affiliation(s)
- Wei Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China;
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Wenqiang Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Liu Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shutang Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD 20742
| | - Siegfried Roth
- Institute for Zoology, University of Cologne, D-50674 Cologne, Germany
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China;
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| |
Collapse
|
45
|
Kurogi Y, Mizuno Y, Imura E, Niwa R. Neuroendocrine Regulation of Reproductive Dormancy in the Fruit Fly Drosophila melanogaster: A Review of Juvenile Hormone-Dependent Regulation. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.715029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Animals can adjust their physiology, helping them survive and reproduce under a wide range of environmental conditions. One of the strategies to endure unfavorable environmental conditions such as low temperature and limited food supplies is dormancy. In some insect species, this may manifest as reproductive dormancy, which causes their reproductive organs to be severely depleted under conditions unsuitable for reproduction. Reproductive dormancy in insects is induced by a reduction in juvenile hormones synthesized in the corpus allatum (pl. corpora allata; CA) in response to winter-specific environmental cues, such as low temperatures and short-day length. In recent years, significant progress has been made in the study of dormancy-inducing conditions dependent on CA control mechanisms in Drosophila melanogaster. This review summarizes dormancy control mechanisms in D. melanogaster and discusses the implications for future studies of insect dormancy, particularly focusing on juvenile hormone-dependent regulation.
Collapse
|
46
|
Expression Patterns of Three Important Hormone Genes and Respiratory Metabolism in Antheraea pernyi during Pupal Diapause under a Long Photoperiod. INSECTS 2021; 12:insects12080699. [PMID: 34442265 PMCID: PMC8396664 DOI: 10.3390/insects12080699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary In insects, the precise timing of metamorphosis and diapause is regulated by hormones. The Chinese oak silkworm, Antheraea pernyi, is a typical pupal diapause insect. Bivoltine species enter diapause in winter and terminate it under suitable environmental conditions in the following year; they produce 70% of total cocoons, whereas univoltine species in lower-latitude areas enter diapause in summer and contribute just one generation a year. A long photoperiod can trigger termination of pupal diapause. It is not clear how photoperiod influences hormone gene expression. Here, hormone-related genes were cloned, and their expression patterns were studied under different photoperiod treatments. The results will help us to understand the molecular changes during diapause termination under long photoperiods and improve breeding of multi-generation tussah pupae in areas where they are naturally univoltine. Abstract The Chinese oak silkworm is commonly used in pupal diapause research. In this study, a long photoperiod was used to trigger pupal diapause termination. Genes encoding three hormones, namely prothoracicotropic hormone (PTTH), ecdysis triggering hormone (ETH), and eclosion hormone (EH), were studied. Additionally, ecdysteroids (mainly 20-hydroxyecdysone, 20E) were quantified by HPLC. Pupal diapause stage was determined by measuring respiratory intensity. The pupae enter a low metabolic rate, which starts approximately 1 month after pupal emergence. ApPTTH expression showed a small increase at 14 days and then a larger increase from 35 days under the long photoperiod treatment. A similar pattern was observed for the titer of 20E in the hemolymph. However, ApETH expression later increased under the long photoperiod treatment (42 days) just before eclosion. Moreover, ApEH expression increased from 21 to 35 days, and then decreased before ecdysis. These results suggest that hormone-related gene expression is closely related to pupal development. Our study lays a foundation for future diapause studies in A. pernyi.
Collapse
|
47
|
Jindal V, Park Y, Kim D. Functional Characterization of Ecdysis Triggering Hormone Receptors (AgETHR-A and AgETHR-B) in the African Malaria Mosquito, Anopheles gambiae. Front Physiol 2021; 12:702979. [PMID: 34295267 PMCID: PMC8291126 DOI: 10.3389/fphys.2021.702979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Insect ecdysis behavior, shedding off the old cuticle, is under the control of specific neuropeptides with the top command by the ecdysis triggering hormone (ETH). We characterized the ETH receptor (ETHR) of the malaria mosquito, Anopheles gambiae, by manual annotation of the NCBI gene (AGAP002881) and functional analysis, using a heterologous expression system in a mammalian cell line. The two splicing variants of ETHRs, ecdysis triggering hormone receptors (AgETHR-A and AgETHR-B), a conserved feature among insects, included of four (552 aa) and five exons (635 aa), respectively. The main feature of manual annotation of the receptor was a correction of N-terminal and exon-intron boundaries of an annotated gene (AGAP002881). Interestingly, the functional expression of the receptor in Chinese hamster ovary cells required modification of the transcription initiation site for mammalian Kozak consensus. In the calcium mobilization assay using the heterologous expression of each receptor, AgETHR-B showed a higher sensitivity to AgETH-1 (28 times) and AgETH-2 (320 times) than AgETHR-A. The AgETHRs showed specificity only to the ETH group of peptides but not to other groups carrying the C-termini motifs as PRXamide, such as pyrokinin1/DH and pyrokinin2/PBAN. Ecdysis triggering hormone receptors (AgETHR-B) responded to different ETH variants of other insect species more promiscuously than AgETHR-A.
Collapse
Affiliation(s)
- Vikas Jindal
- Department of Entomology, Kansas State University, Manhattan, KS, United States
- Department of Entomology, Punjab Agricultural University, Ludhiana, India
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Donghun Kim
- Department of Entomology, Kansas State University, Manhattan, KS, United States
- Department of Vector Entomology, Kyungpook National University, Sangju, South Korea
| |
Collapse
|
48
|
Role of Endocrine System in the Regulation of Female Insect Reproduction. BIOLOGY 2021; 10:biology10070614. [PMID: 34356469 PMCID: PMC8301000 DOI: 10.3390/biology10070614] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022]
Abstract
The proper synthesis and functioning of ecdysteroids and juvenile hormones (JHs) are very important for the regulation of vitellogenesis and oogenesis. However, their role and function contrast among different orders, and even in the same insect order. For example, the JH is the main hormone that regulates vitellogenesis in hemimetabolous insect orders, which include Orthoptera, Blattodea, and Hemiptera, while ecdysteroids regulate the vitellogenesis among the insect orders of Diptera, some Hymenoptera and Lepidoptera. These endocrine hormones also regulate each other. Even at some specific stage of insect life, they positively regulate each other, while at other stages of insect life, they negatively control each other. Such positive and negative interaction of 20-hydroxyecdysone (20E) and JH is also discussed in this review article to better understand the role of these hormones in regulating the reproduction. Therefore, the purpose of the present review is to deeply understand the complex interaction of endocrine hormones with each other and with the insulin signaling pathway. The role of microbiomes in the regulation of the insect endocrine system is also reviewed, as the endocrine hormones are significantly affected by the compounds produced by the microbiota.
Collapse
|
49
|
The neuropeptide allatostatin C from clock-associated DN1p neurons generates the circadian rhythm for oogenesis. Proc Natl Acad Sci U S A 2021; 118:2016878118. [PMID: 33479181 PMCID: PMC7848730 DOI: 10.1073/pnas.2016878118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Metazoan species optimize the timing of reproduction to maximize fitness. To understand how biological clocks direct reproduction, we investigated the neural substrates that produce oogenesis rhythms in the genetically amenable model organism Drosophila melanogaster. The neuropeptide allatostatin C (AstC) is an insect counterpart of the vertebrate neuropeptide somatostatin, which suppresses gonadotropin production. A subset of the brain circadian pacemaker neurons produces AstC. We have uncovered that these clock-associated AstC neurons generate the circadian oogenesis rhythm via brain insulin-producing cells and the insect gonadotropin juvenile hormone. Identification of a conserved neuropeptide pathway that links female reproduction and the biological clock offers insight into the molecular mechanisms that direct reproductive timing. The link between the biological clock and reproduction is evident in most metazoans. The fruit fly Drosophila melanogaster, a key model organism in the field of chronobiology because of its well-defined networks of molecular clock genes and pacemaker neurons in the brain, shows a pronounced diurnal rhythmicity in oogenesis. Still, it is unclear how the circadian clock generates this reproductive rhythm. A subset of the group of neurons designated “posterior dorsal neuron 1” (DN1p), which are among the ∼150 pacemaker neurons in the fly brain, produces the neuropeptide allatostatin C (AstC-DN1p). Here, we report that six pairs of AstC-DN1p send inhibitory inputs to the brain insulin-producing cells, which express two AstC receptors, star1 and AICR2. Consistent with the roles of insulin/insulin-like signaling in oogenesis, activation of AstC-DN1p suppresses oogenesis through the insulin-producing cells. We show evidence that AstC-DN1p activity plays a role in generating an oogenesis rhythm by regulating juvenile hormone and vitellogenesis indirectly via insulin/insulin-like signaling. AstC is orthologous to the vertebrate neuropeptide somatostatin (SST). Like AstC, SST inhibits gonadotrophin secretion indirectly through gonadotropin-releasing hormone neurons in the hypothalamus. The functional and structural conservation linking the AstC and SST systems suggest an ancient origin for the neural substrates that generate reproductive rhythms.
Collapse
|
50
|
Identification and function of ETH receptor networks in the silkworm Bombyx mori. Sci Rep 2021; 11:11693. [PMID: 34083562 PMCID: PMC8175484 DOI: 10.1038/s41598-021-91022-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/19/2021] [Indexed: 11/25/2022] Open
Abstract
Insect ecdysis triggering hormones (ETHs) released from endocrine Inka cells act on specific neurons in the central nervous system (CNS) to activate the ecdysis sequence. These primary target neurons express distinct splicing variants of ETH receptor (ETHR-A or ETHR-B). Here, we characterized both ETHR subtypes in the moth Bombyx mori in vitro and mapped spatial and temporal distribution of their expression within the CNS and peripheral organs. In the CNS, we detected non-overlapping expression patterns of each receptor isoform which showed dramatic changes during metamorphosis. Most ETHR-A and a few ETHR-B neurons produce multiple neuropeptides which are downstream signals for the initiation or termination of various phases during the ecdysis sequence. We also described novel roles of different neuropeptides during these processes. Careful examination of peripheral organs revealed ETHRs expression in specific cells of the frontal ganglion (FG), corpora allata (CA), H-organ and Malpighian tubules prior to each ecdysis. These data indicate that PETH and ETH are multifunctional hormones that act via ETHR-A and ETHR-B to control various functions during the entire development—the ecdysis sequence and associated behaviors by the CNS and FG, JH synthesis by the CA, and possible activity of the H-organ and Malpighian tubules.
Collapse
|