1
|
Peterson L, Coca R, Parikh S, McCarthy K, Man HY. ADAR2-mediated Q/R editing of GluA2 in homeostatic synaptic plasticity. Sci Signal 2025; 18:eadr1442. [PMID: 40359260 DOI: 10.1126/scisignal.adr1442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/24/2024] [Accepted: 04/22/2025] [Indexed: 05/15/2025]
Abstract
Homeostatic synaptic plasticity is a negative feedback mechanism through which neurons modify their synaptic strength to counteract chronic increases or decreases in activity. In response to activity deprivation, synaptic strength is enhanced by increasing the number of AMPA receptors (AMPARs), particularly Ca2+-permeable AMPARs, at the synapse. Here, we found that this increase in Ca2+-permeable AMPARs during homeostatic upscaling was mediated by decreased posttranscriptional editing of GRIA2 mRNA encoding the AMPAR subunit GluA2. In cultured neurons, activity deprivation resulted in increases in the amount of unedited GluA2, such that its ion channel pore contains a glutamine (Q) codon instead of arginine (R), and in the number of Ca2+-permeable AMPARs at the synapse. These effects were mediated by a splicing factor-dependent decrease in ADAR2 abundance and activity in the nucleus. Overexpression of ADAR2 or CRISPR-Cas13-directed editing of GluA2 transcripts blocked homeostatic upscaling in activity-deprived primary neurons. In mice, dark rearing resulted in decreased Q-to-R editing of GluA2-encoding transcripts in the primary visual cortex (V1), and viral overexpression of ADAR2 in the V1 blocked the induction of homeostatic synaptic plasticity. The findings indicate that activity-dependent regulation of GluA2 editing contributes to homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Lucy Peterson
- Department of Biology, Boston University, Boston, MA 02215, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Richard Coca
- Department of Biology, Boston University, Boston, MA 02215, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA 02215, USA
| | - Shreya Parikh
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA 02215, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| |
Collapse
|
2
|
Wang B, He T, Qiu G, Li C, Xue S, Zheng Y, Wang T, Xia Y, Yao L, Yan J, Chen Y. Altered synaptic homeostasis: a key factor in the pathophysiology of depression. Cell Biosci 2025; 15:29. [PMID: 40001206 PMCID: PMC11863845 DOI: 10.1186/s13578-025-01369-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Depression, a widespread psychiatric disorder, is characterized by a diverse array of symptoms such as melancholic mood and anhedonia, imposing a significant burden on both society and individuals. Despite extensive research into the neurobiological foundations of depression, a complete understanding of its complex mechanisms is yet to be attained, and targeted therapeutic interventions remain under development. Synaptic homeostasis, a compensatory feedback mechanism, involves neurons adjusting synaptic strength by regulating pre- or postsynaptic processes. Recent advancements in depression research reveal a crucial association between the disorder and disruptions in synaptic homeostasis within neural regions and circuits pivotal for emotional and cognitive functions. This paper explores the mechanisms governing synaptic homeostasis in depression, focusing on the role of ion channels, the regulation of presynaptic neurotransmitter release, synaptic scaling processes, and essential signaling molecules. By mapping new pathways in the study of synaptic homeostasis as it pertains to depression, this research aims to provide valuable insights for identifying novel therapeutic targets for more effective antidepressant treatments.
Collapse
Affiliation(s)
- Bokai Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Teng He
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Guofan Qiu
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chong Li
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Song Xue
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanjia Zheng
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Taiyi Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yucen Xia
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lin Yao
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinglan Yan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yongjun Chen
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
3
|
Leana-Sandoval G, Kolli AV, Chinn CA, Madrid A, Lo I, Sandoval MA, Vera VA, Simms J, Wood MA, Diaz-Alonso J. The GluA1 cytoplasmic tail regulates intracellular AMPA receptor trafficking and synaptic transmission onto dentate gyrus GABAergic interneurons, gating response to novelty. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626277. [PMID: 39677714 PMCID: PMC11643017 DOI: 10.1101/2024.12.01.626277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The GluA1 subunit, encoded by the putative schizophrenia-associated gene GRIA1, is required for activity-regulated AMPA receptor (AMPAR) trafficking, and plays a key role in cognitive and affective function. The cytoplasmic, carboxy-terminal domain (CTD) is the most divergent region across AMPAR subunits. The GluA1 CTD has received considerable attention for its role during long-term potentiation (LTP) at CA1 pyramidal neuron synapses. However, its function at other synapses and, more broadly, its contribution to different GluA1-dependent processes, is poorly understood. Here, we used mice with a constitutive truncation of the GluA1 CTD to dissect its role regulating AMPAR localization and function as well as its contribution to cognitive and affective processes. We found that GluA1 CTD truncation affected AMPAR subunit levels and intracellular trafficking. ΔCTD GluA1 mice exhibited no memory deficits, but presented exacerbated novelty-induced hyperlocomotion and dentate gyrus granule cell (DG GC) hyperactivity, among other behavioral alterations. Mechanistically, we found that AMPAR EPSCs onto DG GABAergic interneurons were significantly reduced, presumably underlying, at least in part, the observed changes in neuronal activity and behavior. In summary, this study dissociates CTD-dependent from CTD-independent GluA1 functions, unveiling the GluA1 CTD as a crucial hub regulating AMPAR function in a cell type-specific manner.
Collapse
Affiliation(s)
- Gerardo Leana-Sandoval
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Ananth V Kolli
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Carlene A Chinn
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
- Department of Neurobiology & Behavior, University of California at Irvine, CA, 92697, USA
| | - Alexis Madrid
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Matthew A Sandoval
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Vanessa Alizo Vera
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
- Department of Neurobiology & Behavior, University of California at Irvine, CA, 92697, USA
| | - Jeffrey Simms
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Marcelo A Wood
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
- Department of Neurobiology & Behavior, University of California at Irvine, CA, 92697, USA
| | - Javier Diaz-Alonso
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| |
Collapse
|
4
|
Chen J, Zhang Z, Liu Y, Huang L, Liu Y, Yang D, Bao X, Liu P, Ge Y, Li Q, Shu X, Xu L, Shi YS, Zhu X, Xu Y. Progressive reduction of nuclear receptor Nr4a1 mediates age-dependent cognitive decline. Alzheimers Dement 2024; 20:3504-3524. [PMID: 38605605 PMCID: PMC11095431 DOI: 10.1002/alz.13819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Cognitive decline progresses with age, and Nr4a1 has been shown to participate in memory functions. However, the relationship between age-related Nr4a1 reduction and cognitive decline is undefined. METHODS Nr4a1 expressions were evaluated by quantitative PCR and immunochemical approaches. The cognition of mice was examined by multiple behavioral tests. Patch-clamp experiments were conducted to investigate the synaptic function. RESULTS NR4A1 in peripheral blood mononuclear cells decreased with age in humans. In the mouse brain, age-dependent Nr4a1 reduction occurred in the hippocampal CA1. Deleting Nr4a1 in CA1 pyramidal neurons (PyrNs) led to the impairment of cognition and excitatory synaptic function. Mechanistically, Nr4a1 enhanced TrkB expression via binding to its promoter. Blocking TrkB compromised the cognitive amelioration with Nr4a1-overexpression in CA1 PyrNs. DISCUSSION Our results elucidate the mechanism of Nr4a1-dependent TrkB regulation in cognition and synaptic function, indicating that Nr4a1 is a target for the treatment of cognitive decline. HIGHLIGHTS Nr4a1 is reduced in PBMCs and CA1 PyrNs with aging. Nr4a1 ablation in CA1 PyrNs impaired cognition and excitatory synaptic function. Nr4a1 overexpression in CA1 PyrNs ameliorated cognitive impairment of aged mice. Nr4a1 bound to TrkB promoter to enhance transcription. Blocking TrkB function compromised Nr4a1-induced cognitive improvement.
Collapse
|
5
|
Sun SED, Levenstein D, Li B, Mandelberg N, Chenouard N, Suutari BS, Sanchez S, Tian G, Rinzel J, Buzsáki G, Tsien RW. Synaptic homeostasis transiently leverages Hebbian mechanisms for a multiphasic response to inactivity. Cell Rep 2024; 43:113839. [PMID: 38507409 DOI: 10.1016/j.celrep.2024.113839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
Homeostatic regulation of synapses is vital for nervous system function and key to understanding a range of neurological conditions. Synaptic homeostasis is proposed to operate over hours to counteract the destabilizing influence of long-term potentiation (LTP) and long-term depression (LTD). The prevailing view holds that synaptic scaling is a slow first-order process that regulates postsynaptic glutamate receptors and fundamentally differs from LTP or LTD. Surprisingly, we find that the dynamics of scaling induced by neuronal inactivity are not exponential or monotonic, and the mechanism requires calcineurin and CaMKII, molecules dominant in LTD and LTP. Our quantitative model of these enzymes reconstructs the unexpected dynamics of homeostatic scaling and reveals how synapses can efficiently safeguard future capacity for synaptic plasticity. This mechanism of synaptic adaptation supports a broader set of homeostatic changes, including action potential autoregulation, and invites further inquiry into how such a mechanism varies in health and disease.
Collapse
Affiliation(s)
- Simón E D Sun
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Daniel Levenstein
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3810 University Street, Montreal, QC, Canada
| | - Boxing Li
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510810, China
| | - Nataniel Mandelberg
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Nicolas Chenouard
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Sorbonne Université, INSERM U1127, UMR CNRS 7225, Institut du Cerveau (ICM), 47 bld de l'hôpital, 75013 Paris, France
| | - Benjamin S Suutari
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Sandrine Sanchez
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Guoling Tian
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - John Rinzel
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - György Buzsáki
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Richard W Tsien
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
6
|
Koesters AG, Rich MM, Engisch KL. Diverging from the Norm: Reevaluating What Miniature Excitatory Postsynaptic Currents Tell Us about Homeostatic Synaptic Plasticity. Neuroscientist 2024; 30:49-70. [PMID: 35904350 DOI: 10.1177/10738584221112336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The idea that the nervous system maintains a set point of network activity and homeostatically returns to that set point in the face of dramatic disruption-during development, after injury, in pathologic states, and during sleep/wake cycles-is rapidly becoming accepted as a key plasticity behavior, placing it alongside long-term potentiation and depression. The dramatic growth in studies of homeostatic synaptic plasticity of miniature excitatory synaptic currents (mEPSCs) is attributable, in part, to the simple yet elegant mechanism of uniform multiplicative scaling proposed by Turrigiano and colleagues: that neurons sense their own activity and globally multiply the strength of every synapse by a single factor to return activity to the set point without altering established differences in synaptic weights. We have recently shown that for mEPSCs recorded from control and activity-blocked cultures of mouse cortical neurons, the synaptic scaling factor is not uniform but is close to 1 for the smallest mEPSC amplitudes and progressively increases as mEPSC amplitudes increase, which we term divergent scaling. Using insights gained from simulating uniform multiplicative scaling, we review evidence from published studies and conclude that divergent synaptic scaling is the norm rather than the exception. This conclusion has implications for hypotheses about the molecular mechanisms underlying synaptic scaling.
Collapse
Affiliation(s)
- Andrew G Koesters
- Department of Behavior, Cognition, and Neurophysiology, Environmental Health Effects Laboratory, Naval Medical Research Unit-Dayton, Wright-Patterson AFB, OH, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology, and Physiology, College of Science and Mathematics, and Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Kathrin L Engisch
- Department of Neuroscience, Cell Biology, and Physiology, College of Science and Mathematics, and Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
7
|
Puig S, Xue X, Salisbury R, Shelton MA, Kim SM, Hildebrand MA, Glausier JR, Freyberg Z, Tseng GC, Yocum AK, Lewis DA, Seney ML, MacDonald ML, Logan RW. Circadian rhythm disruptions associated with opioid use disorder in synaptic proteomes of human dorsolateral prefrontal cortex and nucleus accumbens. Mol Psychiatry 2023; 28:4777-4792. [PMID: 37674018 PMCID: PMC10914630 DOI: 10.1038/s41380-023-02241-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24-h cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes associated with vesicle-mediated transport and membrane trafficking in the NAc and platelet-derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.
Collapse
Affiliation(s)
- Stephanie Puig
- Department of Pharmacology, Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan Salisbury
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Micah A Shelton
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sam-Moon Kim
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mariah A Hildebrand
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew L MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Ryan W Logan
- Department of Pharmacology, Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA.
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
8
|
Lu K, Li C, Liu J, Wang J, Li Y, He B, Li J, Zhang X, Wei M, Tian Y, Zhang R, Zhang C, Zhang Y. Impairments in endogenous AMPA receptor dynamics correlates with learning deficits in Alzheimer's disease model mice. Proc Natl Acad Sci U S A 2023; 120:e2303878120. [PMID: 37748061 PMCID: PMC10556575 DOI: 10.1073/pnas.2303878120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023] Open
Abstract
AMPA receptors (AMPARs) play a critical role in synaptic plasticity and learning and memory, and dysfunction or dysregulation of AMPARs could lead to various neurological and psychiatric disorders, such as Alzheimer's disease (AD). However, the dynamics and/or longitudinal changes of AMPARs in vivo during AD pathogenesis remain elusive. Here, employing 5xFAD SEP-GluA1 KI mice, we investigated endogenous AMPA receptor dynamics in a whisker deflection-associated Go/No-go learning paradigm. We found a significant increase in synaptosomal AMPA receptor subunits GluA1 in WT mice after learning, while no such changes were detected in 7-mo-old 5xFAD mice. Daily training led to an increase in endogenous spine surface GluA1 in Control mice, while this increase was absent in 5xFAD-KI mice which correlates with its learning defects in Go/No-go paradigm. Furthermore, we demonstrated that the onset of abnormal AMPAR dynamics corresponds temporally with microglia and astrocyte overactivation. Our results have shown that impairments in endogenous AMPA receptor dynamics play an important role in learning deficits in 5xFAD mice and AD pathogenesis.
Collapse
Affiliation(s)
- Kongjie Lu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of the People’s Republic of China, Beijing100083, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing100871, China
| | - Chenyang Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of the People’s Republic of China, Beijing100083, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing100871, China
| | - Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing100083, China
| | - Jinpeng Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of the People’s Republic of China, Beijing100083, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing100871, China
| | - Yongfeng Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of the People’s Republic of China, Beijing100083, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing100871, China
| | - Bin He
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of the People’s Republic of China, Beijing100083, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing100871, China
| | - Junzhao Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of the People’s Republic of China, Beijing100083, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing100871, China
| | - Xiaochen Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin300072, China
| | - Mengping Wei
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing100069, China
| | - Yonglu Tian
- PKU-IDG/McGovern Institute for Brain Research, Beijing100871, China
- School of Psychological and Cognitive Sciences, Peking University, Beijing100871, China
| | - Rong Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of the People’s Republic of China, Beijing100083, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing100871, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing100069, China
| | - Yong Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of the People’s Republic of China, Beijing100083, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing100871, China
| |
Collapse
|
9
|
Puig S, Xue X, Salisbury R, Shelton MA, Kim SM, Hildebrand MA, Glausier JR, Freyberg Z, Tseng GC, Yocum AK, Lewis DA, Seney ML, MacDonald ML, Logan RW. Circadian rhythm disruptions associated with opioid use disorder in the synaptic proteomes of the human dorsolateral prefrontal cortex and nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536056. [PMID: 37066169 PMCID: PMC10104116 DOI: 10.1101/2023.04.07.536056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24- hour cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes related to vesicle-mediated transport and membrane trafficking in the NAc and platelet derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.
Collapse
|
10
|
Xie J, Herr S, Ma D, Wu S, Zhao H, Sun S, Ma Z, Chan MYL, Li K, Yang Y, Huang F, Shi R, Yuan C. Acute Transcriptomic and Epigenetic Alterations at T12 After Rat T10 Spinal Cord Contusive Injury. Mol Neurobiol 2023; 60:2937-2953. [PMID: 36750527 DOI: 10.1007/s12035-023-03250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023]
Abstract
Spinal cord injury is a severely debilitating condition affecting a significant population in the USA. Spinal cord injury patients often have increased risk of developing persistent neuropathic pain and other neurodegenerative conditions beyond the primary lesion center later in their life. The molecular mechanism conferring to the "latent" damages at distal tissues, however, remains elusive. Here, we studied molecular changes conferring abnormal functionality at distal spinal cord (T12) beyond the lesion center (T10) by combining next-generation sequencing (RNA- and bisulfite sequencing), super-resolution microscopy, and immunofluorescence staining at 7 days post injury. We observed significant transcriptomic changes primarily enriched in neuroinflammation and synaptogenesis associated pathways. Transcription factors (TFs) that regulate neurogenesis and neuron plasticity, including Egr1, Klf4, and Myc, are significantly upregulated. Along with global changes in chromatin arrangements and DNA methylation, including 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), bisulfite sequencing further reveals the involvement of DNA methylation changes in regulating cytokine, growth factor, and ion channel expression. Collectively, our results pave the way towards understanding transcriptomic and epigenomic mechanism in conferring long-term disease risks at distal tissues away from the primary lesion center and shed light on potential molecular targets that govern the regulatory mechanism at distal spinal cord tissues.
Collapse
Affiliation(s)
- Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Seth Herr
- Center for Paralysis Research, Purdue University, West Lafayette, IN, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| | - Donghan Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Shichen Wu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Han Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Siyuan Sun
- Center for Paralysis Research, Purdue University, West Lafayette, IN, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| | - Zhixiong Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Matthew Yan-Lok Chan
- Agriculture and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Katherine Li
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Fang Huang
- Agriculture and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Riyi Shi
- Center for Paralysis Research, Purdue University, West Lafayette, IN, USA.
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
- Purdue Center of Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
11
|
Sanderson JL, Freund RK, Gorski JA, Dell'Acqua ML. β-Amyloid disruption of LTP/LTD balance is mediated by AKAP150-anchored PKA and Calcineurin regulation of Ca 2+-permeable AMPA receptors. Cell Rep 2021; 37:109786. [PMID: 34610314 PMCID: PMC8530450 DOI: 10.1016/j.celrep.2021.109786] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/02/2021] [Accepted: 09/10/2021] [Indexed: 01/28/2023] Open
Abstract
Regulated insertion and removal of postsynaptic AMPA glutamate receptors (AMPARs) mediates hippocampal long-term potentiation (LTP) and long-term depression (LTD) synaptic plasticity underlying learning and memory. In Alzheimer’s disease β-amyloid (Aβ) oligomers may impair learning and memory by altering AMPAR trafficking and LTP/LTD balance. Importantly, Ca2+-permeable AMPARs (CP-AMPARs) assembled from GluA1 subunits are excluded from hippocampal synapses basally but can be recruited rapidly during LTP and LTD to modify synaptic strength and signaling. By employing mouse knockin mutations that disrupt anchoring of the kinase PKA or phosphatase Calcineurin (CaN) to the postsynaptic scaffold protein AKAP150, we find that local AKAP-PKA signaling is required for CP-AMPAR recruitment, which can facilitate LTP but also, paradoxically, prime synapses for Aβ impairment of LTP mediated by local AKAP-CaN LTD signaling that promotes subsequent CP-AMPAR removal. These findings highlight the importance of PKA/CaN signaling balance and CP-AMPARs in normal plasticity and aberrant plasticity linked to disease. In Alzheimer’s disease, Aβ oligomers disrupt hippocampal neuronal plasticity and cognition. Sanderson et al. show how the postsynaptic scaffold protein AKAP150 coordinates PKA and Calcineurin regulation of Ca2+-permeable AMPA-type glutamate receptors to mediate disruption of synaptic plasticity by Aβ oligomers.
Collapse
Affiliation(s)
- Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ronald K Freund
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jessica A Gorski
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
12
|
Zhou Z, He G, Zhang X, Lv X, Zhang X, Liu A, Xia S, Xie H, Dang R, Han L, Qi J, Meng Y, Yu S, Xie W, Jia Z. NGPF2 triggers synaptic scaling up through ALK-LIMK-cofilin-mediated mechanisms. Cell Rep 2021; 36:109515. [PMID: 34407403 DOI: 10.1016/j.celrep.2021.109515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/26/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Synaptic scaling is an extensively studied form of homeostatic plasticity critically involved in various brain functions. Although it is accepted that synaptic scaling is expressed through the postsynaptic accumulation of AMPA receptors (AMPARs), the induction mechanism remains elusive. In this study, we show that TTX treatment induces rapid but transient release of the neurite growth-promoting factor 2 (NGPF2), and this release is necessary and sufficient for TTX-induced scaling up. In addition, we show that inhibition of the anaplastic lymphoma kinase (ALK)-LIMK-cofilin signaling pathway blocks TTX- and NGPF2-induced synaptic scaling up. Furthermore, we show that TTX-induced release of NGPF2 is protein synthesis dependent and requires fragile X mental retardation protein 1 (FMRP1). These results indicate that activity blockade induces NGPF2 synthesis and release to trigger synaptic scaling up through LIMK-cofilin-dependent actin reorganization, spine enlargement, and stabilization of AMPARs at the synapse.
Collapse
Affiliation(s)
- Zikai Zhou
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, the Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Guiqin He
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Xiaoyun Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, the Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, China
| | - Xin Lv
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolin Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - An Liu
- School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Shuting Xia
- School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China; Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Hao Xie
- School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Rui Dang
- School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Lifang Han
- School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Junxia Qi
- School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Yanghong Meng
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xie
- School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Zhengping Jia
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
13
|
Wu CH, Ramos R, Katz DB, Turrigiano GG. Homeostatic synaptic scaling establishes the specificity of an associative memory. Curr Biol 2021; 31:2274-2285.e5. [PMID: 33798429 PMCID: PMC8187282 DOI: 10.1016/j.cub.2021.03.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
Abstract
Correlation-based (Hebbian) forms of synaptic plasticity are crucial for the initial encoding of associative memories but likely insufficient to enable the stable storage of multiple specific memories within neural circuits. Theoretical studies have suggested that homeostatic synaptic normalization rules provide an essential countervailing force that can stabilize and expand memory storage capacity. Although such homeostatic mechanisms have been identified and studied for decades, experimental evidence that they play an important role in associative memory is lacking. Here, we show that synaptic scaling, a widely studied form of homeostatic synaptic plasticity that globally renormalizes synaptic strengths, is dispensable for initial associative memory formation but crucial for the establishment of memory specificity. We used conditioned taste aversion (CTA) learning, a form of associative learning that relies on Hebbian mechanisms within gustatory cortex (GC), to show that animals conditioned to avoid saccharin initially generalized this aversion to other novel tastants. Specificity of the aversion to saccharin emerged slowly over a time course of many hours and was associated with synaptic scaling down of excitatory synapses onto conditioning-active neuronal ensembles within gustatory cortex. Blocking synaptic scaling down in the gustatory cortex enhanced the persistence of synaptic strength increases induced by conditioning and prolonged the duration of memory generalization. Taken together, these findings demonstrate that synaptic scaling is crucial for sculpting the specificity of an associative memory and suggest that the relative strengths of Hebbian and homeostatic plasticity can modulate the balance between stable memory formation and memory generalization.
Collapse
Affiliation(s)
- Chi-Hong Wu
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Raul Ramos
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Donald B Katz
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| | | |
Collapse
|
14
|
Heir R, Stellwagen D. TNF-Mediated Homeostatic Synaptic Plasticity: From in vitro to in vivo Models. Front Cell Neurosci 2020; 14:565841. [PMID: 33192311 PMCID: PMC7556297 DOI: 10.3389/fncel.2020.565841] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Since it was first described almost 30 years ago, homeostatic synaptic plasticity (HSP) has been hypothesized to play a key role in maintaining neuronal circuit function in both developing and adult animals. While well characterized in vitro, determining the in vivo roles of this form of plasticity remains challenging. Since the discovery that the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) mediates some forms of HSP, it has been possible to probe some of the in vivo contribution of TNF-mediated HSP. Work from our lab and others has found roles for TNF-HSP in a variety of functions, including the developmental plasticity of sensory systems, models of drug addiction, and the response to psychiatric drugs.
Collapse
Affiliation(s)
- Renu Heir
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, QC, Canada
| | - David Stellwagen
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, QC, Canada
| |
Collapse
|
15
|
Díaz-Alonso J, Morishita W, Incontro S, Simms J, Holtzman J, Gill M, Mucke L, Malenka RC, Nicoll RA. Long-term potentiation is independent of the C-tail of the GluA1 AMPA receptor subunit. eLife 2020; 9:e58042. [PMID: 32831170 PMCID: PMC7500950 DOI: 10.7554/elife.58042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/21/2020] [Indexed: 01/11/2023] Open
Abstract
We tested the proposal that the C-terminal domain (CTD) of the AMPAR subunit GluA1 is required for LTP. We found that a knock-in mouse lacking the CTD of GluA1 expresses normal LTP and spatial memory, assayed by the Morris water maze. Our results support a model in which LTP generates synaptic slots, which capture passively diffusing AMPARs.
Collapse
Affiliation(s)
- Javier Díaz-Alonso
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Wade Morishita
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Salvatore Incontro
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Jeffrey Simms
- Gladstone Institute of Neurological DiseaseSan FranciscoUnited States
| | - Julia Holtzman
- Gladstone Institute of Neurological DiseaseSan FranciscoUnited States
| | - Michael Gill
- Gladstone Institute of Neurological DiseaseSan FranciscoUnited States
| | - Lennart Mucke
- Gladstone Institute of Neurological DiseaseSan FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
16
|
Mutant prion proteins increase calcium permeability of AMPA receptors, exacerbating excitotoxicity. PLoS Pathog 2020; 16:e1008654. [PMID: 32673372 PMCID: PMC7365390 DOI: 10.1371/journal.ppat.1008654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/26/2020] [Indexed: 01/26/2023] Open
Abstract
Prion protein (PrP) mutations are linked to genetic prion diseases, a class of phenotypically heterogeneous neurodegenerative disorders with invariably fatal outcome. How mutant PrP triggers neurodegeneration is not known. Synaptic dysfunction precedes neuronal loss but it is not clear whether, and through which mechanisms, disruption of synaptic activity ultimately leads to neuronal death. Here we show that mutant PrP impairs the secretory trafficking of AMPA receptors (AMPARs). Specifically, intracellular retention of the GluA2 subunit results in synaptic exposure of GluA2-lacking, calcium-permeable AMPARs, leading to increased calcium permeability and enhanced sensitivity to excitotoxic cell death. Mutant PrPs linked to different genetic prion diseases affect AMPAR trafficking and function in different ways. Our findings identify AMPARs as pathogenic targets in genetic prion diseases, and support the involvement of excitotoxicity in neurodegeneration. They also suggest a mechanistic explanation for how different mutant PrPs may cause distinct disease phenotypes. Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease, fatal familial insomnia and Gerstmann-Sträussler-Scheinker syndrome. How mutant PrP causes neuronal death and how different mutants encode distinct disease phenotypes is not known. Here we show that mutant PrP alters the subunit composition of glutamate AMPA receptors, promoting cell surface exposure of GluA2-lacking, calcium-permeable receptors, ultimately increasing neuronal vulnerability to excitotoxic cell death. We also demonstrate that the underlying molecular mechanism is the formation of a GluA2 subunit-PrP complex which is retained in the neuronal secretory pathway. PrP mutants associated with clinically different genetic prion diseases have distinct effects on GluA2 trafficking, depending on their tendency to misfold and aggregate in different intracellular organelles, indicating a possible contribution of this mechanism to the disease phenotype.
Collapse
|
17
|
Purkey AM, Dell’Acqua ML. Phosphorylation-Dependent Regulation of Ca 2+-Permeable AMPA Receptors During Hippocampal Synaptic Plasticity. Front Synaptic Neurosci 2020; 12:8. [PMID: 32292336 PMCID: PMC7119613 DOI: 10.3389/fnsyn.2020.00008] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/18/2020] [Indexed: 01/28/2023] Open
Abstract
Experience-dependent learning and memory require multiple forms of plasticity at hippocampal and cortical synapses that are regulated by N-methyl-D-aspartate receptors (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (NMDAR, AMPAR). These plasticity mechanisms include long-term potentiation (LTP) and depression (LTD), which are Hebbian input-specific mechanisms that rapidly increase or decrease AMPAR synaptic strength at specific inputs, and homeostatic plasticity that globally scales-up or -down AMPAR synaptic strength across many or even all inputs. Frequently, these changes in synaptic strength are also accompanied by a change in the subunit composition of AMPARs at the synapse due to the trafficking to and from the synapse of receptors lacking GluA2 subunits. These GluA2-lacking receptors are most often GluA1 homomeric receptors that exhibit higher single-channel conductance and are Ca2+-permeable (CP-AMPAR). This review article will focus on the role of protein phosphorylation in regulation of GluA1 CP-AMPAR recruitment and removal from hippocampal synapses during synaptic plasticity with an emphasis on the crucial role of local signaling by the cAMP-dependent protein kinase (PKA) and the Ca2+calmodulin-dependent protein phosphatase 2B/calcineurin (CaN) that is coordinated by the postsynaptic scaffold protein A-kinase anchoring protein 79/150 (AKAP79/150).
Collapse
Affiliation(s)
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
18
|
Yan Y, Yang H, Xie Y, Ding Y, Kong D, Yu H. Research Progress on Alzheimer's Disease and Resveratrol. Neurochem Res 2020; 45:989-1006. [PMID: 32162143 DOI: 10.1007/s11064-020-03007-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), a common irreversible neurodegenerative disease characterized by amyloid-β plaques, neurofibrillary tangles, and changes in tau phosphorylation, is accompanied by memory loss and symptoms of cognitive dysfunction. Increases in disease incidence due to the ageing of the population have placed a great burden on society. To date, the mechanism of AD and the identities of adequate drugs for AD prevention and treatment have eluded the medical community. It has been confirmed that phytochemicals have certain neuroprotective effects against AD. For example, some progress has been made in research on the use of resveratrol, a natural polyphenolic phytochemical, for the prevention and treatment of AD in recent years. Elucidation of the pathogenesis of AD will create a solid foundation for drug treatment. In addition, research on resveratrol, including its mechanism of action, the roles of signalling pathways and its therapeutic targets, will provide new ideas for AD treatment, which is of great significance. In this review, we discuss the possible relationships between AD and the following factors: synapses, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs), silent information regulator 1 (SIRT1), and estrogens. We also discuss the findings of previous studies regarding these relationships in the context of AD treatment and further summarize research progress related to resveratrol treatment.
Collapse
Affiliation(s)
- Yan Yan
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Huihuang Yang
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuxun Xie
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuanlin Ding
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Danli Kong
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| | - Haibing Yu
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
19
|
Tyrosine phosphorylation of the AMPA receptor subunit GluA2 gates homeostatic synaptic plasticity. Proc Natl Acad Sci U S A 2020; 117:4948-4958. [PMID: 32071234 PMCID: PMC7060742 DOI: 10.1073/pnas.1918436117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hebbian plasticity, comprised of long-term potentiation (LTP) and depression (LTD), allows neurons to encode and respond to specific stimuli; while homeostatic synaptic scaling is a counterbalancing mechanism that enables the maintenance of stable neural circuits. Both types of synaptic plasticity involve the control of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR) abundance, which is modulated by AMPAR phosphorylation. To address the necessity of GluA2 phospho-Y876 in synaptic plasticity, we generated phospho-deficient GluA2 Y876F knock-in mice. We show that, while GluA2 phospho-Y876 is not necessary for Hebbian plasticity, it is essential for both in vivo and in vitro homeostatic upscaling. Bidirectional changes in GluA2 phospho-Y876 were observed during homeostatic scaling, with a decrease during downscaling and an increase during upscaling. GluA2 phospho-Y876 is necessary for synaptic accumulation of glutamate receptor interacting protein 1 (GRIP1), a crucial scaffold protein that delivers AMPARs to synapses, during upscaling. Furthermore, increased phosphorylation at GluA2 Y876 increases GluA2 binding to GRIP1. These results demonstrate that AMPAR trafficking during homeostatic upscaling can be gated by a single phosphorylation site on the GluA2 subunit.
Collapse
|
20
|
Ma Z, Turrigiano GG, Wessel R, Hengen KB. Cortical Circuit Dynamics Are Homeostatically Tuned to Criticality In Vivo. Neuron 2019; 104:655-664.e4. [PMID: 31601510 DOI: 10.1016/j.neuron.2019.08.031] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/26/2019] [Accepted: 08/19/2019] [Indexed: 11/26/2022]
Abstract
Homeostatic mechanisms stabilize neuronal activity in vivo, but whether this process gives rise to balanced network dynamics is unknown. Here, we continuously monitored the statistics of network spiking in visual cortical circuits in freely behaving rats for 9 days. Under control conditions in light and dark, networks were robustly organized around criticality, a regime that maximizes information capacity and transmission. When input was perturbed by visual deprivation, network criticality was severely disrupted and subsequently restored to criticality over 48 h. Unexpectedly, the recovery of excitatory dynamics preceded homeostatic plasticity of firing rates by >30 h. We utilized model investigations to manipulate firing rate homeostasis in a cell-type-specific manner at the onset of visual deprivation. Our results suggest that criticality in excitatory networks is established by inhibitory plasticity and architecture. These data establish that criticality is consistent with a homeostatic set point for visual cortical dynamics and suggest a key role for homeostatic regulation of inhibition.
Collapse
Affiliation(s)
- Zhengyu Ma
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Ralf Wessel
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Keith B Hengen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
21
|
Diering GH, Huganir RL. The AMPA Receptor Code of Synaptic Plasticity. Neuron 2019; 100:314-329. [PMID: 30359599 DOI: 10.1016/j.neuron.2018.10.018] [Citation(s) in RCA: 591] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023]
Abstract
Changes in the properties and postsynaptic abundance of AMPA-type glutamate receptors (AMPARs) are major mechanisms underlying various forms of synaptic plasticity, including long-term potentiation (LTP), long-term depression (LTD), and homeostatic scaling. The function and the trafficking of AMPARs to and from synapses is modulated by specific AMPAR GluA1-GluA4 subunits, subunit-specific protein interactors, auxiliary subunits, and posttranslational modifications. Layers of regulation are added to AMPAR tetramers through these different interactions and modifications, increasing the computational power of synapses. Here we review the reliance of synaptic plasticity on AMPAR variants and propose "the AMPAR code" as a conceptual framework. The AMPAR code suggests that AMPAR variants will be predictive of the types and extent of synaptic plasticity that can occur and that a hierarchy exists such that certain AMPARs will be disproportionally recruited to synapses during LTP/homeostatic scaling up, or removed during LTD/homeostatic scaling down.
Collapse
Affiliation(s)
- Graham H Diering
- Department of Cell Biology and Physiology, and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
22
|
Rocchi A, Moretti D, Lignani G, Colombo E, Scholz-Starke J, Baldelli P, Tkatch T, Benfenati F. Neurite-Enriched MicroRNA-218 Stimulates Translation of the GluA2 Subunit and Increases Excitatory Synaptic Strength. Mol Neurobiol 2019; 56:5701-5714. [DOI: 10.1007/s12035-019-1492-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
|
23
|
Ha HTT, Leal-Ortiz S, Lalwani K, Kiyonaka S, Hamachi I, Mysore SP, Montgomery JM, Garner CC, Huguenard JR, Kim SA. Shank and Zinc Mediate an AMPA Receptor Subunit Switch in Developing Neurons. Front Mol Neurosci 2018; 11:405. [PMID: 30524232 PMCID: PMC6256285 DOI: 10.3389/fnmol.2018.00405] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/15/2018] [Indexed: 11/18/2022] Open
Abstract
During development, pyramidal neurons undergo dynamic regulation of AMPA receptor (AMPAR) subunit composition and density to help drive synaptic plasticity and maturation. These normal developmental changes in AMPARs are particularly vulnerable to risk factors for Autism Spectrum Disorders (ASDs), which include loss or mutations of synaptic proteins and environmental insults, such as dietary zinc deficiency. Here, we show how Shank2 and Shank3 mediate a zinc-dependent regulation of AMPAR function and subunit switch from GluA2-lacking to GluA2-containing AMPARs. Over development, we found a concomitant increase in Shank2 and Shank3 with GluA2 at synapses, implicating these molecules as potential players in AMPAR maturation. Since Shank activation and function require zinc, we next studied whether neuronal activity regulated postsynaptic zinc at glutamatergic synapses. Zinc was found to increase transiently and reversibly with neuronal depolarization at synapses, which could affect Shank and AMPAR localization and activity. Elevated zinc induced multiple functional changes in AMPAR, indicative of a subunit switch. Specifically, zinc lengthened the decay time of AMPAR-mediated synaptic currents and reduced their inward rectification in young hippocampal neurons. Mechanistically, both Shank2 and Shank3 were necessary for the zinc-sensitive enhancement of AMPAR-mediated synaptic transmission and act in concert to promote removal of GluA1 while enhancing recruitment of GluA2 at pre-existing Shank puncta. These findings highlight a cooperative local dynamic regulation of AMPAR subunit switch controlled by zinc signaling through Shank2 and Shank3 to shape the biophysical properties of developing glutamatergic synapses. Given the zinc sensitivity of young neurons and its dependence on Shank2 and Shank3, genetic mutations and/or environmental insults during early development could impair synaptic maturation and circuit formation that underlie ASD etiology.
Collapse
Affiliation(s)
- Huong T T Ha
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States.,Neurosciences Graduate Program, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sergio Leal-Ortiz
- Department of Material Science & Engineering, School of Engineering, Stanford University, Stanford, CA, United States
| | - Kriti Lalwani
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry & Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry & Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shreesh P Mysore
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Craig C Garner
- German Center for Neurodegenerative Diseases (DZNE), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - John R Huguenard
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sally A Kim
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
24
|
Patriarchi T, Buonarati OR, Hell JW. Postsynaptic localization and regulation of AMPA receptors and Cav1.2 by β2 adrenergic receptor/PKA and Ca 2+/CaMKII signaling. EMBO J 2018; 37:e99771. [PMID: 30249603 PMCID: PMC6187224 DOI: 10.15252/embj.201899771] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/25/2018] [Accepted: 08/17/2018] [Indexed: 11/09/2022] Open
Abstract
The synapse transmits, processes, and stores data within its tiny space. Effective and specific signaling requires precise alignment of the relevant components. This review examines current insights into mechanisms of AMPAR and NMDAR localization by PSD-95 and their spatial distribution at postsynaptic sites to illuminate the structural and functional framework of postsynaptic signaling. It subsequently delineates how β2 adrenergic receptor (β2 AR) signaling via adenylyl cyclase and the cAMP-dependent protein kinase PKA is organized within nanodomains. Here, we discuss targeting of β2 AR, adenylyl cyclase, and PKA to defined signaling complexes at postsynaptic sites, i.e., AMPARs and the L-type Ca2+ channel Cav1.2, and other subcellular surface localizations, the role of A kinase anchor proteins, the physiological relevance of the spatial restriction of corresponding signaling, and their interplay with signal transduction by the Ca2+- and calmodulin-dependent kinase CaMKII How localized and specific signaling by cAMP occurs is a central cellular question. The dendritic spine constitutes an ideal paradigm for elucidating the dimensions of spatially restricted signaling because of their small size and defined protein composition.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/physiology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Humans
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synapses/genetics
- Synapses/metabolism
Collapse
Affiliation(s)
- Tommaso Patriarchi
- Department of Pharmacology, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | | | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
25
|
Chowdhury D, Hell JW. Homeostatic synaptic scaling: molecular regulators of synaptic AMPA-type glutamate receptors. F1000Res 2018; 7:234. [PMID: 29560257 PMCID: PMC5832907 DOI: 10.12688/f1000research.13561.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 01/31/2023] Open
Abstract
The ability of neurons and circuits to maintain their excitability and activity levels within the appropriate dynamic range by homeostatic mechanisms is fundamental for brain function. Neuronal hyperactivity, for instance, could cause seizures. One such homeostatic process is synaptic scaling, also known as synaptic homeostasis. It involves a negative feedback process by which neurons adjust (scale) their postsynaptic strength over their whole synapse population to compensate for increased or decreased overall input thereby preventing neuronal hyper- or hypoactivity that could otherwise result in neuronal network dysfunction. While synaptic scaling is well-established and critical, our understanding of the underlying molecular mechanisms is still in its infancy. Homeostatic adaptation of synaptic strength is achieved through upregulation (upscaling) or downregulation (downscaling) of the functional availability of AMPA-type glutamate receptors (AMPARs) at postsynaptic sites. Understanding how synaptic AMPARs are modulated in response to alterations in overall neuronal activity is essential to gain valuable insights into how neuronal networks adapt to changes in their environment, as well as the genesis of an array of neurological disorders. Here we discuss the key molecular mechanisms that have been implicated in tuning the synaptic abundance of postsynaptic AMPARs in order to maintain synaptic homeostasis.
Collapse
Affiliation(s)
| | - Johannes W Hell
- Department of Pharmacology, University of California Davis, Davis, California, USA
| |
Collapse
|
26
|
Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca 2+-Permeable AMPA Receptors. J Neurosci 2018; 38:2863-2876. [PMID: 29440558 DOI: 10.1523/jneurosci.2362-17.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/17/2018] [Accepted: 02/06/2018] [Indexed: 12/31/2022] Open
Abstract
Neuronal information processing requires multiple forms of synaptic plasticity mediated by NMDARs and AMPA-type glutamate receptors (AMPARs). These plasticity mechanisms include long-term potentiation (LTP) and long-term depression (LTD), which are Hebbian, homosynaptic mechanisms locally regulating synaptic strength of specific inputs, and homeostatic synaptic scaling, which is a heterosynaptic mechanism globally regulating synaptic strength across all inputs. In many cases, LTP and homeostatic scaling regulate AMPAR subunit composition to increase synaptic strength via incorporation of Ca2+-permeable receptors (CP-AMPAR) containing GluA1, but lacking GluA2, subunits. Previous work by our group and others demonstrated that anchoring of the kinase PKA and the phosphatase calcineurin (CaN) to A-kinase anchoring protein (AKAP) 150 play opposing roles in regulation of GluA1 Ser845 phosphorylation and CP-AMPAR synaptic incorporation during hippocampal LTP and LTD. Here, using both male and female knock-in mice that are deficient in PKA or CaN anchoring, we show that AKAP150-anchored PKA and CaN also play novel roles in controlling CP-AMPAR synaptic incorporation during homeostatic plasticity in hippocampal neurons. We found that genetic disruption of AKAP-PKA anchoring prevented increases in Ser845 phosphorylation and CP-AMPAR synaptic recruitment during rapid homeostatic synaptic scaling-up induced by combined blockade of action potential firing and NMDAR activity. In contrast, genetic disruption of AKAP-CaN anchoring resulted in basal increases in Ser845 phosphorylation and CP-AMPAR synaptic activity that blocked subsequent scaling-up by preventing additional CP-AMPAR recruitment. Thus, the balanced, opposing phospho-regulation provided by AKAP-anchored PKA and CaN is essential for control of both Hebbian and homeostatic plasticity mechanisms that require CP-AMPARs.SIGNIFICANCE STATEMENT Neuronal circuit function is shaped by multiple forms of activity-dependent plasticity that control excitatory synaptic strength, including LTP/LTD that adjusts strength of individual synapses and homeostatic plasticity that adjusts overall strength of all synapses. Mechanisms controlling LTP/LTD and homeostatic plasticity were originally thought to be distinct; however, recent studies suggest that CP-AMPAR phosphorylation regulation is important during both LTP/LTD and homeostatic plasticity. Here we show that CP-AMPAR regulation by the kinase PKA and phosphatase CaN coanchored to the scaffold protein AKAP150, a mechanism previously implicated in LTP/LTD, is also crucial for controlling synaptic strength during homeostatic plasticity. These novel findings significantly expand our understanding of homeostatic plasticity mechanisms and further emphasize how intertwined they are with LTP and LTD.
Collapse
|