1
|
Liu M, Chen J, Liu S, Zhang C, Chao X, Yang H, Xu Q, Wang T, Bi H, Ding Y, Wang Z, Muhammad A, Muhammad M, Schinckel AP, Zhou B. LH-stimulated periodic lincRNA HEOE regulates follicular dynamics and influences estrous cycle and fertility via miR-16-ZMAT3 and PGF2α in pigs. Int J Biol Macromol 2024; 281:136426. [PMID: 39389516 DOI: 10.1016/j.ijbiomac.2024.136426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Disruption of the estrous cycle affects fertility and reproductive health. Follicular dynamics are key to the regularity of the estrous cycle. We identified a novel lincRNA, HEOE, showing significant upregulation in the ovaries during the estrus phase across various pig breeds. Functional analysis revealed that HEOE is responsive to luteinizing hormone (LH) stimulation, modulating transcriptional suppression and alternative splicing in ovarian granulosa cells (GCs). This leads to increased GC apoptosis and inhibition of proliferation. Mechanistically, HEOE inhibits miR-16 maturation in the nucleus, and sequesters miR-16 in the cytoplasm, thereby collectively reducing miR-16's inhibition on ZMAT3, enhancing the expression of ZMAT3, a key factor in the p53 pathway and alternative splicing, thereby regulating follicular development. This effect was validated in both mice and pig follicles. Persistent overexpression or suppression of HEOE throughout the estrous cycle impairs cycle regularity and reduces litter size. These outcomes are associated with HEOE reduced follicular PGF2α levels and modulation of the cAMP signaling pathway. Our data, combined with public databases, indicate that the high expression of HEOE during the estrus phase is crucial for maintaining the estrous cycle. HEOE is a potential therapeutic target for regulating fertility and ensuring estrous cycle regularity in pigs.
Collapse
Affiliation(s)
- Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jiahao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuhan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tianshuo Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hongwei Bi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuan Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ziming Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Asim Muhammad
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mubashir Muhammad
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA.
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Biswas MS, Gelman EM, Alexopoulos DJ, Keen KL, Adam RJ, Terasawa E. The role of neuroestrogens in the estrogen-induced gonadotropin surge in male monkeys. J Neuroendocrinol 2024; 36:e13413. [PMID: 38760983 PMCID: PMC11444899 DOI: 10.1111/jne.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Neuroestrogens locally synthesized in the brain are known to play a role in sexual behaviors. However, the question of whether neuroestrogens are involved in the regulation of the gonadotropin-releasing hormone (GnRH) release is just emerging. Because previous studies in this lab indicate that neuroestradiol is also important for the pulsatile release as well as the surge release of GnRH in female rhesus monkeys, in the present study, we examined whether neuroestradiol plays a role in the estrogen-induced LH surge in orchidectomized (ORX) male rhesus monkeys. Unlike in rodents, it is known that a high dose of estrogen treatment can result in the LH surge in ORX male rhesus monkeys. Results that the administration of the aromatase inhibitor, letrozole, failed to attenuate the estrogen-induced LH surge, suggest that unlike in ovariectomized females, neuroestrogens do not play a role in the LH surge experimentally induced by the exogenous estrogen treatment in ORX male monkeys.
Collapse
Affiliation(s)
- Mohammad S. Biswas
- University of Wisconsin-Madison, Wisconsin National Primate Research Center
| | - Erica M. Gelman
- University of Wisconsin-Madison, Wisconsin National Primate Research Center
| | | | - Kim L. Keen
- University of Wisconsin-Madison, Wisconsin National Primate Research Center
| | - Ryan J. Adam
- University of Wisconsin-Madison, Wisconsin National Primate Research Center
| | - Ei Terasawa
- University of Wisconsin-Madison, Wisconsin National Primate Research Center
- Department of Pediatrics, Madison, WI 53715
| |
Collapse
|
3
|
Rasic-Markovic A, Djuric E, Skrijelj D, Bjekic-Macut J, Ignjatovic Đ, Sutulovic N, Hrncic D, Mladenovic D, Marković A, Radenković S, Radić L, Radunovic N, Stanojlovic O. Neuroactive steroids in the neuroendocrine control of food intake, metabolism, and reproduction. Endocrine 2024; 85:1050-1057. [PMID: 38635064 DOI: 10.1007/s12020-024-03755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/19/2024] [Indexed: 04/19/2024]
Abstract
Neuroactive steroids are a type of steroid hormones produced within the nervous system or in peripheral glands and then transported to the brain to exert their neuromodulatory effects. Neuroactive steroids have pleiotropic effects, that include promoting myelination, neuroplasticity, and brain development. They also regulate important physiological functions, such as metabolism, feeding, reproduction, and stress response. The homoeostatic processes of metabolism and reproduction are closely linked and mutually dependent. Reproductive events, such as pregnancy, bring about significant changes in metabolism, and metabolic status may affect reproductive function in mammals. In females, the regulation of reproduction and energy balance is controlled by the fluctuations of oestradiol and progesterone throughout the menstrual cycle. Neurosteroids play a key role in the neuroendocrine control of reproduction. The synthesis of neuroestradiol and neuroprogesterone within the brain is a crucial process that facilitates the release of GnRH and LH, which in turn, regulate the transition from oestrogen-negative to oestrogen-positive feedback. In addition to their function in the reproductive system, oestrogen has a key role in the regulation of energy homoeostasis by acting at central and peripheral levels. The oestrogenic effects on body weight homoeostasis are primarily mediated by oestrogen receptors-α (ERα), which are abundantly expressed in multiple brain regions that are implicated in the regulation of food intake, basal metabolism, thermogenesis, and brown tissue distribution. The tight interplay between energy balance and reproductive physiology is facilitated by shared regulatory pathways, namely POMC, NPY and kisspeptin neurons, which are targets of oestrogen regulation and likely participate in different aspects of the joint control of energy balance and reproductive function. The aim of this review is to present a summary of the progress made in uncovering shared regulatory pathways that facilitate the tight coupling between energy balance and reproductive physiology, as well as their reciprocal interactions and the modulation induced by neurosteroids.
Collapse
Affiliation(s)
- Aleksandra Rasic-Markovic
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Emilija Djuric
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Daniel Skrijelj
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelica Bjekic-Macut
- Department of Endocrinology, UMC Bežanijska kosa, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Đurđica Ignjatovic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nikola Sutulovic
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragan Hrncic
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dusan Mladenovic
- Institute of Pathophysiology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Marković
- Department of Endocrinology, Internal Medicine Clinic, University Clinical Centre of the Republic of Srpska, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Saša Radenković
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Niš, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Lena Radić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | | | - Olivera Stanojlovic
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Exposure to the pesticides linuron, dimethomorph and imazalil alters steroid hormone profiles and gene expression in developing rat ovaries. Toxicol Lett 2022; 373:114-122. [PMID: 36410587 DOI: 10.1016/j.toxlet.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Inhibition of androgen signaling during critical stages of ovary development can disrupt folliculogenesis with potential consequences for reproductive function later in life. Many environmental chemicals can inhibit the androgen signaling pathway, which raises the question if developmental exposure to anti-androgenic chemicals can negatively impact female fertility. Here, we report on altered reproductive hormone profiles in prepubertal female rats following developmental exposure to three pesticides with anti-androgenic potential: linuron (25 and 50 mg/kg bw/d), dimethomorph (60 and 180 mg/kg bw/d) and imazalil (8 and 24 mg/kg bw/d). Dams were orally exposed from gestational day 7 (dimethomorph and imazalil) or 13 (linuron) until birth, then until end of dosing at early postnatal life. Linuron and dimethomorph induced dose-related reductions to plasma corticosterone levels, whereas imazalil mainly suppressed gonadotropin levels. In the ovaries, expression levels of target genes were affected by linuron and dimethomorph, suggesting impaired follicle growth. Based on our results, we propose that anti-androgenic chemicals can negatively impact female reproductive development. This highlights a need to integrate data from all levels of the hypothalamic-pituitary-gonadal axis, as well as the hypothalamic-pituitary-adrenal axis, when investigating the potential impact of endocrine disruptors on female reproductive development and function.
Collapse
|
5
|
Moeller JS, Bever SR, Finn SL, Phumsatitpong C, Browne MF, Kriegsfeld LJ. Circadian Regulation of Hormonal Timing and the Pathophysiology of Circadian Dysregulation. Compr Physiol 2022; 12:4185-4214. [PMID: 36073751 DOI: 10.1002/cphy.c220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are endogenously generated, daily patterns of behavior and physiology that are essential for optimal health and disease prevention. Disruptions to circadian timing are associated with a host of maladies, including metabolic disease and obesity, diabetes, heart disease, cancer, and mental health disturbances. The circadian timing system is hierarchically organized, with a master circadian clock located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks throughout the CNS and periphery. The SCN receives light information via a direct retinal pathway, synchronizing the master clock to environmental time. At the cellular level, circadian rhythms are ubiquitous, with rhythms generated by interlocking, autoregulatory transcription-translation feedback loops. At the level of the SCN, tight cellular coupling maintains rhythms even in the absence of environmental input. The SCN, in turn, communicates timing information via the autonomic nervous system and hormonal signaling. This signaling couples individual cellular oscillators at the tissue level in extra-SCN brain loci and the periphery and synchronizes subordinate clocks to external time. In the modern world, circadian disruption is widespread due to limited exposure to sunlight during the day, exposure to artificial light at night, and widespread use of light-emitting electronic devices, likely contributing to an increase in the prevalence, and the progression, of a host of disease states. The present overview focuses on the circadian control of endocrine secretions, the significance of rhythms within key endocrine axes for typical, homeostatic functioning, and implications for health and disease when dysregulated. © 2022 American Physiological Society. Compr Physiol 12: 1-30, 2022.
Collapse
Affiliation(s)
- Jacob S Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA
| | - Savannah R Bever
- Department of Psychology, University of California, Berkeley, California, USA
| | - Samantha L Finn
- Department of Psychology, University of California, Berkeley, California, USA
| | | | - Madison F Browne
- Department of Psychology, University of California, Berkeley, California, USA
| | - Lance J Kriegsfeld
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA.,Department of Psychology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA.,The Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
6
|
Kraynak M, Willging MM, Kuehlmann AL, Kapoor AA, Flowers MT, Colman RJ, Levine JE, Abbott DH. Aromatase Inhibition Eliminates Sexual Receptivity Without Enhancing Weight Gain in Ovariectomized Marmoset Monkeys. J Endocr Soc 2022; 6:bvac063. [PMID: 35592515 PMCID: PMC9113444 DOI: 10.1210/jendso/bvac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/19/2022] Open
Abstract
Context Ovarian estradiol supports female sexual behavior and metabolic function. While ovariectomy (OVX) in rodents abolishes sexual behavior and enables obesity, OVX in nonhuman primates decreases, but does not abolish, sexual behavior, and inconsistently alters weight gain. Objective We hypothesize that extra-ovarian estradiol provides key support for both functions, and to test this idea, we employed aromatase inhibition to eliminate extra-ovarian estradiol biosynthesis and diet-induced obesity to enhance weight gain. Methods Thirteen adult female marmosets were OVX and received (1) estradiol-containing capsules and daily oral treatments of vehicle (E2; n = 5); empty capsules and daily oral treatments of either (2) vehicle (VEH, 1 mL/kg, n = 4), or (3) letrozole (LET, 1 mg/kg, n = 4). Results After 7 months, we observed robust sexual receptivity in E2, intermediate frequencies in VEH, and virtually none in LET females (P = .04). By contrast, few rejections of male mounts were observed in E2, intermediate frequencies in VEH, and high frequencies in LET females (P = .04). Receptive head turns were consistently observed in E2, but not in VEH and LET females. LET females, alone, exhibited robust aggressive rejection of males. VEH and LET females demonstrated increased % body weight gain (P = .01). Relative estradiol levels in peripheral serum were E2 >>> VEH > LET, while those in hypothalamus ranked E2 = VEH > LET, confirming inhibition of local hypothalamic estradiol synthesis by letrozole. Conclusion Our findings provide the first evidence for extra-ovarian estradiol contributing to female sexual behavior in a nonhuman primate, and prompt speculation that extra-ovarian estradiol, and in particular neuroestrogens, may similarly regulate sexual motivation in other primates, including humans.
Collapse
Affiliation(s)
- Marissa Kraynak
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Molly M Willging
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin-Madison, Madison, WI 53715, USA
- Center for Women’s Health, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Alex L Kuehlmann
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Amita A Kapoor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Matthew T Flowers
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jon E Levine
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - David H Abbott
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53715, USA
| |
Collapse
|
7
|
Unterberger CJ, Maklakova VI, Lazar M, Arneson PD, Mcilwain SJ, Tsourkas PK, Hu R, Kopchick JJ, Swanson SM, Marker PC. GH Action in Prostate Cancer Cells Promotes Proliferation, Limits Apoptosis, and Regulates Cancer-related Gene Expression. Endocrinology 2022; 163:6564019. [PMID: 35383352 PMCID: PMC8995093 DOI: 10.1210/endocr/bqac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/19/2022]
Abstract
Previous studies investigating the effects of blocking the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis in prostate cancer found no effects of the growth hormone receptor (GHR) antagonist, pegvisomant, on the growth of grafted human prostate cancer cells in vivo. However, human GHR is not activated by mouse GH, so direct actions of GH on prostate cancer cells were not evaluated in this context. The present study addresses the species specificity of GH-GHR activity by investigating GH actions in prostate cancer cell lines derived from a mouse Pten-deletion model. In vitro cell growth was stimulated by GH and reduced by pegvisomant. These in vitro GH effects were mediated at least in part by the activation of JAK2 and STAT5. When Pten-mutant cells were grown as xenografts in mice, pegvisomant treatment dramatically reduced xenograft size, and this was accompanied by decreased proliferation and increased apoptosis. RNA sequencing of xenografts identified 1765 genes upregulated and 953 genes downregulated in response to pegvisomant, including many genes previously implicated as cancer drivers. Further evaluation of a selected subset of these genes via quantitative reverse transcription-polymerase chain reaction determined that some genes exhibited similar regulation by pegvisomant in prostate cancer cells whether treatment was in vivo or in vitro, indicating direct regulation by GH via GHR activation in prostate cancer cells, whereas other genes responded to pegvisomant only in vivo, suggesting indirect regulation by pegvisomant effects on the host endocrine environment. Similar results were observed for a prostate cancer cell line derived from the mouse transgenic adenocarcinoma of the mouse prostate (TRAMP) model.
Collapse
Affiliation(s)
- Christopher J Unterberger
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Vilena I Maklakova
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Michelle Lazar
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Paige D Arneson
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Sean J Mcilwain
- School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Philippos K Tsourkas
- School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Rong Hu
- School of Medicine and Public Health, Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin 53792, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Steven M Swanson
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Paul C Marker
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
- Correspondence: Paul C. Marker, PhD, Pharmaceutical Sciences Division, University of Wisconsin–Madison, 777 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
8
|
Estrogenic Action in Stress-Induced Neuroendocrine Regulation of Energy Homeostasis. Cells 2022; 11:cells11050879. [PMID: 35269500 PMCID: PMC8909319 DOI: 10.3390/cells11050879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Estrogens are among important contributing factors to many sex differences in neuroendocrine regulation of energy homeostasis induced by stress. Research in this field is warranted since chronic stress-related psychiatric and metabolic disturbances continue to be top health concerns, and sex differences are witnessed in these aspects. For example, chronic stress disrupts energy homeostasis, leading to negative consequences in the regulation of emotion and metabolism. Females are known to be more vulnerable to the psychological consequences of stress, such as depression and anxiety, whereas males are more vulnerable to the metabolic consequences of stress. Sex differences that exist in the susceptibility to various stress-induced disorders have led researchers to hypothesize that gonadal hormones are regulatory factors that should be considered in stress studies. Further, estrogens are heavily recognized for their protective effects on metabolic dysregulation, such as anti-obesogenic and glucose-sensing effects. Perturbations to energy homeostasis using laboratory rodents, such as physiological stress or over-/under- feeding dietary regimen prevalent in today’s society, offer hints to the underlying mechanisms of estrogenic actions. Metabolic effects of estrogens primarily work through estrogen receptor α (ERα), which is differentially expressed between the sexes in hypothalamic nuclei regulating energy metabolism and in extrahypothalamic limbic regions that are not typically associated with energy homeostasis. In this review, we discuss estrogenic actions implicated in stress-induced sex-distinct metabolic disorders.
Collapse
|
9
|
The form, function, and evolutionary significance of neural aromatization. Front Neuroendocrinol 2022; 64:100967. [PMID: 34808232 DOI: 10.1016/j.yfrne.2021.100967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022]
Abstract
Songbirds have emerged as exceptional research subjects for helping us appreciate and understand estrogen synthesis and function in brain. In the context of recognizing the vertebrate-wide importance of brain aromatase expression, in this review we highlight where we believe studies of songbirds have provided clarification and conceptual insight. We follow by focusing on more recent studies of aromatase and neuroestrogen function in the hippocampus and the pallial auditory processing region NCM of songbirds. With perspectives drawn from this body of work, we speculate that the evolution of enhanced neural estrogen signaling, including in the mediation of social behaviors, may have given songbirds the resilience to radiate into one of the most successful vertebrate groups on the planet.
Collapse
|
10
|
Azcoitia I, Mendez P, Garcia-Segura LM. Aromatase in the Human Brain. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2021; 2:189-202. [PMID: 35024691 PMCID: PMC8744447 DOI: 10.1089/andro.2021.0007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/20/2021] [Indexed: 11/30/2022]
Abstract
The aromatase cytochrome P450 (P450arom) enzyme, or estrogen synthase, which is coded by the CYP19A1 gene, is widely expressed in a subpopulation of excitatory and inhibitory neurons, astrocytes, and other cell types in the human brain. Experimental studies in laboratory animals indicate a prominent role of brain aromatization of androgens to estrogens in regulating different brain functions. However, the consequences of aromatase expression in the human brain remain poorly understood. Here, we summarize the current knowledge about aromatase expression in the human brain, abundant in the thalamus, amygdala, hypothalamus, cortex, and hippocampus and discuss its role in the regulation of sensory integration, body homeostasis, social behavior, cognition, language, and integrative functions. Since brain aromatase is affected by neurodegenerative conditions and may participate in sex-specific manifestations of autism spectrum disorders, major depressive disorder, multiple sclerosis, stroke, and Alzheimer's disease, we discuss future avenues for research and potential clinical and therapeutic implications of the expression of aromatase in the human brain.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid and Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Mendez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Luis M. Garcia-Segura
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid and Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
11
|
Balthazart J. Membrane-initiated actions of sex steroids and reproductive behavior: A historical account. Mol Cell Endocrinol 2021; 538:111463. [PMID: 34582978 DOI: 10.1016/j.mce.2021.111463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/25/2023]
Abstract
It was assumed for a long time that sex steroids are activating reproductive behaviors by the same mechanisms that produce their morphological and physiological effects in the periphery. However during the last few decades an increasing number of examples were identified where behavioral effects of steroids were just too fast to be mediated via changes in DNA transcription. This progressively forced behavioral neuroendocrinologists to recognize that part of the effects of steroids on behavior are mediated by membrane-initiated events. In this review we present a selection of these early data that changed the conceptual landscape and we provide a summary the different types of membrane-associated receptors (estrogens, androgens and progestagens receptors) that are playing the most important role in the control of reproductive behaviors. Then we finally describe in more detail three separate behavioral systems in which membrane-initiated events have clearly been established to contribute to behavior control.
Collapse
|
12
|
Brann DW, Lu Y, Wang J, Zhang Q, Thakkar R, Sareddy GR, Pratap UP, Tekmal RR, Vadlamudi RK. Brain-derived estrogen and neural function. Neurosci Biobehav Rev 2021; 132:793-817. [PMID: 34823913 PMCID: PMC8816863 DOI: 10.1016/j.neubiorev.2021.11.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Although classically known as an endocrine signal produced by the ovary, 17β-estradiol (E2) is also a neurosteroid produced in neurons and astrocytes in the brain of many different species. In this review, we provide a comprehensive overview of the localization, regulation, sex differences, and physiological/pathological roles of brain-derived E2 (BDE2). Much of what we know regarding the functional roles of BDE2 has come from studies using specific inhibitors of the E2 synthesis enzyme, aromatase, as well as the recent development of conditional forebrain neuron-specific and astrocyte-specific aromatase knockout mouse models. The evidence from these studies support a critical role for neuron-derived E2 (NDE2) in the regulation of synaptic plasticity, memory, socio-sexual behavior, sexual differentiation, reproduction, injury-induced reactive gliosis, and neuroprotection. Furthermore, we review evidence that astrocyte-derived E2 (ADE2) is induced following brain injury/ischemia, and plays a key role in reactive gliosis, neuroprotection, and cognitive preservation. Finally, we conclude by discussing the key controversies and challenges in this area, as well as potential future directions for the field.
Collapse
Affiliation(s)
- Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Roshni Thakkar
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA; Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
13
|
Sexually Dimorphic Neurosteroid Synthesis Regulates Neuronal Activity in the Murine Brain. J Neurosci 2021; 41:9177-9191. [PMID: 34561233 DOI: 10.1523/jneurosci.0885-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/12/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022] Open
Abstract
Sex steroid hormones act on hypothalamic kisspeptin neurons to regulate reproductive neural circuits in the brain. Kisspeptin neurons start to express estrogen receptors in utero, suggesting steroid hormone action on these cells early during development. Whether neurosteroids are locally produced in the embryonic brain and impinge onto kisspeptin/reproductive neural circuitry is not known. To address this question, we analyzed aromatase expression, a key enzyme in estrogen synthesis, in male and female mouse embryos. We identified an aromatase neuronal network comprising ∼6000 neurons in the hypothalamus and amygdala. By birth, this network has become sexually dimorphic in a cluster of aromatase neurons in the arcuate nucleus adjacent to kisspeptin neurons. We demonstrate that male arcuate aromatase neurons convert testosterone to estrogen to regulate kisspeptin neuron activity. We provide spatiotemporal information on aromatase neuronal network development and highlight a novel mechanism whereby aromatase neurons regulate the activity of distinct neuronal populations expressing estrogen receptors.SIGNIFICANCE STATEMENT Sex steroid hormones, such as estradiol, are important regulators of neural circuits controlling reproductive physiology in the brain. Embryonic kisspeptin neurons in the hypothalamus express steroid hormone receptors, suggesting hormone action on these cells in utero Whether neurosteroids are locally produced in the brain and impinge onto reproductive neural circuitry is insufficiently understood. To address this question, we analyzed aromatase expression, a key enzyme in estradiol synthesis, in mouse embryos and identified a network comprising ∼6000 neurons in the brain. By birth, this network has become sexually dimorphic in a cluster of aromatase neurons in the arcuate nucleus adjacent to kisspeptin neurons. We demonstrate that male aromatase neurons convert testosterone to estradiol to regulate kisspeptin neuron activity.
Collapse
|
14
|
Zhang M, Flury S, Kim CK, Chung WCJ, Kirk JA, Pak TR. Absolute Quantification of Phosphorylated ERβ Amino Acids in the Hippocampus of Women and in A Rat Model of Menopause. Endocrinology 2021; 162:6306514. [PMID: 34147032 PMCID: PMC8294689 DOI: 10.1210/endocr/bqab122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/13/2022]
Abstract
The rapid decline of circulating 17β-estradiol (E2) at menopause leads to negative neurological consequences, although hormone therapy paradoxically has both harmful and positive effects depending on the age at which it is delivered. The inconsistent response to E2 suggests unappreciated regulatory mechanisms for estrogen receptors (ERs), and we predicted it could be due to age-related differences in ERβ phosphorylation. We assessed ERβ phosphorylation using a sensitive mass spectrometry approach that provides absolute quantification (AQUA-MS) of individually phosphorylated residues. Specifically, we quantified phosphorylated ERβ in the hippocampus of women (aged 21-83 years) and in a rat model of menopause at 4 residues with conserved sequence homology between the 2 species: S105, S176, S200, and Y488. Phosphorylation at these sites, which spanned all domains of ERβ, were remarkably consistent between the 2 species, showing high levels of S105 phosphorylation (80%-100%) and low levels of S200 (20%-40%). Further, S200 phosphorylation decreased with aging in humans and loss of E2 in rats. Surprisingly, Y488 phosphorylation, which has been linked to ERβ ligand-independent actions, exhibited approximately 70% phosphorylation, unaltered by species, age, or E2, suggesting ERβ's primary mode of action may not require E2 binding. We further show phosphorylation at 2 sites directly altered ERβ DNA-binding efficiency, and thus could affect its transcription factor activity. These findings provide the first absolute quantification of ERβ phosphorylation in the human and rat brain, novel insights into ERβ regulation, and a critical foundation for providing more targeted therapeutic options for menopause in the future.
Collapse
Affiliation(s)
- Mengjie Zhang
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, USA
| | - Sarah Flury
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, USA
| | - Chun K Kim
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, USA
| | - Wilson C J Chung
- Department of Biology, Kent State University, Kent, Ohio 44242, USA
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, USA
| | - Toni R Pak
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, USA
- Correspondence: Toni R. Pak, PhD, Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, 2160 S First Ave, CTRE 115-520, Maywood, IL 60153, USA.
| |
Collapse
|
15
|
Fraser GL, Obermayer-Pietsch B, Laven J, Griesinger G, Pintiaux A, Timmerman D, Fauser BCJM, Lademacher C, Combalbert J, Hoveyda HR, Ramael S. Randomized Controlled Trial of Neurokinin 3 Receptor Antagonist Fezolinetant for Treatment of Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2021; 106:e3519-e3532. [PMID: 34000049 PMCID: PMC8372662 DOI: 10.1210/clinem/dgab320] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 12/14/2022]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS), a highly prevalent endocrine disorder characterized by hyperandrogenism, is the leading cause of anovulatory infertility. OBJECTIVE This proof-of-concept study evaluated clinical efficacy and safety of the neurokinin 3 (NK3) receptor antagonist fezolinetant in PCOS. METHODS This was a phase 2a, randomized, double-blind, placebo-controlled, multicenter study (EudraCT 2014-004409-34). The study was conducted at 5 European clinical centers. Women with PCOS participated in the study. Interventions included fezolinetant 60 or 180 mg/day or placebo for 12 weeks. The primary efficacy end point was change in total testosterone. Gonadotropins, ovarian hormones, safety and tolerability were also assessed. RESULTS Seventy-three women were randomly assigned, and 64 participants completed the study. Adjusted mean (SE) changes in total testosterone from baseline to week 12 for fezolinetant 180 and 60 mg/day were -0.80 (0.13) and -0.39 (0.12) nmol/L vs -0.05 (0.10) nmol/L with placebo (P < .001 and P < .05, respectively). Adjusted mean (SE) changes from baseline in luteinizing hormone (LH) for fezolinetant 180 and 60 mg/d were -10.17 (1.28) and -8.21 (1.18) vs -3.16 (1.04) IU/L with placebo (P < .001 and P = .002); corresponding changes in follicle-stimulating hormone (FSH) were -1.46 (0.32) and -0.92 (0.30) vs -0.57 (0.26) IU/L (P = .03 and P = .38), underpinning a dose-dependent decrease in the LH-to-FSH ratio vs placebo (P < .001). Circulating levels of progesterone and estradiol did not change significantly vs placebo (P > .10). Fezolinetant was well tolerated. CONCLUSION Fezolinetant had a sustained effect to suppress hyperandrogenism and reduce the LH-to-FSH ratio in women with PCOS.
Collapse
Affiliation(s)
- Graeme L Fraser
- Correspondence: Graeme L. Fraser, PhD, EPICS Therapeutics, 47 Rue Adrienne Bolland, 6041 Gosselies, Belgium.
| | | | - Joop Laven
- Erasmus MC, 3015 Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nandankar N, Negrón AL, Wolfe A, Levine JE, Radovick S. Deficiency of arcuate nucleus kisspeptin results in postpubertal central hypogonadism. Am J Physiol Endocrinol Metab 2021; 321:E264-E280. [PMID: 34181485 PMCID: PMC8410100 DOI: 10.1152/ajpendo.00088.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/07/2021] [Accepted: 06/19/2021] [Indexed: 11/25/2022]
Abstract
Kisspeptin (encoded by Kiss1), a neuropeptide critically involved in neuroendocrine regulation of reproduction, is primarily synthesized in two hypothalamic nuclei: the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC). AVPV kisspeptin is thought to regulate the estrogen-induced positive feedback control of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH), and the preovulatory LH surge in females. In contrast, ARC kisspeptin neurons, which largely coexpress neurokinin B and dynorphin A (collectively named KNDy neurons), are thought to mediate estrogen-induced negative feedback control of GnRH/LH and be the major regulators of pulsatile GnRH/LH release. However, definitive data to delineate the specific roles of AVPV versus ARC kisspeptin neurons in the control of GnRH/LH release is lacking. Therefore, we generated a novel mouse model targeting deletion of Kiss1 to the ARC nucleus (Pdyn-Cre/Kiss1fl/fl KO) to determine the functional differences between ARC and AVPV kisspeptin neurons on the reproductive axis. The efficacy of the knockout was confirmed at both the mRNA and protein levels. Adult female Pdyn-Cre/Kiss1fl/fl KO mice exhibited persistent diestrus and significantly fewer LH pulses when compared with controls, resulting in arrested folliculogenesis, hypogonadism, and infertility. Pdyn-Cre/Kiss1fl/fl KO males also exhibited disrupted LH pulsatility, hypogonadism, and variable, defective spermatogenesis, and subfertility. The timing of pubertal onset in males and females was equivalent to controls. These findings add to the current body of evidence for the critical role of kisspeptin in ARC KNDy neurons in GnRH/LH pulsatility in both sexes, while directly establishing ARC kisspeptin's role in regulating estrous cyclicity in female mice, and gametogenesis in both sexes, and culminating in disrupted fertility. The Pdyn-Cre/Kiss1fl/fl KO mice present a novel mammalian model of postpubertal central hypogonadism.NEW & NOTEWORTHY We demonstrate through a novel, conditional knockout mouse model of arcuate nucleus (ARC)-specific kisspeptin in the KNDy neuron that ARC kisspeptin is critical for estrous cyclicity in female mice and GnRH/LH pulsatility in both sexes. Our study reveals that ARC kisspeptin is essential for normal gametogenesis, and the loss of ARC kisspeptin results in significant hypogonadism, impacting fertility status. Our findings further confirm that normal puberty occurs despite a loss of ARC kisspeptin.
Collapse
Affiliation(s)
- Nimisha Nandankar
- Department of Pediatrics, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Ariel L Negrón
- Department of Pediatrics, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Andrew Wolfe
- Division of Physiological and Pathological Sciences, National Institutes of Health, Bethesda, Maryland
| | - Jon E Levine
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| | - Sally Radovick
- Department of Pediatrics, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
17
|
Marino L, Messina A, S Acierno J, Phan-Hug F, J Niederländer N, Santoni F, La Rosa S, Pitteloud N. Testosterone-induced increase in libido in a patient with a loss-of-function mutation in the AR gene. Endocrinol Diabetes Metab Case Rep 2021; 2021:EDM21-0031. [PMID: 34152287 PMCID: PMC8240814 DOI: 10.1530/edm-21-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/13/2021] [Indexed: 11/08/2022] Open
Abstract
SUMMARY Complete androgen-insensitivity syndrome (CAIS), a disorder of sex development (46,XY DSD), is caused primarily by mutations in the androgen receptor (AR). Gonadectomy is recommended due to the increased risk of gonadoblastoma, however, surgical intervention is often followed by loss of libido. We present a 26-year-old patient with CAIS who underwent gonadectomy followed by a significant decrease in libido, which was improved with testosterone treatment but not with estradiol. Genetic testing was performed and followed by molecular characterization. We found that this patient carried a previously unidentified start loss mutation in the androgen receptor. This variant resulted in an N-terminal truncated protein with an intact DNA binding domain and was confirmed to be loss-of-function in vitro. This unique CAIS case and detailed functional studies raise intriguing questions regarding the relative roles of testosterone and estrogen in libido, and in particular, the potential non-genomic actions of androgens. LEARNING POINTS N-terminal truncation of androgen receptor can cause androgen-insensitivity syndrome. Surgical removal of testosterone-producing gonads can result in loss of libido. Libido may be improved with testosterone treatment but not with estradiol in some forms of CAIS. A previously unreported AR mutation - p.Glu2_Met190del (c.2T>C) - is found in a CAIS patient and results in blunted AR transcriptional activity under testosterone treatment.
Collapse
Affiliation(s)
- Laura Marino
- Department of Service of Endocrinology, Diabetes, and Metabolism, Faculty of Biology and Medicine, University of Lausanne, Lausanne University Hospital, Lausanne, Vaud, Switzerland
| | - Andrea Messina
- Department of Service of Endocrinology, Diabetes, and Metabolism, Faculty of Biology and Medicine, University of Lausanne, Lausanne University Hospital, Lausanne, Vaud, Switzerland
| | - James S Acierno
- Department of Service of Endocrinology, Diabetes, and Metabolism, Faculty of Biology and Medicine, University of Lausanne, Lausanne University Hospital, Lausanne, Vaud, Switzerland
| | - Franziska Phan-Hug
- Department of Service of Endocrinology, Diabetes, and Metabolism, Faculty of Biology and Medicine, University of Lausanne, Lausanne University Hospital, Lausanne, Vaud, Switzerland
| | - Nicolas J Niederländer
- Department of Service of Endocrinology, Diabetes, and Metabolism, Faculty of Biology and Medicine, University of Lausanne, Lausanne University Hospital, Lausanne, Vaud, Switzerland
| | - Federico Santoni
- Department of Service of Endocrinology, Diabetes, and Metabolism, Faculty of Biology and Medicine, University of Lausanne, Lausanne University Hospital, Lausanne, Vaud, Switzerland
| | - Stefano La Rosa
- Department of Laboratory Medicine and Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Vaud, Switzerland
| | - Nelly Pitteloud
- Department of Service of Endocrinology, Diabetes, and Metabolism, Faculty of Biology and Medicine, University of Lausanne, Lausanne University Hospital, Lausanne, Vaud, Switzerland
| |
Collapse
|
18
|
Abstract
Many physiological systems rely on hormones to communicate and time cellular and tissue-level functions. Most endocrine systems are dynamic and governed by complex regulatory systems and/or feedback mechanisms to generate precise patterns and modes of hormone release in order to optimize control of physiological and cellular processes. This Special Issue focuses on hormone release patterns (ultradian, infradian, pulsatile, circadian), with a special emphasis on the hypothalamic-pituitary axis as well as melatonin release, and how these patterns of hormone secretion change during life stages and disease.
Collapse
Affiliation(s)
- Alexander S Kauffman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hanne M Hoffmann
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
19
|
Effects of the Fertility Drugs Clomiphene Citrate and Letrozole on Kiss-1 Expression in Hypothalamic Kiss-1-Expressing Cell Models. Reprod Sci 2020; 27:806-814. [PMID: 32006244 DOI: 10.1007/s43032-020-00154-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Clomiphene citrate (CC) and letrozole stimulate the hypothalamic-pituitary-ovarian axis and are used widely as oral fertility drugs to induce folliculogenesis. We examined whether these drugs increase Kiss-1 expression in hypothalamic cell models. We utilized two hypothalamic cell models, mHypoA-50 and mHypoA-55, which originated from Kiss-1 neurons in the anteroventral periventricular (AVPV) nucleus and arcuate (ARC) nucleus of the mouse hypothalamus, respectively. The cells were stimulated with CC or letrozole, after which Kiss-1 mRNA expression was determined. CC stimulated Kiss-1 gene expression in mHypoA-50 and mHypoA-55 cells. The basal expression of Kiss-1 was significantly increased in the presence of estradiol (E2) in mHypoA-50 cells, and the CC-induced increase in Kiss-1 expression was not observed in the presence of E2 in these cells. In contrast, E2 did not modify the basal expression of Kiss-1 in mHypoA-55 cells, and CC-induced Kiss-1 expression was still observed in the presence of E2. The significant increase in Kiss-1 gene expression in mHypoA-50 and mHypoA-55 cells was blunted in the presence of estrogen receptor antagonists. Aromatase was expressed in mHypoA-50 and mHypoA-55 cells. Letrozole, an aromatase inhibitor, increased Kiss-1 expression in mHypoA-55 ARC cells but not in mHypoA-50 AVPV cells. Although the basal expression of Kiss-1 was increased by E2, letrozole did not modulate Kiss-1 expression in mHypoA-50 cells. Letrozole-induced Kiss-1 gene expression in mHypoA-55 cells was not modulated in the presence of E2. The fertility drugs CC and letrozole modulated Kiss-1 expression in hypothalamic cell models.
Collapse
|
20
|
Matsuda F, Ohkura S, Magata F, Munetomo A, Chen J, Sato M, Inoue N, Uenoyama Y, Tsukamura H. Role of kisspeptin neurons as a GnRH surge generator: Comparative aspects in rodents and non-rodent mammals. J Obstet Gynaecol Res 2019; 45:2318-2329. [PMID: 31608564 DOI: 10.1111/jog.14124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 02/01/2023]
Abstract
Ovulation is an essential phenomenon for reproduction in mammalian females along with follicular growth. It is well established that gonadal function is controlled by the neuroendocrine system called the hypothalamus-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons, localized in the hypothalamus, had been considered to be the head in governing the HPG axis for a long time until the discovery of kisspeptin. In females, induction of ovulation and folliculogenesis has been linked to a surge mode and pulse mode of GnRH releases, respectively. The mechanisms of how the two modes of GnRH are differently regulated had long remained elusive. The discovery of kisspeptin neurons, distributed in two hypothalamic nuclei, such as the arcuate nucleus in the caudal hypothalamus and preoptic area or the anteroventral periventricular nucleus in the rostral hypothalamic regions, and analyses of the detailed functions of kisspeptin neurons have led marked progress on the understanding of different mechanisms regulating GnRH surges (ovulation) and GnRH pulses (folliculogenesis). The present review will focus on the role of kisspeptin neurons as the GnRH surge generator, including the sexual differentiation of the surge generation system and factors that regulate the surge generator. Comparative aspects between mammalian species are especially focused on.
Collapse
Affiliation(s)
- Fuko Matsuda
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ohkura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Fumie Magata
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Arisa Munetomo
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jing Chen
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marimo Sato
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
21
|
Porteous R, Herbison AE. Genetic Deletion of Esr1 in the Mouse Preoptic Area Disrupts the LH Surge and Estrous Cyclicity. Endocrinology 2019; 160:1821-1829. [PMID: 31145462 DOI: 10.1210/en.2019-00284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022]
Abstract
Estrogen receptor α (ESR1) is critical for the generation of the preovulatory LH surge. Experiments in rodents have indicated a role for neurons located in the anteroventral periventricular area and preoptic periventricular nucleus [termed the rostral periventricular area of the third ventricle (RP3V)] in surge generation. In the current study, we aimed to examine whether ESR1 expressed by RP3V neurons was necessary for the LH surge. The estrous cycles of mice with estrogen receptor α (Esr1) exon 3 flanked by LoxP sites (Esr1 flox) and controls were monitored before and after bilateral stereotactic injection of adeno-associated virus encoding Cre recombinase into the RP3V. This resulted in 84% and 72% decreases in ESR1-immunoreactive cell numbers in the anteroventral periventricular area and preoptic periventricular nucleus, respectively, with no changes in the arcuate nucleus. Beginning three weeks after the adeno-associated virus injection, Esr1 flox mice began to show a loss of estrous cyclicity going, primarily, into constant estrus. Wild-type mice and Esr1 flox mice with injections outside the RP3V or unilateral ablations of ESR1 continued to exhibit normal estrous cycles. Mice were then gonadectomized and given an estradiol replacement regimen to generate the LH surge. This resulted in an absence of cFOS expression in GnRH neurons (1 ± 1% vs 28 ± 4% of GnRH neurons; P < 0.01) and markedly reduced LH surge levels (2.5 ± 0.6 vs 9.1 ± 1.0 ng/mL; P < 0.01) in Esr1 flox mice compared with controls. These results demonstrate that neurons expressing ESR1 within the RP3V are critical for the generation of the LH surge and estrous cyclicity in the mouse.
Collapse
Affiliation(s)
- Robert Porteous
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Moore AM, Coolen LM, Porter DT, Goodman RL, Lehman MN. KNDy Cells Revisited. Endocrinology 2018; 159:3219-3234. [PMID: 30010844 PMCID: PMC6098225 DOI: 10.1210/en.2018-00389] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/05/2018] [Indexed: 12/29/2022]
Abstract
In the past decade since kisspeptin/neurokinin B/dynorphin (KNDy) cells were first identified in the mammalian hypothalamus, a plethora of new research has emerged adding insights into the role of this neuronal population in reproductive neuroendocrine function, including the basis for GnRH pulse generation and the mechanisms underlying the steroid feedback control of GnRH secretion. In this mini-review, we provide an update of evidence regarding the roles of KNDy peptides and their postsynaptic receptors in producing episodic GnRH release and assess the relative contribution of KNDy neurons to the "GnRH pulse generator." In addition, we examine recent work investigating the role of KNDy neurons as mediators of steroid hormone negative feedback and review evidence for their involvement in the preovulatory GnRH/LH surge, taking into account species differences that exist among rodents, ruminants, and primates. Finally, we summarize emerging roles of KNDy neurons in other aspects of reproductive function and in nonreproductive functions and discuss critical unresolved questions in our understanding of KNDy neurobiology.
Collapse
Affiliation(s)
- Aleisha M Moore
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lique M Coolen
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Physics and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Danielle T Porter
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Robert L Goodman
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, West Virginia
| | - Michael N Lehman
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
23
|
Stincic TL, Rønnekleiv OK, Kelly MJ. Diverse actions of estradiol on anorexigenic and orexigenic hypothalamic arcuate neurons. Horm Behav 2018; 104:146-155. [PMID: 29626486 PMCID: PMC6196116 DOI: 10.1016/j.yhbeh.2018.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/13/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. There is now compelling evidence for membrane-associated estrogen receptors in hypothalamic neurons that are critical for the hypothalamic control of homeostatic functions. It has been known for some time that estradiol (E2) can rapidly alter hypothalamic neuronal activity within seconds, indicating that some cellular effects can occur via membrane initiated events. However, our understanding of how E2 signals via membrane-associated receptors and how these signals impact physiological functions is only just emerging. Thus, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell excitability and even gene transcription in hypothalamic neurons. One population of hypothalamic neurons, the anorexigenic proopiomelanocortin (POMC) neurons, has long been considered to be a target of E2's actions based on gene (Pomc) expression studies. However, we now know that E2 can rapidly alter POMC neuronal activity within seconds and activate several intracellular signaling cascades that ultimately affect gene expression, actions which are critical for maintaining sensitivity to insulin in metabolically stressed states. E2 also affects the orexigenic Neuropeptide Y/Agouti-related Peptide (NPY/AgRP) neurons in similarly rapid but antagonistic manner. Therefore, this review will summarize our current state of knowledge of how E2 signals via rapid membrane-initiated and intracellular signaling cascades in POMC and NPY/AgRP neurons to regulate energy homeostasis.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Oline K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, USA; Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Martin J Kelly
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA; Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
24
|
Abstract
Contribution to Special Issue on Fast effects of steroids. The concept that the positive feedback effect of ovarian estradiol (E2) results in GnRH and gonadotropin surges is a well-established principle. However, a series of studies investigating the rapid action of E2 in female rhesus monkeys has led to a new concept that neuroestradiol, synthesized and released in the hypothalamus, also contributes to regulation of the preovulatory GnRH surge. This unexpected finding started from our surprising observation that E2 induces rapid stimulatory action in GnRH neurons in vitro. Subsequently, we confirmed that a similar rapid stimulatory action of E2 occurs in vivo. Unlike subcutaneous injection of E2 benzoate (EB), a brief (10-20 min), direct infusion of EB into the median eminence in ovariectomized (OVX) female monkeys rapidly stimulates release of GnRH and E2 in a pulsatile manner, and the EB-induced GnRH and E2 release is blocked by simultaneous infusion of the aromatase inhibitor, letrozole. This suggests that stimulated release of E2 is of hypothalamic origin. To further determine the role of neuroestradiol we examined the effects of letrozole on EB-induced GnRH and LH surges in OVX females. Results indicate that letrozole treatment greatly attenuated the EB-induced GnRH and LH surges. Collectively, neuroestradiol released from the hypothalamus appears to be necessary for the positive feedback effect of E2 on the GnRH/LH surge.
Collapse
Affiliation(s)
- Ei Terasawa
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, United States; Department of Pediatrics, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
25
|
Lehman MN, Coolen LM, Steiner RA, Neal-Perry G, Wang L, Moenter SM, Moore AM, Goodman RL, Hwa-Yeo S, Padilla SL, Kauffman AS, Garcia J, Kelly MJ, Clarkson J, Radovick S, Babwah AV, Leon S, Tena-Sempere M, Comninos A, Seminara S, Dhillo WS, Levine J, Terasawa E, Negron A, Herbison AE. The 3 rd World Conference on Kisspeptin, "Kisspeptin 2017: Brain and Beyond":Unresolved questions, challenges and future directions for the field. J Neuroendocrinol 2018; 30:e12600. [PMID: 29656508 PMCID: PMC6461527 DOI: 10.1111/jne.12600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
The 3rd World Conference on Kisspeptin, "Kisspeptin 2017: Brain and Beyond" was held March 30-31 at the Rosen Centre Hotel in Orlando, Florida, providing an international forum for multidisciplinary scientists to meet and share cutting-edge research on kisspeptin biology and its relevance to human health and disease. The meeting built upon previous world conferences focused on the role of kisspeptin and associated peptides in the control of gonadotropin-releasing hormone (GnRH) secretion and reproduction. Based on recent discoveries, the scope of this meeting was expanded to include functions of kisspeptin and related peptides in other physiological systems including energy homeostasis, pregnancy, ovarian and uterine function, and thermoregulation. In addition, discussions addressed the translation of basic knowledge of kisspeptin biology to the treatment of disease, with the goal of seeking consensus about the best approaches to improve human health. The two-day meeting featured a non-traditional structure, with each day starting with poster sessions followed by lunch discussions and facilitated large-group sessions with short presentations to maximize the exchange of new, unpublished data. Topics were identified by a survey prior to the meeting, and focused on major unresolved questions, important controversies, and future directions in the field. Finally, career development activities provided mentoring for trainees and junior investigators, and networking opportunities for those individuals with established researchers in the field. Overall, the meeting was rated as a success by attendees and covered a wide range of lively and provocative discussion topics on the changing nature of the field of "kisspeptinology" and its future. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michael N Lehman
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA
| | - Lique M Coolen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA
| | - Robert A Steiner
- Departments of Obstetrics, Gynecology and Physiology & Biophysics, University of Washington, Box 357290 Seattle, WA 98195-7290, USA
| | - Genevieve Neal-Perry
- Departments of Obstetrics, Gynecology and Physiology & Biophysics, University of Washington, Box 357290 Seattle, WA 98195-7290, USA
| | - Luhong Wang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aleisha M Moore
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA
| | - Robert L Goodman
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Shel Hwa-Yeo
- Reproductive Physiology Group, Department of Physiology, Development, Neuroscience, University of Cambridge, Cambridge, UK
| | - Stephanie L Padilla
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Alexander S Kauffman
- University of California, San Diego, Department of Obstetrics& Gynecology and Reproductive Sciences, La Jolla, CA, USA
| | - James Garcia
- Endocrinology and Reproductive Physiology Training Program, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Martin J Kelly
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239 and Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Jenny Clarkson
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Science, Dunedin, 9054, New Zealand
| | - Sally Radovick
- Department of Pediatrics, Rutgers University - Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Andy V Babwah
- Department of Pediatrics, Rutgers University - Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Silvia Leon
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Manuel Tena-Sempere
- Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Córdoba; and Hospital Universitario Reina Sofia, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004Córdoba, Spain
| | - Alex Comninos
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Stephanie Seminara
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Waljit S Dhillo
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Jon Levine
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53715, USA
| | - Ei Terasawa
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ariel Negron
- Department of Pediatrics, Rutgers University - Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Science, Dunedin, 9054, New Zealand
| |
Collapse
|
26
|
Walters KA, Edwards MC, Tesic D, Caldwell ASL, Jimenez M, Smith JT, Handelsman DJ. The Role of Central Androgen Receptor Actions in Regulating the Hypothalamic-Pituitary-Ovarian Axis. Neuroendocrinology 2018; 106:389-400. [PMID: 29635226 DOI: 10.1159/000487762] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/16/2018] [Indexed: 12/20/2022]
Abstract
The androgen receptor (AR) is expressed throughout the hypothalamic-pituitary-gonadal (HPG) axis, and findings from female global AR knockout mice confirm that AR-mediated androgen actions play important roles in regulating female reproductive function. We generated neuron-specific AR knockout mice (NeurARKO) to investigate the functional role of neuronal AR-mediated androgen action in regulating the female HPG axis and fertility. Relative to control females, NeurARKO females exhibited elevated luteinizing hormone (LH) levels at diestrus (p < 0.05) and a compromised serum LH response to ovariectomy and E2 priming (p < 0.01). Furthermore, NeurARKO females displayed reduced Kiss1 mRNA expression in the anteroventral periventricular nucleus at diestrus (p < 0.05) and proestrus (p < 0.05), but elevated Kiss1 (p < 0.05) and neurokinin B (Tac2, p < 0.05) mRNA expression in the arcuate nucleus at proestrus compared to WT controls. Ovarian follicle dynamics were also altered in NeurARKO ovaries at 3 months of age, with a significant reduction in large antral follicle numbers at the proestrus stage compared to control WT ovaries (p < 0.05). Increased follicular atresia was evident in NeurARKO ovaries with a 4-fold increase in unhealthy large preantral follicles (p < 0.01). Despite the findings of aberrant neuroendocrine and ovarian characteristics in the NeurARKO females, estrous cyclicity and overall fertility were comparable between NeurARKO and WT females. In conclusion, our findings revealed that selective loss of neuronal AR actions impacts the kisspeptin/GnRH/LH cascade leading to compromised ovarian follicle dynamics.
Collapse
Affiliation(s)
- Kirsty A Walters
- School of Women's & Children's Health, University of New South Wales, Sydney, New South Wales, Australia
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Melissa C Edwards
- School of Women's & Children's Health, University of New South Wales, Sydney, New South Wales, Australia
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Dijana Tesic
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Washington, Australia
| | - Aimee S L Caldwell
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Mark Jimenez
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Jeremy T Smith
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Washington, Australia
| | - David J Handelsman
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|