1
|
Qi X, Zhao R, Zhang X, Ru S, Xiong JQ. Multiomics unraveled that gibberellin signaling underlies adaptation of rice to ciprofloxacin stress: Calling for concerns on the adverse effects of pharmaceutical residues in water during agricultural irrigations. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136818. [PMID: 39657495 DOI: 10.1016/j.jhazmat.2024.136818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Residual concentrations of antibiotics in water can reach ng mL-1 - µg mL-1 levels, which pose high risks to crops during irrigation; however, the interactions between rice and antibiotics, as well as the defense mechanisms of rice at their early growth phase remain unclear. In this study, we investigated the uptake dynamics of a ubiquitously found antibiotic, ciprofloxacin (CIP) at 0.1, 1, 6.5, and 20 µg mL-1 in rice seedlings. We found gradually bioaccumulated CIP induced significant physiological changes including inhibited growth of roots and leaves of rice seedlings, and decreased pigment contents, which can be caused by disrupted homeostasis of reactive oxygen species. Integrating roots transcriptomics, metabolomics, and validation experiments, we found that rice seedlings synthesized more gibberellins to trigger the expression of transcription factors such as group VII ethylene response factors, which induced metabolic reprogramming to yield more fatty acids derivates. These compounds including eicosanoids, isoprenoids, and fatty acids and conjugates can act as signaling molecules, as well as antioxidants and energy sources to achieve rice recovery. This conclusion is supported by the evidence showing that adding gibberellins in rice seedlings culture decreased the accumulated CIP and improved rice growth; whilst, disrupting gibberellin signaling pathway using paclobutrazol as an inhibitor increased uptaken CIP in both roots and leaves with augmenting the antibiotic stress on rice. This study has demonstrated a gibberellin-based defense mechanism in rice for defense of CIP stress, which might have significant environmental applications since we can add minor gibberellins to reduce bioaccumulated CIP with simultaneously promoting rice growth at their early phases.
Collapse
Affiliation(s)
- Xin Qi
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, China
| | - Rui Zhao
- Department of Haide, Ocean University of China, Songling Road, Laoshan Campus, Qingdao, Shandong, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, China
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, China.
| |
Collapse
|
2
|
Wang D, Bu F, Yang G, Brenke H, Liu B. Structure of the endogenous insect acetyl-coA carboxylase carboxyltransferase domain. J Biol Chem 2024; 300:107800. [PMID: 39305960 PMCID: PMC11735997 DOI: 10.1016/j.jbc.2024.107800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 10/14/2024] Open
Abstract
Acetyl-coenzyme A carboxylases (ACCs) are pivotal in fatty acid metabolism, converting acetyl-CoA to malonyl-CoA. While ACCs in humans, plants, and microbes have been extensively studied, insect ACCs, crucial for lipid biosynthesis and physiological processes, remain relatively unexplored. Unlike mammals, which have ACC1 and ACC2 in different tissues, insects possess a single ACC gene, underscoring its unique role in their metabolism. Noctuid moths, such as Trichoplusia ni, are major agricultural pests causing significant crop damage and economic loss. Their resistance to both biological and synthetic insecticides complicates pest control. Recent research has introduced cyclic ketoenols as novel insecticides targeting ACCs, yet structural information to guide their design is limited. Here, we present a 3.12 Å cryo-EM structure of the carboxyltransferase (CT) domain of T. ni ACC, offering the first detailed structural insights into insect ACCs. Our structural comparisons with ACC CT domains from other species and analyses of drug-binding sites can guide future drug modification and design. Notably, unique interactions between the CT and the central domain in T. ni ACC provide new directions for studying the ACC holoenzyme. These findings contribute valuable information for pest control and a basic biological understanding of lipid biosynthesis.
Collapse
Affiliation(s)
- Dong Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Fan Bu
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA; Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Ge Yang
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Hannah Brenke
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA; Department of Biology, Gustavus Adolphus College, Saint Peter, Minnesota, USA
| | - Bin Liu
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA.
| |
Collapse
|
3
|
Tagele SB, Gachomo EW. Evaluating the effects of mefenoxam on taxonomic and functional dynamics of nontarget fungal communities during carrot cultivation. Sci Rep 2024; 14:9867. [PMID: 38684826 PMCID: PMC11058253 DOI: 10.1038/s41598-024-59587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
Ridomil Gold SL (45.3% a.i. mefenoxam) is a widely used chemical fungicide for the control of oomycetes. However, its impact on fungal communities remains unexplored. Therefore, the goal of this study was to examine the effects of mefenoxam on the temporal dynamics of fungal taxonomic and functional diversities during carrot cultivation under four treatment groups: mefenoxam application with and without Pythium inoculation, and untreated control groups with and without Pythium inoculation. Our in vitro sensitivity assay showed that the maximum recommended concentration of mefenoxam, 0.24 ppm, did not suppress the mycelial growth of P. irregulare. At 100 ppm, mycelial growth was only reduced by 11.4%, indicating that the isolate was resistant to mefenoxam. MiSeq sequencing data revealed transient taxonomic variations among treatments 2 weeks post-treatment. Mortierella dominated the fungal community in the mefenoxam-Pythium combination treatment, as confirmed through PCR using our newly designed Mortierella-specific primers. Conversely, mefenoxam-Pythium combination had adverse effects on Penicillium, Trichoderma, and Fusarium, and decrease the overall alpha diversity. However, these compositional changes gradually reverted to those observed in the control by the 12th week. The predicted ecological functions of fungal communities in all Pythium and mefenoxam treatments shifted, leading to a decrease in symbiotrophs and plant pathogen functional groups. Moreover, the community-level physiological profiling approach, utilizing 96-well Biolog FF microplates, showed discernible variations in the utilization of 95 diverse carbon sources among the treatments. Notably, arbutin, L-arabinose, Tween 80, and succinamic acid demonstrated a strong positive association with Mortierella. Our findings demonstrate that a single application of mefenoxam at its recommended rate triggers substantial taxonomic and functional shifts in the soil fungal community. Considering this impact, the conventional agricultural practice of repeated mefenoxam application is likely to exert considerable shifts on the soil ecosystem that may affect agricultural sustainability.
Collapse
Affiliation(s)
- Setu Bazie Tagele
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Emma W Gachomo
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA.
| |
Collapse
|
4
|
McLain NK, Gomez MY, Gachomo EW. Acetaminophen Levels Found in Recycled Wastewater Alter Soil Microbial Community Structure and Functional Diversity. MICROBIAL ECOLOGY 2023; 85:1448-1462. [PMID: 35507048 PMCID: PMC10167187 DOI: 10.1007/s00248-022-02022-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/22/2022] [Indexed: 05/10/2023]
Abstract
The practice of using recycled wastewater (RWW) has been successfully adopted to address the growing demand for clean water. However, chemicals of emerging concern (CECs) including pharmaceutical products remain in the RWW even after additional cleaning. When RWW is used to irrigate crops or landscapes, these chemicals can enter these and adjacent environments. Unfortunately, the overall composition and concentrations of CECs found in different RWW sources vary, and even the same source can vary over time. Therefore, we selected one compound that is found frequently and in high concentrations in many RWW sources, acetaminophen (APAP), to use for our study. Using greenhouse grown eggplants treated with APAP concentrations within the ranges found in RWW effluents, we investigated the short-term impacts of APAP on the soil bacterial population under agricultural settings. Using Illumina sequencing-based approaches, we showed that APAP has the potential to cause shifts in the microbial community most likely by positively selecting for bacteria that are capable of metabolizing the breakdown products of APAP such as glycosides and carboxylic acids. Community-level physiological profiles of carbon metabolism were evaluated using Biolog EcoPlate as a proxy for community functions. The Biolog plates indicated that the metabolism of amines, amino acids, carbohydrates, carboxylic acids, and polymers was significantly higher in the presence of APAP. Abundance of microorganisms of importance to plant health and productivity was altered by APAP. Our results indicate that the soil microbial community and functions could be altered by APAP at concentrations found in RWW. Our findings contribute to the knowledge base needed to guide policies regulating RWW reuse in agriculture and also highlight the need to further investigate the effects of CECs found in RWW on soil microbiomes.
Collapse
Affiliation(s)
- Nathan K McLain
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Melissa Y Gomez
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Emma W Gachomo
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
5
|
Shi Q, Xiong Y, Kaur P, Sy ND, Gan J. Contaminants of emerging concerns in recycled water: Fate and risks in agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152527. [PMID: 34953850 DOI: 10.1016/j.scitotenv.2021.152527] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Recycled water (RW) has been increasingly recognized as a valuable source of water for alleviating the global water crisis. When RW is used for agricultural irrigation, many contaminants of emerging concern (CECs) are introduced into the agroecosystem. The ubiquity of CECs in field soil, combined with the toxic, carcinogenic, or endocrine-disrupting nature of some CECs, raises significant concerns over their potential risks to the environment and human health. Understanding such risks and delineating the fate processes of CECs in the water-soil-plant continuum contributes to the safe reuse of RW in agriculture. This review summarizes recent findings and provides an overview of CECs in the water-soil-plant continuum, including their occurrence in RW and irrigated soil, fate processes in agricultural soil, offsite transport including runoff and leaching, and plant uptake, metabolism, and accumulation. The potential ecological and human health risks of CECs are also discussed. Studies to date have shown limited accumulation of CECs in irrigated soils and plants, which may be attributed to multiple attenuation processes in the rhizosphere and plant, suggesting minimal health risks from RW-fed food crops. However, our collective understanding of CECs is rather limited and knowledge of their offsite movement and plant accumulation is particularly scarce for field conditions. Given a large number of CECs and their occurrence at trace levels, it is urgent to develop strategies to prioritize CECs so that future research efforts are focused on CECs with elevated risks for offsite contamination or plant accumulation. Irrigating specific crops such as feed crops and fruit trees may be a viable option to further minimize potential plant accumulation under field conditions. To promote the beneficial reuse of RW in agriculture, it is essential to understand the human health and ecological risks imposed by CEC mixtures and metabolites.
Collapse
Affiliation(s)
- Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| | - Yaxin Xiong
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Parminder Kaur
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Nathan Darlucio Sy
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
6
|
Han P, Lavoir AV, Rodriguez-Saona C, Desneux N. Bottom-Up Forces in Agroecosystems and Their Potential Impact on Arthropod Pest Management. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:239-259. [PMID: 34606362 DOI: 10.1146/annurev-ento-060121-060505] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bottom-up effects are major ecological forces in crop-arthropod pest-natural enemy multitrophic interactions. Over the past two decades, bottom-up effects have been considered key levers for optimizing integrated pest management (IPM). Irrigation, fertilization, crop resistance, habitat manipulation, organic management practices, and landscape characteristics have all been shown to trigger marked bottom-up effects and thus impact pest management. In this review, we summarize current knowledge on the role of bottom-up effects in pest management and the associated mechanisms, and discuss several key study cases showing how bottom-up effects practically promote natural pest control. Bottom-up effects on IPM also contribute to sustainable intensification of agriculture in the context of agricultural transition and climate change. Finally, we highlight new research priorities in this important area. Together with top-down forces (biological control), future advances in understanding ecological mechanisms underlying key bottom-up forces could pave the way for developing novel pest management strategies and new optimized IPM programs.
Collapse
Affiliation(s)
- Peng Han
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China;
| | | | | | - Nicolas Desneux
- Université Cote d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France;
| |
Collapse
|
7
|
Kroetsch SA, Kidd KA, Monk WA, Culp JM, Compson ZG, Pavey SA. The effects of taxonomy, diet, and ecology on the microbiota of riverine macroinvertebrates. Ecol Evol 2020; 10:14000-14019. [PMID: 33391698 PMCID: PMC7771166 DOI: 10.1002/ece3.6993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 12/18/2022] Open
Abstract
Freshwater macroinvertebrates play key ecological roles in riverine food webs, such as the transfer of nutrients to consumers and decomposition of organic matter. Although local habitat quality drives macroinvertebrate diversity and abundance, little is known about their microbiota. In most animals, the microbiota provides benefits, such as increasing the rate at which nutrients are metabolized, facilitating immune system development, and defending against pathogenic attack. Our objectives were to identify the bacteria within aquatic invertebrates and determine whether their composition varied with taxonomy, habitat, diet, and time of sample collection. In 2016 and 2017, we collected 264 aquatic invertebrates from the mainstem Saint John (Wolastoq) River in New Brunswick, Canada, representing 15 orders. We then amplified the V3-V4 hypervariable region of the 16S rRNA gene within each individual, which revealed nearly 20,000 bacterial operational taxonomic units (OTUs). The microbiota across all aquatic invertebrates were dominated by Proteobacteria (69.25% of the total sequence reads), but they differed significantly in beta diversity, both among host invertebrate taxa (genus-, family-, and order-levels) and temporally. In contrast to previous work, we observed no microbiota differences among functional feeding groups or traditional feeding habits, and neither water velocity nor microhabitat type structured microbiota variability. Our findings suggest that host invertebrate taxonomy was the most important factor in modulating the composition of the microbiota, likely through a combination of vertical and horizontal bacterial transmission, and evolutionary processes. This is one of the most comprehensive studies of freshwater invertebrate microbiota to date, and it underscores the need for future studies of invertebrate microbiota evolution and linkages to environmental bacteria and physico-chemical conditions.
Collapse
Affiliation(s)
- Shawn A. Kroetsch
- Department of Biological SciencesUniversity of New BrunswickSaint JohnNew BrunswickCanada
- Canadian Rivers InstituteUniversity of New BrunswickSaint JohnNew BrunswickCanada
| | - Karen A. Kidd
- Department of Biological SciencesUniversity of New BrunswickSaint JohnNew BrunswickCanada
- Canadian Rivers InstituteUniversity of New BrunswickSaint JohnNew BrunswickCanada
- Department of Biology and School of Geography and Earth SciencesMcMaster UniversityHamiltonOntarioCanada
| | - Wendy A. Monk
- Environment and Climate Change Canada @ Canadian Rivers InstituteFaculty of Forestry and Environmental ManagementUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - Joseph M. Culp
- Environment and Climate Change CanadaDepartment of Biology and Geography and Environmental StudiesWilfrid Laurier UniversityWaterlooOntarioCanada
| | - Zacchaeus G. Compson
- Environment and Climate Change Canada @ Canadian Rivers InstituteUniversity of New BrunswickFrederictonNew BrunswickCanada
- Centre for Environmental Genomics Applications (CEGA)St. John’sNewfoundland and LabradorCanada
| | - Scott A. Pavey
- Department of Biological SciencesUniversity of New BrunswickSaint JohnNew BrunswickCanada
- Canadian Rivers InstituteUniversity of New BrunswickSaint JohnNew BrunswickCanada
| |
Collapse
|
8
|
Reactive Barriers for Renaturalization of Reclaimed Water during Soil Aquifer Treatment. WATER 2020. [DOI: 10.3390/w12041012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Managed aquifer recharge (MAR) is known to increase available water quantity and to improve water quality. However, its implementation is hindered by the concern of polluting aquifers, which might lead to onerous treatment and regulatory requirements for the source water. These requirements might make MAR unsustainable both economically and energetically. To address these concerns, we tested reactive barriers laid at the bottom of infiltration basins to enhance water quality improvement during soil passage. The goal of the barriers was to (1) provide a range of sorption sites to favor the retention of chemical contaminants and pathogens; (2) favor the development of a sequence of redox states to promote the degradation of the most recalcitrant chemical contaminants; and (3) promote the growth of plants both to reduce clogging, and to supply organic carbon and sorption sites. We summarized our experience to show that the barriers did enhance the removal of organic pollutants of concern (e.g., pharmaceuticals and personal care products). However, the barriers did not increase the removal of pathogens beyond traditional MAR systems. We reviewed the literature to suggest improvements on the design of the system to improve pathogen attenuation and to address antibiotic resistance gene transfer.
Collapse
|
9
|
Rothman JA, Leger L, Kirkwood JS, McFrederick QS. Cadmium and Selenate Exposure Affects the Honey Bee Microbiome and Metabolome, and Bee-Associated Bacteria Show Potential for Bioaccumulation. Appl Environ Microbiol 2019; 85:e01411-19. [PMID: 31471302 PMCID: PMC6803295 DOI: 10.1128/aem.01411-19] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/26/2019] [Indexed: 01/12/2023] Open
Abstract
Honey bees are important insect pollinators used heavily in agriculture and can be found in diverse environments. Bees may encounter toxicants such as cadmium and selenate by foraging on plants growing in contaminated areas, which can result in negative health effects. Honey bees are known to have a simple and consistent microbiome that conveys many benefits to the host, and toxicant exposure may impact this symbiotic microbial community. We used 16S rRNA gene sequencing to assay the effects that sublethal cadmium and selenate treatments had over 7 days and found that both treatments significantly but subtly altered the composition of the bee microbiome. Next, we exposed bees to cadmium and selenate and then used untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics to show that chemical exposure changed the bees' metabolite profiles and that compounds which may be involved in detoxification, proteolysis, and lipolysis were more abundant in treatments. Finally, we exposed several strains of bee-associated bacteria in liquid culture and found that each strain removed cadmium from its medium but that only Lactobacillus Firm-5 microbes assimilated selenate, indicating the possibility that these microbes may reduce the metal and metalloid burden on their host. Overall, our report shows that metal and metalloid exposure can affect the honey bee microbiome and metabolome and that strains of bee-associated bacteria can bioaccumulate these toxicants.IMPORTANCE Bees are important insect pollinators that may encounter environmental pollution when foraging upon plants grown in contaminated areas. Despite the pervasiveness of pollution, little is known about the effects of these toxicants on honey bee metabolism and their symbiotic microbiomes. Here, we investigated the impact of selenate and cadmium exposure on the gut microbiome and metabolome of honey bees. We found that exposure to these chemicals subtly altered the overall composition of the bees' microbiome and metabolome and that exposure to toxicants may negatively impact both host and microbe. As the microbiome of animals can reduce mortality upon metal or metalloid challenge, we grew bee-associated bacteria in media spiked with selenate or cadmium. We show that some bacteria can remove these toxicants from their media in vitro and suggest that bacteria may reduce metal burden in their hosts.
Collapse
Affiliation(s)
- Jason A Rothman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| | - Laura Leger
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
10
|
Rothman JA, Leger L, Graystock P, Russell K, McFrederick QS. The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ Microbiol 2019; 21:3417-3429. [PMID: 31026366 DOI: 10.1111/1462-2920.14641] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/12/2019] [Accepted: 04/24/2019] [Indexed: 02/02/2023]
Abstract
Bumble bees are important and widespread insect pollinators who face many environmental challenges. For example, bees are exposed to the metalloid selenate when foraging on pollen and nectar from plants growing in contaminated soils. As it has been shown that the microbiome of animals reduces metalloid toxicity, we assayed the ability of the bee microbiome to increase survivorship against selenate challenge. We exposed uninoculated or microbiota-inoculated Bombus impatiens workers to a field-realistic dose of 0.75 mg l-1 selenate and found that microbiota-inoculated bees survive slightly but significantly longer than uninoculated bees. Using 16S rRNA gene sequencing, we found that selenate exposure altered gut microbial community composition and relative abundance of specific core bacteria. We also grew two core bumble bee microbes - Snodgrassella alvi and Lactobacillus bombicola - in selenate-spiked media and found that these bacteria grew in the tested concentrations of 0.001-10 mg l-1 selenate. Furthermore, the genomes of these microbes harbour genes involved in selenate detoxification. The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate, but the specific mechanisms and colony-level benefits under natural settings require further study.
Collapse
Affiliation(s)
- Jason A Rothman
- Graduate Program in Microbiology, University of California, Riverside, CA, 92521, USA.,Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Laura Leger
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Peter Graystock
- Department of Entomology, University of California, Riverside, CA, 92521, USA.,Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Kaleigh Russell
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Quinn S McFrederick
- Graduate Program in Microbiology, University of California, Riverside, CA, 92521, USA.,Department of Entomology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
11
|
Rothman JA, Andrikopoulos C, Cox-Foster D, McFrederick QS. Floral and Foliar Source Affect the Bee Nest Microbial Community. MICROBIAL ECOLOGY 2019; 78:506-516. [PMID: 30552443 DOI: 10.1007/s00248-018-1300-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Managed pollinators such as the alfalfa leafcutting bee, Megachile rotundata, are essential to the production of a wide variety of agricultural crops. These pollinators encounter a diverse array of microbes when foraging for food and nest-building materials on various plants. To test the hypothesis that food and nest-building source affects the composition of the bee-nest microbiome, we exposed M. rotundata adults to treatments that varied both floral and foliar source in a 2 × 2 factorial design. We used 16S rRNA gene and internal transcribed spacer (ITS) sequencing to capture the bacterial and fungal diversity of the bee nests. We found that nest microbial communities were significantly different between treatments, indicating that bee nests become inoculated with environmentally derived microbes. We did not find evidence of interactions between the fungi and bacteria within our samples. Furthermore, both the bacterial and fungal communities were quite diverse and contained numerous exact sequence variants (ESVs) of known plant and bee pathogens that differed based on treatment. Our research indicates that bees deposit plant-associated microbes into their nests, including multiple plant pathogens such as smut fungi and bacteria that cause blight and wilt. The presence of plant pathogens in larval pollen provisions highlights the potential for bee nests to act as disease reservoirs across seasons. We therefore suggest that future research should investigate the ability of bees to transmit pathogens from nest to host plant.
Collapse
Affiliation(s)
- Jason A Rothman
- Graduate Program in Microbiology, University of California, 900 University Ave., Riverside, CA, 92521, USA
- Department of Entomology, University of California, 900 University Ave., Riverside, CA, 92521, USA
| | - Corey Andrikopoulos
- Department of Biology, Utah State University, UMC5310, Logan, UT, 84322, USA
- USDA-ARS Pollinating Insect-Biology, Management, and Systematics Research, Logan, UT, 84322, USA
| | - Diana Cox-Foster
- Department of Biology, Utah State University, UMC5310, Logan, UT, 84322, USA.
- USDA-ARS Pollinating Insect-Biology, Management, and Systematics Research, Logan, UT, 84322, USA.
| | - Quinn S McFrederick
- Graduate Program in Microbiology, University of California, 900 University Ave., Riverside, CA, 92521, USA.
- Department of Entomology, University of California, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
12
|
Arancibia S, Marambio M, Campusano JM, Fierro A. Modeling of the Binding of Octopamine and Dopamine in Insect Monoamine Transporters Reveals Structural and Electrostatic Differences. ACS Chem Neurosci 2019; 10:2310-2317. [PMID: 30605598 DOI: 10.1021/acschemneuro.8b00631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Octopamine, a trace amine in mammals, is a major neurotransmitter linked to important biological processes in insects. Interestingly, one of the molecular entities responsible for octopamine availability, the octopamine transporter (OAT), has not been identified in certain insect species. For instance, no OAT has been reported in the fly Drosophila melanogaster (Dm), and the molecule involved in octopamine reuptake in Drosophila is not known. Here, we used molecular modeling methodologies to obtain three-dimensional insights for the dopamine transporter (DAT) and OAT in a common agricultural pest insect, Trichoplusia ni (Tni). Our results show several similarities but also significant differences in the general structures of the proteins of Dm and Tni. One important difference is observed in the ligand binding cavity, where a negatively charged amino acid present in both dopamine transporters is replaced by a polar neutral residue in the Trichoplusia OAT. This modification could influence both the binding mode and the driving force involved in the transport mechanism of these amines into neurons of these species. We also obtained data that support the idea that octopamine could bind and possibly be transported by DmDAT. The structural characterization of macromolecules from different insect species is fundamental in the agricultural field to gain insights into the design of new compounds for controlling pests.
Collapse
Affiliation(s)
- Sandra Arancibia
- Bioorganic and Molecular Modeling Lab, Organic Department, Facultad de Química y de Farmarcia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Matías Marambio
- Bioorganic and Molecular Modeling Lab, Organic Department, Facultad de Química y de Farmarcia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Jorge M Campusano
- Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Angélica Fierro
- Bioorganic and Molecular Modeling Lab, Organic Department, Facultad de Química y de Farmarcia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
13
|
Dudley S, Sun C, McGinnis M, Trumble J, Gan J. Formation of biologically active benzodiazepine metabolites in Arabidopsis thaliana cell cultures and vegetable plants under hydroponic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:622-630. [PMID: 30699383 DOI: 10.1016/j.scitotenv.2019.01.259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
The use of recycled water for agricultural irrigation comes with the concern of exposure to crops by contaminants of emerging concerns (CECs). The concentration of CECs in plant tissues will depend on uptake, translocation and metabolism in plants. However, relatively little is known about plant metabolism of CECs, particularly under chronic exposure conditions. In this study, metabolism of the pharmaceutical diazepam was investigated in Arabidopsis thaliana cells and cucumber (Cucumis sativus) and radish (Raphanus sativus) seedlings grown in hydroponic solution following acute (7 d)/high concentration (1 mg L-1), and chronic (28 d)/low concentration (1 μg L-1) exposures. Liquid chromatography paired with mass spectrometry, 14C tracing, and enzyme extractions, were used to characterize the metabolic phases. The three major metabolites of diazepam - nordiazepam, temazepam and oxazepam - were detected as Phase I metabolites, with the longevity corresponding to that of human metabolism. Nordiazepam was the most prevalent metabolite at the end of the 5 d incubation in A. thaliana cells and 7 d, 28 d seedling cultivations. At the end of 7 d cultivation, non-extractable residues (Phase III) in radish and cucumber seedlings accounted for 14% and 33% of the added 14C-diazepam, respectively. By the end of 28 d incubation, the non-extractable radioactivity fraction further increased to 47% and 61%, indicating Phase III metabolism as an important destination for diazepam. Significant changes to glycosyltransferase activity were detected in both cucumber and radish seedlings exposed to diazepam. Findings of this study highlight the need to consider the formation of bioactive transformation intermediates and different phases of metabolism to achieve a comprehensive understanding of risks of CECs in agroecosystems.
Collapse
Affiliation(s)
- Stacia Dudley
- Department of Environmental Science, University of California Riverside, CA 92521, United States; Graduate Program in Environmental Toxicology, University of California, Riverside, CA 92521, United States.
| | - Chengliang Sun
- Department of Environmental Science, University of California Riverside, CA 92521, United States
| | - Michelle McGinnis
- Department of Environmental Science, University of California Riverside, CA 92521, United States
| | - John Trumble
- Graduate Program in Environmental Toxicology, University of California, Riverside, CA 92521, United States; Department of Entomology, University of California Riverside, CA 92521, United States
| | - Jay Gan
- Department of Environmental Science, University of California Riverside, CA 92521, United States
| |
Collapse
|
14
|
Chen W, Yang X, Tetreau G, Song X, Coutu C, Hegedus D, Blissard G, Fei Z, Wang P. A high‐quality chromosome‐level genome assembly of a generalist herbivore,
Trichoplusia ni. Mol Ecol Resour 2019; 19:485-496. [DOI: 10.1111/1755-0998.12966] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Wenbo Chen
- Boyce Thompson Institute Ithaca New York
| | - Xiaowei Yang
- Department of Entomology Cornell University, New York State Agricultural Experiment Station Geneva New York
| | - Guillaume Tetreau
- Department of Entomology Cornell University, New York State Agricultural Experiment Station Geneva New York
| | - Xiaozhao Song
- Department of Entomology Cornell University, New York State Agricultural Experiment Station Geneva New York
| | - Cathy Coutu
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food Canada Saskatoon Saskatchewan Canada
| | - Dwayne Hegedus
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food Canada Saskatoon Saskatchewan Canada
| | | | - Zhangjun Fei
- Boyce Thompson Institute Ithaca New York
- USDA‐Agricultural Research Service, Robert W. Holley Center for Agriculture and Health Ithaca New York
| | - Ping Wang
- Department of Entomology Cornell University, New York State Agricultural Experiment Station Geneva New York
| |
Collapse
|
15
|
Rothman JA, Carroll MJ, Meikle WG, Anderson KE, McFrederick QS. Longitudinal Effects of Supplemental Forage on the Honey Bee (Apis mellifera) Microbiota and Inter- and Intra-Colony Variability. MICROBIAL ECOLOGY 2018; 76:814-824. [PMID: 29397399 DOI: 10.1007/s00248-018-1151-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/19/2018] [Indexed: 05/23/2023]
Abstract
Honey bees (Apis mellifera) provide vital pollination services for a variety of agricultural crops around the world and are known to host a consistent core bacterial microbiome. This symbiotic microbial community is essential to many facets of bee health, including likely nutrient acquisition, disease prevention and optimal physiological function. Being that the bee microbiome is likely involved in the digestion of nutrients, we either provided or excluded honey bee colonies from supplemental floral forage before being used for almond pollination. We then used 16S rRNA gene sequencing to examine the effects of forage treatment on the bees' microbial gut communities over four months. In agreement with previous studies, we found that the honey bee gut microbiota is quite stable over time. Similarly, we compared the gut communities of bees from separate colonies and sisters sampled from within the same hive over four months. Surprisingly, we found that the gut microbial communities of individual sisters from the same colony can exhibit as much variation as bees from different colonies. Supplemental floral forage had a subtle effect on the composition of the microbiome during the month of March only, with strains of Gilliamella apicola, Lactobacillus, and Bartonella being less proportionally abundant in bees exposed to forage in the winter. Collectively, our findings show that there is unexpected longitudinal variation within the gut microbial communities of sister honey bees and that supplemental floral forage can subtly alter the microbiome of managed honey bees.
Collapse
Affiliation(s)
- Jason A Rothman
- Department of Entomology, University of California, 139 Entomology Building, Riverside, CA, 92521, USA
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Mark J Carroll
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, 85719, USA
| | - William G Meikle
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, 85719, USA
| | - Kirk E Anderson
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, 85719, USA
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California, 139 Entomology Building, Riverside, CA, 92521, USA.
| |
Collapse
|
16
|
Pennington MJ, Rothman JA, Jones MB, McFrederick QS, Gan J, Trumble JT. Effects of contaminants of emerging concern on Myzus persicae (Sulzer, Hemiptera: Aphididae) biology and on their host plant, Capsicum annuum. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:125. [PMID: 29423658 DOI: 10.1007/s10661-018-6503-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Many countries are utilizing reclaimed wastewater for agriculture as water demands due to drought, rising temperatures, and expanding human populations. Unfortunately, wastewater often contains biologically active, pseudopersistant pharmaceuticals, even after treatment. Runoff from agriculture and effluent from wastewater treatment plants also contribute high concentrations of pharmaceuticals to the environment. This study assessed the effects of common pharmaceuticals on an agricultural pest, the aphid Myzus persicae (Sulzer, Hemiptera: Aphididae). Second instar nymphs were transferred to bell peppers (Capsicum annuum) that were grown hydroponically. Treatment plants were spiked with contaminants of emerging concern (CECs) at environmentally relevant concentrations found in reclaimed wastewater. M. persicae displayed no differences in population growth or microbial community differences due to chemical treatments. Plants, however, displayed significant growth reduction in antibiotic and mixture treatments, specifically in wet root masses. Antibiotic treatment masses were significantly reduced in the total and root wet masses. Mixture treatments displayed an overall reduction in plant root wet mass. Our results suggest that the use of reclaimed wastewater for crop irrigation would not affect aphid populations, but could hinder or delay crop production.
Collapse
Affiliation(s)
- Marcus John Pennington
- Graduate Program in Environmental Toxicology, University of California, Riverside, CA, 92521, USA.
- Department of Entomology, University of California, 417 Entomology Building, Riverside, CA, 92521, USA.
| | - Jason A Rothman
- Department of Entomology, University of California, 417 Entomology Building, Riverside, CA, 92521, USA
- Graduate Program in Microbiology, University of California, Riverside, CA, 92521, USA
| | - Michael Bellinger Jones
- Department of Entomology, University of California, 417 Entomology Building, Riverside, CA, 92521, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California, 417 Entomology Building, Riverside, CA, 92521, USA
- Graduate Program in Microbiology, University of California, Riverside, CA, 92521, USA
| | - Jay Gan
- Graduate Program in Environmental Toxicology, University of California, Riverside, CA, 92521, USA
- Department of Environmental Science, University of California, Riverside, CA, 92521, USA
| | - John T Trumble
- Graduate Program in Environmental Toxicology, University of California, Riverside, CA, 92521, USA
- Department of Entomology, University of California, 417 Entomology Building, Riverside, CA, 92521, USA
| |
Collapse
|