1
|
Dou F, Wu Y, Li J, Liu C. Differences among active toluene-degrading microbial communities in farmland soils with different levels of heavy metal pollution. Biodegradation 2024; 35:329-340. [PMID: 37845514 DOI: 10.1007/s10532-023-10057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
Heavy metals can severely influence the mineralisation of organic pollutants in a compound-polluted environment. However, to date, no study has focused on the effects of heavy metals on the active organic pollutant-degrading microbial communities to understand the bioremediation mechanism. In this study, toluene was used as the model organic pollutant to explore the effects of soils with different levels of heavy metal pollution on organic contaminant degradation in the same area via stable isotope probing (SIP) and 16 S rRNA high-throughput sequencing. Heavy metals can seriously affect toluene biodegradation and regulate the abundance and diversity of microbial communities. SIP revealed a drastic difference in the community structure of active toluene degraders between the unpolluted and heavy metal-polluted soils. All SIP-identified degraders were assigned to nine bacterial classes, among which Alphaproteobacteria, Gammaproteobacteria, and Bacilli were shared by both treatments. Among all active degraders, Nitrospira, Nocardioides, Conexibacteraceae, and Singulisphaera were linked to toluene biodegradation for the first time. Notably, the type of active degrader and microbial diversity were strongly related to biodegradation efficiency, indicating their key role in toluene biodegradation. Overall, heavy metals can affect the microbial diversity and alter the functional microbial communities in soil, thereby influencing the removal efficiency of organic contaminants. Our findings provide novel insights into the biodegradation mechanism of organic pollutants in heavy metal-polluted soils and highlight the biodiversity of microbes involved in toluene biodegradation in compound-polluted environments.
Collapse
Affiliation(s)
- Fei Dou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yundang Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Chuanping Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
2
|
Kim J, Hwangbo M, Shih CH, Chu KH. Advances and perspectives of using stable isotope probing (SIP)-based technologies in contaminant biodegradation. WATER RESEARCH X 2023; 20:100187. [PMID: 37671037 PMCID: PMC10477051 DOI: 10.1016/j.wroa.2023.100187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 09/07/2023]
Abstract
Stable isotope probing (SIP) is a powerful tool to study microbial community structure and function in both nature and engineered environments. Coupling with advanced genomics and other techniques, SIP studies have generated substantial information to allow researchers to draw a clearer picture of what is occurring in complex microbial ecosystems. This review provides an overview of the advances of SIP-based technologies over time, summarizes the status of SIP applications to contaminant biodegradation, provides critical perspectives on ecological interactions within the community, and important factors (controllable and non-controllable) to be considered in SIP experimental designs and data interpretation. Current trend and perspectives of adapting SIP techniques for environmental applications are also discussed.
Collapse
Affiliation(s)
- Jinha Kim
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
- School of Earth, Environmental and Marine Sciences, The University of Texas – Rio Grande Valley, Brownsville, TX, USA
| | - Chih-Hsuan Shih
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| |
Collapse
|
3
|
Mindorff LM, Mahmoudi N, Hepditch SLJ, Langlois VS, Alam S, Martel R, Ahad JME. Isotopic and microbial evidence for biodegradation of diluted bitumen in the unsaturated zone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121170. [PMID: 36736816 DOI: 10.1016/j.envpol.2023.121170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The oil sands region in Western Canada is one of the world's largest proven oil reserves. To facilitate pipeline transport, highly viscous oil sands bitumen is blended with lighter hydrocarbon fractions to produce diluted bitumen (dilbit). Anticipated increases in dilbit production and transport raise the risk of inland spills. To understand the behaviour of dilbit in the unsaturated or vadose zone following a surface spill, we ran parallel dilbit and conventional heavy crude exposures, along with an untreated control, using large soil-filled columns over 104 days. Phospholipid fatty acids (PLFAs), biomarkers for the active microbial population, were extracted from column soil cores. Stable carbon isotope contents (δ13C) of individual PLFAs and radiocarbon contents (Δ14C) of bulk PLFAs were characterized over the course of the experiment. The Δ14CPLFA values in soils impacted by dilbit (-221.1 to -54.7‰) and conventional heavy crude (-259.4 to -97.9‰) indicated similar levels of microbial uptake of fossil carbon. In contrast, Δ14CPLFA values in the control column (-46.1 to +53.7‰) reflected assimilation of more recently fixed organic carbon. Sequencing of 16S ribosomal RNA genes extracted from soil cores revealed a significant increase in the relative abundance of Polaromonas, a known hydrocarbon-degrader, following exposure to both types of oil. This study demonstrates that in the first several months following a surface spill, dilbit has a similar potential for biodegradation by a native shallow subsurface microbial community as conventional heavy crude oil.
Collapse
Affiliation(s)
- Leah M Mindorff
- Department of Earth and Planetary Sciences, McGill University, Montréal, QC, H3A 0E8, Canada; Geological Survey of Canada, Natural Resources Canada, Québec, QC, G1K 9A9, Canada
| | - Nagissa Mahmoudi
- Department of Earth and Planetary Sciences, McGill University, Montréal, QC, H3A 0E8, Canada
| | - Scott L J Hepditch
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Valerie S Langlois
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Samrat Alam
- Geological Survey of Canada, Natural Resources Canada, Québec, QC, G1K 9A9, Canada
| | - Richard Martel
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Jason M E Ahad
- Geological Survey of Canada, Natural Resources Canada, Québec, QC, G1K 9A9, Canada.
| |
Collapse
|
4
|
Teng T, Liang J, Wu Z, Jin P, Zhang D. Different phenanthrene degraders between free-cell mediated and biochar-immobilization assisted soil bioaugmentation as identified by RNA-based stable isotope probing (RNA-SIP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161139. [PMID: 36572297 DOI: 10.1016/j.scitotenv.2022.161139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Bioaugmentation (BA) is an effective approach to remove polycyclic aromatic hydrocarbons (PAHs) from contaminated soils, and biochar is frequently used to enhance PAH degradation performance. In this study, phenanthrene (PHE) degradation behavior and active degraders in a petroleum-contaminated soil were investigated and compared between free-cell mediated and biochar-immobilization assisted bioaugmentation. Biochar-immobilization assisted bioaugmentation (BA-IPB) introduced PHE degraders immobilized on biochar and effectively promoted PHE degradation, achieving higher PHE removal efficiencies within 24 h (~58 %) than free-cell mediated bioaugmentation (BA-FPB, ~39 %). Soil microbial community structure significantly changed in both BA-FPB and BA-IPB treatments. Through RNA-stable isotope probing (SIP), 14 and 11 bacterial lineages responsible for in situ PHE degradation were identified in BA-FPB and BA-IPB treatments, respectively. ASV_17 in BA-FPB treatment was Rhodococcus in the exogenous bacterial mixture; in contrast, none of exogenous bacteria were involved in PHE degradation in BA-IPB treatment. Methylobacterium (ASV_186), Xanthomonas (ASV_41), Kroppenstedtia (ASV_205), Scopulibacillus (ASV_243), Bautia (ASV_356), and Lactobacillus (ASV_376) were identified as PHE degraders for the first time. Our findings expanded the knowledge of the active PHE degraders and underlying mechanisms in bioaugmentation process, and suggested biochar-immobilization assisted bioaugmentation as a promising strategy for the bioremediation of PAH contaminated soils.
Collapse
Affiliation(s)
- Tingting Teng
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, Xi'an 710000, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Jidong Liang
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, Xi'an 710000, PR China.
| | - Zijun Wu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, Xi'an 710000, PR China
| | - Pengkang Jin
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, Xi'an 710000, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China
| |
Collapse
|
5
|
Kapinusova G, Lopez Marin MA, Uhlik O. Reaching unreachables: Obstacles and successes of microbial cultivation and their reasons. Front Microbiol 2023; 14:1089630. [PMID: 36960281 PMCID: PMC10027941 DOI: 10.3389/fmicb.2023.1089630] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
In terms of the number and diversity of living units, the prokaryotic empire is the most represented form of life on Earth, and yet it is still to a significant degree shrouded in darkness. This microbial "dark matter" hides a great deal of potential in terms of phylogenetically or metabolically diverse microorganisms, and thus it is important to acquire them in pure culture. However, do we know what microorganisms really need for their growth, and what the obstacles are to the cultivation of previously unidentified taxa? Here we review common and sometimes unexpected requirements of environmental microorganisms, especially soil-harbored bacteria, needed for their replication and cultivation. These requirements include resuscitation stimuli, physical and chemical factors aiding cultivation, growth factors, and co-cultivation in a laboratory and natural microbial neighborhood.
Collapse
Affiliation(s)
| | | | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
6
|
Li X, Yao S, Bolan N, Wang Z, Jiang X, Song Y. Combined maize straw-biochar and oxalic acids induced a relay activity of abundant specific degraders for efficient phenanthrene degradation: Evidence based on the DNA-SIP technology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119867. [PMID: 35940483 DOI: 10.1016/j.envpol.2022.119867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/08/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Biochar-oxalic acid composite application (BCOA) have shown to be efficient in the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil, but the functional degraders and the mechanism of improving biodegradation remains unclear. In this study, with the help of stable isotope probing technology of phenanthrene (Phe), we determined that BCOA significantly improved Phe mineralization by 2.1 times, which was ascribed to the increased numbers and abundances of functional degraders. The BCOA increased contents of dissolved organic carbon and available nutrients and decreased pH values in soil, thus promoting the activity, diversity and close cooperation of the functional Phe-degraders, and stimulating their functions associated with Phe degradation. In addition, there is a relay activity among more and diverse functional Phe-degraders in the soil with BCOA. Specifically, Pullulanibacillus persistently participated in Phe-degradation in the soil with BCOA throughout the incubation period. Moreover, Pullulanibacillus, Blastococcus, Alsobacter, Ramlibacter, and Mizugakiibacter were proved to be potential Phe-degraders in soil for the first time. The specific Phe degraders and their relay and cooperation activity in soils as impacted by BCOA were first identified with DNA-stable isotope probing technology. Our findings provided a novel perspective to understand the efficient degradation of PAH in the BCOA treatments, revealed the potential of soil native microbes in the efficient bioremediation of PAH-contaminated natural soil, and provided a basis for the development of in-situ phytoremediation technologies to remediate PAH pollution in future.
Collapse
Affiliation(s)
- Xiaona Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Nanthi Bolan
- School of Agriculture and Environment, UWA Institute of Agriculture, The University of Western Australia, Nedland, WA, 6009, Australia
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Liang C, Ye Q, Huang Y, Wang Y, Zhang Z, Wang H. Shifts of the new functional marker gene (pahE) of polycyclic aromatic hydrocarbons (PAHs) degrading bacterial population and its relationship with PAHs biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129305. [PMID: 35709619 DOI: 10.1016/j.jhazmat.2022.129305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/22/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Identification of polycyclic aromatic hydrocarbons (PAHs) degrading bacterial populations and understanding their responses to PAHs are crucial for the designing of appropriate bioremediation strategies. In this study, the responses of PAHs-degrading bacterial populations to different PAHs were studied in terms of the compositions and abundance variations of their new functional marker gene (pahE) by gene-targeted metagenomic and qPCR analysis. Overall, PAHs species significantly affected the composition and abundance of pahE gene within the PAHs-degrading bacteria in each treatment and different pahE of PAHs-degrading bacteria involved in the different stages of PAHs degradation. Noted that new pahE genotypes were also discovered in all PAHs treatment groups, indicating that some potential new PAHs-degrading bacterial genera were also involved in PAHs degradation. Besides, all three PAH removal rates were significantly positively related with pahE gene abundances (R2 = 0.908 ~ 0.922, p < 0.01), demonstrating that pahE could be a good indicator of PAHs degradation activity or potential. This is the first study focusing on the dynamic changes of the pahE gene within PAHs-degrading bacterial community during the degradation of PAHs in mangrove sediment, providing novel insights into the use of pahE gene as the functional marker to indicate PAH degradation.
Collapse
Affiliation(s)
- Chengyue Liang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Quanhui Ye
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Huang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zuotao Zhang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Wu Y, Jiang B, Zou Y, Dong H, Wang H, Zou H. Influence of bacterial community diversity, functionality, and soil factors on polycyclic aromatic hydrocarbons under various vegetation types in mangrove wetlands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119622. [PMID: 35750309 DOI: 10.1016/j.envpol.2022.119622] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/04/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are prevalent organic pollutants in coastal ecosystems, particularly in mangrove wetlands. However, it is still largely unclear how PAHs affect the soil bacterial community under various vegetation types in the Greater Bay Area. Here, we selected soil samples from four sites with different vegetation types (native mangrove forest dominated by Kandelia candel, invasive mangrove forest dominated by Sonneratia apetala, unvegetated mudflat, and riverine runoff outlet) in the Qi'ao and Futian Nature Reserves. We investigated the effects of PAHs on soil bacterial community composition and diversity, function, and co-occurrence via 16S rRNA high-throughput sequencing. PAHs obviously reduced soil bacterial community diversity and richness. Based on PICRUSt 2, PAHs demonstrated positive influences on PAHs degradation metabolism related bacterial genes. Meanwhile, we predicted that riverine runoff outlets can potentially degrade PAHs, may donate to sustain healthy mangrove ecosystem. Also, PAHs and total nitrogen (TN) were crucial factors driving the soil bacterial community in Qi'ao sites, whereas in the Futian sites, PAHs and SOC were more important. PAHs, SOC and TN showed negative effects on specific bacteria abundance. Subsequently, environmental factors and PAHs levels influenced the soil bacterial ecological functions community. Co-occurrence network analysis revealed non-random assembly patterns of the bacterial communities. SBR1031 and A4b were the keystone genera and played a crucial role whgich played an irreplaceable role in PAHs degradation in Qi'ao and Futian sites. PAHs inhibited specific microbial activity and metabolism in native mangrove forest, while affects positively to bacterial community in riverine runoff outlet which might profoundly affect the whole soil quality under various vegetation types. Overall, this study might identify existing health problems and provide insights for enhancing protection and utilization management for mangrove ecosystem in the Greater Bay Area.
Collapse
Affiliation(s)
- Yining Wu
- Northeast Forestry University, China; Heilongjiang Academy of Sciences Institute of Natural Resources and Ecology, China
| | | | - Yu Zou
- Qiqihar Medical University, China
| | | | - He Wang
- Northeast Forestry University, China
| | | |
Collapse
|
9
|
Li S, Shen W, Lian S, Wu Y, Qu Y, Deng Y. DARHD: A sequence database for aromatic ring-hydroxylating dioxygenase analysis and primer evaluation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129230. [PMID: 35739750 DOI: 10.1016/j.jhazmat.2022.129230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Biodegradation of aromatic compounds is ubiquitous in the environment and important for controlling organic pollutants. Aromatic ring-hydroxylating dioxygenases (ARHDs) are responsible for the first and rate-limiting step of aerobic biodegradation of aromatic compounds. The ARHD α subunit is a good biomarker for studying functional microorganisms in the environment, however their diversity and corresponding primer coverage are unclear, both of which require a comprehensive sequence database for the ARHD α subunit. Here amino acid sequences of the ARHD α subunit were collected, and a total of 103 sequences were selected as seed sequences that were distributed in 72 bacterial genera with 34 gene names. Based on both homolog search and keyword confirmation against the GenBank, a sequence database of ARHD (DARHD) has been established and 6367 highly credible sequences were retrieved. DARHD contained 407 bacterial genera capable of degrading 38 aromatic substrates, and intricate relationships among the gene name, aromatic substrate and microbial taxa were observed. Thereafter, a total of 136 pairs of primers were collected and assessed. Results showed coverages of most published primers were low. Our research provides new insights for understanding the diversity of ARHD α subunit, and gives guidance on the design and application of primers in the future.
Collapse
Affiliation(s)
- Shuzhen Li
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wenli Shen
- Institute for Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yueni Wu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute for Marine Science and Technology, Shandong University, Qingdao 266237, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Volkoff SJ, Rodriguez DL, Singleton DR, McCumber AW, Aitken MD, Stewart JR, Gunsch CK. Identifying bioaugmentation candidates for bioremediation of polycyclic aromatic hydrocarbons in contaminated estuarine sediment of the Elizabeth River, VA, USA. Appl Microbiol Biotechnol 2022; 106:1715-1727. [PMID: 35089401 DOI: 10.1007/s00253-021-11754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/02/2022]
Abstract
Estuarine sediments near former creosoting facilities along the Elizabeth River (Virginia, USA) are contaminated by polycyclic aromatic hydrocarbons (PAHs). In this study, we interrogated the bacterial community of the Elizabeth River with both culture-based and culture-independent methods to identify potential candidates for bioremediation of these contaminants. DNA-based stable isotope probing (SIP) experiments with phenanthrene and fluoranthene using sediment from the former Republic Creosoting site identified relevant PAH-degrading bacteria within the Azoarcus, Hydrogenophaga, and Croceicoccus genera. Targeted cultivation of PAH-degrading bacteria from the same site recovered 6 PAH-degrading strains, including one strain highly similar to Hydrogenophaga sequences detected in SIP experiments. Other isolates were most similar to organisms within the Novosphingobium, Sphingobium, Stenotrophomonas, and Alcaligenes genera. Lastly, we performed 16S rRNA gene amplicon microbiome analyses of sediment samples from four sites, including Republic Creosoting, with varying concentrations of PAHs. Analysis of these data showed a striking divergence of the microbial community at the highly contaminated Republic Creosoting site from less contaminated sites with the enrichment of several bacterial clades including those affiliated with the Pseudomonas genus. Sequences within the microbiome libraries similar to SIP-derived sequences were generally found at high relative abundance, while the Croceicoccus sequence was present at low to moderate relative abundance. These results suggest that Azoarcus and Hydrogenophaga strains might be good target candidates for biostimulation, while Croceicoccus spp. might be good targets for bioaugmentation in these sediments. Furthermore, this study demonstrates the value of culture-based and culture-independent methods in identifying promising bacterial candidates for use in a precision bioremediation scheme. KEY POINTS: • This study highlights the importance of using multiple strategies to identify promising bacterial candidates for use in a precision bioremediation scheme. • We used both selective cultivation techniques and DNA-based stable isotope probing to identify bacterial degraders of prominent PAHs at a historically contaminated site in the Elizabeth River, VA, USA. • Azoarcus and Hydrogenophaga strains might be good target candidates for biostimulation in Elizabeth River sediments, while Croceicoccus spp. might be good targets for bioaugmentation.
Collapse
Affiliation(s)
- Savannah J Volkoff
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, 121 Hudson Hall, Durham, NC, 27708, USA
| | - Daniel L Rodriguez
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, 121 Hudson Hall, Durham, NC, 27708, USA
| | - David R Singleton
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, 121 Hudson Hall, Durham, NC, 27708, USA
| | - Alexander W McCumber
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, 121 Hudson Hall, Durham, NC, 27708, USA
| | - Michael D Aitken
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27759-7431, USA
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27759-7431, USA
| | - Claudia K Gunsch
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, 121 Hudson Hall, Durham, NC, 27708, USA.
| |
Collapse
|
11
|
Soto DF, Franzetti A, Gómez I, Huovinen P. Functional filtering and random processes affect the assembly of microbial communities of snow algae blooms at Maritime Antarctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150305. [PMID: 34818790 DOI: 10.1016/j.scitotenv.2021.150305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/04/2021] [Accepted: 09/08/2021] [Indexed: 05/10/2023]
Abstract
The increasing temperatures at the West Antarctic Peninsula (Maritime Antarctic) could lead to a higher occurrence of snow algal blooms which are ubiquitous events that change the snow coloration, reducing albedo and in turn exacerbating melting. However, there is a limited understanding of snow algae blooms biodiversity, composition, and their functional profiles, especially in one of the world's areas most affected by climate change. In this study we used 16S rRNA and 18S rRNA metabarcoding, and shotgun metagenomics to assess the diversity, composition, and functional potential of the snow algae blooms bacterial and eukaryotic communities at three different sites of Maritime Antarctic, between different colors of the algae blooms and between seasonal and semi-permanent snowfields. We tested the hypothesis that the functional potential of snow algae blooms is conserved despite a changing taxonomic composition. Furthermore, we determined taxonomic co-occurrence patterns of bacteria and eukaryotes and assessed the potential for the exchange of metabolites among bacterial taxa. Here, we tested the prediction that there are co-occurring taxa within snow algae whose biotic interactions are marked by the exchange of metabolites. Our results show that the composition of snow algae blooms vary significantly among sites. For instance, a higher abundance of fungi and protists were detected in Fildes Peninsula compared with Doumer Island and O'Higgins. Likewise, the composition varied between snow colors and snow types. However, the functional potential varied only among sampling sites with a higher abundance of genes involved in tolerance to environmental stress at O'Higgins. Co-occurrence patterns of dominant bacterial genera such as Pedobacter, Polaromonas, Flavobacterium and Hymenobacter were recorded, contrasting the absence of co-occurring patterns displayed by Chlamydomonadales algae with other eukaryotes. Finally, genome-scale metabolic models revealed that bacteria within snow algae blooms likely compete for resources instead of forming cooperative communities.
Collapse
Affiliation(s)
- Daniela F Soto
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile.
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile
| |
Collapse
|
12
|
Wang X, Teng Y, Ren W, Han Y, Wang X, Li X. Soil bacterial diversity and functionality are driven by plant species for enhancing polycyclic aromatic hydrocarbons dissipation in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149204. [PMID: 34346367 DOI: 10.1016/j.scitotenv.2021.149204] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 05/27/2023]
Abstract
Plant-microorganisms symbiosis has been widely used in developing strategies for the rhizoremediation of polycyclic aromatic hydrocarbon (PAHs) contaminated agricultural soils. However, understanding the potential mechanisms for using complex plant-microbe interactions to enhance rhizoremediation in contaminated soils is still limited. In this study, rhizosphere microbiomes were established by cultivating four types of cover crops for 15 months in a PAHs-contaminated field. The results showed that the PAHs removal rates were significantly higher in rhizosphere soils (55.2-82.3%) than the bare soils (20.5%). Of the four cover crops, the rhizosphere soils associated with the alfalfa and clover had higher removal rates for high molecular weight (HMW) PAHs (78.5-87.1%) than the grasses (39.0-46.2%). High-throughput sequencing analysis showed that bacterial community structure between the planted and bare soils, and among four cover crops rhizosphere soils were significantly different. The rhizosphere soils associated with the alfalfa and clover had more abundant degradation-related taxa. Correlation network analysis showed that bacterial communities with high removal rates have stronger interactions. Metagenome analysis indicated that the relative abundance of the key functional genes involved in PAHs degradation and nutrient metabolisms were significantly higher in rhizosphere soils, especially for alfalfa and clover. Overall, this study provides new insights for us to understand the mechanisms by different plants enhancing PAHs dissipation from the viewpoint of microbiology.
Collapse
Affiliation(s)
- Xia Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yujuan Han
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiufen Li
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
13
|
Cai X, Li J, Guan F, Luo X, Yuan Y. Unveiling metabolic characteristics of an uncultured Gammaproteobacterium responsible for in situ PAH biodegradation in petroleum polluted soil. Environ Microbiol 2021; 23:7093-7104. [PMID: 34674400 DOI: 10.1111/1462-2920.15814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 10/05/2021] [Indexed: 01/17/2023]
Abstract
Exploring the metabolic characteristics of indigenous PAH degraders is critical to understanding the PAH bioremediation mechanism in the natural environment. While stable-isotopic probing (SIP) is a viable method to identify functional microorganisms in complex environments, the metabolic characteristics of uncultured degraders are still elusive. Here, we investigated the naphthalene (NAP) biodegradation of petroleum polluted soils by combining SIP, amplicon sequencing and metagenome binning. Based on the SIP and amplicon sequencing results, an uncultured Gammaproteobacterium sp. was identified as the key NAP degrader. Additionally, the assembled genome of this uncultured degrader was successfully obtained from the 13 C-DNA metagenomes by matching its 16S rRNA gene with the SIP identified OTU sequence. Meanwhile, a number of NAP degrading genes encoding naphthalene/PAH dioxygenases were identified in this genome, further confirming the direct involvement of this indigenous degrader in the NAP degradation. The degrader contained genes related to the metabolisms of several carbon sources, energy substances and vitamins, illuminating potential reasons for why microorganisms cannot be cultivated and finally realize their cultivation. Our findings provide novel information on the mechanisms of in situ PAH biodegradation and add to our current knowledge on the cultivation of non-culturable microorganisms by combining both SIP and metagenome binning.
Collapse
Affiliation(s)
- Xixi Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Fengyi Guan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaoshan Luo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
14
|
Sieradzki ET, Morando M, Fuhrman JA. Metagenomics and Quantitative Stable Isotope Probing Offer Insights into Metabolism of Polycyclic Aromatic Hydrocarbon Degraders in Chronically Polluted Seawater. mSystems 2021; 6:e00245-21. [PMID: 33975968 PMCID: PMC8125074 DOI: 10.1128/msystems.00245-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022] Open
Abstract
Bacterial biodegradation is a significant contributor to remineralization of polycyclic aromatic hydrocarbons (PAHs)-toxic and recalcitrant components of crude oil as well as by-products of partial combustion chronically introduced into seawater via atmospheric deposition. The Deepwater Horizon oil spill demonstrated the speed at which a seed PAH-degrading community maintained by chronic inputs responds to acute pollution. We investigated the diversity and functional potential of a similar seed community in the chronically polluted Port of Los Angeles (POLA), using stable isotope probing with naphthalene, deep-sequenced metagenomes, and carbon incorporation rate measurements at the port and in two sites in the San Pedro Channel. We demonstrate the ability of the community of degraders at the POLA to incorporate carbon from naphthalene, leading to a quick shift in microbial community composition to be dominated by the normally rare Colwellia and Cycloclasticus We show that metagenome-assembled genomes (MAGs) belonged to these naphthalene degraders by matching their 16S-rRNA gene with experimental stable isotope probing data. Surprisingly, we did not find a full PAH degradation pathway in those genomes, even when combining genes from the entire microbial community, leading us to hypothesize that promiscuous dehydrogenases replace canonical naphthalene degradation enzymes in this site. We compared metabolic pathways identified in 29 genomes whose abundance increased in the presence of naphthalene to generate genomic-based recommendations for future optimization of PAH bioremediation at the POLA, e.g., ammonium as opposed to urea, heme or hemoproteins as an iron source, and polar amino acids.IMPORTANCE Oil spills in the marine environment have a devastating effect on marine life and biogeochemical cycles through bioaccumulation of toxic hydrocarbons and oxygen depletion by hydrocarbon-degrading bacteria. Oil-degrading bacteria occur naturally in the ocean, especially where they are supported by chronic inputs of oil or other organic carbon sources, and have a significant role in degradation of oil spills. Polycyclic aromatic hydrocarbons are the most persistent and toxic component of crude oil. Therefore, the bacteria that can break those molecules down are of particular importance. We identified such bacteria at the Port of Los Angeles (POLA), one of the busiest ports worldwide, and characterized their metabolic capabilities. We propose chemical targets based on those analyses to stimulate the activity of these bacteria in case of an oil spill in the Port POLA.
Collapse
Affiliation(s)
- Ella T Sieradzki
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Michael Morando
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
15
|
Liang J, Gao S, Wu Z, Rijnaarts HHM, Grotenhuis T. DNA-SIP identification of phenanthrene-degrading bacteria undergoing bioaugmentation and natural attenuation in petroleum-contaminated soil. CHEMOSPHERE 2021; 266:128984. [PMID: 33234305 DOI: 10.1016/j.chemosphere.2020.128984] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
DNA-stable isotope probing (SIP) with 13C labeled phenanthrene (PHE) as substrate was used to identify specific bacterial degraders during natural attenuation (NA) and bioaugmentation (BA) in petroleum contaminated soil. BA, with the addition of a bacterial suspension mixture named GZ, played a significant role in PHE degradation with a higher PHE removal rate (∼90%) than that of NA (∼80%) during the first 3 days, and remarkably altered microbial communities. Of the five strains introduced in BA, only two genera, particularly, Ochrobactrum, Rhodococcus were extensively responsible for PHE-degradation. Six (Bacillus sp., Acinetobacter sp., Xanthomonas sp., Conexibacter sp., Acinetobacter sp. and Staphylococcus sp.) and seven (Ochrobactrum sp., Rhodococcus sp., Alkanindiges sp., Williamsia sp., Sphingobium sp., Gillisia sp. and Massilia sp.) bacteria responsible for PHE degradation were identified in NA and BA treatments, respectively. This study reports for the first time the association of Xanthomonas sp., Williamsia sp., and Gillisia sp. to PHE degradation.
Collapse
Affiliation(s)
- Jidong Liang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Sha Gao
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Environmental Technology, Wageningen University and Research, Wageningen, 6700AA, the Netherlands
| | - Zijun Wu
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huub H M Rijnaarts
- Department of Environmental Technology, Wageningen University and Research, Wageningen, 6700AA, the Netherlands
| | - Tim Grotenhuis
- Department of Environmental Technology, Wageningen University and Research, Wageningen, 6700AA, the Netherlands
| |
Collapse
|
16
|
Kim J, Jung HS, Baek JH, Chun BH, Khan SA, Jeon CO. Paenibacillus silvestris sp. nov., Isolated from Forest Soil. Curr Microbiol 2021; 78:822-829. [PMID: 33388935 DOI: 10.1007/s00284-020-02333-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022]
Abstract
A bacterial strain, designated 5J-6T, was isolated from soil in Cheongnyeongpo, Republic of Korea. Cells were Gram-stain-positive, strictly aerobic, and motile rods and their catalase and oxidase activities were positive. Strain 5J-6T grew at 10-30 °C, pH 6.0-9.0, and 0-0.8% (w/v) NaCl concentration, with optimum growth at 25 °C, pH 6.5, and 0.4% NaCl concentration. Anteiso-C15:0 and iso-C16:0 were detected as the predominant fatty acids and menaquinone-7 was the sole isoprenoid quinone detected. Strain 5J-6T contained phosphatidylethanolamine, phosphatidylglycerol and an unidentified phospholipid as major polar lipids. The peptidoglycan belonged to the type A1γ meso-diaminopimelic acid. The G+C content of the genomic DNA calculated from the whole genomic sequence was 46.1 mol%. Phylogenetic analysis of strain 5J-6T based on 16S rRNA gene sequences placed the isolate into a member of the genus Paenibacillus. Sequence similarity analysis of 16S rRNA gene sequences revealed that strain 5J-6T was most closely related to Paenibacillus aceris KUDC4121T and Paenibacillus chondroitinus DSM 5051T with 98.76% and 98.42% similarities, respectively. Average nucleotide identity and in silico DNA-DNA hybridization values between strain 5J-6T and the type strain of P. aceris were 83.97% and 28.60%, respectively. Based on the phylogenetic and phenotypic characteristics and genomic data, strain 5J-6T could be considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus silvestris sp. nov. is proposed. The type strain is 5J-6T (= KACC 21430T = JCM 33812T).
Collapse
Affiliation(s)
- Jungeun Kim
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Hye Su Jung
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Byung Hee Chun
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Shehzad Abid Khan
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
17
|
Taylor NM, Toth CRA, Collins V, Mussone P, Gieg LM. The Effect of an Adsorbent Matrix on Recovery of Microorganisms from Hydrocarbon-Contaminated Groundwater. Microorganisms 2021; 9:microorganisms9010090. [PMID: 33401442 PMCID: PMC7823327 DOI: 10.3390/microorganisms9010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023] Open
Abstract
The microbial degradation of recalcitrant hydrocarbons is an important process that can contribute to the remediation of oil and gas-contaminated environments. Due to the complex structure of subsurface terrestrial environments, it is important to identify the microbial communities that may be contributing to biodegradation processes, along with their abilities to metabolize different hydrocarbons in situ. In this study, a variety of adsorbent materials were assessed for their ability to trap both hydrocarbons and microorganisms in contaminated groundwater. Of the materials tested, a porous polymer resin (Tenax-TA) recovered the highest diversity of microbial taxa in preliminary experiments and was selected for additional (microcosm-based) testing. Oxic and anoxic experiments were prepared with groundwater collected from a contaminated aquifer to assess the ability of Tenax-TA to adsorb two environmental hydrocarbon contaminants of interest (toluene and benzene) while simultaneously providing a surface for microbial growth and hydrocarbon biodegradation. Microorganisms in oxic microcosms completely degraded both targets within 14 days of incubation, while anoxically-incubated microorganisms metabolized toluene but not benzene in less than 80 days. Community analysis of Tenax-TA-associated microorganisms revealed taxa highly enriched in sessile hydrocarbon-degrading treatments, including Saprospiraceae, Azoarcus, and Desulfoprunum, which may facilitate hydrocarbon degradation. This study showed that Tenax-TA can be used as a matrix to effectively trap both microorganisms and hydrocarbons in contaminated environmental systems for assessing and studying hydrocarbon-degrading microorganisms of interest.
Collapse
Affiliation(s)
- Nicole M. Taylor
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
| | - Courtney R. A. Toth
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada;
| | - Victoria Collins
- Applied BioNanotechnology Industrial Research Chair Program, Northern Alberta Institute of Technology, 11762-106 Street, Edmonton, AB T5G 2R1, Canada; (V.C.); (P.M.)
| | - Paolo Mussone
- Applied BioNanotechnology Industrial Research Chair Program, Northern Alberta Institute of Technology, 11762-106 Street, Edmonton, AB T5G 2R1, Canada; (V.C.); (P.M.)
| | - Lisa M. Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
- Correspondence:
| |
Collapse
|
18
|
Bacterial and archaeal community structure in benthic sediments from glacial lakes at the Múlajökull Glacier, central Iceland. Polar Biol 2020. [DOI: 10.1007/s00300-020-02770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Barnett SE, Buckley DH. Simulating metagenomic stable isotope probing datasets with MetaSIPSim. BMC Bioinformatics 2020; 21:37. [PMID: 32000676 PMCID: PMC6993524 DOI: 10.1186/s12859-020-3372-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background DNA-stable isotope probing (DNA-SIP) links microorganisms to their in-situ function in diverse environmental samples. Combining DNA-SIP and metagenomics (metagenomic-SIP) allows us to link genomes from complex communities to their specific functions and improves the assembly and binning of these targeted genomes. However, empirical development of metagenomic-SIP methods is hindered by the complexity and cost of these studies. We developed a toolkit, ‘MetaSIPSim,’ to simulate sequencing read libraries for metagenomic-SIP experiments. MetaSIPSim is intended to generate datasets for method development and testing. To this end, we used MetaSIPSim generated data to demonstrate the advantages of metagenomic-SIP over a conventional shotgun metagenomic sequencing experiment. Results Through simulation we show that metagenomic-SIP improves the assembly and binning of isotopically labeled genomes relative to a conventional metagenomic approach. Improvements were dependent on experimental parameters and on sequencing depth. Community level G + C content impacted the assembly of labeled genomes and subsequent binning, where high community G + C generally reduced the benefits of metagenomic-SIP. Furthermore, when a high proportion of the community is isotopically labeled, the benefits of metagenomic-SIP decline. Finally, the choice of gradient fractions to sequence greatly influences method performance. Conclusions Metagenomic-SIP is a valuable method for recovering isotopically labeled genomes from complex communities. We show that metagenomic-SIP performance depends on optimization of experimental parameters. MetaSIPSim allows for simulation of metagenomic-SIP datasets which facilitates the optimization and development of metagenomic-SIP experiments and analytical approaches for dealing with these data.
Collapse
Affiliation(s)
- Samuel E Barnett
- School of Integrative Plant Science, Cornell University, Bradfield Hall, room 705, 306 Tower Rd, Ithaca, NY, 14853, USA
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Bradfield Hall, room 705, 306 Tower Rd, Ithaca, NY, 14853, USA.
| |
Collapse
|
20
|
Thomas F, Corre E, Cébron A. Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil. THE ISME JOURNAL 2019; 13:1814-1830. [PMID: 30872807 PMCID: PMC6775975 DOI: 10.1038/s41396-019-0394-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/08/2019] [Accepted: 02/28/2019] [Indexed: 11/09/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous soil pollutants. The discovery that plants can stimulate microbial degradation of PAHs has promoted research on rhizoremediation strategies. We combined DNA-SIP with metagenomics to assess the influence of plants on the identity and metabolic functions of active PAH-degrading bacteria in contaminated soil, using phenanthrene (PHE) as a model hydrocarbon. 13C-PHE dissipation was 2.5-fold lower in ryegrass-planted conditions than in bare soil. Metabarcoding of 16S rDNA revealed significantly enriched OTUs in 13C-SIP incubations compared to 12C-controls, namely 130 OTUs from bare soil and 73 OTUs from planted soil. Active PHE-degraders were taxonomically diverse (Proteobacteria, Actinobacteria and Firmicutes), with Sphingomonas and Sphingobium dominating in bare and planted soil, respectively. Plant root exudates favored the development of PHE-degraders having specific functional traits at the genome level. Indeed, metagenomes of 13C-enriched DNA fractions contained more genes involved in aromatic compound metabolism in bare soil, whereas carbohydrate catabolism genes were more abundant in planted soil. Functional gene annotation allowed reconstruction of complete pathways with several routes for PHE catabolism. Sphingomonadales were the major taxa performing the first steps of PHE degradation in both conditions, suggesting their critical role to initiate in situ PAH remediation. Active PHE-degraders act in a consortium, whereby complete PHE mineralization is achieved through the combined activity of taxonomically diverse co-occurring bacteria performing successive metabolic steps. Our study reveals hitherto underestimated functional interactions for full microbial detoxification in contaminated soils.
Collapse
Affiliation(s)
- François Thomas
- Université de Lorraine, CNRS, LIEC, 54500, Nancy, France
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Aurélie Cébron
- Université de Lorraine, CNRS, LIEC, 54500, Nancy, France.
| |
Collapse
|
21
|
Stable-Isotope Probing-Enabled Cultivation of the Indigenous Bacterium Ralstonia sp. Strain M1, Capable of Degrading Phenanthrene and Biphenyl in Industrial Wastewater. Appl Environ Microbiol 2019; 85:AEM.00511-19. [PMID: 31053587 DOI: 10.1128/aem.00511-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023] Open
Abstract
To identify and obtain the indigenous degraders metabolizing phenanthrene (PHE) and biphenyl (BP) from the complex microbial community within industrial wastewater, DNA-based stable-isotope probing (DNA-SIP) and cultivation-based methods were applied in the present study. DNA-SIP results showed that two bacterial taxa (Vogesella and Alicyclobacillus) were considered the key biodegraders responsible for PHE biodegradation only, whereas Bacillus and Cupriavidus were involved in BP degradation. Vogesella and Alicyclobacillus have not been linked with PHE degradation previously. Additionally, DNA-SIP helped reveal the taxonomic identity of Ralstonia-like degraders involved in both PHE and BP degradation. To target the separation of functional Ralstonia-like degraders from the wastewater, we modified the traditional cultivation medium and culture conditions. Finally, an indigenous PHE- and BP-degrading strain, Ralstonia pickettii M1, was isolated via a cultivation-dependent method, and its role in PHE and BP degradation was confirmed by enrichment of the 16S rRNA gene and distinctive dioxygenase genes in the DNA-SIP experiment. Our study has successfully established a program for the application of DNA-SIP in the isolation of the active functional degraders from an environment. It also deepens our insight into the diversity of indigenous PHE- and BP-degrading communities.IMPORTANCE The comprehensive treatment of wastewater in industrial parks suffers from the presence of multiple persistent organic pollutants (POPs), such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), which reduce the activity of activated sludge and are difficult to eliminate. Characterizing and applying active bacterial degraders metabolizing multiple POPs therefore helps to reveal the mechanisms of synergistic metabolism and to improve wastewater treatment efficiency in industrial parks. To date, SIP studies have successfully investigated the biodegradation of PAHs or PCBs in real-world habitats. DNA-SIP facilitates the isolation of target microorganisms that pose environmental concerns. Here, an indigenous phenanthrene (PHE)- and biphenyl (BP)-degrading strain in wastewater, Ralstonia pickettii M1, was isolated via a cultivation-dependent method, and its role in PHE and BP degradation was confirmed by DNA-SIP. Our study provides a routine protocol for the application of DNA-SIP in the isolation of the active functional degraders from an environment.
Collapse
|
22
|
Identification and Characterization of a Dominant Sulfolane-Degrading Rhodoferax sp. via Stable Isotope Probing Combined with Metagenomics. Sci Rep 2019; 9:3121. [PMID: 30816276 PMCID: PMC6395730 DOI: 10.1038/s41598-019-40000-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/05/2019] [Indexed: 01/06/2023] Open
Abstract
Sulfolane is an industrial solvent and emerging organic contaminant affecting groundwater around the world, but little is known about microbes capable of biodegrading sulfolane or the pathways involved. We combined DNA-based stable isotope probing (SIP) with genome-resolved metagenomics to identify microorganisms associated with sulfolane biodegradation in a contaminated subarctic aquifer. In addition to 16S rRNA gene amplicon sequencing, we performed shotgun metagenomics on the 13C-labeled DNA to obtain functional and taxonomic information about the active sulfolane-degrading community. We identified the primary sulfolane degrader, comprising ~85% of the labeled community in the amplicon sequencing dataset, as closely related to Rhodoferax ferrireducens strain T118. We obtained a 99.8%-complete metagenome-assembled genome for this strain, allowing us to identify putative pathways of sulfolane biodegradation. Although the 4S dibenzothiophene desulfurization pathway has been proposed as an analog for sulfolane biodegradation, we found only a subset of the required genes, suggesting a novel pathway specific to sulfolane. DszA, the enzyme likely responsible for opening the sulfolane ring structure, was encoded on both the chromosome and a plasmid. This study demonstrates the power of integrating DNA-SIP with metagenomics to characterize emerging organic contaminant degraders without culture bias and expands the known taxonomic distribution of sulfolane biodegradation.
Collapse
|
23
|
Lee Y, Lee Y, Jeon CO. Biodegradation of naphthalene, BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5 isolated from petroleum-contaminated soil. Sci Rep 2019; 9:860. [PMID: 30696831 PMCID: PMC6351602 DOI: 10.1038/s41598-018-36165-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/16/2018] [Indexed: 11/09/2022] Open
Abstract
To isolate bacteria responsible for the biodegradation of naphthalene, BTEX (benzene, toluene, ethylbenzene, and o-, m-, and p-xylene), and aliphatic hydrocarbons in petroleum-contaminated soil, three enrichment cultures were established using soil extract as the medium supplemented with naphthalene, BTEX, or n-hexadecane. Community analyses showed that Paraburkholderia species were predominant in naphthalene and BTEX, but relatively minor in n-hexadecane. Paraburkholderia aromaticivorans BN5 was able to degrade naphthalene and all BTEX compounds, but not n-hexadecane. The genome of strain BN5 harbors genes encoding 29 monooxygenases including two alkane 1-monooxygenases and 54 dioxygenases, indicating that strain BN5 has versatile metabolic capabilities, for diverse organic compounds: the ability of strain BN5 to degrade short chain aliphatic hydrocarbons was verified experimentally. The biodegradation pathways of naphthalene and BTEX compounds were bioinformatically predicted and verified experimentally through the analysis of their metabolic intermediates. Some genomic features including the encoding of the biodegradation genes on a plasmid and the low sequence homologies of biodegradation-related genes suggest that biodegradation potentials of strain BN5 may have been acquired via horizontal gene transfers and/or gene duplication, resulting in enhanced ecological fitness by enabling strain BN5 to degrade all compounds including naphthalene, BTEX, and short aliphatic hydrocarbons in contaminated soil.
Collapse
Affiliation(s)
- Yunho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yunhee Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
24
|
Barnett SE, Youngblut ND, Buckley DH. Data Analysis for DNA Stable Isotope Probing Experiments Using Multiple Window High-Resolution SIP. Methods Mol Biol 2019; 2046:109-128. [PMID: 31407300 DOI: 10.1007/978-1-4939-9721-3_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA stable isotope probing (DNA-SIP) allows for the identification of microbes that assimilate isotopically labeled substrates into DNA. Here we describe the analysis of sequencing data using the multiple window high-resolution DNA-SIP method (MW-HR-SIP). MW-HR-SIP has improved accuracy over other methods and is easily implemented on the statistical platform R. We also discuss key experimental parameters to consider when designing DNA-SIP experiments and how these parameters affect accuracy of analysis.
Collapse
Affiliation(s)
- Samuel E Barnett
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Nicholas D Youngblut
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
25
|
Lee Y, Jeong SE, Hur M, Ko S, Jeon CO. Construction and Evaluation of a Korean Native Microbial Consortium for the Bioremediation of Diesel Fuel-Contaminated Soil in Korea. Front Microbiol 2018; 9:2594. [PMID: 30425703 PMCID: PMC6218622 DOI: 10.3389/fmicb.2018.02594] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/11/2018] [Indexed: 01/15/2023] Open
Abstract
A native microbial consortium for the bioremediation of soil contaminated with diesel fuel in Korea was constructed and its biodegradation ability was assessed. Microbial strains isolated from Korean terrestrial environments, with the potential to biodegrade aliphatic hydrocarbons, PAHs, and resins, were investigated and among them, eventually seven microbial strains, Acinetobacter oleivorans DR1, Corynebacterium sp. KSS-2, Pseudomonas sp. AS1, Pseudomonas sp. Neph5, Rhodococcus sp. KOS-1, Micrococcus sp. KSS-8, and Yarrowia sp. KSS-1 were selected for the construction of a microbial consortium based on their biodegradation ability, hydrophobicity, and emulsifying activity. Laboratory- and bulk-scale biodegradation tests showed that in diesel fuel-contaminated soil supplemented with nutrients (nitrogen and phosphorus), the microbial consortium clearly improved the biodegradation of total petroleum hydrocarbons, and all microbial strains constituting the microbial consortium, except for Yarrowia survived and grew well, which suggests that the microbial consortium can be used for the bioremediation of diesel fuel-contaminated soil in Korea.
Collapse
Affiliation(s)
- Yunho Lee
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Moonsuk Hur
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, South Korea
| | | | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
26
|
Crampon M, Bodilis J, Portet-Koltalo F. Linking initial soil bacterial diversity and polycyclic aromatic hydrocarbons (PAHs) degradation potential. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:500-509. [PMID: 30086520 DOI: 10.1016/j.jhazmat.2018.07.088] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/02/2018] [Accepted: 07/23/2018] [Indexed: 05/26/2023]
Abstract
The aim of this study was to understand the role of indigenous soil microbial communities on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) and to determine whether PAHs degradation potential in soils may be evaluated by analysis of bacterial diversity and potential metabolisms using a metagenomics approach. Five different soils were artificially contaminated with seven selected PAHs and the most abundant bacterial taxa were assessed by sequencing the 16S rRNA gene, and linking them to PAH biodegradation efficiencies. A PICRUSt approach was then led to estimate the degradation potentials by metagenomics inference. Although the role of bacteria in PAHs degradation is not directly established here, the presence of a large number of bacteria belonging to the Betaproteobacteria class correlated to a higher degradation of LMW PAHs. A link with specific bacterial taxa was more difficult to establish concerning HMW PAHs, which seemed to require more complex mechanisms as shown by PICRUSt.
Collapse
Affiliation(s)
- M Crampon
- COBRA UMR CNRS 6014, Université de Rouen-Normandie, 55 rue saint Germain, 27000 Evreux, France; LMSM, EA 4312, Université de Rouen-Normandie, Place Emile Blondel, 76821 Mont Saint Aignan, France.
| | - J Bodilis
- LMSM, EA 4312, Université de Rouen-Normandie, Place Emile Blondel, 76821 Mont Saint Aignan, France.
| | - F Portet-Koltalo
- COBRA UMR CNRS 6014, Université de Rouen-Normandie, 55 rue saint Germain, 27000 Evreux, France.
| |
Collapse
|
27
|
Wilhelm RC, Hanson BT, Chandra S, Madsen E. Community dynamics and functional characteristics of naphthalene-degrading populations in contaminated surface sediments and hypoxic/anoxic groundwater. Environ Microbiol 2018; 20:3543-3559. [PMID: 30051558 DOI: 10.1111/1462-2920.14309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022]
Abstract
Earlier research on the biogeochemical factors affecting natural attenuation in coal-tar contaminated groundwater, at South Glens Falls, NY, revealed the importance of anaerobic metabolism and trophic interactions between degrader and bacterivore populations. Field-based characterizations of both phenomena have proven challenging, but advances in stable isotope probing (SIP), single-cell imaging and shotgun metagenomics now provide cultivation-independent tools for their study. We tracked carbon from 13 C-labelled naphthalene through microbial populations in contaminated surface sediments over 6 days using respiration assays, secondary ion mass spectrometry imaging and shotgun metagenomics to disentangle the contaminant-based trophic web. Contaminant-exposed communities in hypoxic/anoxic groundwater were contrasted with those from oxic surface sediments to identify putative features of anaerobic catabolism of naphthalene. In total, six bacteria were responsible for naphthalene degradation. Cupriavidus, Ralstonia and Sphingomonas predominated at the earliest stages of SIP incubations and were succeeded in later stages by Stenotrophomonas and Rhodococcus. Metagenome-assembled genomes provided evidence for the ecological and functional characteristics underlying these temporal shifts. Identical species of Stenotrophomonas and Rhodococcus were abundant in the most contaminated, anoxic groundwater. Apparent increases in bacterivorous protozoa were observed following exposure to naphthalene, though insignificant amounts of carbon were transferred between bacterial degraders and populations of secondary feeders.
Collapse
Affiliation(s)
- Roland C Wilhelm
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Buck T Hanson
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Subhash Chandra
- Cornell SIMS Laboratory, Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Eugene Madsen
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
28
|
Ciok A, Budzik K, Zdanowski MK, Gawor J, Grzesiak J, Decewicz P, Gromadka R, Bartosik D, Dziewit L. Plasmids of Psychrotolerant Polaromonas spp. Isolated From Arctic and Antarctic Glaciers - Diversity and Role in Adaptation to Polar Environments. Front Microbiol 2018; 9:1285. [PMID: 29967598 PMCID: PMC6015842 DOI: 10.3389/fmicb.2018.01285] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/25/2018] [Indexed: 12/23/2022] Open
Abstract
Cold-active bacteria of the genus Polaromonas (class Betaproteobacteria) are important components of glacial microbiomes. In this study, extrachromosomal replicons of 26 psychrotolerant Polaromonas strains, isolated from Arctic and Antarctic glaciers, were identified, sequenced, and characterized. The plasmidome of these strains consists of 13 replicons, ranging in size from 3,378 to 101,077 bp. In silico sequence analyses identified the conserved backbones of these plasmids, composed of genes required for plasmid replication, stable maintenance, and conjugal transfer. Host range analysis revealed that all of the identified plasmids are narrow-host-range replicons, only able to replicate in bacteria of closely related genera (Polaromonas and Variovorax) of the Comamonadaceae family. Special attention was paid to the identification of plasmid auxiliary genetic information, which may contribute to the adaptation of bacteria to environmental conditions occurring in glaciers. Detailed analysis revealed the presence of genes encoding proteins potentially involved in (i) protection against reactive oxygen species, ultraviolet radiation, and low temperatures; (ii) transport and metabolism of organic compounds; (iii) transport of metal ions; and (iv) resistance to heavy metals. Some of the plasmids also carry genes required for the molecular assembly of iron-sulfur [Fe-S] clusters. Functional analysis of the predicted heavy metal resistance determinants demonstrated that their activity varies, depending on the host strain. This study provides the first molecular insight into the mobile DNA of Polaromonas spp. inhabiting polar glaciers. It has generated valuable data on the structure and properties of a pool of plasmids and highlighted their role in the biology of psychrotolerant Polaromonas strains and their adaptation to the environmental conditions of Arctic and Antarctic glaciers.
Collapse
Affiliation(s)
- Anna Ciok
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karol Budzik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marek K. Zdanowski
- Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Gawor
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Grzesiak
- Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Przemyslaw Decewicz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Gromadka
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
29
|
Táncsics A, Szalay AR, Farkas M, Benedek T, Szoboszlay S, Szabó I, Lueders T. Stable isotope probing of hypoxic toluene degradation at the Siklós aquifer reveals prominent role of Rhodocyclaceae. FEMS Microbiol Ecol 2018; 94:4995907. [PMID: 29767715 PMCID: PMC5972620 DOI: 10.1093/femsec/fiy088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 02/01/2023] Open
Abstract
The availability of oxygen is often a limiting factor for the degradation of aromatic hydrocarbons in subsurface environments. However, while both aerobic and anaerobic degraders have been intensively studied, degradation betwixt, under micro- or hypoxic conditions has rarely been addressed. It is speculated that in environments with limited, but sustained oxygen supply, such as in the vicinity of groundwater monitoring wells, hypoxic degradation may take place. A large diversity of subfamily I.2.C extradiol dioxygenase genes has been previously detected in a BTEX-contaminated aquifer in Hungary. Older literature suggests that such catabolic potentials could be associated to hypoxic degradation. Bacterial communities dominated by members of the Rhodocyclaceae were found, but the majority of the detected C23O genotypes could not be affiliated to any known bacterial degrader lineages. To address this, a stable isotope probing (SIP) incubation of site sediments with 13C7-toluene was performed under microoxic conditions. A combination of 16S rRNA gene amplicon sequencing and T-RFLP fingerprinting of C23O genes from SIP gradient fractions revealed the central role of degraders within the Rhodocyclaceae in hypoxic toluene degradation. The main assimilators of 13C were identified as members of the genera Quatrionicoccus and Zoogloea, and a yet uncultured group of the Rhodocyclaceae.
Collapse
Affiliation(s)
- András Táncsics
- Regional University Center of Excellence in Environmental Industry, Szent István University, Páter K. u. 1., 2100 Gödöllő, Hungary
| | - Anna Róza Szalay
- Institute of Groundwater Ecology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1., 85764 Neuherberg, Germany
| | - Milan Farkas
- Regional University Center of Excellence in Environmental Industry, Szent István University, Páter K. u. 1., 2100 Gödöllő, Hungary
| | - Tibor Benedek
- Regional University Center of Excellence in Environmental Industry, Szent István University, Páter K. u. 1., 2100 Gödöllő, Hungary
| | - Sándor Szoboszlay
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1., 2100 Gödöllő, Hungary
| | - István Szabó
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1., 2100 Gödöllő, Hungary
| | - Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1., 85764 Neuherberg, Germany
| |
Collapse
|
30
|
Li J, Luo C, Zhang D, Song M, Cai X, Jiang L, Zhang G. Autochthonous Bioaugmentation-Modified Bacterial Diversity of Phenanthrene Degraders in PAH-Contaminated Wastewater as Revealed by DNA-Stable Isotope Probing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2934-2944. [PMID: 29378393 DOI: 10.1021/acs.est.7b05646] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To reveal the mechanisms of autochthonous bioaugmentation (ABA) in wastewater contaminated with polycyclic aromatic hydrocarbons (PAHs), DNA-stable-isotope-probing (SIP) was used in the present study with the addition of an autochthonous microorganism Acinetobacter tandoii LJ-5. We found LJ-5 inoculum produced a significant increase in phenanthrene (PHE) mineralization, but LJ-5 surprisingly did not participate in indigenous PHE degradation from the SIP results. The improvement of PHE biodegradation was not explained by the engagement of LJ-5 but attributed to the remarkably altered diversity of PHE degraders. Of the major PHE degraders present in ambient wastewater ( Rhodoplanes sp., Mycobacterium sp., Xanthomonadaceae sp. and Enterobacteriaceae sp.), only Mycobacterium sp. and Enterobacteriaceae sp. remained functional in the presence of strain LJ-5, but five new taxa Bacillus, Paenibacillus, Ammoniphilus, Sporosarcina, and Hyphomicrobium were favored. Rhodoplanes, Ammoniphilus, Sporosarcina, and Hyphomicrobium were directly linked to, for the first time, indigenous PHE biodegradation. Sequences of functional PAH-RHDα genes from heavy fractions further proved the change in PHE degraders by identifying distinct PAH-ring hydroxylating dioxygenases between ambient degradation and ABA. Our findings indicate a new mechanism of ABA, provide new insights into the diversity of PHE-degrading communities, and suggest ABA as a promising in situ bioremediation strategy for PAH-contaminated wastewater.
Collapse
Affiliation(s)
- Jibing Li
- Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
- College of Natural Resources and Environment , South China Agricultural University , Guangzhou , 510642 , China
| | - Dayi Zhang
- School of Environment , Tsinghua University , Beijing 100084 , China
| | - Mengke Song
- College of Natural Resources and Environment , South China Agricultural University , Guangzhou , 510642 , China
| | - Xixi Cai
- College of Resources and Environment , Fujian Agriculture and Forestry University , Fuzhou , 350002 , China
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| |
Collapse
|
31
|
Jiang B, Jin N, Xing Y, Su Y, Zhang D. Unraveling uncultivable pesticide degraders via stable isotope probing (SIP). Crit Rev Biotechnol 2018; 38:1025-1048. [DOI: 10.1080/07388551.2018.1427697] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, PR China
| | - Naifu Jin
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, PR China
| | - Yuping Su
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, PR China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, PR China
- School of Environment, Tsinghua University, Beijing, PR China
| |
Collapse
|
32
|
Crampon M, Cébron A, Portet-Koltalo F, Uroz S, Le Derf F, Bodilis J. Low effect of phenanthrene bioaccessibility on its biodegradation in diffusely contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:663-673. [PMID: 28390702 DOI: 10.1016/j.envpol.2017.03.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
This study focused on the role of bioaccessibility in the phenanthrene (PHE) biodegradation in diffusely contaminated soil, by combining chemical and microbiological approaches. First, we determined PHE dissipation rates and PHE sorption/desorption isotherms for two soils (PPY and Pv) presenting similar chronic PAH contamination, but different physico-chemical properties. Our results revealed that the PHE dissipation rate was significantly higher in the Pv soil compared to the PPY soil, while PHE sorption/desorption isotherms were similar. Interestingly, increases of PHE desorption and potentially of PHE bioaccessibility were observed for both soils when adding rhamnolipids (biosurfactants produced by Pseudomonas aeruginosa). Second, using 13C-PHE incubated in the same soils, we analyzed the PHE degrading bacterial communities. The combination of stable isotope probing (DNA-SIP) and 16S rRNA gene pyrosequencing revealed that Betaproteobacteria were the main PHE degraders in the Pv soil, while a higher bacterial diversity (Alpha-, Beta-, Gammaproteobacteria and Actinobacteria) was involved in PHE degradation in the PPY soil. The amendment of biosurfactants commonly used in biostimulation methods (i.e. rhamnolipids) to the two soils clearly modified the PHE sorption/desorption isotherms, but had no significant impact on PHE degradation rates and PHE-degraders identity. These results demonstrated that increasing the bioaccessibility of PHE has a low impact on its degradation and on the functional populations involved in this degradation.
Collapse
Affiliation(s)
- M Crampon
- COBRA UMR CNRS 6014, Université de Rouen-Normandie, 55 rue saint Germain, 27000 Evreux, France; Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Université de Rouen, 76821 Mont Saint Aignan, France
| | - A Cébron
- CNRS, LIEC UMR 7360, Faculté des Sciences et Technologies, BP70239, 54506 Vandoeuvre-lès-Nancy Cedex, France; Université de Lorraine, LIEC UMR 7360, Faculté des Sciences et Technologies, BP70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - F Portet-Koltalo
- COBRA UMR CNRS 6014, Université de Rouen-Normandie, 55 rue saint Germain, 27000 Evreux, France
| | - S Uroz
- UMR 1138 INRA, Centre de Nancy, Biogéochimie des Ecosystèmes forestiers, Route d'Amance, 54280 Champenoux, France
| | - F Le Derf
- COBRA UMR CNRS 6014, Université de Rouen-Normandie, 55 rue saint Germain, 27000 Evreux, France
| | - J Bodilis
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Université de Rouen, 76821 Mont Saint Aignan, France; Université de Lyon, France, CNRS, INRA, Ecole Nationale Vétérinaire de Lyon, Université Lyon 1, UMR 5557 Ecologie Microbienne, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France.
| |
Collapse
|
33
|
Li J, Luo C, Song M, Dai Q, Jiang L, Zhang D, Zhang G. Biodegradation of Phenanthrene in Polycyclic Aromatic Hydrocarbon-Contaminated Wastewater Revealed by Coupling Cultivation-Dependent and -Independent Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3391-3401. [PMID: 28181806 DOI: 10.1021/acs.est.6b04366] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The indigenous microorganisms responsible for degrading phenanthrene (PHE) in polycyclic aromatic hydrocarbons (PAHs)-contaminated wastewater were identified by DNA-based stable isotope probing (DNA-SIP). In addition to the well-known PHE degraders Acinetobacter and Sphingobium, Kouleothrix and Sandaracinobacter were found, for the first time, to be directly responsible for indigenous PHE biodegradation. Additionally, a novel PHE degrader, Acinetobacter tandoii sp. LJ-5, was identified by DNA-SIP and direct cultivation. This is the first report and reference to A. tandoii involved in the bioremediation of PAHs-contaminated water. A PAH-RHDα gene involved in PHE metabolism was detected in the heavy fraction of 13C treatment, but the amplification of PAH-RHDα gene failed in A. tandoii LJ-5. Instead, the strain contained catechol 1,2-dioxygenase and the alpha/beta subunits of protocatechuate 3,4-dioxygenase, indicating use of the β-ketoadipate pathway to degrade PHE and related aromatic compounds. These findings add to our current knowledge on microorganisms degrading PHE by combining cultivation-dependent and cultivation-independent approaches and provide deeper insight into the diversity of indigenous PHE-degrading communities.
Collapse
Affiliation(s)
- Jibing Li
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- University of Chinese Academy of Sciences , Beijing, 100039, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Mengke Song
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Qing Dai
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- University of Chinese Academy of Sciences , Beijing, 100039, China
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University , Lancaster, LA1 4YQ, United Kingdom
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| |
Collapse
|
34
|
Benzene Degradation by a Variovorax Species within a Coal Tar-Contaminated Groundwater Microbial Community. Appl Environ Microbiol 2017; 83:AEM.02658-16. [PMID: 27913419 DOI: 10.1128/aem.02658-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/25/2016] [Indexed: 11/20/2022] Open
Abstract
Investigations of environmental microbial communities are crucial for the discovery of populations capable of degrading hazardous compounds and may lead to improved bioremediation strategies. The goal of this study was to identify microorganisms responsible for aerobic benzene degradation in coal tar-contaminated groundwater. Benzene degradation was monitored in laboratory incubations of well waters using gas chromatography mass spectrometry (GC-MS). Stable isotope probing (SIP) experiments using [13C]benzene enabled us to obtain 13C-labled community DNA. From this, 16S rRNA clone libraries identified Gammaproteobacteria and Betaproteobacteria as the active benzene-metabolizing microbial populations. Subsequent cultivation experiments yielded nine bacterial isolates that grew in the presence of benzene; five were confirmed in laboratory cultures to grow on benzene. The isolated benzene-degrading organisms were genotypically similar (>97% 16S rRNA gene nucleotide identities) to the organisms identified in SIP experiments. One isolate, Variovorax MAK3, was further investigated for the expression of a putative aromatic ring-hydroxylating dioxygenase (RHD) hypothesized to be involved in benzene degradation. Microcosm experiments using Variovorax MAK3 revealed a 10-fold increase in RHD (Vapar_5383) expression, establishing a link between this gene and benzene degradation. Furthermore, the addition of Variovorax MAK3 to microcosms prepared from site waters accelerated community benzene degradation and correspondingly increased RHD gene expression. In microcosms using uninoculated groundwater, quantitative (q)PCR assays (with 16S rRNA and RDH genes) showed that Variovorax was present and responsive to added benzene. These data demonstrate how the convergence of cultivation-dependent and -independent techniques can boost understandings of active populations and functional genes in complex benzene-degrading microbial communities. IMPORTANCE Benzene is a human carcinogen whose presence in contaminated groundwater drives environmental cleanup efforts. Although the aerobic biodegradation of benzene has long been established, knowledge of the identity of the microorganisms in complex naturally occurring microbial communities responsible for benzene biodegradation has evaded scientific inquiry for many decades. Here, we applied a molecular biology technique known as stable isotope probing (SIP) to the microbial communities residing in contaminated groundwater samples to identify the community members active in benzene biodegradation. We complemented this approach by isolating and growing in the laboratory a bacterium representative of the bacteria found using SIP. Further characterization of the isolated bacterium enabled us to track the expression of a key gene that attacks benzene both in pure cultures of the bacterium and in the naturally occurring groundwater microbial community. This work advances information regarding the documentation of microbial processes, especially the populations and genes that contribute to bioremediation.
Collapse
|
35
|
Padilla-Del Valle R, Morales-Vale LR, Ríos-Velázquez C. Unraveling the microbial and functional diversity of Coamo thermal spring in Puerto Rico using metagenomic library generation and shotgun sequencing. GENOMICS DATA 2016; 11:98-101. [PMID: 28070487 PMCID: PMC5219636 DOI: 10.1016/j.gdata.2016.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/17/2016] [Indexed: 11/17/2022]
Abstract
In Puerto Rico, the microbial diversity of the thermal spring (ThS) in Coamo has never been studied using metagenomics. The focus of our research was to generate a metagenomic library from the ThS of Coamo, Puerto Rico and explore the microbial and functional diversity. The metagenomic library from the ThS waters was generated using direct DNA isolation. High molecular weight (40 kbp) DNA was end-repaired, electro eluted and ligated into a fosmid vector (pCCFOS1); then transduced into Escherichia coli EPI300-T1R using T1 bacteriophages. The library consisted of approximately 6000 clones, 90% containing metagenomic DNA. Next-Generation-Sequencing technology (Illumina MiSeq) was used to process the ThS metagenome. After removing the cloning vector, 122,026 sequences with 33.10 Mbps size and 64% of G + C content were annotated and analyzed using the MG-RAST online server. Bacteria showed to be the most abundant domain (95.84%) followed by unidentified sequences (2.28%), viruses (1.67%), eukaryotes (0.15%), and archaea (0.01%). The most abundant phyla were Proteobacteria (95.03%), followed by unidentified (2.28%), unclassified from viruses (1.74%), Firmicutes (0.20%) and Actinobacteria (0.18%). The most abundant species were Escherichia coli, Polaromonas naphthalenivorans, Albidiferax ferrireducens and Acidovorax sp. Subsystem functional analysis showed that 20% of genes belong to transposable elements, 10% to clustering-based subsystems, and 8% to the production of cofactors. Functional analysis using NOG annotation showed that 82.79% of proteins are poorly characterized indicating the possibility of novel microbial functions and with potential biomedical and biotechnological applications. Metagenomic data was deposited into the NCBI database under the accession number SAMN06131862.
Collapse
Affiliation(s)
- Ricky Padilla-Del Valle
- Biology Department, University of Puerto Rico at Mayaguez, 108 Street Bo. Miradero Km 1.3, Zoo Entrance, Mayagüez 00680, Puerto Rico
| | - Luis R Morales-Vale
- Biology Department, University of Puerto Rico at Mayaguez, 108 Street Bo. Miradero Km 1.3, Zoo Entrance, Mayagüez 00680, Puerto Rico
| | - Carlos Ríos-Velázquez
- Biology Department, University of Puerto Rico at Mayaguez, 108 Street Bo. Miradero Km 1.3, Zoo Entrance, Mayagüez 00680, Puerto Rico
| |
Collapse
|
36
|
Jung MY, Kim JG, Sinninghe Damsté JS, Rijpstra WIC, Madsen EL, Kim SJ, Hong H, Si OJ, Kerou M, Schleper C, Rhee SK. A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:983-992. [PMID: 27700018 DOI: 10.1111/1758-2229.12477] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
A wide diversity of ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota exists and plays a key role in the N cycle in a variety of habitats. In this study, we isolated and characterized an ammonia-oxidizing archaeon, strain MY3, from a coal tar-contaminated sediment. Phylogenetically, strain MY3 falls in clade 'Nitrosocosmicus' of the thaumarchaeotal group I.1b. The cells of strain MY3 are large 'walnut-like' cocci, divide by binary fission along a central cingulum, and form aggregates. Strain MY3 is mesophilic and neutrophilic. An assay of 13 C-bicarbonate incorporation into archaeal membrane lipids indicated that strain MY3 is capable of autotrophy. In contrast to some other AOA, TCA cycle intermediates, i.e. pruvate, oxaloacetate and α-ketoglutarate, did not affect the growth rates and yields of strain MY3. The attachment of cells of strain MY3 to XAD-7 hydrophobic beads and to the adsorbent vermiculite demonstrated the potential of strain MY3 to form biofilms. The cell surface was confirmed to be hydrophobic by the extraction of strain MY3 from an aqueous medium with p-xylene. Our finding of a strong potential for surface attachment by strain MY3 may reflect an adaptation to the selective pressures in hydrophobic terrestrial environments.
Collapse
Affiliation(s)
- Man-Young Jung
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Jong-Geol Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, P.O. Box 59, AB Den Burg, 1790, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, P.O. Box 80.021, Utrecht, 3508, TA, The Netherlands
| | - W Irene C Rijpstra
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, P.O. Box 59, AB Den Burg, 1790, The Netherlands
| | - Eugene L Madsen
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | - So-Jeong Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Heeji Hong
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Ok-Ja Si
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Melina Kerou
- Department of Genetics in Ecology, University of Vienna, Vienna, A-1090, Austria
| | - Christa Schleper
- Department of Genetics in Ecology, University of Vienna, Vienna, A-1090, Austria
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| |
Collapse
|
37
|
Vogt C, Lueders T, Richnow HH, Krüger M, von Bergen M, Seifert J. Stable Isotope Probing Approaches to Study Anaerobic Hydrocarbon Degradation and Degraders. J Mol Microbiol Biotechnol 2016; 26:195-210. [DOI: 10.1159/000440806] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Stable isotope probing (SIP) techniques have become state-of-the-art in microbial ecology over the last 10 years, allowing for the targeted detection and identification of organisms, metabolic pathways and elemental fluxes active in specific processes within complex microbial communities. For studying anaerobic hydrocarbon-degrading microbial communities, four stable isotope techniques have been used so far: DNA/RNA-SIP, PLFA (phospholipid-derived fatty acids)-SIP, protein-SIP, and single-cell-SIP by nanoSIMS (nanoscale secondary ion mass spectrometry) or confocal Raman microscopy. DNA/RNA-SIP techniques are most frequently applied due to their most meaningful phylogenetic resolution. Especially using <sup>13</sup>C-labeled benzene and toluene as model substrates, many new hydrocarbon degraders have been identified by SIP under various electron acceptor conditions. This has extended the current perspective of the true diversity of anaerobic hydrocarbon degraders relevant in the environment. Syntrophic hydrocarbon degradation was found to be a common mechanism for various electron acceptors. Fundamental concepts and recent advances in SIP are reflected here. A discussion is presented concerning how these techniques generate direct insights into intrinsic hydrocarbon degrader populations in environmental systems and how useful they are for more integrated approaches in the monitoring of contaminated sites and for bioremediation.
Collapse
|
38
|
Cupples AM. Contaminant-Degrading Microorganisms Identified Using Stable Isotope Probing. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201500479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Linking Microbial Community and Catabolic Gene Structures during the Adaptation of Three Contaminated Soils under Continuous Long-Term Pollutant Stress. Appl Environ Microbiol 2016; 82:2227-2237. [PMID: 26850298 DOI: 10.1128/aem.03482-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/29/2016] [Indexed: 11/20/2022] Open
Abstract
Three types of contaminated soil from three geographically different areas were subjected to a constant supply of benzene or benzene/toluene/ethylbenzene/xylenes (BTEX) for a period of 3 months. Different from the soil from Brazil (BRA) and Switzerland (SUI), the Czech Republic (CZE) soil which was previously subjected to intensive in situ bioremediation displayed only negligible changes in community structure. BRA and SUI soil samples showed a clear succession of phylotypes. A rapid response to benzene stress was observed, whereas the response to BTEX pollution was significantly slower. After extended incubation, actinobacterial phylotypes increased in relative abundance, indicating their superior fitness to pollution stress. Commonalities but also differences in the phylotypes were observed. Catabolic gene surveys confirmed the enrichment of actinobacteria by identifying the increase of actinobacterial genes involved in the degradation of pollutants. Proteobacterial phylotypes increased in relative abundance in SUI microcosms after short-term stress with benzene, and catabolic gene surveys indicated enriched metabolic routes. Interestingly, CZE soil, despite staying constant in community structure, showed a change in the catabolic gene structure. This indicates that a highly adapted community, which had to adjust its gene pool to meet novel challenges, has been enriched.
Collapse
|
40
|
Bioremediation of Hydrocarbons and Chlorinated Solvents in Groundwater: Characterisation, Design and Performance Assessment. SPRINGER PROTOCOLS HANDBOOKS 2016. [DOI: 10.1007/8623_2016_207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
41
|
Wald J, Hroudova M, Jansa J, Vrchotova B, Macek T, Uhlik O. Pseudomonads Rule Degradation of Polyaromatic Hydrocarbons in Aerated Sediment. Front Microbiol 2015; 6:1268. [PMID: 26635740 PMCID: PMC4652016 DOI: 10.3389/fmicb.2015.01268] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 10/30/2015] [Indexed: 11/24/2022] Open
Abstract
Given that the degradation of aromatic pollutants in anaerobic environments such as sediment is generally very slow, aeration could be an efficient bioremediation option. Using stable isotope probing (SIP) coupled with pyrosequencing analysis of 16S rRNA genes, we identified naphthalene-utilizing populations in aerated polyaromatic hydrocarbon (PAH)-polluted sediment. The results showed that naphthalene was metabolized at both 10 and 20°C following oxygen delivery, with increased degradation at 20°C as compared to 10°C—a temperature more similar to that found in situ. Naphthalene-derived 13C was primarily assimilated by pseudomonads. Additionally, Stenotrophomonas, Acidovorax, Comamonas, and other minor taxa were determined to incorporate 13C throughout the measured time course. The majority of SIP-detected bacteria were also isolated in pure cultures, which facilitated more reliable identification of naphthalene-utilizing populations as well as proper differentiation between primary consumers and cross-feeders. The pseudomonads acquiring the majority of carbon were identified as Pseudomonas veronii and Pseudomonas gessardii. Stenotrophomonads and Acidovorax defluvii, however, were identified as cross-feeders unable to directly utilize naphthalene as a growth substrate. PAH degradation assays with the isolated bacteria revealed that all pseudomonads as well as Comamonas testosteroni degraded acenaphthene, fluorene, and phenanthrene in addition to naphthalene. Furthermore, P. veronii and C. testosteroni were capable of transforming anthracene, fluoranthene, and pyrene. Screening of isolates for naphthalene dioxygenase genes using a set of in-house designed primers for Gram-negative bacteria revealed the presence of such genes in pseudomonads and C. testosteroni. Overall, our results indicated an apparent dominance of pseudomonads in the sequestration of carbon from naphthalene and potential degradation of other PAHs upon aeration of the sediment at both 20 and 10°C.
Collapse
Affiliation(s)
- Jiri Wald
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Miluse Hroudova
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences Prague, Czech Republic
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences Prague, Czech Republic
| | - Blanka Vrchotova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Tomas Macek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Prague, Czech Republic
| |
Collapse
|
42
|
Mi Jin H, Hyun Kim K, Ok Jeon C. Alteromonas naphthalenivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from tidal-flat sediment. Int J Syst Evol Microbiol 2015; 65:4208-4214. [DOI: 10.1099/ijsem.0.000563] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-negative and halotolerant bacterium, designated SN2T, capable of biodegrading polycyclic aromatic hydrocarbons, was isolated from a tidal flat contaminated with crude oil in Korea. Cells were strictly aerobic, catalase- and oxidase-positive, motile rods, with a single polar flagellum. Growth was observed at 4–37 °C (optimum, 25–30 °C) at pH 6.0–9.0 (optimum, pH 7.0–7.5) and in the presence of 0.5–9.0 % (w/v) NaCl (optimum, 2.0 %). Only ubiquinone 8 was detected as the isoprenoid quinone, and summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0, C18 : 1ω7c and C12 : 0 were observed as the major cellular fatty acids. The major polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, a glycolipid, an aminolipid and three unidentified lipids. The DNA G+C content was 43.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SN2T formed a phylogenetic lineage with Alteromonas stellipolaris and Alteromonas addita within the genus Alteromonas, which was consistent with multilocus phylogenetic and MALDI-TOF MS analyses. Strain SN2T was most closely related to the type strains of A. stellipolaris, A. addita and Alteromonas macleodii, with 16S rRNA gene sequence similarities of 99.5, 99.3 and 98.4 % and DNA–DNA relatedness of 48.7 ± 6.6, 24.9 ± 7.5 and 27.9 ± 8.4 %, respectively. In conclusion, strain SN2T represents a novel species of the genus Alteromonas, for which the name Alteromonas naphthalenivorans sp. nov. is proposed. The type strain is SN2T ( = KCTC 11700BPT = JCM 17741T = KACC 18427T).
Collapse
Affiliation(s)
- Hyun Mi Jin
- Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea
| |
Collapse
|
43
|
Basiliko N, Gupta V. Bringing guest scientists to the university biology classroom via the web. FEMS Microbiol Lett 2015. [PMID: 26223586 DOI: 10.1093/femsle/fnv124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This commentary describes an initiative to bring national and international guest scientists to undergraduate and introductory graduate classrooms via web videoconferencing to facilitate interesting and effective research-informed teaching. Interactions center around both journal articles authored by the guests that are in line with weekly course lecture topics and on learning about the nature of academia in other parts of the world. Some particularly interesting perspectives from guests have come about by connecting with a journal editor-in-chief, a textbook author and with a scientist who shared a recently rejected manuscript and peer reviews. Beyond allowing students a unique behind-the-scenes look into how research questions are asked and answered, this initiative helps overcome the limited nature of a single instructor's research area to better complement the comprehensive scope of university courses.
Collapse
Affiliation(s)
- Nathan Basiliko
- Department of Biology and the Vale Living with Lakes Centre, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6, Canada
| | - Varun Gupta
- Department of Biology and the Vale Living with Lakes Centre, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6, Canada
| |
Collapse
|
44
|
Characterization of para-Nitrophenol-Degrading Bacterial Communities in River Water by Using Functional Markers and Stable Isotope Probing. Appl Environ Microbiol 2015. [PMID: 26209677 DOI: 10.1128/aem.01794-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA-listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [(13)C6]PNP stable isotope probing (SIP). Culturing together with culture-independent terminal restriction fragment length polymorphism analysis of 16S rRNA gene amplicons identified Pseudomonas syringae to be the major driver of PNP degradation in river water microcosms. This was confirmed by SIP-pyrosequencing of amplified 16S rRNA. Similarly, functional gene analysis showed that degradation followed the Gram-negative bacterial pathway and involved pnpA from Pseudomonas spp. However, analysis of maleylacetate reductase (encoded by mar), an enzyme common to late stages of both Gram-negative and Gram-positive bacterial PNP degradation pathways, identified a diverse assemblage of bacteria associated with PNP degradation, suggesting that mar has limited use as a specific marker of PNP biodegradation. Both the pnpA and mar genes were detected in a PNP-degrading isolate, P. syringae AKHD2, which was isolated from river water. Our results suggest that PNP-degrading cultures of Pseudomonas spp. are representative of environmental PNP-degrading populations.
Collapse
|
45
|
Jiang L, Song M, Luo C, Zhang D, Zhang G. Novel Phenanthrene-Degrading Bacteria Identified by DNA-Stable Isotope Probing. PLoS One 2015; 10:e0130846. [PMID: 26098417 PMCID: PMC4476716 DOI: 10.1371/journal.pone.0130846] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 01/20/2023] Open
Abstract
Microorganisms responsible for the degradation of phenanthrene in a clean forest soil sample were identified by DNA-based stable isotope probing (SIP). The soil was artificially amended with either 12C- or 13C-labeled phenanthrene, and soil DNA was extracted on days 3, 6 and 9. Terminal restriction fragment length polymorphism (TRFLP) results revealed that the fragments of 219- and 241-bp in HaeIII digests were distributed throughout the gradient profile at three different sampling time points, and both fragments were more dominant in the heavy fractions of the samples exposed to the 13C-labeled contaminant. 16S rRNA sequencing of the 13C-enriched fraction suggested that Acidobacterium spp. within the class Acidobacteria, and Collimonas spp. within the class Betaproteobacteria, were directly involved in the uptake and degradation of phenanthrene at different times. To our knowledge, this is the first report that the genus Collimonas has the ability to degrade PAHs. Two PAH-RHDα genes were identified in 13C-labeled DNA. However, isolation of pure cultures indicated that strains of Staphylococcus sp. PHE-3, Pseudomonas sp. PHE-1, and Pseudomonas sp. PHE-2 in the soil had high phenanthrene-degrading ability. This emphasizes the role of a culture-independent method in the functional understanding of microbial communities in situ.
Collapse
Affiliation(s)
- Longfei Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Mengke Song
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- * E-mail:
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
46
|
Shintani M, Sanchez ZK, Kimbara K. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Front Microbiol 2015; 6:242. [PMID: 25873913 PMCID: PMC4379921 DOI: 10.3389/fmicb.2015.00242] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/12/2015] [Indexed: 12/21/2022] Open
Abstract
Plasmids are important "vehicles" for the communication of genetic information between bacteria. The exchange of plasmids transmits pathogenically and environmentally relevant traits to the host bacteria, promoting their rapid evolution and adaptation to various environments. Over the past six decades, a large number of plasmids have been identified and isolated from different microbes. With the revolution of sequencing technology, more than 4600 complete sequences of plasmids found in bacteria, archaea, and eukaryotes have been determined. The classification of a wide variety of plasmids is not only important to understand their features, host ranges, and microbial evolution but is also necessary to effectively use them as genetic tools for microbial engineering. This review summarizes the current situation of the classification of fully sequenced plasmids based on their host taxonomy and their features of replication and conjugative transfer. The majority of the fully sequenced plasmids are found in bacteria in the Proteobacteria, Firmicutes, Spirochaetes, Actinobacteria, Cyanobacteria and Euryarcheota phyla, and key features of each phylum are included. Recent advances in the identification of novel types of plasmids and plasmid transfer by culture-independent methods using samples from natural environments are also discussed.
Collapse
Affiliation(s)
- Masaki Shintani
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Shizuoka, Japan ; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University Shizuoka, Japan
| | - Zoe K Sanchez
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Shizuoka, Japan
| | - Kazuhide Kimbara
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Shizuoka, Japan
| |
Collapse
|
47
|
Murdoch RW, Hay AG. The biotransformation of ibuprofen to trihydroxyibuprofen in activated sludge and by Variovorax Ibu-1. Biodegradation 2015; 26:105-13. [PMID: 25663336 DOI: 10.1007/s10532-015-9719-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/03/2015] [Indexed: 11/28/2022]
Abstract
A bacterium was isolated from activated sewage sludge that has the ability to use ibuprofen as its sole carbon and energy source. Phylogenetic analysis of the 16S rRNA gene sequence placed the strain in the Variovorax genus within the β-proteobacteria. When grown on ibuprofen it accumulated a transient yellow intermediate that disappeared upon acidification, a trait consistent with meta ring-fission metabolites. GC/MS analysis of derivatized culture supernatant yielded two spectra consistent with trihydroxyibuprofen bearing all three hydroxyl groups on the aromatic ring. These metabolites were only detected when 3-fluorocatechol, a meta ring-fission inhibitor, was added to Ibu-1 cultures and the supernatant was then derivatized with aqueous acetic anhydride and diazomethane. These findings suggest the possibility of ibuprofen metabolism proceeding via a trihydroxyibuprofen meta ring-fission pathway. Identical spectra, consistent with these putative ring-hydroxylated trihydroxyibuprofen metabolites, were also obtained from ibuprofen-spiked sewage sludge, but only when it was poisoned with 3-fluorocatechol. The presence of the same trihydroxylated metabolites in both spiked sewage sludge and culture supernatants suggests that this trihydroxyibuprofen extradiol ring-cleavage pathway for the degradation of ibuprofen may have environmental relevance.
Collapse
Affiliation(s)
- Robert W Murdoch
- Graduate Program in Environmental Toxicology, Institute for Comparative and Environmental Toxicology, Cornell University, Ithaca, NY, 14850, USA,
| | | |
Collapse
|
48
|
Draft Genome Sequence of a Metabolically Diverse Antarctic Supraglacial Stream Organism, Polaromonas sp. Strain CG9_12, Determined Using Pacific Biosciences Single-Molecule Real-Time Sequencing Technology. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01242-14. [PMID: 25477404 PMCID: PMC4256185 DOI: 10.1128/genomea.01242-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polaromonas species are found in a diversity of environments and are particularly common in icy ecosystems. Polaromonas sp. strain CG9_12 is an aerobic, Gram-negative, catalase-positive, white-pigmented bacterium of the Proteobacteria phylum. Here, we present the draft genome sequence of Polaromonas sp. strain CG9_12, isolated from an Antarctic supraglacial stream.
Collapse
|
49
|
Youngblut ND, Buckley DH. Intra-genomic variation in G + C content and its implications for DNA stable isotope probing. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:767-775. [PMID: 25139123 DOI: 10.1111/1758-2229.12201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/08/2014] [Indexed: 06/03/2023]
Abstract
Combining deoxyribonucleic acid (DNA-based) stable isotope probing (DNA-SIP) with high-throughput sequencing provides a powerful culture-independent means to link microbial metabolic function to genomic information and taxonomic identity. DNA buoyant density (BD) in isopycnic gradients is dependent on both isotope incorporation and G + C content. G + C content varies across a genome but is constrained at rrn operons; hence, the ability to resolve isotopically labelled DNA from unlabelled DNA in SIP may vary between small subunit-ribosomal nucleic acid (SSU rRNA) amplicon and shotgun-read sequencing applications. We tested this hypothesis by evaluating the G + C content of genomic DNA fragments that encompassed either an SSU rRNA template ('amplicon-fragments') or a shotgun read template ('shotgun-fragments'). We find that, contrary to expectations, the BD distribution of amplicon-fragments is non-normal and can be highly skewed. Furthermore, the BD distribution of amplicon-fragments can differ substantially from that of shotgun-fragments from the same genome. Our findings demonstrate the impact of G + C content on the downstream applications of DNA-SIP, which will aid in proper experimental design and the development of statistical tests to accurately identify sequences derived from isotopically labelled DNA.
Collapse
Affiliation(s)
- Nicholas D Youngblut
- Department of Crop and Soil Sciences, Cornell University, 306 Tower Road, Ithaca, NY, 14853, USA
| | | |
Collapse
|
50
|
Yang Y, Wang J, Liao J, Xie S, Huang Y. Distribution of naphthalene dioxygenase genes in crude oil-contaminated soils. MICROBIAL ECOLOGY 2014; 68:785-793. [PMID: 25008984 DOI: 10.1007/s00248-014-0457-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the major pollutants in soils in oil exploring areas. Biodegradation is the major process for natural elimination of PAHs from contaminated soils. Functional genes can be used as biomarkers to assess the biodegradation potential of indigenous microbial populations. However, little is known about the distribution of PAH-degrading genes in the environment. The links between environmental parameters and the distribution of PAH metabolic genes remain essentially unclear. The present study investigated the abundance and diversity of naphthalene dioxygenase genes in the oil-contaminated soils in the Shengli Oil Field (China). Spatial variations in the density and diversity of naphthalene dioxygenase genes occurred in this area. Four different sequence genotypes were observed in the contaminated soils, with the predominance of novel PAH-degrading genes. Pearson's correlation analysis illustrated that gene abundance had positive correlations with the levels of total organic carbon and aromatic hydrocarbons, while gene diversity showed a negative correlation with the level of polar aromatics. This work could provide some new insights toward the distribution of PAH metabolic genes and PAH biodegradation potential in oil-contaminated ecosystems.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|