1
|
Lorenzo G, Hormuth DA, Wu C, Pash G, Chaudhuri A, Lima EABF, Okereke LC, Patel R, Willcox K, Yankeelov TE. Validating the predictions of mathematical models describing tumor growth and treatment response. ARXIV 2025:arXiv:2502.19333v1. [PMID: 40061122 PMCID: PMC11888553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Despite advances in methods to interrogate tumor biology, the observational and population-based approach of classical cancer research and clinical oncology does not enable anticipation of tumor outcomes to hasten the discovery of cancer mechanisms and personalize disease management. To address these limitations, individualized cancer forecasts have been shown to predict tumor growth and therapeutic response, inform treatment optimization, and guide experimental efforts. These predictions are obtained via computer simulations of mathematical models that are constrained with data from a patient's cancer and experiments. This book chapter addresses the validation of these mathematical models to forecast tumor growth and treatment response. We start with an overview of mathematical modeling frameworks, model selection techniques, and fundamental metrics. We then describe the usual strategies employed to validate cancer forecasts in preclinical and clinical scenarios. Finally, we discuss existing barriers in validating these predictions along with potential strategies to address them.
Collapse
Affiliation(s)
- Guillermo Lorenzo
- Group of Numerical Methods in Engineering, Department of Mathematics, University of A Coruña, Spain
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - David A. Hormuth
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX
| | - Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Graham Pash
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Anirban Chaudhuri
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Ernesto A. B. F. Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
| | - Lois C. Okereke
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Reshmi Patel
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Karen Willcox
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Gevertz JL, Wares JR. Assessing the Role of Patient Generation Techniques in Virtual Clinical Trial Outcomes. Bull Math Biol 2024; 86:119. [PMID: 39136811 DOI: 10.1007/s11538-024-01345-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024]
Abstract
Virtual clinical trials (VCTs) are growing in popularity as a tool for quantitatively predicting heterogeneous treatment responses across a population. In the context of a VCT, a plausible patient is an instance of a mathematical model with parameter (or attribute) values chosen to reflect features of the disease and response to treatment for that particular patient. A number of techniques have been introduced to determine the set of model parametrizations to include in a virtual patient cohort. These methodologies generally start with a prior distribution for each model parameter and utilize some criteria to determine whether a parameter set sampled from the priors should be included or excluded from the plausible population. No standard technique exists, however, for generating these prior distributions and choosing the inclusion/exclusion criteria. In this work, we rigorously quantify the impact that VCT design choices have on VCT predictions. Rather than use real data and a complex mathematical model, a spatial model of radiotherapy is used to generate simulated patient data and the mathematical model used to describe the patient data is a two-parameter ordinary differential equations model. This controlled setup allows us to isolate the impact of both the prior distribution and the inclusion/exclusion criteria on both the heterogeneity of plausible populations and on predicted treatment response. We find that the prior distribution, rather than the inclusion/exclusion criteria, has a larger impact on the heterogeneity of the plausible population. Yet, the percent of treatment responders in the plausible population was more sensitive to the inclusion/exclusion criteria utilized. This foundational understanding of the role of virtual clinical trial design should help inform the development of future VCTs that use more complex models and real data.
Collapse
Affiliation(s)
- Jana L Gevertz
- Department of Mathematics and Statistics, The College of New Jersey, 2000 Pennington Rd, Ewing, NJ, 08628, USA.
| | - Joanna R Wares
- Department of Mathematics and Statistics, University of Richmond, 410 Westhampton Way, Richmond, VA, 23173, USA
| |
Collapse
|
3
|
Strobl MAR, Gallaher J, Robertson-Tessi M, West J, Anderson ARA. Treatment of evolving cancers will require dynamic decision support. Ann Oncol 2023; 34:867-884. [PMID: 37777307 PMCID: PMC10688269 DOI: 10.1016/j.annonc.2023.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 10/02/2023] Open
Abstract
Cancer research has traditionally focused on developing new agents, but an underexplored question is that of the dose and frequency of existing drugs. Based on the modus operandi established in the early days of chemotherapies, most drugs are administered according to predetermined schedules that seek to deliver the maximum tolerated dose and are only adjusted for toxicity. However, we believe that the complex, evolving nature of cancer requires a more dynamic and personalized approach. Chronicling the milestones of the field, we show that the impact of schedule choice crucially depends on processes driving treatment response and failure. As such, cancer heterogeneity and evolution dictate that a one-size-fits-all solution is unlikely-instead, each patient should be mapped to the strategy that best matches their current disease characteristics and treatment objectives (i.e. their 'tumorscape'). To achieve this level of personalization, we need mathematical modeling. In this perspective, we propose a five-step 'Adaptive Dosing Adjusted for Personalized Tumorscapes (ADAPT)' paradigm to integrate data and understanding across scales and derive dynamic and personalized schedules. We conclude with promising examples of model-guided schedule personalization and a call to action to address key outstanding challenges surrounding data collection, model development, and integration.
Collapse
Affiliation(s)
- M A R Strobl
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa; Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, USA
| | - J Gallaher
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa
| | - M Robertson-Tessi
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa
| | - J West
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa
| | - A R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa.
| |
Collapse
|
4
|
Butner JD, Dogra P, Chung C, Pasqualini R, Arap W, Lowengrub J, Cristini V, Wang Z. Mathematical modeling of cancer immunotherapy for personalized clinical translation. NATURE COMPUTATIONAL SCIENCE 2022; 2:785-796. [PMID: 38126024 PMCID: PMC10732566 DOI: 10.1038/s43588-022-00377-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2023]
Abstract
Encouraging advances are being made in cancer immunotherapy modeling, especially in the key areas of developing personalized treatment strategies based on individual patient parameters, predicting treatment outcomes and optimizing immunotherapy synergy when used in combination with other treatment approaches. Here we present a focused review of the most recent mathematical modeling work on cancer immunotherapy with a focus on clinical translatability. It can be seen that this field is transitioning from pure basic science to applications that can make impactful differences in patients' lives. We discuss how researchers are integrating experimental and clinical data to fully inform models so that they can be applied for clinical predictions, and present the challenges that remain to be overcome if widespread clinical adaptation is to be realized. Lastly, we discuss the most promising future applications and areas that are expected to be the focus of extensive upcoming modeling studies.
Collapse
Affiliation(s)
- Joseph D. Butner
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ, USA
- Department of Radiation Oncology, Division of Cancer Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ, USA
- Department of Medicine, Division of Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - John Lowengrub
- Department of Mathematics, University of California at Irvine, Irvine, CA, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
5
|
Cardinal O, Burlot C, Fu Y, Crosley P, Hitt M, Craig M, Jenner AL. Establishing combination PAC‐1 and TRAIL regimens for treating ovarian cancer based on patient‐specific pharmacokinetic profiles using
in silico
clinical trials. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2022. [DOI: 10.1002/cso2.1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Olivia Cardinal
- Department of Mathematics and Statistics Université de Montréal Montréal Quebec Canada
| | - Chloé Burlot
- Department of Mathematics and Statistics Université de Montréal Montréal Quebec Canada
| | - Yangxin Fu
- Department of Oncology University of Alberta Edmonton Alberta Canada
| | - Powel Crosley
- Department of Oncology University of Alberta Edmonton Alberta Canada
| | - Mary Hitt
- Department of Oncology University of Alberta Edmonton Alberta Canada
| | - Morgan Craig
- Department of Mathematics and Statistics Université de Montréal Montréal Quebec Canada
- Research Centre Sainte‐Justine University Hospital Montréal Quebec Canada
| | - Adrianne L. Jenner
- Department of Mathematics and Statistics Université de Montréal Montréal Quebec Canada
- Research Centre Sainte‐Justine University Hospital Montréal Quebec Canada
- School of Mathematical Sciences Queensland University of Technology Brisbane Queensland
| |
Collapse
|
6
|
Luo MC, Nikolopoulou E, Gevertz JL. From Fitting the Average to Fitting the Individual: A Cautionary Tale for Mathematical Modelers. Front Oncol 2022; 12:793908. [PMID: 35574407 PMCID: PMC9097280 DOI: 10.3389/fonc.2022.793908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
An outstanding challenge in the clinical care of cancer is moving from a one-size-fits-all approach that relies on population-level statistics towards personalized therapeutic design. Mathematical modeling is a powerful tool in treatment personalization, as it allows for the incorporation of patient-specific data so that treatment can be tailor-designed to the individual. Herein, we work with a mathematical model of murine cancer immunotherapy that has been previously-validated against the average of an experimental dataset. We ask the question: what happens if we try to use this same model to perform personalized fits, and therefore make individualized treatment recommendations? Typically, this would be done by choosing a single fitting methodology, and a single cost function, identifying the individualized best-fit parameters, and extrapolating from there to make personalized treatment recommendations. Our analyses show the potentially problematic nature of this approach, as predicted personalized treatment response proved to be sensitive to the fitting methodology utilized. We also demonstrate how a small amount of the right additional experimental measurements could go a long way to improve consistency in personalized fits. Finally, we show how quantifying the robustness of the average response could also help improve confidence in personalized treatment recommendations.
Collapse
Affiliation(s)
- Michael C Luo
- Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ, United States
| | - Elpiniki Nikolopoulou
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, United States
| | - Jana L Gevertz
- Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ, United States
| |
Collapse
|
7
|
Senekal NS, Mahasa KJ, Eladdadi A, de Pillis L, Ouifki R. Natural Killer Cells Recruitment in Oncolytic Virotherapy: A Mathematical Model. Bull Math Biol 2021; 83:75. [PMID: 34008149 DOI: 10.1007/s11538-021-00903-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/20/2021] [Indexed: 01/17/2023]
Abstract
In this paper, we investigate how natural killer (NK) cell recruitment to the tumor microenvironment (TME) affects oncolytic virotherapy. NK cells play a major role against viral infections. They are, however, known to induce early viral clearance of oncolytic viruses, which hinders the overall efficacy of oncolytic virotherapy. Here, we formulate and analyze a simple mathematical model of the dynamics of the tumor, OV and NK cells using currently available preclinical information. The aim of this study is to characterize conditions under which the synergistic balance between OV-induced NK responses and required viral cytopathicity may or may not result in a successful treatment. In this study, we found that NK cell recruitment to the TME must take place neither too early nor too late in the course of OV infection so that treatment will be successful. NK cell responses are most influential at either early (partly because of rapid response of NK cells to viral infections or antigens) or later (partly because of antitumoral ability of NK cells) stages of oncolytic virotherapy. The model also predicts that: (a) an NK cell response augments oncolytic virotherapy only if viral cytopathicity is weak; (b) the recruitment of NK cells modulates tumor growth; and (c) the depletion of activated NK cells within the TME enhances the probability of tumor escape in oncolytic virotherapy. Taken together, our model results demonstrate that OV infection is crucial, not just to cytoreduce tumor burden, but also to induce the stronger NK cell response necessary to achieve complete or at least partial tumor remission. Furthermore, our modeling framework supports combination therapies involving NK cells and OV which are currently used in oncolytic immunovirotherapy to treat several cancer types.
Collapse
Affiliation(s)
- Noma Susan Senekal
- Department of Mathematics and Computer Science, National University of Lesotho, Roma, Maseru, Lesotho.
| | - Khaphetsi Joseph Mahasa
- Department of Mathematics and Computer Science, National University of Lesotho, Roma, Maseru, Lesotho
| | | | | | - Rachid Ouifki
- Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
Ahmed S, Sullivan JC, Layton AT. Impact of sex and pathophysiology on optimal drug choice in hypertensive rats: quantitative insights for precision medicine. iScience 2021; 24:102341. [PMID: 33870137 PMCID: PMC8047168 DOI: 10.1016/j.isci.2021.102341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/22/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Less than half of all hypertensive patients receiving treatment are successful in normalizing their blood pressure. Despite the complexity and heterogeneity of hypertension, the current antihypertensive guidelines are not tailored to the individual patient. As a step toward individualized treatment, we develop a quantitative systems pharmacology model of blood pressure regulation in the spontaneously hypertensive rat (SHR) and generate sex-specific virtual populations of SHRs to account for the heterogeneity between the sexes and within the pathophysiology of hypertension. We then used the mechanistic model integrated with machine learning tools to study how variability in these mechanisms leads to differential responses in rodents to the four primary classes of antihypertensive drugs. We found that both the sex and the pathophysiological profile of the individual play a major role in the response to hypertensive treatments. These results provide insight into potential areas to apply precision medicine in human primary hypertension.
Collapse
Affiliation(s)
- Sameed Ahmed
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
9
|
Jenner AL, Cassidy T, Belaid K, Bourgeois-Daigneault MC, Craig M. In silico trials predict that combination strategies for enhancing vesicular stomatitis oncolytic virus are determined by tumor aggressivity. J Immunother Cancer 2021; 9:jitc-2020-001387. [PMID: 33608375 PMCID: PMC7898884 DOI: 10.1136/jitc-2020-001387] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
Background Immunotherapies, driven by immune-mediated antitumorigenicity, offer the potential for significant improvements to the treatment of multiple cancer types. Identifying therapeutic strategies that bolster antitumor immunity while limiting immune suppression is critical to selecting treatment combinations and schedules that offer durable therapeutic benefits. Combination oncolytic virus (OV) therapy, wherein complementary OVs are administered in succession, offer such promise, yet their translation from preclinical studies to clinical implementation is a major challenge. Overcoming this obstacle requires answering fundamental questions about how to effectively design and tailor schedules to provide the most benefit to patients. Methods We developed a computational biology model of combined oncolytic vaccinia (an enhancer virus) and vesicular stomatitis virus (VSV) calibrated to and validated against multiple data sources. We then optimized protocols in a cohort of heterogeneous virtual individuals by leveraging this model and our previously established in silico clinical trial platform. Results Enhancer multiplicity was shown to have little to no impact on the average response to therapy. However, the duration of the VSV injection lag was found to be determinant for survival outcomes. Importantly, through treatment individualization, we found that optimal combination schedules are closely linked to tumor aggressivity. We predicted that patients with aggressively growing tumors required a single enhancer followed by a VSV injection 1 day later, whereas a small subset of patients with the slowest growing tumors needed multiple enhancers followed by a longer VSV delay of 15 days, suggesting that intrinsic tumor growth rates could inform the segregation of patients into clinical trials and ultimately determine patient survival. These results were validated in entirely new cohorts of virtual individuals with aggressive or non-aggressive subtypes. Conclusions Based on our results, improved therapeutic schedules for combinations with enhancer OVs can be studied and implemented. Our results further underline the impact of interdisciplinary approaches to preclinical planning and the importance of computational approaches to drug discovery and development.
Collapse
Affiliation(s)
- Adrianne L Jenner
- Sainte-Justine University Hospital Research Centre, Montreal, Quebec, Canada.,Department of Mathematics and Statistics, Université de Montréal, Montreal, Quebec, Canada
| | - Tyler Cassidy
- Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada.,Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Katia Belaid
- Department of Mathematics and Statistics, Université de Montréal, Montreal, Quebec, Canada.,Statistique et Informatique Décisionnelle, Université Toulouse III Paul Sabatier, Toulouse, Occitanie, France
| | - Marie-Claude Bourgeois-Daigneault
- Institut du Cancer de Montréal, CHUM, Montreal, Quebec, Canada.,Department of Microbiology, Infectious diseases and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Morgan Craig
- Sainte-Justine University Hospital Research Centre, Montreal, Quebec, Canada .,Department of Mathematics and Statistics, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Alfonso S, Jenner AL, Craig M. Translational approaches to treating dynamical diseases through in silico clinical trials. CHAOS (WOODBURY, N.Y.) 2020; 30:123128. [PMID: 33380031 DOI: 10.1063/5.0019556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The primary goal of drug developers is to establish efficient and effective therapeutic protocols. Multifactorial pathologies, including dynamical diseases and complex disorders, can be difficult to treat, given the high degree of inter- and intra-patient variability and nonlinear physiological relationships. Quantitative approaches combining mechanistic disease modeling and computational strategies are increasingly leveraged to rationalize pre-clinical and clinical studies and to establish effective treatment strategies. The development of clinical trials has led to new computational methods that allow for large clinical data sets to be combined with pharmacokinetic and pharmacodynamic models of diseases. Here, we discuss recent progress using in silico clinical trials to explore treatments for a variety of complex diseases, ultimately demonstrating the immense utility of quantitative methods in drug development and medicine.
Collapse
Affiliation(s)
- Sofia Alfonso
- Department of Physiology, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Adrianne L Jenner
- Department of Mathematics and Statistics, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Morgan Craig
- Department of Physiology, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
11
|
Craig M, Jenner AL, Namgung B, Lee LP, Goldman A. Engineering in Medicine To Address the Challenge of Cancer Drug Resistance: From Micro- and Nanotechnologies to Computational and Mathematical Modeling. Chem Rev 2020; 121:3352-3389. [PMID: 33152247 DOI: 10.1021/acs.chemrev.0c00356] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drug resistance has profoundly limited the success of cancer treatment, driving relapse, metastasis, and mortality. Nearly all anticancer drugs and even novel immunotherapies, which recalibrate the immune system for tumor recognition and destruction, have succumbed to resistance development. Engineers have emerged across mechanical, physical, chemical, mathematical, and biological disciplines to address the challenge of drug resistance using a combination of interdisciplinary tools and skill sets. This review explores the developing, complex, and under-recognized role of engineering in medicine to address the multitude of challenges in cancer drug resistance. Looking through the "lens" of intrinsic, extrinsic, and drug-induced resistance (also referred to as "tolerance"), we will discuss three specific areas where active innovation is driving novel treatment paradigms: (1) nanotechnology, which has revolutionized drug delivery in desmoplastic tissues, harnessing physiochemical characteristics to destroy tumors through photothermal therapy and rationally designed nanostructures to circumvent cancer immunotherapy failures, (2) bioengineered tumor models, which have benefitted from microfluidics and mechanical engineering, creating a paradigm shift in physiologically relevant environments to predict clinical refractoriness and enabling platforms for screening drug combinations to thwart resistance at the individual patient level, and (3) computational and mathematical modeling, which blends in silico simulations with molecular and evolutionary principles to map mutational patterns and model interactions between cells that promote resistance. On the basis that engineering in medicine has resulted in discoveries in resistance biology and successfully translated to clinical strategies that improve outcomes, we suggest the proliferation of multidisciplinary science that embraces engineering.
Collapse
Affiliation(s)
- Morgan Craig
- Department of Mathematics and Statistics, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Sainte-Justine University Hospital Research Centre, Montreal, Quebec H3S 2G4, Canada
| | - Adrianne L Jenner
- Department of Mathematics and Statistics, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Sainte-Justine University Hospital Research Centre, Montreal, Quebec H3S 2G4, Canada
| | - Bumseok Namgung
- Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Luke P Lee
- Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Aaron Goldman
- Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02139, United States
| |
Collapse
|
12
|
Battista NA. Diving into a Simple Anguilliform Swimmer’s Sensitivity. Integr Comp Biol 2020; 60:1236-1250. [DOI: 10.1093/icb/icaa131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Synopsis
Computational models of aquatic locomotion range from modest individual simple swimmers in 2D to sophisticated 3D multi-swimmer models that attempt to parse collective behavioral dynamics. Each of these models contain a multitude of model input parameters to which its outputs are inherently dependent, that is, various performance metrics. In this work, the swimming performance’s sensitivity to parameters is investigated for an idealized, simple anguilliform swimming model in 2D. The swimmer considered here propagates forward by dynamically varying its body curvature, similar to motion of a Caenorhabditis elegans. The parameter sensitivities were explored with respect to the fluid scale (Reynolds number), stroke (undulation) frequency, as well as a kinematic parameter controlling the velocity and acceleration of each upstroke and downstroke. The input Reynolds number and stroke frequencies sampled were from [450, 2200] and [1, 3] Hz, respectively. In total, 5000 fluid–structure interaction simulations were performed, each with a unique parameter combination selected via a Sobol sequence, in order to conduct global sensitivity analysis. Results indicate that the swimmer’s performance is most sensitive to variations in its stroke frequency. Trends in swimming performance were discovered by projecting the performance data onto particular 2D subspaces. Pareto-like optimal fronts were identified. This work is a natural extension of the parameter explorations of the same model from Battista in 2020.
Collapse
Affiliation(s)
- Nicholas A Battista
- Department of Mathematics and Statistics, The College of New Jersey, 2000 Pennington Road, Ewing Township, NJ 08628, USA
- From the symposium “Melding Modeling and Morphology: integrating approaches to understand the evolution of form and function” presented at the annual meeting of the Society for Integrative and Comparative Biology January 3–7, 2020 at Austin, Texas
| |
Collapse
|
13
|
Optimising Hydrogel Release Profiles for Viro-Immunotherapy Using Oncolytic Adenovirus Expressing IL-12 and GM-CSF with Immature Dendritic Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082872] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sustained-release delivery systems, such as hydrogels, significantly improve cancer therapies by extending the treatment efficacy and avoiding excess wash-out. Combined virotherapy and immunotherapy (viro-immunotherapy) is naturally improved by these sustained-release systems, as it relies on the continual stimulation of the antitumour immune response. In this article, we consider a previously developed viro-immunotherapy treatment where oncolytic viruses that are genetically engineered to infect and lyse cancer cells are loaded onto hydrogels with immature dendritic cells (DCs). The time-dependent release of virus and immune cells results in a prolonged cancer cell killing from both the virus and activated immune cells. Although effective, a major challenge is optimising the release profile of the virus and immature DCs from the gel so as to obtain a minimum tumour size. Using a system of ordinary differential equations calibrated to experimental results, we undertake a novel numerical investigation of different gel-release profiles to determine the optimal release profile for this viro-immunotherapy. Using a data-calibrated mathematical model, we show that if the virus is released rapidly within the first few days and the DCs are released for two weeks, the tumour burden can be significantly decreased. We then find the true optimal gel-release kinetics using a genetic algorithm and suggest that complex profiles present unnecessary risk and that a simple linear-release model is optimal. In this work, insight is provided into a fundamental problem in the growing field of sustained-delivery systems using mathematical modelling and analysis.
Collapse
|
14
|
Heidbuechel JPW, Abate-Daga D, Engeland CE, Enderling H. Mathematical Modeling of Oncolytic Virotherapy. Methods Mol Biol 2020; 2058:307-320. [PMID: 31486048 DOI: 10.1007/978-1-4939-9794-7_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mathematical modeling in biology has a long history as it allows the analysis and simulation of complex dynamic biological systems at little cost. A mathematical model trained on experimental or clinical data can be used to generate and evaluate hypotheses, to ask "what if" questions, and to perform in silico experiments to guide future experimentation and validation. Such models may help identify and provide insights into the mechanisms that drive changes in dynamic systems. While a mathematical model may never replace actual experiments, it can synergize with experiments to save time and resources by identifying experimental conditions that are unlikely to yield favorable outcomes, and by using optimization principles to identify experiments that are most likely to be successful. Over the past decade, numerous models have also been developed for oncolytic virotherapy, ranging from merely theoretic frameworks to fully integrated studies that utilize experimental data to generate actionable hypotheses. Here we describe how to develop such models for specific oncolytic virotherapy experimental setups, and which questions can and cannot be answered using integrated mathematical oncology.
Collapse
Affiliation(s)
- Johannes P W Heidbuechel
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), University Hospital Heidelberg, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Christine E Engeland
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), University Hospital Heidelberg, Heidelberg, Germany
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
15
|
Karolak A, Markov DA, McCawley LJ, Rejniak KA. Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues. J R Soc Interface 2019; 15:rsif.2017.0703. [PMID: 29367239 DOI: 10.1098/rsif.2017.0703] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
A main goal of mathematical and computational oncology is to develop quantitative tools to determine the most effective therapies for each individual patient. This involves predicting the right drug to be administered at the right time and at the right dose. Such an approach is known as precision medicine. Mathematical modelling can play an invaluable role in the development of such therapeutic strategies, since it allows for relatively fast, efficient and inexpensive simulations of a large number of treatment schedules in order to find the most effective. This review is a survey of mathematical models that explicitly take into account the spatial architecture of three-dimensional tumours and address tumour development, progression and response to treatments. In particular, we discuss models of epithelial acini, multicellular spheroids, normal and tumour spheroids and organoids, and multi-component tissues. Our intent is to showcase how these in silico models can be applied to patient-specific data to assess which therapeutic strategies will be the most efficient. We also present the concept of virtual clinical trials that integrate standard-of-care patient data, medical imaging, organ-on-chip experiments and computational models to determine personalized medical treatment strategies.
Collapse
Affiliation(s)
- Aleksandra Karolak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Dmitry A Markov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Lisa J McCawley
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Katarzyna A Rejniak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA .,Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
16
|
Sherman TD, Kagohara LT, Cao R, Cheng R, Satriano M, Considine M, Krigsfeld G, Ranaweera R, Tang Y, Jablonski SA, Stein-O'Brien G, Gaykalova DA, Weiner LM, Chung CH, Fertig EJ. CancerInSilico: An R/Bioconductor package for combining mathematical and statistical modeling to simulate time course bulk and single cell gene expression data in cancer. PLoS Comput Biol 2019; 14:e1006935. [PMID: 31002670 PMCID: PMC6504085 DOI: 10.1371/journal.pcbi.1006935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 05/07/2019] [Accepted: 03/11/2019] [Indexed: 11/18/2022] Open
Abstract
Bioinformatics techniques to analyze time course bulk and single cell omics data
are advancing. The absence of a known ground truth of the dynamics of molecular
changes challenges benchmarking their performance on real data. Realistic
simulated time-course datasets are essential to assess the performance of time
course bioinformatics algorithms. We develop an R/Bioconductor package,
CancerInSilico, to simulate bulk and single cell
transcriptional data from a known ground truth obtained from mathematical models
of cellular systems. This package contains a general R infrastructure for
running cell-based models and simulating gene expression data based on the model
states. We show how to use this package to simulate a gene expression data set
and consequently benchmark analysis methods on this data set with a known ground
truth. The package is freely available via Bioconductor: http://bioconductor.org/packages/CancerInSilico/
Collapse
Affiliation(s)
- Thomas D. Sherman
- Department of Oncology, Division of Biostatistics and Bioinformatics,
Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore,
MD United States of America
- * E-mail:
(TDS); (EJF)
| | - Luciane T. Kagohara
- Department of Oncology, Division of Biostatistics and Bioinformatics,
Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore,
MD United States of America
| | - Raymon Cao
- Department of Oncology, Division of Biostatistics and Bioinformatics,
Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore,
MD United States of America
| | - Raymond Cheng
- Science, Math and Computer Science Magnet Program, Poolesville High
School, Poolesville, MD United States of America
| | - Matthew Satriano
- Department of Mathematics, University of Waterloo, Waterloo, Ontario,
Canada
| | - Michael Considine
- Department of Oncology, Division of Biostatistics and Bioinformatics,
Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore,
MD United States of America
| | - Gabriel Krigsfeld
- Department of Oncology, Division of Biostatistics and Bioinformatics,
Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore,
MD United States of America
| | | | - Yong Tang
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington,
DC United States of America
| | - Sandra A. Jablonski
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington,
DC United States of America
| | - Genevieve Stein-O'Brien
- Department of Oncology, Division of Biostatistics and Bioinformatics,
Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore,
MD United States of America
- Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD
United States of America
| | - Daria A. Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins
University School of Medicine, Baltimore, MD United States of
America
| | - Louis M. Weiner
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington,
DC United States of America
| | | | - Elana J. Fertig
- Department of Oncology, Division of Biostatistics and Bioinformatics,
Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore,
MD United States of America
- Department of Applied Mathematics and Statistics, Johns Hopkins
University, Baltimore, MD United States of America
- Department of Biomedical Engineering, Johns Hopkins University,
Baltimore, MD United States of America
- * E-mail:
(TDS); (EJF)
| |
Collapse
|
17
|
Ioannidis JPA, Kim BYS, Trounson A. How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation. Nat Biomed Eng 2018; 2:797-809. [PMID: 30931172 PMCID: PMC6436641 DOI: 10.1038/s41551-018-0314-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
Abstract
The clinical translation of promising products, technologies and interventions from the disciplines of nanomedicine and cell therapy has been slow and inefficient. In part, translation has been hampered by suboptimal research practices that propagate biases and hinder reproducibility. These include the publication of small and underpowered preclinical studies, suboptimal study design (in particular, biased allocation of experimental groups, experimenter bias and lack of necessary controls), the use of uncharacterized or poorly characterized materials, poor understanding of the relevant biology and mechanisms, poor use of statistics, large between-model heterogeneity, absence of replication, lack of interdisciplinarity, poor scientific training in study design and methods, a culture that does not incentivize transparency and sharing, poor or selective reporting, misaligned incentives and rewards, high costs of materials and protocols, and complexity of the developed products, technologies and interventions. In this Perspective, we discuss special manifestations of these problems in nanomedicine and in cell therapy, and describe mitigating strategies. Progress on reducing bias and enhancing reproducibility early on ought to enhance the translational potential of biomedical findings and technologies.
Collapse
Affiliation(s)
- John P A Ioannidis
- Departments of Medicine, Health Research and Policy, and Biomedical Data Science, Stanford University School of Medicine, and Department of Statistics, Stanford University School of Humanities and Sciences, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA, USA.
| | - Betty Y S Kim
- Departments of Neurosurgery, Cancer Biology, and Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Alan Trounson
- Monash University & Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Developing a Minimally Structured Mathematical Model of Cancer Treatment with Oncolytic Viruses and Dendritic Cell Injections. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:8760371. [PMID: 30510594 PMCID: PMC6232816 DOI: 10.1155/2018/8760371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022]
Abstract
Mathematical models of biological systems must strike a balance between being sufficiently complex to capture important biological features, while being simple enough that they remain tractable through analysis or simulation. In this work, we rigorously explore how to balance these competing interests when modeling murine melanoma treatment with oncolytic viruses and dendritic cell injections. Previously, we developed a system of six ordinary differential equations containing fourteen parameters that well describes experimental data on the efficacy of these treatments. Here, we explore whether this previously developed model is the minimal model needed to accurately describe the data. Using a variety of techniques, including sensitivity analyses and a parameter sloppiness analysis, we find that our model can be reduced by one variable and three parameters and still give excellent fits to the data. We also argue that our model is not too simple to capture the dynamics of the data, and that the original and minimal models make similar predictions about the efficacy and robustness of protocols not considered in experiments. Reducing the model to its minimal form allows us to increase the tractability of the system in the face of parametric uncertainty.
Collapse
|
19
|
Xie H, Jiao Y, Fan Q, Hai M, Yang J, Hu Z, Yang Y, Shuai J, Chen G, Liu R, Liu L. Modeling three-dimensional invasive solid tumor growth in heterogeneous microenvironment under chemotherapy. PLoS One 2018; 13:e0206292. [PMID: 30365511 PMCID: PMC6203364 DOI: 10.1371/journal.pone.0206292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
A systematic understanding of the evolution and growth dynamics of invasive solid tumors in response to different chemotherapy strategies is crucial for the development of individually optimized oncotherapy. Here, we develop a hybrid three-dimensional (3D) computational model that integrates pharmacokinetic model, continuum diffusion-reaction model and discrete cell automaton model to investigate 3D invasive solid tumor growth in heterogeneous microenvironment under chemotherapy. Specifically, we consider the effects of heterogeneous environment on drug diffusion, tumor growth, invasion and the drug-tumor interaction on individual cell level. We employ the hybrid model to investigate the evolution and growth dynamics of avascular invasive solid tumors under different chemotherapy strategies. Our simulations indicate that constant dosing is generally more effective in suppressing primary tumor growth than periodic dosing, due to the resulting continuous high drug concentration. In highly heterogeneous microenvironment, the malignancy of the tumor is significantly enhanced, leading to inefficiency of chemotherapies. The effects of geometrically-confined microenvironment and non-uniform drug dosing are also investigated. Our computational model, when supplemented with sufficient clinical data, could eventually lead to the development of efficient in silico tools for prognosis and treatment strategy optimization.
Collapse
Affiliation(s)
- Hang Xie
- College of Physics, Chongqing University, Chongqing, China
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, AZ, United States of America
| | - Qihui Fan
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, China
| | - Miaomiao Hai
- College of Physics, Chongqing University, Chongqing, China
| | - Jiaen Yang
- College of Physics, Chongqing University, Chongqing, China
| | - Zhijian Hu
- College of Physics, Chongqing University, Chongqing, China
| | - Yue Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Haidian District, Beijing, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen, China
| | - Guo Chen
- College of Physics, Chongqing University, Chongqing, China
| | - Ruchuan Liu
- College of Physics, Chongqing University, Chongqing, China
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing, China
| |
Collapse
|
20
|
Autophagy therapeutics: preclinical basis and initial clinical studies. Cancer Chemother Pharmacol 2018; 82:923-934. [PMID: 30225602 DOI: 10.1007/s00280-018-3688-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
Autophagy captures and degrades intracellular components such as proteins and organelles to sustain metabolism and homeostasis. Rapidly accumulating attention is being paid to the role of autophagy in the development of cancer, which makes autophagy attractive tools and targets for novel therapeutic approaches. Functional studies have confirmed that autophagy dysregulation is causal in many cases of cancer, with autophagy acting as tumor suppressors or tumor promoters, and autophagy inhibitor or promoter has shown promise in preclinical studies. The autophagy-targeted therapeutics using chloroquine/hydroxychloroquine have reached clinical development for treating cancer, but these drugs are actually not efficient probably because of a reduced penetration within the tumor. In this review, we first discuss the discoveries related to dual function of autophagy in cancer. Then, we provide an overview of preclinical studies and clinical trials involved in the development of autophagy therapeutics and finally discuss the future of such therapies.
Collapse
|
21
|
Optimization of combination therapy for chronic myeloid leukemia with dosing constraints. J Math Biol 2018; 77:1533-1561. [PMID: 29992481 DOI: 10.1007/s00285-018-1262-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 06/05/2018] [Indexed: 10/28/2022]
Abstract
In this work, we demonstrate a mathematical technique for optimizing combination regimens with constraints. We apply the technique to a mathematical model for treatment of patients with chronic myeloid leukemia. The in-host model includes leukemic cell and immune system dynamics during treatment with tyrosine kinase inhibitors and immunomodulatory compounds. The model is minimal (semi-mechanistic) with just enough detail that all relevant therapeutic effects can be represented. The regimens are optimized to yield the highest possible reduction in disease burden, taking into account dosing constraints and side effect risks due to drug exposure. We compare the following three types of regimens: (1) regimens that are restricted to certain discrete dose levels, which can only change every three months; (2) optimal regimens determined using optimal control; and (3) regimens that are piecewise-constant like the first type of regimen, but are obtained as approximations to the optimal control regimens. All three types of regimens result in similar outcomes, but the last one is easy to compute in addition to being clinically feasible.
Collapse
|
22
|
Pillai N, Craig M, Dokoumetzidis A, Schwartz SL, Bies R, Freedman I. Chaos synchronization and Nelder-Mead search for parameter estimation in nonlinear pharmacological systems: Estimating tumor antigenicity in a model of immunotherapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 139:23-30. [PMID: 29928905 DOI: 10.1016/j.pbiomolbio.2018.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 11/29/2022]
Abstract
In mathematical pharmacology, models are constructed to confer a robust method for optimizing treatment. The predictive capability of pharmacological models depends heavily on the ability to track the system and to accurately determine parameters with reference to the sensitivity in projected outcomes. To closely track chaotic systems, one may choose to apply chaos synchronization. An advantageous byproduct of this methodology is the ability to quantify model parameters. In this paper, we illustrate the use of chaos synchronization combined with Nelder-Mead search to estimate parameters of the well-known Kirschner-Panetta model of IL-2 immunotherapy from noisy data. Chaos synchronization with Nelder-Mead search is shown to provide more accurate and reliable estimates than Nelder-Mead search based on an extended least squares (ELS) objective function. Our results underline the strength of this approach to parameter estimation and provide a broader framework of parameter identification for nonlinear models in pharmacology.
Collapse
Affiliation(s)
- Nikhil Pillai
- University at Buffalo, State University of New York, USA.
| | | | | | | | - Robert Bies
- University at Buffalo, State University of New York, USA.
| | | |
Collapse
|
23
|
Santiago DN, Heidbuechel JPW, Kandell WM, Walker R, Djeu J, Engeland CE, Abate-Daga D, Enderling H. Fighting Cancer with Mathematics and Viruses. Viruses 2017; 9:E239. [PMID: 28832539 PMCID: PMC5618005 DOI: 10.3390/v9090239] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022] Open
Abstract
After decades of research, oncolytic virotherapy has recently advanced to clinical application, and currently a multitude of novel agents and combination treatments are being evaluated for cancer therapy. Oncolytic agents preferentially replicate in tumor cells, inducing tumor cell lysis and complex antitumor effects, such as innate and adaptive immune responses and the destruction of tumor vasculature. With the availability of different vector platforms and the potential of both genetic engineering and combination regimens to enhance particular aspects of safety and efficacy, the identification of optimal treatments for patient subpopulations or even individual patients becomes a top priority. Mathematical modeling can provide support in this arena by making use of experimental and clinical data to generate hypotheses about the mechanisms underlying complex biology and, ultimately, predict optimal treatment protocols. Increasingly complex models can be applied to account for therapeutically relevant parameters such as components of the immune system. In this review, we describe current developments in oncolytic virotherapy and mathematical modeling to discuss the benefit of integrating different modeling approaches into biological and clinical experimentation. Conclusively, we propose a mutual combination of these research fields to increase the value of the preclinical development and the therapeutic efficacy of the resulting treatments.
Collapse
Affiliation(s)
- Daniel N Santiago
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | | | - Wendy M Kandell
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA.
| | - Rachel Walker
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Julie Djeu
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Christine E Engeland
- German Cancer Research Center, Heidelberg University, 69120 Heidelberg, Germany.
- National Center for Tumor Diseases Heidelberg, Department of Translational Oncology, Department of Medical Oncology, 69120 Heidelberg, Germany.
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|