1
|
Atsrim ES, Eichhorn CD. An evolutionarily conserved tryptophan cage promotes folding of the extended RNA recognition motif in the hnRNPR-like protein family. Protein Sci 2025; 34:e70127. [PMID: 40247750 PMCID: PMC12006756 DOI: 10.1002/pro.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
The heterogeneous nuclear ribonucleoprotein (hnRNP) R-like family is a class of RNA binding proteins in the hnRNP superfamily with diverse functions in RNA processing. Here, we present the 1.90 Å X-ray crystal structure and solution NMR studies of the first RNA recognition motif (RRM) of human hnRNPR. We find that this domain adopts an extended RRM (eRRM1) featuring a canonical RRM with a structured N-terminal extension (Next) motif that docks against the RRM and extends the β-sheet surface. The adjoining loop is structured and forms a tryptophan cage motif to position the Next motif for docking to the RRM. Combining mutagenesis, solution NMR spectroscopy, and thermal denaturation studies, we evaluate the importance of residues in the Next-RRM interface and adjoining loop on eRRM folding and conformational dynamics. We find that these sites are essential for protein solubility, conformational ordering, and thermal stability. Consistent with their importance, mutations in the Next-RRM interface and loop are associated with several cancers in a survey of somatic mutations in cancer studies. Sequence and structure comparison of the human hnRNPR eRRM1 to experimentally verified and predicted hnRNPR-like proteins reveals conserved features in the eRRM.
Collapse
Affiliation(s)
| | - Catherine D. Eichhorn
- Department of ChemistryUniversity of NebraskaLincolnNebraskaUSA
- Nebraska Center for Integrated Biomolecular CommunicationLincolnNebraskaUSA
| |
Collapse
|
2
|
Porat J. Circuit logic: interdependent RNA modifications shape mRNA and noncoding RNA structure and function. RNA (NEW YORK, N.Y.) 2025; 31:613-622. [PMID: 40044218 PMCID: PMC12001972 DOI: 10.1261/rna.080421.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025]
Abstract
Continued advances in high-throughput detection of posttranscriptional RNA modifications have enabled large-scale, mechanistic studies into the importance of RNA modifications in regulating the structure, function, and stability of coding and noncoding RNAs. More recently, this has expanded beyond investigations of independent single modifications, revealing the breadth of modification complexities in single transcripts and the biogenesis pathways involved that lead to coordinately modified RNA species. This has resulted in the concept of modification circuits, where one modification can promote or inhibit the subsequent installation of other modifications, or when modifications are coordinated across different RNA species. These circuits play important roles in the biogenesis of multistepped posttranscriptional modifications, modulate ribonucleoprotein complex formation and conformational switches, and mediate codon-biased translation through the coordination of mRNA and tRNA modifications. Here, I review evidence of complex modification circuits in mRNA and noncoding RNA and highlight open questions concerning the molecular mechanisms giving rise to modification circuits and their importance in the context of RNA processing and maturation.
Collapse
MESH Headings
- RNA, Messenger/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/chemistry
- RNA, Untranslated/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer/chemistry
- Nucleic Acid Conformation
- Humans
- Animals
Collapse
Affiliation(s)
- Jennifer Porat
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02215, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
3
|
Lee JY, Huang N, Samuels TJ, Davis I. Imp/IGF2BP and Syp/SYNCRIP temporal RNA interactomes uncover combinatorial networks of regulators of Drosophila brain development. SCIENCE ADVANCES 2025; 11:eadr6682. [PMID: 39919181 PMCID: PMC11804933 DOI: 10.1126/sciadv.adr6682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025]
Abstract
Temporal patterning of neural progenitors is an evolutionarily conserved mechanism generating neural diversity. In Drosophila, postembryonic neurogenesis requires the RNA binding proteins (RBPs) Imp/IGF2BP and Syp/SYNCRIP. However, how they coachieve their function is not well understood. Here, we elucidate the in vivo temporal RNA interactome landscapes of Imp and Syp during larval brain development. Imp and Syp bind a highly overlapping set of conserved mRNAs encoding proteins involved in neurodevelopment. We identify transcripts differentially occupied by Imp/Syp over time, featuring a network of known and previously unknown candidate temporal regulators that are post-transcriptionally regulated by Imp/Syp. Furthermore, the physical and coevolutionary relationships between Imp and Syp binding sites reveal a combinatorial, rather than competitive, mode of molecular interplay. Our study establishes an in vivo framework for dissecting the temporal coregulation of RBP networks as well as providing a resource for understanding neural fate specification.
Collapse
Affiliation(s)
- Jeffrey Y. Lee
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Niles Huang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Tamsin J. Samuels
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK
| | - Ilan Davis
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
4
|
Ozisin MS, Imren G, Aydin B, Karaosmanoglu B, Taskiran EZ. The effect of LARP7 on gene expression during osteogenesis. Mol Biol Rep 2025; 52:120. [PMID: 39804499 DOI: 10.1007/s11033-024-10216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/30/2024] [Indexed: 05/02/2025]
Abstract
BACKGROUND La-related protein 7 (LARP7) is a key regulator of RNA metabolism and is thought to play a role in various cellular processes. LARP7 gene autosomal recessive mutations are the cause of Alazami syndrome, which presents with skeletal abnormalities, intellectual disabilities, and facial dysmorphisms. This study aimed to determine the role of LARP7 in modulating gene expression dynamics during osteogenesis. METHODS AND RESULTS First, the temporal expression profile of the LARP7 gene during various stages of osteogenesis was examined. Then, RNA interference-mediated knockdown of LARP7 was implemented and high-throughput RNA-seq analysis was performed in order to identify global gene expression changes associated with knockdown of LARP7. The findings show there were significant alterations in the overall gene expression profile. The observed down-regulation in extracellular matrix (ECM) component genes suggests that it might lead to impairments in the structure and function of the bone matrix. Additionally, modulation of alternative splicing events were observed, especially in the RUNX2 and SPP1, indicating the potential contribution of LARP7 to the phenotypic features observed in Alazami syndrome. CONCLUSION Overall, the findings clarify the regulatory mechanisms of LARP7 in osteogenic differentiation and illuminate potential avenues for therapeutic interventions in patients with skeletal disorders.
Collapse
Affiliation(s)
- M Samil Ozisin
- Institute of Health Sciences, Department of Medical and Surgical Research, Hacettepe University, Ankara, Turkey
| | - Gozde Imren
- Institute of Health Sciences, Department of Medical and Surgical Research, Hacettepe University, Ankara, Turkey
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Busra Aydin
- Institute of Health Sciences, Department of Medical and Surgical Research, Hacettepe University, Ankara, Turkey
| | - Beren Karaosmanoglu
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Ekim Z Taskiran
- Institute of Health Sciences, Department of Medical and Surgical Research, Hacettepe University, Ankara, Turkey.
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Sihhiye, Ankara, Turkey.
| |
Collapse
|
5
|
Wang X, Hu G, Wang L, Lu Y, Liu Y, Yang S, Liao J, Zhao Q, Huang Q, Wang W, Guo W, Li H, Fu Y, Song Y, Cai Q, Zhang X, Wang X, Chen YQ, Zhang X, Yao H. DEAD-box RNA helicase 10 is required for 18S rRNA maturation by controlling the release of U3 snoRNA from pre-rRNA in embryonic stem cells. Nat Commun 2024; 15:10303. [PMID: 39604362 PMCID: PMC11603299 DOI: 10.1038/s41467-024-53822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Ribosome biogenesis plays a pivotal role in maintaining stem cell homeostasis, yet the precise regulatory mechanisms governing this process in mouse embryonic stem cells (mESCs) remain largely unknown. In this investigation, we ascertain that DEAD-box RNA helicase 10 (DDX10) is indispensable for upholding cellular homeostasis and the viability of mESCs. Positioned predominantly at the nucleolar dense fibrillar component (DFC) and granular component (GC), DDX10 predominantly binds to 45S ribosomal RNA (rRNA) and orchestrates ribosome biogenesis. Degradation of DDX10 prevents the release of U3 snoRNA from pre-rRNA, leading to perturbed pre-rRNA processing and compromised maturation of the 18S rRNA, thereby disrupting the biogenesis of the small ribosomal subunit. Moreover, DDX10 participates in the process of liquid-liquid phase separation (LLPS), which is necessary for efficient ribosome biogenesis. Notably, the NUP98-DDX10 fusion associated with acute myelocytic leukemia (AML) alters the cellular localization of DDX10 and results in loss of ability to regulate pre-rRNA processing. Collectively, this study reveals the critical role of DDX10 as a pivotal regulator of ribosome biogenesis in mESCs.
Collapse
Affiliation(s)
- Xiuqin Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Gongcheng Hu
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Lisha Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuli Lu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yanjiang Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shengxiong Yang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Junzhi Liao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qian Zhao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiuling Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wentao Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Heying Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yu Fu
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Yawei Song
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qingqing Cai
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaofei Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiangting Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yue-Qin Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaorong Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hongjie Yao
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China.
| |
Collapse
|
6
|
Li B, Wen M, Gao F, Wang Y, Wei G, Duan Y. Regulation of HNRNP family by post-translational modifications in cancer. Cell Death Discov 2024; 10:427. [PMID: 39366930 PMCID: PMC11452504 DOI: 10.1038/s41420-024-02198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (HNRNPs) represent a large family of RNA-binding proteins consisting of more than 20 members and have attracted great attention with their distinctive roles in cancer progression by regulating RNA splicing, transcription, and translation. Nevertheless, the cancer-specific modulation of HNRNPs has not been fully elucidated. The research of LC-MS/MS technology has documented that HNRNPs were widely and significantly targeted by different post-translational modifications (PTMs), which have emerged as core regulators in shaping protein functions and are involved in multiple physiological processes. Accumulating studies have highlighted that several PTMs are involved in the mechanisms of HNRNPs regulation in cancer and may be suitable therapeutic targets. In this review, we summarize the existing evidence describing how PTMs modulate HNRNPs functions on gene regulation and the involvement of their dysregulation in cancer, which will help shed insights on their clinical impacts as well as possible therapeutic tools targeting PTMs on HNRNPs.
Collapse
Affiliation(s)
- Bohao Li
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingxin Wen
- Department of Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fei Gao
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guangwei Wei
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yangmiao Duan
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Zare A, Salehi S, Bader J, Schneider C, Fischer U, Veh A, Arampatzi P, Mann M, Briese M, Sendtner M. hnRNP R promotes O-GlcNAcylation of eIF4G and facilitates axonal protein synthesis. Nat Commun 2024; 15:7430. [PMID: 39198412 PMCID: PMC11358521 DOI: 10.1038/s41467-024-51678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Motoneurons critically depend on precise spatial and temporal control of translation for axon growth and the establishment and maintenance of neuromuscular connections. While defects in local translation have been implicated in the pathogenesis of motoneuron disorders, little is known about the mechanisms regulating axonal protein synthesis. Here, we report that motoneurons derived from Hnrnpr knockout mice show reduced axon growth accompanied by lowered synthesis of cytoskeletal and synaptic components in axons. Mutant mice display denervated neuromuscular junctions and impaired motor behavior. In axons, hnRNP R is a component of translation initiation complexes and, through interaction with O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (Ogt), modulates O-GlcNAcylation of eIF4G. Restoring axonal O-GlcNAc levels rescued local protein synthesis and axon growth defects of hnRNP R knockout motoneurons. Together, these findings demonstrate a function of hnRNP R in controlling the local production of key factors required for axon growth and formation of neuromuscular innervations.
Collapse
Affiliation(s)
- Abdolhossein Zare
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Saeede Salehi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Jakob Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Cornelius Schneider
- Department of Biochemistry, Theodor Boveri Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Alexander Veh
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | | | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
8
|
Salehi S, Zare A, Gandhi G, Sendtner M, Briese M. Ptbp2 re-expression rescues axon growth defects in Smn-deficient motoneurons. Front Mol Neurosci 2024; 17:1393779. [PMID: 39246602 PMCID: PMC11377325 DOI: 10.3389/fnmol.2024.1393779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by mutations or deletions in the survival motoneuron 1 (SMN1) gene, resulting in deficiency of the SMN protein that is essential for motoneuron function. Smn depletion in mice disturbs axonal RNA transport and translation, thereby contributing to axon growth impairment, muscle denervation, and motoneuron degeneration. However, the mechanisms whereby Smn loss causes axonal defects remain unclear. RNA localization and translation in axons are controlled by RNA-binding proteins (RBP) and we recently observed that the neuronal RBP Ptbp2 modulates axon growth in motoneurons. Here, we identify Smn as an interactor of Ptbp2 in the cytosolic compartments of motoneurons. We show that the expression level of Ptbp2 is reduced in axons but not in the somata of Smn-depleted motoneurons. This is accompanied by reduced synthesis of the RBP hnRNP R in axons. Re-expression of Ptbp2 in axons compensates for the deficiency of Smn and rescues the defects in axon elongation and growth cone maturation observed in Smn-deficient motoneurons. Our data suggest that Ptbp2 and Smn are components of cytosolic mRNP particles, contributing to the precise spatial and temporal control of protein synthesis within axons and axon terminals.
Collapse
Affiliation(s)
- Saeede Salehi
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Abdolhossein Zare
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Gayatri Gandhi
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Tilliole P, Fix S, Godin JD. hnRNPs: roles in neurodevelopment and implication for brain disorders. Front Mol Neurosci 2024; 17:1411639. [PMID: 39086926 PMCID: PMC11288931 DOI: 10.3389/fnmol.2024.1411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a family of multifunctional RNA-binding proteins able to process nuclear pre-mRNAs into mature mRNAs and regulate gene expression in multiple ways. They comprise at least 20 different members in mammals, named from A (HNRNP A1) to U (HNRNP U). Many of these proteins are components of the spliceosome complex and can modulate alternative splicing in a tissue-specific manner. Notably, while genes encoding hnRNPs exhibit ubiquitous expression, increasing evidence associate these proteins to various neurodevelopmental and neurodegenerative disorders, such as intellectual disability, epilepsy, microcephaly, amyotrophic lateral sclerosis, or dementias, highlighting their crucial role in the central nervous system. This review explores the evolution of the hnRNPs family, highlighting the emergence of numerous new members within this family, and sheds light on their implications for brain development.
Collapse
Affiliation(s)
- Pierre Tilliole
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Simon Fix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Juliette D. Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Brandão-Teles C, Antunes ASLM, de Moraes Vrechi TA, Martins-de-Souza D. The Roles of hnRNP Family in the Brain and Brain-Related Disorders. Mol Neurobiol 2024; 61:3578-3595. [PMID: 37999871 DOI: 10.1007/s12035-023-03747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) belong to a complex family of RNA-binding proteins that are essential to control alternative splicing, mRNA trafficking, synaptic plasticity, stress granule formation, cell cycle regulation, and axonal transport. Over the past decade, hnRNPs have been associated with different brain disorders such as Alzheimer's disease, multiple sclerosis, and schizophrenia. Given their essential role in maintaining cell function and integrity, it is not surprising that dysregulated hnRNP levels lead to neurological implications. This review aims to explore the primary functions of hnRNPs in neurons, oligodendrocytes, microglia, and astrocytes, and their roles in brain disorders. We also discuss proteomics and other technologies and their potential for studying and evaluating hnRNPs in brain disorders, including the discovery of new therapeutic targets and possible pharmacological interventions.
Collapse
Affiliation(s)
- Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
| | - André S L M Antunes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Talita Aparecida de Moraes Vrechi
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, 13083-862, Brazil.
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil.
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Instituto Nacional de Biomarcadores em Neuropsiquiatria, São Paulo, Brazil.
| |
Collapse
|
11
|
Dithmar S, Zare A, Salehi S, Briese M, Sendtner M. hnRNP R regulates mitochondrial movement and membrane potential in axons of motoneurons. Neurobiol Dis 2024; 193:106454. [PMID: 38408684 DOI: 10.1016/j.nbd.2024.106454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
Axonal mitochondria defects are early events in the pathogenesis of motoneuron disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. The RNA-binding protein hnRNP R interacts with different motoneuron disease-related proteins such as SMN and TDP-43 and has important roles in axons of motoneurons, including axonal mRNA transport. However, whether hnRNP R also modulates axonal mitochondria is currently unknown. Here, we show that axonal mitochondria exhibit altered function and motility in hnRNP R-deficient motoneurons. Motoneurons lacking hnRNP R show decreased anterograde and increased retrograde transport of mitochondria in axons. Furthermore, hnRNP R-deficiency leads to mitochondrial hyperpolarization, caused by decreased complex I and reversed complex V activity within the respiratory chain. Taken together, our data indicate a role for hnRNP R in regulating transport and maintaining functionality of axonal mitochondria in motoneurons.
Collapse
Affiliation(s)
- Sophia Dithmar
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Abdolhossein Zare
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Saeede Salehi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
12
|
Camara MB, Lange B, Yesselman JD, Eichhorn C. Visualizing a two-state conformational ensemble in stem-loop 3 of the transcriptional regulator 7SK RNA. Nucleic Acids Res 2024; 52:940-952. [PMID: 38084902 PMCID: PMC10810284 DOI: 10.1093/nar/gkad1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
Structural plasticity is integral to RNA function; however, there are currently few methods to quantitatively resolve RNAs that have multiple structural states. NMR spectroscopy is a powerful approach for resolving conformational ensembles but is size-limited. Chemical probing is well-suited for large RNAs but provides limited structural and kinetics information. Here, we integrate the two approaches to visualize a two-state conformational ensemble for the central stem-loop 3 (SL3) of 7SK RNA, a critical element for 7SK RNA function in transcription regulation. We find that the SL3 distal end exchanges between two equally populated yet structurally distinct states in both isolated SL3 constructs and full-length 7SK RNA. We rationally designed constructs that lock SL3 into a single state and demonstrate that both chemical probing and NMR data fit to a linear combination of the two states. Comparison of vertebrate 7SK RNA sequences shows either or both states are highly conserved. These results provide new insights into 7SK RNA structural dynamics and demonstrate the utility of integrating chemical probing with NMR spectroscopy to gain quantitative insights into RNA conformational ensembles.
Collapse
Affiliation(s)
- Momodou B Camara
- Department of Chemistry, University of Nebraska, 639 North 12 St, Lincoln, NE 68588, USA
| | - Bret Lange
- Department of Chemistry, University of Nebraska, 639 North 12 St, Lincoln, NE 68588, USA
| | - Joseph D Yesselman
- Department of Chemistry, University of Nebraska, 639 North 12 St, Lincoln, NE 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, USA
| | - Catherine D Eichhorn
- Department of Chemistry, University of Nebraska, 639 North 12 St, Lincoln, NE 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, USA
| |
Collapse
|
13
|
Jiang T, Qu R, Liu X, Hou Y, Wang L, Hua Y. HnRNPR strongly represses splicing of a critical exon associated with spinal muscular atrophy through binding to an exonic AU-rich element. J Med Genet 2023; 60:1105-1115. [PMID: 37225410 DOI: 10.1136/jmg-2023-109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a motor neuron disease caused by mutations of survival of motor neuron 1 (SMN1) gene, which encodes the SMN protein. SMN2, a nearly identical copy of SMN1, with several single-nucleotide substitutions leading to predominant skipping of its exon 7, is insufficient to compensate for loss of SMN1. Heterogeneous nuclear ribonucleoprotein R (hnRNPR) has been previously shown to interact with SMN in the 7SK complex in motoneuron axons and is implicated in the pathogenesis of SMA. Here, we show that hnRNPR also interacts with SMN1/2 pre-mRNAs and potently inhibits exon 7 inclusion. METHODS In this study, to examine the mechanism that hnRNPR regulates SMN1/2 splicing, deletion analysis in an SMN2 minigene system, RNA-affinity chromatography, co-overexpression analysis and tethering assay were performed. We screened antisense oligonucleotides (ASOs) in a minigene system and identified a few that markedly promoted SMN2 exon 7 splicing. RESULTS We pinpointed an AU-rich element located towards the 3' end of the exon that mediates splicing repression by hnRNPR. We uncovered that both hnRNPR and Sam68 bind to the element in a competitive manner, and the inhibitory effect of hnRNPR is much stronger than Sam68. Moreover, we found that, among the four hnRNPR splicing isoforms, the exon 5-skipped one has the minimal inhibitory effect, and ASOs inducing hnRNPR exon 5 skipping also promote SMN2 exon 7 inclusion. CONCLUSION We identified a novel mechanism that contributes to mis-splicing of SMN2 exon 7.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Ruobing Qu
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, China
| | - Xuan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University College of Life Sciences, Nanjing, Jiangsu, China
| | - Yanjun Hou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University College of Life Sciences, Nanjing, Jiangsu, China
| | - Li Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University College of Life Sciences, Nanjing, Jiangsu, China
| | - Yimin Hua
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University College of Life Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Camara MB, Lange B, Yesselman JD, Eichhorn CD. Visualizing a two-state conformational ensemble in stem-loop 3 of the transcriptional regulator 7SK RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552709. [PMID: 37609139 PMCID: PMC10441402 DOI: 10.1101/2023.08.09.552709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Structural plasticity is integral to RNA function; however, there are currently few methods to quantitatively resolve RNAs that have multiple structural states. NMR spectroscopy is a powerful approach for resolving conformational ensembles but is size-limited. Chemical probing is well-suited for large RNAs but provides limited structural and no kinetics information. Here, we integrate the two approaches to visualize a two-state conformational ensemble for the central stem-loop 3 (SL3) of 7SK RNA, a critical element for 7SK RNA function in transcription regulation. We find that the SL3 distal end exchanges between two equally populated yet structurally distinct states in both isolated SL3 constructs and full-length 7SK RNA. We rationally designed constructs that lock SL3 into a single state and demonstrate that both chemical probing and NMR data fit to a linear combination of the two states. Comparison of vertebrate 7SK RNA sequences shows conservation of both states, suggesting functional importance. These results provide new insights into 7SK RNA structural dynamics and demonstrate the utility of integrating chemical probing with NMR spectroscopy to gain quantitative insights into RNA conformational ensembles.
Collapse
Affiliation(s)
- Momodou B. Camara
- Department of Chemistry, University of Nebraska, 639 North 12th St, Lincoln, NE 68588, USA
| | - Bret Lange
- Department of Chemistry, University of Nebraska, 639 North 12th St, Lincoln, NE 68588, USA
| | - Joseph D. Yesselman
- Department of Chemistry, University of Nebraska, 639 North 12th St, Lincoln, NE 68588, USA
- Nebraska Center for Integrated Biomolecular Communication
| | - Catherine D. Eichhorn
- Department of Chemistry, University of Nebraska, 639 North 12th St, Lincoln, NE 68588, USA
- Nebraska Center for Integrated Biomolecular Communication
| |
Collapse
|
15
|
Salehi S, Zare A, Prezza G, Bader J, Schneider C, Fischer U, Meissner F, Mann M, Briese M, Sendtner M. Cytosolic Ptbp2 modulates axon growth in motoneurons through axonal localization and translation of Hnrnpr. Nat Commun 2023; 14:4158. [PMID: 37438340 DOI: 10.1038/s41467-023-39787-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
The neuronal RNA-binding protein Ptbp2 regulates neuronal differentiation by modulating alternative splicing programs in the nucleus. Such programs contribute to axonogenesis by adjusting the levels of protein isoforms involved in axon growth and branching. While its functions in alternative splicing have been described in detail, cytosolic roles of Ptbp2 for axon growth have remained elusive. Here, we show that Ptbp2 is located in the cytosol including axons and growth cones of motoneurons, and that depletion of cytosolic Ptbp2 affects axon growth. We identify Ptbp2 as a major interactor of the 3' UTR of Hnrnpr mRNA encoding the RNA-binding protein hnRNP R. Axonal localization of Hnrnpr mRNA and local synthesis of hnRNP R protein are strongly reduced when Ptbp2 is depleted, leading to defective axon growth. Ptbp2 regulates hnRNP R translation by mediating the association of Hnrnpr with ribosomes in a manner dependent on the translation factor eIF5A2. Our data thus suggest a mechanism whereby cytosolic Ptbp2 modulates axon growth by fine-tuning the mRNA transport and local synthesis of an RNA-binding protein.
Collapse
Affiliation(s)
- Saeede Salehi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Abdolhossein Zare
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Gianluca Prezza
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Wuerzburg, Germany
| | - Jakob Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Cornelius Schneider
- Department of Biochemistry, Theodor Boveri Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
16
|
Perez-Pepe M, Desotell AW, Li H, Li W, Han B, Lin Q, Klein DE, Liu Y, Goodarzi H, Alarcón CR. 7SK methylation by METTL3 promotes transcriptional activity. SCIENCE ADVANCES 2023; 9:eade7500. [PMID: 37163588 PMCID: PMC10171809 DOI: 10.1126/sciadv.ade7500] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/07/2023] [Indexed: 05/12/2023]
Abstract
A fundamental feature of cell signaling is the conversion of extracellular signals into adaptive transcriptional responses. The role of RNA modifications in this process is poorly understood. The small nuclear RNA 7SK prevents transcriptional elongation by sequestering the cyclin dependent kinase 9/cyclin T1 (CDK9/CCNT1) positive transcription elongation factor (P-TEFb) complex. We found that epidermal growth factor signaling induces phosphorylation of the enzyme methyltransferase 3 (METTL3), leading to METTL3-mediated methylation of 7SK. 7SK methylation enhanced its binding to heterogeneous nuclear ribonucleoproteins, causing the release of the HEXIM1 P-TEFb complex subunit1 (HEXIM1)/P-TEFb complex and inducing transcriptional elongation. Our findings establish the mechanism underlying 7SK activation and uncover a previously unknown function for the m6A modification in converting growth factor signaling events into a regulatory transcriptional response via an RNA methylation-dependent switch.
Collapse
Affiliation(s)
- Marcelo Perez-Pepe
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Anthony W. Desotell
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Hengyi Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Bing Han
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Qishan Lin
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY 12222, USA
| | - Daryl E. Klein
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Claudio R. Alarcón
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
17
|
Camara MB, Sobeh AM, Eichhorn CD. Progress in 7SK ribonucleoprotein structural biology. Front Mol Biosci 2023; 10:1154622. [PMID: 37051324 PMCID: PMC10083321 DOI: 10.3389/fmolb.2023.1154622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The 7SK ribonucleoprotein (RNP) is a dynamic and multifunctional regulator of RNA Polymerase II (RNAPII) transcription in metazoa. Comprised of the non-coding 7SK RNA, core proteins, and numerous accessory proteins, the most well-known 7SK RNP function is the sequestration and inactivation of the positive transcription elongation factor b (P-TEFb). More recently, 7SK RNP has been shown to regulate RNAPII transcription through P-TEFb-independent pathways. Due to its fundamental role in cellular function, dysregulation has been linked with human diseases including cancers, heart disease, developmental disorders, and viral infection. Significant advances in 7SK RNP structural biology have improved our understanding of 7SK RNP assembly and function. Here, we review progress in understanding the structural basis of 7SK RNA folding, biogenesis, and RNP assembly.
Collapse
Affiliation(s)
- Momodou B. Camara
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
| | - Amr M. Sobeh
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
| | - Catherine D. Eichhorn
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, United States
- *Correspondence: Catherine D. Eichhorn,
| |
Collapse
|
18
|
Hennlein L, Ghanawi H, Gerstner F, Palominos García E, Yildirim E, Saal-Bauernschubert L, Moradi M, Deng C, Klein T, Appenzeller S, Sauer M, Briese M, Simon C, Sendtner M, Jablonka S. Plastin 3 rescues cell surface translocation and activation of TrkB in spinal muscular atrophy. J Cell Biol 2023; 222:e202204113. [PMID: 36607273 PMCID: PMC9827530 DOI: 10.1083/jcb.202204113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Plastin 3 (PLS3) is an F-actin-bundling protein that has gained attention as a modifier of spinal muscular atrophy (SMA) pathology. SMA is a lethal pediatric neuromuscular disease caused by loss of or mutations in the Survival Motor Neuron 1 (SMN1) gene. Pathophysiological hallmarks are cellular maturation defects of motoneurons prior to degeneration. Despite the observed beneficial modifying effect of PLS3, the mechanism of how it supports F-actin-mediated cellular processes in motoneurons is not yet well understood. Our data reveal disturbed F-actin-dependent translocation of the Tropomyosin receptor kinase B (TrkB) to the cell surface of Smn-deficient motor axon terminals, resulting in reduced TrkB activation by its ligand brain-derived neurotrophic factor (BDNF). Improved actin dynamics by overexpression of hPLS3 restores membrane recruitment and activation of TrkB and enhances spontaneous calcium transients by increasing Cav2.1/2 "cluster-like" formations in SMA axon terminals. Thus, our study provides a novel role for PLS3 in supporting correct alignment of transmembrane proteins, a key mechanism for (moto)-neuronal development.
Collapse
Affiliation(s)
- Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Hanaa Ghanawi
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Florian Gerstner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | | | - Ezgi Yildirim
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | | | - Mehri Moradi
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Chunchu Deng
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Teresa Klein
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken; Core Unit Bioinformatics, University Hospital Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Christian Simon
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
19
|
Liu XY, Gao Y, Kui XY, Liu XS, Zhang YH, Zhang Y, Ke CB, Pei ZJ. High expression of HNRNPR in ESCA combined with 18F-FDG PET/CT metabolic parameters are novel biomarkers for preoperative diagnosis of ESCA. Lab Invest 2022; 20:450. [PMID: 36195940 PMCID: PMC9533615 DOI: 10.1186/s12967-022-03665-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/25/2022] [Indexed: 01/17/2023]
Abstract
Background The aim of this study was to determine the expression and function of heterogeneous nuclear ribonucleoprotein R (HNRNPR) in esophageal carcinoma (ESCA), the correlation between its expression and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computerized tomography scan (PET/CT)-related parameters. We also investigated whether 18F-FDG PET/CT can be used to predict the expression of HNRNPR in ESCA. Methods We analyzed patients with ESCA who underwent 18F-FDG PET/CT before surgery, and their tissues were stained with HNRNPR IHC. The associated parameters were derived using the 18F-FDG PET imaging data, and the correlation with the IHC score was evaluated. The Oncomine, TCGA, and GEO datasets were used to investigate HNRNPR expression in the pan- and esophageal cancers, as well as its relationship with N6-methyladenosine (m6A) modification and glycolysis. The R software, LinkedOmics, GeneMANIA, and StringOnline tools were used to perform GO/KEGG, GGI, and PPI analyses on the HNRNPR. Results HNRNPR is highly expressed in the majority of pan-cancers, including ESCA, and is associated with BMI, weight, and history of reflux in patients with ESCA. HNRNPR is somewhat accurate in predicting the clinical prognosis of ESCA. HNRNPR expression was positively correlated with SUVmax, SUVmean, and TLG in ESCA (p < 0.05). The combination of these three variables provides a strong predictive value for HNRNPR expression in ESCA. GO/KEGG analysis showed that HNRNPR played a role in the regulation of cell cycle, DNA replication, and the Fannie anemia pathway. The analysis of the TCGA and GEO data sets revealed a significant correlation between HNRNPR expression and m6A and glycolysis-related genes. GSEA analysis revealed that HNRNPR was involved in various m6A and glycolysis related-pathways. Conclusion HNRNPR overexpression correlates with 18F-FDG uptake in ESCA and may be involved in the regulation of the cell cycle, m6A modification, and cell glycolysis. 18F-FDG PET/CT-related parameters can predict the diagnostic accuracy of HNRNPR expression in ESCA.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yan Gao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xue-Yan Kui
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Taihe Hospital, Postgraduate Training Basement of Jinzhou Medical University, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xu-Sheng Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yao-Hua Zhang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yu Zhang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Chang-Bin Ke
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Zhi-Jun Pei
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China. .,Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, Hubei, China.
| |
Collapse
|
20
|
Ji C, Deng C, Antor K, Bischler T, Schneider C, Fischer U, Sendtner M, Briese M. hnRNP
R negatively regulates transcription by modulating the association of
P‐TEFb
with
7SK
and
BRD4. EMBO Rep 2022; 23:e55432. [PMID: 35856391 PMCID: PMC9442301 DOI: 10.15252/embr.202255432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Changhe Ji
- Institute of Clinical Neurobiology University Hospital Wuerzburg Wuerzburg Germany
| | - Chunchu Deng
- Institute of Clinical Neurobiology University Hospital Wuerzburg Wuerzburg Germany
| | - Katharina Antor
- Institute of Clinical Neurobiology University Hospital Wuerzburg Wuerzburg Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine University of Wuerzburg Wuerzburg Germany
| | - Cornelius Schneider
- Department of Biochemistry, Theodor Boveri Institute University of Wuerzburg Wuerzburg Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri Institute University of Wuerzburg Wuerzburg Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology University Hospital Wuerzburg Wuerzburg Germany
| | - Michael Briese
- Institute of Clinical Neurobiology University Hospital Wuerzburg Wuerzburg Germany
| |
Collapse
|
21
|
Jablonka S, Hennlein L, Sendtner M. Therapy development for spinal muscular atrophy: perspectives for muscular dystrophies and neurodegenerative disorders. Neurol Res Pract 2022; 4:2. [PMID: 34983696 PMCID: PMC8725368 DOI: 10.1186/s42466-021-00162-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Major efforts have been made in the last decade to develop and improve therapies for proximal spinal muscular atrophy (SMA). The introduction of Nusinersen/Spinraza™ as an antisense oligonucleotide therapy, Onasemnogene abeparvovec/Zolgensma™ as an AAV9-based gene therapy and Risdiplam/Evrysdi™ as a small molecule modifier of pre-mRNA splicing have set new standards for interference with neurodegeneration. MAIN BODY Therapies for SMA are designed to interfere with the cellular basis of the disease by modifying pre-mRNA splicing and enhancing expression of the Survival Motor Neuron (SMN) protein, which is only expressed at low levels in this disorder. The corresponding strategies also can be applied to other disease mechanisms caused by loss of function or toxic gain of function mutations. The development of therapies for SMA was based on the use of cell culture systems and mouse models, as well as innovative clinical trials that included readouts that had originally been introduced and optimized in preclinical studies. This is summarized in the first part of this review. The second part discusses current developments and perspectives for amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease, as well as the obstacles that need to be overcome to introduce RNA-based therapies and gene therapies for these disorders. CONCLUSION RNA-based therapies offer chances for therapy development of complex neurodegenerative disorders such as amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease. The experiences made with these new drugs for SMA, and also the experiences in AAV gene therapies could help to broaden the spectrum of current approaches to interfere with pathophysiological mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| |
Collapse
|
22
|
Ghanawi H, Hennlein L, Zare A, Bader J, Salehi S, Hornburg D, Ji C, Sivadasan R, Drepper C, Meissner F, Mann M, Jablonka S, Briese M, Sendtner M. Loss of full-length hnRNP R isoform impairs DNA damage response in motoneurons by inhibiting Yb1 recruitment to chromatin. Nucleic Acids Res 2021; 49:12284-12305. [PMID: 34850154 PMCID: PMC8643683 DOI: 10.1093/nar/gkab1120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 01/13/2023] Open
Abstract
Neurons critically rely on the functions of RNA-binding proteins to maintain their polarity and resistance to neurotoxic stress. HnRNP R has a diverse range of post-transcriptional regulatory functions and is important for neuronal development by regulating axon growth. Hnrnpr pre-mRNA undergoes alternative splicing giving rise to a full-length protein and a shorter isoform lacking its N-terminal acidic domain. To investigate functions selectively associated with the full-length hnRNP R isoform, we generated a Hnrnpr knockout mouse (Hnrnprtm1a/tm1a) in which expression of full-length hnRNP R was abolished while production of the truncated hnRNP R isoform was retained. Motoneurons cultured from Hnrnprtm1a/tm1a mice did not show any axonal growth defects but exhibited enhanced accumulation of double-strand breaks and an impaired DNA damage response upon exposure to genotoxic agents. Proteomic analysis of the hnRNP R interactome revealed the multifunctional protein Yb1 as a top interactor. Yb1-depleted motoneurons were defective in DNA damage repair. We show that Yb1 is recruited to chromatin upon DNA damage where it interacts with γ-H2AX, a mechanism that is dependent on full-length hnRNP R. Our findings thus suggest a novel role of hnRNP R in maintaining genomic integrity and highlight the function of its N-terminal acidic domain in this context.
Collapse
Affiliation(s)
- Hanaa Ghanawi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Abdolhossein Zare
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Jakob Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried82152, Germany
| | - Saeede Salehi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Daniel Hornburg
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Changhe Ji
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Rajeeve Sivadasan
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Carsten Drepper
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried82152, Germany
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried82152, Germany
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| |
Collapse
|
23
|
Nguyen D, Buisine N, Fayol O, Michels AA, Bensaude O, Price DH, Uguen P. An alternative D. melanogaster 7SK snRNP. BMC Mol Cell Biol 2021; 22:43. [PMID: 34461828 PMCID: PMC8406779 DOI: 10.1186/s12860-021-00381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 7SK small nuclear RNA (snRNA) found in most metazoans is a key regulator of P-TEFb which in turn regulates RNA polymerase II elongation. Although its primary sequence varies in protostomes, its secondary structure and function are conserved across evolutionary distant taxa. RESULTS Here, we describe a novel ncRNA sharing many features characteristic of 7SK RNAs, in D. melanogaster. We examined the structure of the corresponding gene and determined the expression profiles of the encoded RNA, called snRNA:7SK:94F, during development. It is probably produced from the transcription of a lncRNA which is processed into a mature snRNA. We also addressed its biological function and we show that, like dm7SK, this alternative 7SK interacts in vivo with the different partners of the P-TEFb complex, i.e. HEXIM, LARP7 and Cyclin T. This novel RNA is widely expressed across tissues. CONCLUSION We propose that two distinct 7SK genes might contribute to the formation of the 7SK snRNP complex in D. melanogaster.
Collapse
Affiliation(s)
- Duy Nguyen
- Université Paris-Saclay, INSERM, CNRS, Interactions cellulaires et physiopathologie hépatique, Bât.440, 91405, Orsay, France
| | | | - Olivier Fayol
- Université Paris-Saclay, INSERM, CNRS, Interactions cellulaires et physiopathologie hépatique, Bât.440, 91405, Orsay, France
| | | | - Olivier Bensaude
- IBENS Paris, UMR CNRS 8197; UA INSERM 1024, 75005, Paris, France
| | - David H Price
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Patricia Uguen
- Université Paris-Saclay, INSERM, CNRS, Interactions cellulaires et physiopathologie hépatique, Bât.440, 91405, Orsay, France.
- Present address: Université Paris-Saclay, CNRS, INSERM, Institut Curie, Intégrité du Génome, ARN et cancer, Bât. 110, 91401, Orsay cedex, France.
| |
Collapse
|
24
|
Briese M, Sendtner M. Keeping the balance: The noncoding RNA 7SK as a master regulator for neuron development and function. Bioessays 2021; 43:e2100092. [PMID: 34050960 DOI: 10.1002/bies.202100092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
The noncoding RNA 7SK is a critical regulator of transcription by adjusting the activity of the kinase complex P-TEFb. Release of P-TEFb from 7SK stimulates transcription at many genes by promoting productive elongation. Conversely, P-TEFb sequestration by 7SK inhibits transcription. Recent studies have shown that 7SK functions are particularly important for neuron development and maintenance and it can thus be hypothesized that 7SK is at the center of many signaling pathways contributing to neuron function. 7SK activates neuronal gene expression programs that are key for terminal differentiation of neurons. Proteomics studies revealed a complex protein interactome of 7SK that includes several RNA-binding proteins. Some of these novel 7SK subcomplexes exert non-canonical cytosolic functions in neurons by regulating axonal mRNA transport and fine-tuning spliceosome production in response to transcription alterations. Thus, a picture emerges according to which 7SK acts as a multi-functional RNA scaffold that is integral for neuron homeostasis.
Collapse
Affiliation(s)
- Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
25
|
Luo L, Chiu LY, Sugarman A, Gupta P, Rouskin S, Tolbert BS. HnRNP A1/A2 Proteins Assemble onto 7SK snRNA via Context Dependent Interactions. J Mol Biol 2021; 433:166885. [PMID: 33684393 DOI: 10.1016/j.jmb.2021.166885] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
7SK small nuclear RNA (snRNA) is an abundant and ubiquitously expressed noncoding RNA that functions to modulate the activity of RNA Polymerase II (RNAPII) in part by stabilizing distinct pools of 7SK-protein complexes. Prevailing models suggest that the secondary structure of 7SK is dynamically remodeled within its alternative RNA-protein pools such that its architecture differentially regulates the exchange of cognate binding partners. The nuclear hnRNP A1/A2 proteins influence the biology of 7SK snRNA via processes that require an intact stem loop (SL) 3 domain; however, the molecular details by which hnRNPs assemble onto 7SK snRNA are yet to be described. Here, we have taken an integrated approach to present a detailed description of the 7SK-hnRNP A1 complex. We show that unbound 7SK snRNA adopts at least two major conformations in solution, with significant structural differences localizing to the SL2-3 linker and the base of SL3. Phylogenetic analysis indicates that this same region is the least genetically conserved feature of 7SK snRNA. By performing DMS modifications with the presence of excess protein, we reveal that hnRNP A1 binds with selectivity to SL3 through mechanisms that increase the flexibility of the RNA adjacent to putative binding sites. Calorimetric titrations further validate that hnRNP A1-SL3 assembly is complex with the affinity of discrete binding events modulated by the surrounding RNA structure. To interpret this context-dependent binding phenomenon, we determined a 3D model of SL3 to show that it folds to position minimal hnRNP A1/A2 binding sites (5'-Y/RAG-3') within different local environments. SL3-protein complexes resolved by SEC-MALS-SAXS confirm that up to four hnRNP A1 proteins bind along the entire surface of SL3 via interactions that preserve the overall structural integrity of this domain. In sum, the collective results presented here reveal a specific role for a folded SL3 domain to scaffold hnRNP A1/A2-7SK assembly via mechanisms modulated by the surrounding RNA structure.
Collapse
Affiliation(s)
- Le Luo
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Liang-Yuan Chiu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Andrew Sugarman
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Paromita Gupta
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
| | - Silvi Rouskin
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
26
|
Knoener R, Evans E, Becker JT, Scalf M, Benner B, Sherer NM, Smith LM. Identification of host proteins differentially associated with HIV-1 RNA splice variants. eLife 2021; 10:e62470. [PMID: 33629952 PMCID: PMC7906601 DOI: 10.7554/elife.62470] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
HIV-1 generates unspliced (US), partially spliced (PS), and completely spliced (CS) classes of RNAs, each playing distinct roles in viral replication. Elucidating their host protein 'interactomes' is crucial to understanding virus-host interplay. Here, we present HyPR-MSSV for isolation of US, PS, and CS transcripts from a single population of infected CD4+ T-cells and mass spectrometric identification of their in vivo protein interactomes. Analysis revealed 212 proteins differentially associated with the unique RNA classes, including preferential association of regulators of RNA stability with US and PS transcripts and, unexpectedly, mitochondria-linked proteins with US transcripts. Remarkably, >80 of these factors screened by siRNA knockdown impacted HIV-1 gene expression. Fluorescence microscopy confirmed several to co-localize with HIV-1 US RNA and exhibit changes in abundance and/or localization over the course of infection. This study validates HyPR-MSSV for discovery of viral splice variant protein interactomes and provides an unprecedented resource of factors and pathways likely important to HIV-1 replication.
Collapse
Affiliation(s)
- Rachel Knoener
- Department of Chemistry, University of WisconsinMadisonUnited States
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Edward Evans
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Jordan T Becker
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Mark Scalf
- Department of Chemistry, University of WisconsinMadisonUnited States
| | - Bayleigh Benner
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Lloyd M Smith
- Department of Chemistry, University of WisconsinMadisonUnited States
| |
Collapse
|
27
|
Ji C, Bader J, Ramanathan P, Hennlein L, Meissner F, Jablonka S, Mann M, Fischer U, Sendtner M, Briese M. Interaction of 7SK with the Smn complex modulates snRNP production. Nat Commun 2021; 12:1278. [PMID: 33627647 PMCID: PMC7904863 DOI: 10.1038/s41467-021-21529-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/29/2021] [Indexed: 11/09/2022] Open
Abstract
Gene expression requires tight coordination of the molecular machineries that mediate transcription and splicing. While the interplay between transcription kinetics and spliceosome fidelity has been investigated before, less is known about mechanisms regulating the assembly of the spliceosomal machinery in response to transcription changes. Here, we report an association of the Smn complex, which mediates spliceosomal snRNP biogenesis, with the 7SK complex involved in transcriptional regulation. We found that Smn interacts with the 7SK core components Larp7 and Mepce and specifically associates with 7SK subcomplexes containing hnRNP R. The association between Smn and 7SK complexes is enhanced upon transcriptional inhibition leading to reduced production of snRNPs. Taken together, our findings reveal a functional association of Smn and 7SK complexes that is governed by global changes in transcription. Thus, in addition to its canonical nuclear role in transcriptional regulation, 7SK has cytosolic functions in fine-tuning spliceosome production according to transcriptional demand. The noncoding RNA 7SK controls the transcription of mRNAs. Here, the authors show that the 7SK complex interacts with the Smn complex, suggesting crosstalk between transcription and snRNP assembly.
Collapse
Affiliation(s)
- Changhe Ji
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Jakob Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Pradhipa Ramanathan
- Department of Biochemistry, Theodor Boveri Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department for Systems Immunology & Proteomics, Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
28
|
Low YH, Asi Y, Foti SC, Lashley T. Heterogeneous Nuclear Ribonucleoproteins: Implications in Neurological Diseases. Mol Neurobiol 2021; 58:631-646. [PMID: 33000450 PMCID: PMC7843550 DOI: 10.1007/s12035-020-02137-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022]
Abstract
Heterogenous nuclear ribonucleoproteins (hnRNPs) are a complex and functionally diverse family of RNA binding proteins with multifarious roles. They are involved, directly or indirectly, in alternative splicing, transcriptional and translational regulation, stress granule formation, cell cycle regulation, and axonal transport. It is unsurprising, given their heavy involvement in maintaining functional integrity of the cell, that their dysfunction has neurological implications. However, compared to their more established roles in cancer, the evidence of hnRNP implication in neurological diseases is still in its infancy. This review aims to consolidate the evidences for hnRNP involvement in neurological diseases, with a focus on spinal muscular atrophy (SMA), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), multiple sclerosis (MS), congenital myasthenic syndrome (CMS), and fragile X-associated tremor/ataxia syndrome (FXTAS). Understanding more about hnRNP involvement in neurological diseases can further elucidate the pathomechanisms involved in these diseases and perhaps guide future therapeutic advances.
Collapse
Affiliation(s)
- Yi-Hua Low
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Duke-NUS Medical School, Singapore, Singapore
| | - Yasmine Asi
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Sandrine C Foti
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
29
|
Cates K, McCoy MJ, Kwon JS, Liu Y, Abernathy DG, Zhang B, Liu S, Gontarz P, Kim WK, Chen S, Kong W, Ho JN, Burbach KF, Gabel HW, Morris SA, Yoo AS. Deconstructing Stepwise Fate Conversion of Human Fibroblasts to Neurons by MicroRNAs. Cell Stem Cell 2021; 28:127-140.e9. [PMID: 32961143 PMCID: PMC7796891 DOI: 10.1016/j.stem.2020.08.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 07/11/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
Cell-fate conversion generally requires reprogramming effectors to both introduce fate programs of the target cell type and erase the identity of starting cell population. Here, we reveal insights into the activity of microRNAs miR-9/9∗ and miR-124 (miR-9/9∗-124) as reprogramming agents that orchestrate direct conversion of human fibroblasts into motor neurons by first eradicating fibroblast identity and promoting uniform transition to a neuronal state in sequence. We identify KLF-family transcription factors as direct target genes for miR-9/9∗-124 and show their repression is critical for erasing fibroblast fate. Subsequent gain of neuronal identity requires upregulation of a small nuclear RNA, RN7SK, which induces accessibilities of chromatin regions and neuronal gene activation to push cells to a neuronal state. Our study defines deterministic components in the microRNA-mediated reprogramming cascade.
Collapse
Affiliation(s)
- Kitra Cates
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Molecular Genetics and Genomics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J McCoy
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Molecular Genetics and Genomics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ji-Sun Kwon
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Computational and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yangjian Liu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel G Abernathy
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Developmental, Regenerative, and Stem Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bo Zhang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shaopeng Liu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul Gontarz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Woo Kyung Kim
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shawei Chen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wenjun Kong
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Computational and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua N Ho
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Developmental, Regenerative, and Stem Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kyle F Burbach
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Molecular Genetics and Genomics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew S Yoo
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Schieweck R, Ninkovic J, Kiebler MA. RNA-binding proteins balance brain function in health and disease. Physiol Rev 2020; 101:1309-1370. [PMID: 33000986 DOI: 10.1152/physrev.00047.2019] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posttranscriptional gene expression including splicing, RNA transport, translation, and RNA decay provides an important regulatory layer in many if not all molecular pathways. Research in the last decades has positioned RNA-binding proteins (RBPs) right in the center of posttranscriptional gene regulation. Here, we propose interdependent networks of RBPs to regulate complex pathways within the central nervous system (CNS). These are involved in multiple aspects of neuronal development and functioning, including higher cognition. Therefore, it is not sufficient to unravel the individual contribution of a single RBP and its consequences but rather to study and understand the tight interplay between different RBPs. In this review, we summarize recent findings in the field of RBP biology and discuss the complex interplay between different RBPs. Second, we emphasize the underlying dynamics within an RBP network and how this might regulate key processes such as neurogenesis, synaptic transmission, and synaptic plasticity. Importantly, we envision that dysfunction of specific RBPs could lead to perturbation within the RBP network. This would have direct and indirect (compensatory) effects in mRNA binding and translational control leading to global changes in cellular expression programs in general and in synaptic plasticity in particular. Therefore, we focus on RBP dysfunction and how this might cause neuropsychiatric and neurodegenerative disorders. Based on recent findings, we propose that alterations in the entire regulatory RBP network might account for phenotypic dysfunctions observed in complex diseases including neurodegeneration, epilepsy, and autism spectrum disorders.
Collapse
Affiliation(s)
- Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Michael A Kiebler
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
31
|
Briese M, Saal-Bauernschubert L, Lüningschrör P, Moradi M, Dombert B, Surrey V, Appenzeller S, Deng C, Jablonka S, Sendtner M. Loss of Tdp-43 disrupts the axonal transcriptome of motoneurons accompanied by impaired axonal translation and mitochondria function. Acta Neuropathol Commun 2020; 8:116. [PMID: 32709255 PMCID: PMC7379803 DOI: 10.1186/s40478-020-00987-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/02/2023] Open
Abstract
Protein inclusions containing the RNA-binding protein TDP-43 are a pathological hallmark of amyotrophic lateral sclerosis and other neurodegenerative disorders. The loss of TDP-43 function that is associated with these inclusions affects post-transcriptional processing of RNAs in multiple ways including pre-mRNA splicing, nucleocytoplasmic transport, modulation of mRNA stability and translation. In contrast, less is known about the role of TDP-43 in axonal RNA metabolism in motoneurons. Here we show that depletion of Tdp-43 in primary motoneurons affects axon growth. This defect is accompanied by subcellular transcriptome alterations in the axonal and somatodendritic compartment. The axonal localization of transcripts encoding components of the cytoskeleton, the translational machinery and transcripts involved in mitochondrial energy metabolism were particularly affected by loss of Tdp-43. Accordingly, we observed reduced protein synthesis and disturbed mitochondrial functions in axons of Tdp-43-depleted motoneurons. Treatment with nicotinamide rescued the axon growth defect associated with loss of Tdp-43. These results show that Tdp-43 depletion in motoneurons affects several pathways integral to axon health indicating that loss of TDP-43 function could thus make a major contribution to axonal pathomechanisms in ALS.
Collapse
|
32
|
Hasler D, Meister G, Fischer U. Stabilize and connect: the role of LARP7 in nuclear non-coding RNA metabolism. RNA Biol 2020; 18:290-303. [PMID: 32401147 DOI: 10.1080/15476286.2020.1767952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
La and La-related proteins (LARPs) are characterized by a common RNA interaction platform termed the La module. This structural hallmark allows LARPs to pervade various aspects of RNA biology. The metazoan LARP7 protein binds to the 7SK RNA as part of a 7SK small nuclear ribonucleoprotein (7SK snRNP), which inhibits the transcriptional activity of RNA polymerase II (Pol II). Additionally, recent findings revealed unanticipated roles of LARP7 in the assembly of other RNPs, as well as in the modification, processing and cellular transport of RNA molecules. Reduced levels of functional LARP7 have been linked to cancer and Alazami syndrome, two seemingly unrelated human diseases characterized either by hyperproliferation or growth retardation. Here, we review the intricate regulatory networks centered on LARP7 and assess how malfunction of these networks may relate to the etiology of LARP7-linked diseases.
Collapse
Affiliation(s)
- Daniele Hasler
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
33
|
Thelen MP, Kye MJ. The Role of RNA Binding Proteins for Local mRNA Translation: Implications in Neurological Disorders. Front Mol Biosci 2020; 6:161. [PMID: 32010708 PMCID: PMC6974540 DOI: 10.3389/fmolb.2019.00161] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
As neurons are one of the most highly polarized cells in our body, they require sophisticated cellular mechanisms to maintain protein homeostasis in their subcellular compartments such as axons and dendrites. When neuronal protein homeostasis is disturbed due to genetic mutations or deletions, this often results in degeneration of neurons leading to devastating outcome such as spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and fragile X syndrome (FXS). Ribonucleoprotein (RNP) complexes are macromolecular complexes composed of RNA binding proteins (RBPs) and their target RNAs. RBPs contain RNA binding domains and bind to RNA molecules via specific sequence motifs. RNP complexes have various functions in gene expression including messenger RNA (mRNA) trafficking, RNA processing and silencing. In neurons, RBPs deliver specific sets of mRNAs to subcellular compartments such as axons and dendrites to be locally translated. Mutations or deletions in genes coding for RNPs have been reported as causes for neurological disorders such as SMA, ALS, and FXS. As RBPs determine axonal or dendritic mRNA repertoires as well as proteomes by trafficking selective mRNAs and regulating local protein synthesis, they play a crucial role for neuronal function. In this review, we summarize the role of well-known RBPs, SMN, TDP-43, FUS, and FMRP, and review their function for local protein synthesis in neurons. Furthermore, we discuss their pathological contribution to the neurological disorders.
Collapse
Affiliation(s)
| | - Min Jeong Kye
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
34
|
Schneeberger PE, Bierhals T, Neu A, Hempel M, Kutsche K. de novo MEPCE nonsense variant associated with a neurodevelopmental disorder causes disintegration of 7SK snRNP and enhanced RNA polymerase II activation. Sci Rep 2019; 9:12516. [PMID: 31467394 PMCID: PMC6715695 DOI: 10.1038/s41598-019-49032-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
In eukaryotes, the elongation phase of transcription by RNA polymerase II (RNAP II) is regulated by the transcription elongation factor b (P-TEFb), composed of Cyclin-T1 and cyclin-dependent kinase 9. The release of RNAP II is mediated by phosphorylation through P-TEFb that in turn is under control by the inhibitory 7SK small nuclear ribonucleoprotein (snRNP) complex. The 7SK snRNP consists of the 7SK non-coding RNA and the proteins MEPCE, LARP7, and HEXIM1/2. Biallelic LARP7 loss-of-function variants underlie Alazami syndrome characterized by growth retardation and intellectual disability. We report a boy with global developmental delay and seizures carrying the de novo MEPCE nonsense variant c.1552 C > T/p.(Arg518*). mRNA and protein analyses identified nonsense-mediated mRNA decay to underlie the decreased amount of MEPCE in patient fibroblasts followed by LARP7 and 7SK snRNA downregulation and HEXIM1 upregulation. Reduced binding of HEXIM1 to Cyclin-T1, hyperphosphorylation of the RNAP II C-terminal domain, and upregulated expression of ID2, ID3, MRPL11 and snRNAs U1, U2 and U4 in patient cells are suggestive of enhanced activation of P-TEFb. Flavopiridol treatment and ectopic MEPCE protein expression in patient fibroblasts rescued increased expression of six RNAP II-sensitive genes and suggested a possible repressive effect of MEPCE on P-TEFb-dependent transcription of specific genes.
Collapse
Affiliation(s)
- Pauline E Schneeberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Neu
- Childrens Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
35
|
Schieweck R, Kiebler MA. Posttranscriptional Gene Regulation of the GABA Receptor to Control Neuronal Inhibition. Front Mol Neurosci 2019; 12:152. [PMID: 31316346 PMCID: PMC6611381 DOI: 10.3389/fnmol.2019.00152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/29/2019] [Indexed: 11/13/2022] Open
Abstract
Behavior and higher cognition rely on the transfer of information between neurons through specialized contact sites termed synapses. Plasticity of neuronal circuits, a prerequisite to respond to environmental changes, is intrinsically coupled with the nerve cell’s ability to form, structurally modulate or remove synapses. Consequently, the synaptic proteome undergoes dynamic alteration on demand in a spatiotemporally restricted manner. Therefore, proper protein localization at synapses is essential for synaptic function. This process is regulated by: (i) protein transport and recruitment; (ii) local protein synthesis; and (iii) synaptic protein degradation. These processes shape the transmission efficiency of excitatory synapses. Whether and how these processes influence synaptic inhibition is, however, widely unknown. Here, we summarize findings on fundamental regulatory processes that can be extrapolated to inhibitory synapses. In particular, we focus on known aspects of posttranscriptional regulation and protein dynamics of the GABA receptor (GABAR). Finally, we propose that local (co)-translational control mechanism might control transmission of inhibitory synapses.
Collapse
Affiliation(s)
- Rico Schieweck
- Department of Cell Biology and Anatomy, Medical Faculty, Biomedical Center (BMC), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Michael A Kiebler
- Department of Cell Biology and Anatomy, Medical Faculty, Biomedical Center (BMC), Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
36
|
Chung HW, Weng JC, King CE, Chuang CF, Chow WY, Chang YC. BDNF elevates the axonal levels of hnRNPs Q and R in cultured rat cortical neurons. Mol Cell Neurosci 2019; 98:97-108. [PMID: 31202892 DOI: 10.1016/j.mcn.2019.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/08/2019] [Accepted: 06/12/2019] [Indexed: 11/17/2022] Open
Abstract
Local translation plays important roles in the maintenance and various functions of axons, and dysfunctions of local translation in axons are implicated in various neurological diseases. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA binding proteins with multiple functions in RNA metabolism. Here, we identified 20 hnRNPs in the axons of cultured rat cortical neurons by interrogating published axon mass spectrometric databases with rat protein databases. Among those identified in axons are highly related hnRNPs Q and R. RT-PCR analysis indicated that axons also contained low levels of hnRNPs Q and R mRNAs. We further found that BDNF treatments raised the levels of hnRNPs Q and R proteins in whole neurons and axons. BDNF also increased the level of poly(A) RNA as well as the proportion of poly(A) RNA granules containing hnRNPs Q and R in the axon. However, following severing the connection between the cell bodies and axons, BDNF did not affect the levels of hnRNPs Q and R, the content of poly(A) RNA, or the colocalization of poly(A) RNA and hnRNPs Q and R in the axon any more, although BDNF still stimulated the local translation in severed axons as it did in intact axons. The results are consistent with that BDNF enhances the axonal transport of RNA granules. The results further suggest that hnRNPs Q and R play a role in the mechanism underlying the enhancement of axonal RNA transport by BDNF.
Collapse
Affiliation(s)
- Hui-Wen Chung
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Ju-Chen Weng
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-En King
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Fan Chuang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Wei-Yuan Chow
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Yen-Chung Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan; Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
37
|
Lampasona AA, Czaplinski K. Hnrnpab regulates neural cell motility through transcription of Eps8. RNA (NEW YORK, N.Y.) 2019; 25:45-59. [PMID: 30314980 PMCID: PMC6298563 DOI: 10.1261/rna.067413.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/01/2018] [Indexed: 05/05/2023]
Abstract
Cell migration requires a complicated network of structural and regulatory proteins. Changes in cellular motility can impact migration as a result of cell-type or developmental stage regulated expression of critical motility genes. Hnrnpab is a conserved RNA-binding protein found as two isoforms produced by alternative splicing. Its expression is enriched in the subventricular zone (SVZ) and the rostral migratory stream within the brain, suggesting possible support of the migration of neural progenitor cells in this region. Here we show that the migration of cells from the SVZ of developing Hnrnpab-/- mouse brains is impaired. An RNA-seq analysis to identify Hnrnpab-dependent cell motility genes led us to Eps8, and in agreement with the change in cell motility, we show that Eps8 is decreased in Hnrnpab-/- SVZ tissue. We scrutinized the motility of Hnrnpab-/- cells and confirmed that the decreases in both cell motility and Eps8 are restored by ectopically coexpressing both alternatively spliced Hnrnpab isoforms, therefore these variants are surprisingly nonredundant for cell motility. Our results support a model where both Hnrnpab isoforms work in concert to regulate Eps8 transcription in the mouse SVZ to promote the normal migration of neural cells during CNS development.
Collapse
Affiliation(s)
- Alexa A Lampasona
- Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11749, USA
- Centers for Molecular Medicine, Stony Brook University, Stony Brook, New York 11749, USA
| | - Kevin Czaplinski
- Centers for Molecular Medicine, Stony Brook University, Stony Brook, New York 11749, USA
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York 11749, USA
| |
Collapse
|
38
|
Cappelli S, Romano M, Buratti E. Systematic Analysis of Gene Expression Profiles Controlled by hnRNP Q and hnRNP R, Two Closely Related Human RNA Binding Proteins Implicated in mRNA Processing Mechanisms. Front Mol Biosci 2018; 5:79. [PMID: 30214903 PMCID: PMC6125337 DOI: 10.3389/fmolb.2018.00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Heteregeneous ribonucleoproteins (hnRNPs) are a family of RNA-binding proteins that take part in all processes that involve mRNA maturation. As a consequence, alterations of their homeostasis may lead to many complex pathological disorders, such as neurodegeneration and cancer. For many of these proteins, however, their exact function and cellular targets are still not very well known. Here, we focused the attention on two hnRNP family members, hnRNP Q and hnRNP R, that we previously found affecting TDP-43 activity both in Drosophila melanogaster and human neuronal cell line. Classification of these two human proteins as paralogs is suported by the high level of sequence homology and by the observation that in fly they correspond to the same protein, namely Syp. We profiled differentially expressed genes from RNA-Seq and generated functional enrichment results after silencing of hnRNP Q and hnRNP R in neuroblastoma SH-SY5Y cell line. Interestingly, despite their high sequence similarity, these two proteins were found to affect different cellular pathways, especially with regards to neurodegeneration, such as PENK, NGR3, RAB26, JAG1, as well as inflammatory response, such as TNF, ICAM1, ICAM5, and TNFRSF9. In conclusion, human hnRNP Q and hnRNP R may be considered potentially important regulators of neuronal homeostasis and their disruption could impair distinct pathways in the central nervous system axis, thus confirming the importance of their conservation during evolution.
Collapse
Affiliation(s)
- Sara Cappelli
- Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Emanuele Buratti
- Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
39
|
Eichhorn CD, Yang Y, Repeta L, Feigon J. Structural basis for recognition of human 7SK long noncoding RNA by the La-related protein Larp7. Proc Natl Acad Sci U S A 2018; 115:E6457-E6466. [PMID: 29946027 PMCID: PMC6048529 DOI: 10.1073/pnas.1806276115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The La and the La-related protein (LARP) superfamily is a diverse class of RNA binding proteins involved in RNA processing, folding, and function. Larp7 binds to the abundant long noncoding 7SK RNA and is required for 7SK ribonucleoprotein (RNP) assembly and function. The 7SK RNP sequesters a pool of the positive transcription elongation factor b (P-TEFb) in an inactive state; on release, P-TEFb phosphorylates RNA Polymerase II to stimulate transcription elongation. Despite its essential role in transcription, limited structural information is available for the 7SK RNP, particularly for protein-RNA interactions. Larp7 contains an N-terminal La module that binds UUU-3'OH and a C-terminal atypical RNA recognition motif (xRRM) required for specific binding to 7SK and P-TEFb assembly. Deletion of the xRRM is linked to gastric cancer in humans. We report the 2.2-Å X-ray crystal structure of the human La-related protein group 7 (hLarp7) xRRM bound to the 7SK stem-loop 4, revealing a unique binding interface. Contributions of observed interactions to binding affinity were investigated by mutagenesis and isothermal titration calorimetry. NMR 13C spin relaxation data and comparison of free xRRM, RNA, and xRRM-RNA structures show that the xRRM is preordered to bind a flexible loop 4. Combining structures of the hLarp7 La module and the xRRM-7SK complex presented here, we propose a structural model for Larp7 binding to the 7SK 3' end and mechanism for 7SK RNP assembly. This work provides insight into how this domain contributes to 7SK recognition and assembly of the core 7SK RNP.
Collapse
Affiliation(s)
- Catherine D Eichhorn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569
| | - Yuan Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569
| | - Lucas Repeta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569
| |
Collapse
|