1
|
Webster MW. Initiation of Translation in Bacteria and Chloroplasts. J Mol Biol 2025:169137. [PMID: 40221131 DOI: 10.1016/j.jmb.2025.169137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Relative rates of protein synthesis in bacteria generally depend on the number of copies of a messenger RNA (mRNA) and the efficiency of their loading with ribosomes. Translation initiation involves the multi-stage assembly of the ribosome on the mRNA to begin protein synthesis. In bacteria, the small ribosomal subunit (30S) and mRNA form a complex that can be supported by RNA-protein and RNA-RNA interactions and is extensively modulated by mRNA folding. The initiator transfer RNA (tRNA) and large ribosomal subunit (50S) are recruited with aid of three initiation factors (IFs). Equivalent translation initiation processes occur in chloroplasts due to their endosymbiotic origin from photosynthetic bacteria. This review first summarizes the molecular basis of translation initiation in bacteria, highlighting recent insight into the initial, intermediate and late stages of the pathway obtained by structural analyses. The molecular basis of chloroplast translation initiation is then reviewed, integrating our mechanistic understanding of bacterial gene expression supported by detailed in vitro experiments with data on chloroplast gene expression derived primarily from genetic studies.
Collapse
Affiliation(s)
- Michael W Webster
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
2
|
Ghandour R, Devlitsarov D, Popp P, Melamed S, Huber M, Siemers M, Krüger T, Kniemeyer O, Klingl A, Brakhage A, Erhardt M, Papenfort K. ProQ-associated small RNAs control motility in Vibrio cholerae. Nucleic Acids Res 2025; 53:gkae1283. [PMID: 39727155 PMCID: PMC11879080 DOI: 10.1093/nar/gkae1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Gene regulation at the post-transcriptional level is prevalent in all domains of life. In bacteria, ProQ-like proteins have emerged as important RNA chaperones facilitating RNA stability and RNA duplex formation. In the major human pathogen Vibrio cholerae, post-transcriptional gene regulation is key for virulence, biofilm formation, and antibiotic resistance, yet the role of ProQ has not been studied. Here, we show that ProQ interacts with hundreds of transcripts in V. cholerae, including the highly abundant FlaX small RNA (sRNA). Global analyses of RNA duplex formation using RIL-Seq (RNA interaction by ligation and sequencing) revealed a vast network of ProQ-assisted interactions and identified a role for FlaX in motility regulation. Specifically, FlaX base-pairs with multiple sites on the flaB flagellin mRNA, preventing 30S ribosome binding and translation initiation. V. cholerae cells lacking flaX display impaired motility gene expression, altered flagella composition and reduced swimming in liquid environments. Our results provide a global view on ProQ-associated RNA duplex formation and pinpoint the mechanistic and phenotypic consequences associated with ProQ-associated sRNAs in V. cholerae.
Collapse
Affiliation(s)
- Rabea Ghandour
- Friedrich Schiller University, Institute of Microbiology, 07743 Jena, Germany
| | - Daniel Devlitsarov
- Friedrich Schiller University, Institute of Microbiology, 07743 Jena, Germany
| | - Phillip Popp
- Humboldt-Universität zu Berlin, Institute for Biology, 10115 Berlin, Germany
| | - Sahar Melamed
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michaela Huber
- Friedrich Schiller University, Institute of Microbiology, 07743 Jena, Germany
| | - Malte Siemers
- Friedrich Schiller University, Institute of Microbiology, 07743 Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Olaf Kniemeyer
- LMU Munich Biocenter, Ludwig-Maximilian-University of Munich, 82152 Munich, Germany
| | - Andreas Klingl
- LMU Munich Biocenter, Ludwig-Maximilian-University of Munich, 82152 Munich, Germany
| | - Axel A Brakhage
- Friedrich Schiller University, Institute of Microbiology, 07743 Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Marc Erhardt
- Humboldt-Universität zu Berlin, Institute for Biology, 10115 Berlin, Germany
| | - Kai Papenfort
- Friedrich Schiller University, Institute of Microbiology, 07743 Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
3
|
Bera P, Wasim A, Bakshi S, Mondal J. Protein translation can fluidize bacterial cytoplasm. PNAS NEXUS 2024; 3:pgae532. [PMID: 39660062 PMCID: PMC11630519 DOI: 10.1093/pnasnexus/pgae532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
The cytoplasm of bacterial cells is densely packed with highly polydisperse macromolecules that exhibit size-dependent glassy dynamics. Recent research has revealed that metabolic activities in living cells can counteract the glassy nature of these macromolecules, allowing the cell to maintain critical fluidity for its growth and function. While it has been proposed that the crowded cytoplasm is responsible for this glassy behavior, a detailed analysis of the size-dependent nature of the glassy dynamics and an explanation for how cellular activity induces its fluidization remains elusive. Here, we use a combination of computational models and targeted experiments to show that entropic segregation of the protein synthesis machinery from the chromosomal DNA causes size-dependent spatial organization of molecules within the cell, and the resultant crowding leads to size-dependent glassy dynamics. Furthermore, Brownian dynamics simulations of this in silico system supports a new hypothesis: protein synthesis in living cells contributes to the metabolism-dependent fluidization of the cytoplasm. The main protein synthesis machinery, ribosomes, frequently shift between fast and slow diffusive states. These states correspond to the independent movement of ribosomal subunits and the actively translating ribosome chains called polysomes, respectively. Our simulations demonstrate that the frequent transitions of the numerous ribosomes, which constitute a significant portion of the cell proteome, greatly enhance the mobility of other macromolecules within the bacterial cytoplasm. Considering that ribosomal protein synthesis is the largest consumer of ATP in growing bacterial cells, the translation process can serve as the primary mechanism for fluidizing the cytoplasm in metabolically active cells.
Collapse
Affiliation(s)
- Palash Bera
- Tata Institute of Fundamental Research, Hyderabad, Telangana 500046, India
| | - Abdul Wasim
- Tata Institute of Fundamental Research, Hyderabad, Telangana 500046, India
| | - Somenath Bakshi
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Hyderabad, Telangana 500046, India
| |
Collapse
|
4
|
Lee CY, Joshi M, Wang A, Myong S. 5'UTR G-quadruplex structure enhances translation in size dependent manner. Nat Commun 2024; 15:3963. [PMID: 38729943 PMCID: PMC11087576 DOI: 10.1038/s41467-024-48247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Translation initiation in bacteria is frequently regulated by various structures in the 5' untranslated region (5'UTR). Previously, we demonstrated that G-quadruplex (G4) formation in non-template DNA enhances transcription. In this study, we aim to explore how G4 formation in mRNA (RG4) at 5'UTR impacts translation using a T7-based in vitro translation system and in E. coli. We show that RG4 strongly promotes translation efficiency in a size-dependent manner. Additionally, inserting a hairpin upstream of the RG4 further enhances translation efficiency, reaching up to a 12-fold increase. We find that the RG4-dependent effect is not due to increased ribosome affinity, ribosome binding site accessibility, or mRNA stability. We propose a physical barrier model in which bulky structures in 5'UTR biases ribosome movement toward the downstream start codon, thereby increasing the translation output. This study provides biophysical insights into the regulatory role of 5'UTR structures in in vitro and bacterial translation, highlighting their potential applications in tuning gene expression.
Collapse
Affiliation(s)
- Chun-Ying Lee
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Meera Joshi
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ashley Wang
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Myong S, Lee CY, Joshi M, Wang A. 5'UTR G-quadruplex structure enhances translation in size dependent manner. RESEARCH SQUARE 2023:rs.3.rs-3352233. [PMID: 37790436 PMCID: PMC10543253 DOI: 10.21203/rs.3.rs-3352233/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Translation initiation in bacteria is frequently regulated by various structures in the 5' untranslated region (5'UTR). Previously, we demonstrated that G-quadruplex (G4) formation in non-template DNA enhances transcription. In this study, we aimed to explore how G4 formation in mRNA (RG4) at 5'UTR impacts translation using a T7-based in vitro translation system and in E. coli. We showed that RG4 strongly promotes translation efficiency in a size-dependent manner. Additionally, inserting a hairpin upstream of the RG4 further enhances translation efficiency, reaching up to a 12-fold increase. We found that the RG4-dependent effect is not due to increased ribosome affinity, ribosome binding site accessibility, or mRNA stability. We proposed a physical barrier model in which bulky structures in 5'UTR prevent ribosome dislodging and thereby increase the translation output. This study provides biophysical insights into the regulatory role of 5'UTR structures in bacterial translation, highlighting their potential applications in tuning gene expression.
Collapse
Affiliation(s)
- Sua Myong
- Boston Children's Hospital/Harvard Medical School
| | | | - Meera Joshi
- Boston Children's Hospital/Harvard Medical School
| | | |
Collapse
|
6
|
Schroeder GM, Akinyemi O, Malik J, Focht CM, Pritchett E, Baker C, McSally JP, Jenkins JL, Mathews D, Wedekind J. A riboswitch separated from its ribosome-binding site still regulates translation. Nucleic Acids Res 2023; 51:2464-2484. [PMID: 36762498 PMCID: PMC10018353 DOI: 10.1093/nar/gkad056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Riboswitches regulate downstream gene expression by binding cellular metabolites. Regulation of translation initiation by riboswitches is posited to occur by metabolite-mediated sequestration of the Shine-Dalgarno sequence (SDS), causing bypass by the ribosome. Recently, we solved a co-crystal structure of a prequeuosine1-sensing riboswitch from Carnobacterium antarcticum that binds two metabolites in a single pocket. The structure revealed that the second nucleotide within the gene-regulatory SDS, G34, engages in a crystal contact, obscuring the molecular basis of gene regulation. Here, we report a co-crystal structure wherein C10 pairs with G34. However, molecular dynamics simulations reveal quick dissolution of the pair, which fails to reform. Functional and chemical probing assays inside live bacterial cells corroborate the dispensability of the C10-G34 pair in gene regulation, leading to the hypothesis that the compact pseudoknot fold is sufficient for translation attenuation. Remarkably, the C. antarcticum aptamer retained significant gene-regulatory activity when uncoupled from the SDS using unstructured spacers up to 10 nucleotides away from the riboswitch-akin to steric-blocking employed by sRNAs. Accordingly, our work reveals that the RNA fold regulates translation without SDS sequestration, expanding known riboswitch-mediated gene-regulatory mechanisms. The results infer that riboswitches exist wherein the SDS is not embedded inside a stable fold.
Collapse
Affiliation(s)
- Griffin M Schroeder
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Olayinka Akinyemi
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Physics, University of Rochester, Rochester, NY 14642, USA
| | - Jeffrey Malik
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Caroline M Focht
- Department of Molecular Biophysics and Biochemistry and the Institute of Biomolecular Design and Discovery, Yale University, New Haven, CT 06516, USA
| | - Elizabeth M Pritchett
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Cameron D Baker
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - James P McSally
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - David H Mathews
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
7
|
Zabolotskii AI, Kozlovskiy SV, Katrukha AG. The Influence of the Nucleotide Composition of Genes and Gene Regulatory Elements on the Efficiency of Protein Expression in Escherichia coli. BIOCHEMISTRY (MOSCOW) 2023; 88:S176-S191. [PMID: 37069120 DOI: 10.1134/s0006297923140109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Recombinant proteins expressed in Escherichia coli are widely used in biochemical research and industrial processes. At the same time, achieving higher protein expression levels and correct protein folding still remains the key problem, since optimization of nutrient media, growth conditions, and methods for induction of protein synthesis do not always lead to the desired result. Often, low protein expression is determined by the sequences of the expressed genes and their regulatory regions. The genetic code is degenerated; 18 out of 20 amino acids are encoded by more than one codon. Choosing between synonymous codons in the coding sequence can significantly affect the level of protein expression and protein folding due to the influence of the gene nucleotide composition on the probability of formation of secondary mRNA structures that affect the ribosome binding at the translation initiation phase, as well as the ribosome movement along the mRNA during elongation, which, in turn, influences the mRNA degradation and the folding of the nascent protein. The nucleotide composition of the mRNA untranslated regions, in particular the promoter and Shine-Dalgarno sequences, also affects the efficiency of mRNA transcription, translation, and degradation. In this review, we describe the genetic principles that determine the efficiency of protein production in Escherichia coli.
Collapse
Affiliation(s)
- Artur I Zabolotskii
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | - Alexey G Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
8
|
Design of 5′-UTR to Enhance Keratinase Activity in Bacillus subtilis. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Keratinase is an important industrial enzyme, but its application performance is limited by its low activity. A rational design of 5′-UTRs that increases translation efficiency is an important approach to enhance protein expression. Herein, we optimized the 5′-UTR of the recombinant keratinase KerZ1 expression element to enhance its secretory activity in Bacillus subtilis WB600 through Spacer design, RBS screening, and sequence simplification. First, the A/U content in Spacer was increased by the site-directed saturation mutation of G/C bases, and the activity of keratinase secreted by mutant strain B. subtilis WB600-SP was 7.94 times higher than that of KerZ1. Subsequently, the keratinase activity secreted by the mutant strain B. subtilis WB600-SP-R was further increased to 13.45 times that of KerZ1 based on the prediction of RBS translation efficiency and the multi-site saturation mutation screening. Finally, the keratinase activity secreted by the mutant strain B. subtilis WB600-SP-R-D reached 204.44 KU mL−1 by reducing the length of the 5′ end of the 5′-UTR, which was 19.70 times that of KerZ1. In a 5 L fermenter, the keratinase activity secreted by B. subtilis WB600-SP-R-D after 25 h fermentation was 797.05 KU mL−1, which indicated its high production intensity. Overall, the strategy of this study and the obtained keratinase mutants will provide a good reference for the expression regulation of keratinase and other industrial enzymes.
Collapse
|
9
|
Ray S, Dandpat SS, Chatterjee S, Walter NG. Precise tuning of bacterial translation initiation by non-equilibrium 5'-UTR unfolding observed in single mRNAs. Nucleic Acids Res 2022; 50:8818-8833. [PMID: 35892287 PMCID: PMC9410914 DOI: 10.1093/nar/gkac635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
Noncoding, structured 5′-untranslated regions (5′-UTRs) of bacterial messenger RNAs (mRNAs) can control translation efficiency by forming structures that either recruit or repel the ribosome. Here we exploit a 5′-UTR embedded preQ1-sensing, pseudoknotted translational riboswitch to probe how binding of a small ligand controls recruitment of the bacterial ribosome to the partially overlapping Shine-Dalgarno (SD) sequence. Combining single-molecule fluorescence microscopy with mutational analyses, we find that the stability of 30S ribosomal subunit binding is inversely correlated with the free energy needed to unfold the 5′-UTR during mRNA accommodation into the mRNA binding cleft. Ligand binding to the riboswitch stabilizes the structure to both antagonize 30S recruitment and accelerate 30S dissociation. Proximity of the 5′-UTR and stability of the SD:anti-SD interaction both play important roles in modulating the initial 30S-mRNA interaction. Finally, depletion of small ribosomal subunit protein S1, known to help resolve structured 5′-UTRs, further increases the energetic penalty for mRNA accommodation. The resulting model of rapid standby site exploration followed by gated non-equilibrium unfolding of the 5′-UTR during accommodation provides a mechanistic understanding of how translation efficiency is governed by riboswitches and other dynamic structure motifs embedded upstream of the translation initiation site of bacterial mRNAs.
Collapse
Affiliation(s)
- Sujay Ray
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiba S Dandpat
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Surajit Chatterjee
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nils G Walter
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Wang C, Zhang W, Tian R, Zhang J, Zhang L, Deng Z, Lv X, Li J, Liu L, Du G, Liu Y. Model‐driven design of synthetic N‐terminal coding sequences for regulating gene expression in yeast and bacteria. Biotechnol J 2022; 17:e2100655. [DOI: 10.1002/biot.202100655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Chenyun Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
| | - Wei Zhang
- School of Artificial Intelligence and Computer Science Jiangnan University Wuxi 214122 China
- Jiangsu Key Laboratory of Media Design and Software Technology Wuxi 214122 China
| | - Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
| | - Jianing Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
| | - Linpei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
| | - Zhaohong Deng
- School of Artificial Intelligence and Computer Science Jiangnan University Wuxi 214122 China
- Jiangsu Key Laboratory of Media Design and Software Technology Wuxi 214122 China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
- Qingdao Special Food Research Institute Wuxi 214122 China
| |
Collapse
|
11
|
Scheuer R, Dietz T, Kretz J, Hadjeras L, McIntosh M, Evguenieva-Hackenberg E. Incoherent dual regulation by a SAM-II riboswitch controlling translation at a distance. RNA Biol 2022; 19:980-995. [PMID: 35950733 PMCID: PMC9373788 DOI: 10.1080/15476286.2022.2110380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Sinorhizobium meliloti, the methionine biosynthesis genes metA and metZ are preceded by S-adenosyl-L-methionine (SAM) riboswitches of the SAM-II class. Upon SAM binding, structural changes in the metZ riboswitch were predicted to cause transcriptional termination, generating the sRNA RZ. By contrast, the metA riboswitch was predicted to regulate translation from an AUG1 codon. However, downstream of the metA riboswitch, we found a putative Rho-independent terminator and an in-frame AUG2 codon, which may contribute to metA regulation. We validated the terminator between AUG1 and AUG2, which generates the sRNA RA1 that is processed to RA2. Under high SAM conditions, the activities of the metA and metZ promoters and the steady-state levels of the read-through metA and metZ mRNAs were decreased, while the levels of the RZ and RA2 sRNAs were increased. Under these conditions, the sRNAs and the mRNAs were stabilized. Reporter fusion experiments revealed that the Shine–Dalgarno (SD) sequence in the metA riboswitch is required for translation, which, however, starts 74 nucleotides downstream at AUG2, suggesting a novel translation initiation mechanism. Further, the reporter fusion data supported the following model of RNA-based regulation: Upon SAM binding by the riboswitch, the SD sequence is sequestered to downregulate metA translation, while the mRNA is stabilized. Thus, the SAM-II riboswitches fulfil incoherent, dual regulation, which probably serves to ensure basal metA and metZ mRNA levels under high SAM conditions. This probably helps to adapt to changing conditions and maintain SAM homoeostasis.
Collapse
Affiliation(s)
- Robina Scheuer
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Theresa Dietz
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Jonas Kretz
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Lydia Hadjeras
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Matthew McIntosh
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | | |
Collapse
|
12
|
Shirokikh NE. Translation complex stabilization on messenger RNA and footprint profiling to study the RNA responses and dynamics of protein biosynthesis in the cells. Crit Rev Biochem Mol Biol 2021; 57:261-304. [PMID: 34852690 DOI: 10.1080/10409238.2021.2006599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During protein biosynthesis, ribosomes bind to messenger (m)RNA, locate its protein-coding information, and translate the nucleotide triplets sequentially as codons into the corresponding sequence of amino acids, forming proteins. Non-coding mRNA features, such as 5' and 3' untranslated regions (UTRs), start sites or stop codons of different efficiency, stretches of slower or faster code and nascent polypeptide interactions can alter the translation rates transcript-wise. Most of the homeostatic and signal response pathways of the cells converge on individual mRNA control, as well as alter the global translation output. Among the multitude of approaches to study translational control, one of the most powerful is to infer the locations of translational complexes on mRNA based on the mRNA fragments protected by these complexes from endonucleolytic hydrolysis, or footprints. Translation complex profiling by high-throughput sequencing of the footprints allows to quantify the transcript-wise, as well as global, alterations of translation, and uncover the underlying control mechanisms by attributing footprint locations and sizes to different configurations of the translational complexes. The accuracy of all footprint profiling approaches critically depends on the fidelity of footprint generation and many methods have emerged to preserve certain or multiple configurations of the translational complexes, often in challenging biological material. In this review, a systematic summary of approaches to stabilize translational complexes on mRNA for footprinting is presented and major findings are discussed. Future directions of translation footprint profiling are outlined, focusing on the fidelity and accuracy of inference of the native in vivo translation complex distribution on mRNA.
Collapse
Affiliation(s)
- Nikolay E Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
13
|
Ozma MA, Khodadadi E, Rezaee MA, Asgharzadeh M, Aghazadeh M, Zeinalzadeh E, Ganbarov K, Kafil H. Bacterial proteomics and its application for pathogenesis studies. Curr Pharm Biotechnol 2021; 23:1245-1256. [PMID: 34503411 DOI: 10.2174/1389201022666210908153234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 01/09/2023]
Abstract
Bacteria build their structures by implementing several macromolecules such as proteins, polysaccharides, phospholipids, and nucleic acids, which leads to preserve their lives and play an essential role in their pathogenesis. There are two genomic and proteomic methods to study various macromolecules of bacteria, which are complementary methods and provide comprehensive information. Proteomic approaches are used to identify proteins and their cell applications. Furthermore, to study bacterial proteins, macromolecules are involved in the bacteria's structures and functions. These protein-based methods provide comprehensive information about the cells, such as the external structures, internal compositions, post-translational modifications, and mechanisms of particular actions such as biofilm formation, antibiotic resistance, and adaptation to the environment, which are helpful in promoting bacterial pathogenesis. These methods use various devices such as MALDI-TOF MS, LC-MS, and two-dimensional electrophoresis, which are valuable tools for studying different structural and functional proteins of the bacteria and their mechanisms of pathogenesis that causes rapid, easy, and accurate diagnosis of the infections.
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Ehsaneh Khodadadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | | | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Mohammad Aghazadeh
- Microbiome and Health Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Elham Zeinalzadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | | | - Hossein Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614711. Iran
| |
Collapse
|
14
|
Samatova E, Daberger J, Liutkute M, Rodnina MV. Translational Control by Ribosome Pausing in Bacteria: How a Non-uniform Pace of Translation Affects Protein Production and Folding. Front Microbiol 2021; 11:619430. [PMID: 33505387 PMCID: PMC7829197 DOI: 10.3389/fmicb.2020.619430] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
Protein homeostasis of bacterial cells is maintained by coordinated processes of protein production, folding, and degradation. Translational efficiency of a given mRNA depends on how often the ribosomes initiate synthesis of a new polypeptide and how quickly they read the coding sequence to produce a full-length protein. The pace of ribosomes along the mRNA is not uniform: periods of rapid synthesis are separated by pauses. Here, we summarize recent evidence on how ribosome pausing affects translational efficiency and protein folding. We discuss the factors that slow down translation elongation and affect the quality of the newly synthesized protein. Ribosome pausing emerges as important factor contributing to the regulatory programs that ensure the quality of the proteome and integrate the cellular and environmental cues into regulatory circuits of the cell.
Collapse
Affiliation(s)
- Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jan Daberger
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marija Liutkute
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
15
|
Carrier MC, Ng Kwan Lim E, Jeannotte G, Massé E. Trans-Acting Effectors Versus RNA Cis-Elements: A Tightly Knit Regulatory Mesh. Front Microbiol 2021; 11:609237. [PMID: 33384678 PMCID: PMC7769764 DOI: 10.3389/fmicb.2020.609237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
Prokaryotic organisms often react instantly to environmental variations to ensure their survival. They can achieve this by rapidly and specifically modulating translation, the critical step of protein synthesis. The translation machinery responds to an array of cis-acting elements, located on the RNA transcript, which dictate the fate of mRNAs. These cis-encoded elements, such as RNA structures or sequence motifs, interact with a variety of regulators, among them small regulatory RNAs. These small regulatory RNAs (sRNAs) are especially effective at modulating translation initiation through their interaction with cis-encoded mRNA elements. Here, through selected examples of canonical and non-canonical regulatory events, we demonstrate the intimate connection between mRNA cis-encoded features and sRNA-dependent translation regulation. We also address how sRNA-based mechanistic studies can drive the discovery of new roles for cis-elements. Finally, we briefly overview the challenges of using translation regulation by synthetic regulators as a tool.
Collapse
Affiliation(s)
- Marie-Claude Carrier
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Evelyne Ng Kwan Lim
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriel Jeannotte
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
16
|
Wen JD, Kuo ST, Chou HHD. The diversity of Shine-Dalgarno sequences sheds light on the evolution of translation initiation. RNA Biol 2020; 18:1489-1500. [PMID: 33349119 DOI: 10.1080/15476286.2020.1861406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Shine-Dalgarno (SD) sequences, the core element of prokaryotic ribosome-binding sites, facilitate mRNA translation by base-pair interaction with the anti-SD (aSD) sequence of 16S rRNA. In contrast to this paradigm, an inspection of thousands of prokaryotic species unravels tremendous SD sequence diversity both within and between genomes, whereas aSD sequences remain largely static. The pattern has led many to suggest unidentified mechanisms for translation initiation. Here we review known translation-initiation pathways in prokaryotes. Moreover, we seek to understand the cause and consequence of SD diversity through surveying recent advances in biochemistry, genomics, and high-throughput genetics. These findings collectively show: (1) SD:aSD base pairing is beneficial but nonessential to translation initiation. (2) The 5' untranslated region of mRNA evolves dynamically and correlates with organismal phylogeny and ecological niches. (3) Ribosomes have evolved distinct usage of translation-initiation pathways in different species. We propose a model portraying the SD diversity shaped by optimization of gene expression, adaptation to environments and growth demands, and the species-specific prerequisite of ribosomes to initiate translation. The model highlights the coevolution of ribosomes and mRNA features, leading to functional customization of the translation apparatus in each organism.
Collapse
Affiliation(s)
- Jin-Der Wen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Syue-Ting Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hung David Chou
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan.,Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Romilly C, Lippegaus A, Wagner E. An RNA pseudoknot is essential for standby-mediated translation of the tisB toxin mRNA in Escherichia coli. Nucleic Acids Res 2020; 48:12336-12347. [PMID: 33231643 PMCID: PMC7708055 DOI: 10.1093/nar/gkaa1139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 01/20/2023] Open
Abstract
In response to DNA damage, Escherichia coli cells activate the expression of the toxin gene tisB of the toxin-antitoxin system tisB-istR1. Of three isoforms, only the processed, highly structured +42 tisB mRNA is active. Translation requires a standby site, composed of two essential elements: a single-stranded region located 100 nucleotides upstream of the sequestered RBS, and a structure near the 5'-end of the active mRNA. Here, we propose that this 5'-structure is an RNA pseudoknot which is required for 30S and protein S1-alone binding to the mRNA. Point mutations that prevent formation of this pseudoknot inhibit formation of translation initiation complexes, impair S1 and 30S binding to the mRNA, and render the tisB mRNA non-toxic in vivo. A set of mutations created in either the left or right arm of stem 2 of the pseudoknot entailed loss of toxicity upon overexpression of the corresponding mRNA variants. Combining the matching right-left arm mutations entirely restored toxicity levels to that of the wild-type, active mRNA. Finally, since many pseudoknots have high affinity for S1, we predicted similar pseudoknots in non-homologous type I toxin-antitoxin systems that exhibit features similar to that of tisB-IstR1, suggesting a shared requirement for standby acting at great distances.
Collapse
MESH Headings
- Bacterial Toxins/genetics
- Bacterial Toxins/metabolism
- Base Pairing
- Base Sequence
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Nucleic Acid Conformation
- Point Mutation
- Protein Binding
- Protein Biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Small, Bacterial/genetics
- Ribosome Subunits, Small, Bacterial/metabolism
- Toxin-Antitoxin Systems/genetics
Collapse
Affiliation(s)
- Cédric Romilly
- Department of Cell and Molecular Biology, Uppsala University, Uppsala S-75124, Sweden
| | - Anne Lippegaus
- Department of Cell and Molecular Biology, Uppsala University, Uppsala S-75124, Sweden
| | - E Gerhart H Wagner
- Department of Cell and Molecular Biology, Uppsala University, Uppsala S-75124, Sweden
| |
Collapse
|
18
|
Li C, Zhou J, Du G, Chen J, Takahashi S, Liu S. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnol Adv 2020; 44:107630. [PMID: 32919011 DOI: 10.1016/j.biotechadv.2020.107630] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
Abstract
Aspergillus niger has become one of the most important hosts for food enzyme production due to its unique food safety characteristics and excellent protein secretion systems. A series of food enzymes such as glucoamylase have been commercially produced by A. niger strains, making this species a suitable platform for the engineered of strains with improved enzyme production. However, difficulties in genetic manipulations and shortage of expression strategies limit the progress in this regard. Moreover, several mycotoxins have recently been detected in some A. niger strains, which raises the necessity for a regulatory approval process for food enzyme production. With robust strains, processing engineering strategies are also needed for producing the enzymes on a large scale, which is also challenging for A. niger, since its culture is aerobic, and non-Newtonian fluid properties are developed during submerged culture, making mixing and aeration very energy-intensive. In this article, the progress and challenges of developing A. niger for the production of food enzymes are reviewed, including its genetic manipulations, strategies for more efficient production of food enzymes, and elimination of mycotoxins for product safety.
Collapse
Affiliation(s)
- Cen Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
19
|
Barajas C, Del Vecchio D. Effects of spatial heterogeneity on bacterial genetic circuits. PLoS Comput Biol 2020; 16:e1008159. [PMID: 32925923 PMCID: PMC7515207 DOI: 10.1371/journal.pcbi.1008159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/24/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022] Open
Abstract
Intracellular spatial heterogeneity is frequently observed in bacteria, where the chromosome occupies part of the cell's volume and a circuit's DNA often localizes within the cell. How this heterogeneity affects core processes and genetic circuits is still poorly understood. In fact, commonly used ordinary differential equation (ODE) models of genetic circuits assume a well-mixed ensemble of molecules and, as such, do not capture spatial aspects. Reaction-diffusion partial differential equation (PDE) models have been only occasionally used since they are difficult to integrate and do not provide mechanistic understanding of the effects of spatial heterogeneity. In this paper, we derive a reduced ODE model that captures spatial effects, yet has the same dimension as commonly used well-mixed models. In particular, the only difference with respect to a well-mixed ODE model is that the association rate constant of binding reactions is multiplied by a coefficient, which we refer to as the binding correction factor (BCF). The BCF depends on the size of interacting molecules and on their location when fixed in space and it is equal to unity in a well-mixed ODE model. The BCF can be used to investigate how spatial heterogeneity affects the behavior of core processes and genetic circuits. Specifically, our reduced model indicates that transcription and its regulation are more effective for genes located at the cell poles than for genes located on the chromosome. The extent of these effects depends on the value of the BCF, which we found to be close to unity. For translation, the value of the BCF is always greater than unity, it increases with mRNA size, and, with biologically relevant parameters, is substantially larger than unity. Our model has broad validity, has the same dimension as a well-mixed model, yet it incorporates spatial heterogeneity. This simple-to-use model can be used to both analyze and design genetic circuits while accounting for spatial intracellular effects.
Collapse
Affiliation(s)
- Carlos Barajas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| |
Collapse
|
20
|
Fröhlich KS, Papenfort K. Regulation outside the box: New mechanisms for small RNAs. Mol Microbiol 2020; 114:363-366. [PMID: 32367584 PMCID: PMC7534054 DOI: 10.1111/mmi.14523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 01/24/2023]
Abstract
Regulation at the post‐transcriptional level is an important mode of gene expression control in bacteria. Small RNA regulators (sRNAs) that act via intramolecular base‐pairing with target mRNAs are key players in this process and most often sequester the target's ribosome binding site (RBS) to down‐regulate translation initiation. Over the past few years, several exceptions from this mechanism have been reported, revealing that sRNAs are able to influence translation initiation from a distance. In this issue of Molecular Microbiology, Azam and Vanderpool show that repression of the manY mRNA by the sRNA SgrS relies on an unconventional mechanism involving a translational enhancer element and ribosomal protein S1. Binding of S1 to an AU‐rich sequence within the 5ʹ untranslated region of the manY transcript promotes translation of the mRNA, and base‐pairing of SgrS to the same site can interfere with this process. Therefore, instead of blocking translation initiation by occluding the manY RBS, SgrS reduces ManY synthesis by inhibiting S1‐dependent translation activation. These findings increase the base‐pairing window for sRNA‐mediated gene expression control in bacteria and highlight the role of ribosomal protein S1 for translation initiation.
Collapse
Affiliation(s)
- Kathrin S Fröhlich
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany.,Microverse Cluster, Friedrich Schiller University Jena, Jena, Germany
| | - Kai Papenfort
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany.,Microverse Cluster, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
21
|
Peng Z, Mao X, Zhang J, Du G, Chen J. Biotransformation of keratin waste to amino acids and active peptides based on cell-free catalysis. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:61. [PMID: 32266007 PMCID: PMC7110813 DOI: 10.1186/s13068-020-01700-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Keratin is the primary constituent of the vertebrate epidermis and epidermal appendages, as well as the main waste product generated during poultry processing from feathers, hair, scales, nails, etc. Keratin is generally hard, stubborn and difficult to hydrolyze; however, it is also inexpensive and contains more than 85% protein. Currently, tens of millions of tons of keratin waste are produced each year worldwide; however, no effective methods for the recovery of keratin waste have been reported thus far, making such research urgent. Keratinase has been reported to be useful for keratin waste recovery; however, nearly all keratinases are unable to hydrolyze keratin after they are detached from living cell systems. This may be due to low keratinase activity and lack of synergistic factors. RESULTS Herein, the keratinase gene from Bacillus licheniformis BBE11-1 was successfully expressed in Bacillus subtilis WB600, allowing for improved activity of the recombinant keratinase KerZ1 to 45.14 KU/mL via promoter substitution and screening of the ribosome-binding sites. Further, real-time control of temperature, pH, dissolved oxygen, and feed strategy allowed the activity of KerZ1 to reach 426.60 KU/mL in a 15-L fermenter, accounting for a 3552-fold increase compared to the wild-type keratinase (120.1 U/mL). Most importantly, we proposed a method based on the synergistic action of keratinase KerZ1 and sodium sulfite, to hydrolyze feathers into amino acids. In specific, 100 g/L of feather waste can be successfully converted into 56.6% amino acids within 12 h, while supporting the production of dozens of bioactive peptides. CONCLUSIONS The activity of recombinant keratinase can be greatly enhanced via transcription and translational regulation in Bacillus subtilis. The synergistic action of keratinase and sulfite can rapidly degrade feather waste and produce amino acids and polypeptides.
Collapse
Affiliation(s)
- Zheng Peng
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
| | - Xinzhe Mao
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
| | - Juan Zhang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
| | - Jian Chen
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
| |
Collapse
|
22
|
Saito K, Green R, Buskirk AR. Translational initiation in E. coli occurs at the correct sites genome-wide in the absence of mRNA-rRNA base-pairing. eLife 2020; 9:55002. [PMID: 32065583 PMCID: PMC7043885 DOI: 10.7554/elife.55002] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Shine-Dalgarno (SD) motifs are thought to play an important role in translational initiation in bacteria. Paradoxically, ribosome profiling studies in E. coli show no correlation between the strength of an mRNA’s SD motif and how efficiently it is translated. Performing profiling on ribosomes with altered anti-Shine-Dalgarno sequences, we reveal a genome-wide correlation between SD strength and ribosome occupancy that was previously masked by other contributing factors. Using the antibiotic retapamulin to trap initiation complexes at start codons, we find that the mutant ribosomes select start sites correctly, arguing that start sites are hard-wired for initiation through the action of other mRNA features. We show that A-rich sequences upstream of start codons promote initiation. Taken together, our genome-wide study reveals that SD motifs are not necessary for ribosomes to determine where initiation occurs, though they do affect how efficiently initiation occurs.
Collapse
Affiliation(s)
- Kazuki Saito
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
23
|
Light-inducible expression of translation factor EF-Tu during acclimation to strong light enhances the repair of photosystem II. Proc Natl Acad Sci U S A 2019; 116:21268-21273. [PMID: 31570574 PMCID: PMC6800327 DOI: 10.1073/pnas.1909520116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Photoinhibition of photosystem II (PSII) is mitigated via enhancement of the repair of PSII in photosynthetic organisms that have acclimated to strong light, but the mechanism responsible for such acclimation of PSII repair remains unknown. We report here that an elevated level of translation factor EF-Tu during the acclimation of Synechocystis to strong light plays a critical role in the enhancement of PSII repair via acceleration of the synthesis de novo of proteins that are required for PSII repair, such as the D1 protein. We propose a mechanism for protection of PSII from photoinhibition that becomes operative during acclimation to strong light and appears to contribute to the ability of photosynthetic organisms to tolerate strong light. In photosynthetic organisms, the repair of photosystem II (PSII) is enhanced after acclimation to strong light, with the resultant mitigation of photoinhibition of PSII. We previously reported that oxidation of translation elongation factor EF-Tu, which delivers aminoacyl-tRNA to the ribosome, depresses the repair of PSII in the cyanobacterium Synechocystis sp. PCC 6803. In the present study, we investigated the role of EF-Tu in the repair of PSII after acclimation of Synechocystis to strong light. In cells that had been grown under strong light, both the repair of PSII and the synthesis of proteins de novo were enhanced under strong light, with the resultant mitigation of photoinhibition of PSII. Moreover, levels of EF-Tu were elevated, whereas levels of other components of the translation machinery, such as translation factor EF-G and ribosomal proteins L2 and S12, did not change significantly. The expression of the gene for EF-Tu was induced by light, as monitored at the transcriptional level. Elevation of the level of EF-Tu was strongly correlated with the subsequent enhancement of PSII repair in cells that had been grown under light at various intensities. Furthermore, overexpression of EF-Tu in Synechocystis enhanced protein synthesis and PSII repair under strong light, even after cell culture under nonacclimating conditions. These observations suggest that elevation of the level of EF-Tu might be a critical factor in enhancing the capacity for repair of PSII that develops during acclimation to strong light.
Collapse
|
24
|
The ribosomal protein S1-dependent standby site in tisB mRNA consists of a single-stranded region and a 5' structure element. Proc Natl Acad Sci U S A 2019; 116:15901-15906. [PMID: 31320593 PMCID: PMC6690012 DOI: 10.1073/pnas.1904309116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ribosome standby is a mechanism that allows translation initiation at ribosome-binding sites that display stable, inhibitory structures. It involves initiator-tRNA-independent 30S subunit binding to single-stranded RNA regions, and the subsequent relocation to the sequestered ribosome-binding sites (RBS). Direct evidence for 30S preloading had previously been elusive. We report here on a detailed characterization of the standby site in tisB mRNA. 30S subunits bind to a single-stranded region and a 5′-stem-loop structure, as shown by fluorescence anisotropy experiments and footprint mapping by cross-linking–immunoprecipitation experiments. Ribosomal protein S1, on its own and in the context of the 30S ribosome, binds to the standby site. This is required for standby-dependent translation, likely reflecting S1-dependent directional unfolding over more than ≈100 nt to reach the sequestered RBS. In bacteria, stable RNA structures that sequester ribosome-binding sites (RBS) impair translation initiation, and thus protein output. In some cases, ribosome standby can overcome inhibition by structure: 30S subunits bind sequence-nonspecifically to a single-stranded region and, on breathing of the inhibitory structure, relocate to the RBS for initiation. Standby can occur over long distances, as in the active, +42 tisB mRNA, encoding a toxin. This mRNA is translationally silenced by an antitoxin sRNA, IstR-1, that base pairs to the standby site. In tisB and other cases, a direct interaction between 30S subunits and a standby site has remained elusive. Based on fluorescence anisotropy experiments, ribosome toeprinting results, in vitro translation assays, and cross-linking–immunoprecipitation (CLIP) in vitro, carried out on standby-proficient and standby-deficient tisB mRNAs, we provide a thorough characterization of the tisB standby site. 30S subunits and ribosomal protein S1 alone display high-affinity binding to standby-competent fluorescein-labeled +42 mRNA, but not to mRNAs that lack functional standby sites. Ribosomal protein S1 is essential for standby, as 30∆S1 subunits do not support standby-dependent toeprints and TisB translation in vitro. S1 alone- and 30S-CLIP followed by RNA-seq mapping shows that the functional tisB standby site consists of the expected single-stranded region, but surprisingly, also a 5′-end stem-loop structure. Removal of the latter by 5′-truncations, or disruption of the stem, abolishes 30S binding and standby activity. Based on the CLIP-read mapping, the long-distance standby effect in +42 tisB mRNA (∼100 nt) is tentatively explained by S1-dependent directional unfolding toward the downstream RBS.
Collapse
|
25
|
Qureshi NS, Bains JK, Sreeramulu S, Schwalbe H, Fürtig B. Conformational switch in the ribosomal protein S1 guides unfolding of structured RNAs for translation initiation. Nucleic Acids Res 2019; 46:10917-10929. [PMID: 30124944 PMCID: PMC6237739 DOI: 10.1093/nar/gky746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022] Open
Abstract
Initiation of bacterial translation requires that the ribosome-binding site in mRNAs adopts single-stranded conformations. In Gram-negative bacteria the ribosomal protein S1 (rS1) is a key player in resolving of structured elements in mRNAs. However, the exact mechanism of how rS1 unfolds persistent secondary structures in the translation initiation region (TIR) is still unknown. Here, we show by NMR spectroscopy that Vibrio vulnificus rS1 displays a unique architecture of its mRNA-binding domains, where domains D3 and D4 provide the mRNA-binding platform and cover the nucleotide binding length of the full-length rS1. D5 significantly increases rS1’s chaperone activity, although it displays structural heterogeneity both in isolation and in presence of the other domains, albeit to varying degrees. The heterogeneity is induced by the switch between the two equilibrium conformations and is triggered by an order-to-order transition of two mutually exclusive secondary structures (β-strand-to-α-helix) of the ‘AERERI’ sequence. The conformational switching is exploited for melting of structured 5′-UTR’s, as the conformational heterogeneity of D5 can compensate the entropic penalty of complex formation. Our data thus provides a detailed understanding of the intricate coupling of protein and RNA folding dynamics enabling translation initiation of structured mRNAs.
Collapse
Affiliation(s)
- Nusrat Shahin Qureshi
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| |
Collapse
|
26
|
Two Old Dogs, One New Trick: A Review of RNA Polymerase and Ribosome Interactions during Transcription-Translation Coupling. Int J Mol Sci 2019; 20:ijms20102595. [PMID: 31137816 PMCID: PMC6566652 DOI: 10.3390/ijms20102595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022] Open
Abstract
The coupling of transcription and translation is more than mere translation of an mRNA that is still being transcribed. The discovery of physical interactions between RNA polymerase and ribosomes has spurred renewed interest into this long-standing paradigm of bacterial molecular biology. Here, we provide a concise presentation of recent insights gained from super-resolution microscopy, biochemical, and structural work, including cryo-EM studies. Based on the presented data, we put forward a dynamic model for the interaction between RNA polymerase and ribosomes, in which the interactions are repeatedly formed and broken. Furthermore, we propose that long intervening nascent RNA will loop out and away during the forming the interactions between the RNA polymerase and ribosomes. By comparing the effect of the direct interactions between RNA polymerase and ribosomes with those that transcription factors NusG and RfaH mediate, we submit that two distinct modes of coupling exist: Factor-free and factor-mediated coupling. Finally, we provide a possible framework for transcription-translation coupling and elude to some open questions in the field.
Collapse
|
27
|
The Structural and Functional Organization of Ribosomal Compartment in the Cell: A Mystery or a Reality? Trends Biochem Sci 2018; 43:938-950. [PMID: 30337135 DOI: 10.1016/j.tibs.2018.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 11/23/2022]
Abstract
Great progress has been made toward solving the atomic structure of the ribosome, which is the main biosynthetic machine in cells, but we still do not have a full picture of exactly how cellular ribosomes function. Based on the analysis of crystallographic and electron microscopy data, we propose a basic model of the structural organization of ribosomes into a compartment. This compartment is regularly formed by arrays of ribosomal tetramers made up of two dimers that are actually facing in opposite directions. The compartment functions as the main 'factory' for the production of cellular proteins. The model is consistent with the existing biochemical and genetic data. We also consider the functional connections of such a compartment with cellular transcription and ribosomal biogenesis.
Collapse
|