1
|
Fitzgarrald R, Cardarelli JA, Campbell PT, Fourmaux S, Balcazar MD, Antoine AF, Beier NF, Qian Q, Hussein AE, Kettle B, Klein SR, Krushelnick K, Li YF, Mangles SPD, Sarri G, Seipt D, Senthilkumaran V, Streeter MJV, Thomas AGR, Ma Y. Angularly resolved spectral reconstruction of x rays via filter pack attenuation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2025; 96:023103. [PMID: 40008951 DOI: 10.1063/5.0248972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
We have designed a new filter pack array to measure angular variations in x-ray spectra during a single shot. The filter pack was composed of repeating identical columns of aluminum and copper filters of varying thicknesses. These columns were located at different positions to measure the spectrum at each corresponding angle. This array was utilized in an experiment to measure the energy evolution of betatron x rays in a laser wakefield accelerator by curving the wakefield with a transverse density gradient, streaking the x rays across the array in front of an x-ray charge-coupled device (CCD) camera. After subtracting the background and "flattening" the image to remove spatial nonuniformities, a critical energy was calculated for each position that produced the best agreement with the measured signal. There was a clear change in critical energy with angle, shedding light on the dynamics of the electrons that traveled through the accelerator. These angles correspond to distinct emission times, covering a timescale of tens of picoseconds. The filter pack was capable of recovering these angular details without the impact of errors introduced by shot-to-shot variability.
Collapse
Affiliation(s)
- R Fitzgarrald
- Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2099, USA
| | - J A Cardarelli
- Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2099, USA
| | - P T Campbell
- Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2099, USA
| | - S Fourmaux
- Institut National de la Recherche Scientifique - Énergie, Matériaux et Télécommunications, Université du Québec (INRS-EMT), 1650 Lionel Boulet, Varennes, Québec J3X 1P7, Canada
| | - M D Balcazar
- Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2099, USA
| | - A F Antoine
- Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2099, USA
| | - N F Beier
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton Alberta T6G 1H9, Canada
| | - Q Qian
- Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2099, USA
| | - A E Hussein
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton Alberta T6G 1H9, Canada
| | - B Kettle
- The John Adams Institute for Accelerator Science, Imperial College London, London SW7 2AZ, United Kingdom
| | - S R Klein
- Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2099, USA
| | - K Krushelnick
- Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2099, USA
| | - Y F Li
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - S P D Mangles
- The John Adams Institute for Accelerator Science, Imperial College London, London SW7 2AZ, United Kingdom
| | - G Sarri
- School of Mathematics and Physics, Queen's University Belfast, BT7 1NN Belfast, United Kingdom
| | - D Seipt
- Helmholtz Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - V Senthilkumaran
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton Alberta T6G 1H9, Canada
| | - M J V Streeter
- School of Mathematics and Physics, Queen's University Belfast, BT7 1NN Belfast, United Kingdom
| | - A G R Thomas
- Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2099, USA
| | - Y Ma
- Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2099, USA
| |
Collapse
|
2
|
Senthilkumaran V, Beier NF, Fourmaux S, Shabaninezhad P, Stinehart J, Zhou L, Moore JA, Hussein AE. Laser-driven betatron x rays for high-throughput imaging of additively manufactured materials. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:123510. [PMID: 39660989 DOI: 10.1063/5.0221606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Betatron x rays from a laser wakefield accelerator provide a new avenue for high-resolution, high-throughput radiography of solid materials. Here, we demonstrate the optimization of betatron x rays for three-dimensional tomography of defects in additively manufactured (AM) alloys at a repetition rate of 2.5 Hz. Using the Advanced Laser Light Source in Varennes, Qc, we characterized the x-ray energy spectrum, spatial resolution, beam stability, and emission length from three different gas targets {He, N2, and He-N2 [He (99.5%) + N2 (0.5%)] mixture} to determine the conditions for optimized imaging resolution with minimized acquisition time. Mixed He-N2 produced the highest x-ray critical energy (19 ± 5) keV and average brightness (∼3.3×1010 photons/s/mm2/mrad2/0.1% BW) vs pure N2 gas (12 ± 4 keV and ∼1.6×1010 photons/s/mm2/mrad2/0.1% BW). The mixed gas demonstrated the best beam stability and pointing compared to pure He gas. The optimization of betatron sources at 2.5 Hz for high-resolution imaging of micrometer-scale defects in AM alloys will enable high-throughput data collection, accelerating the characterization of complex mechanical deformation processes in these materials.
Collapse
Affiliation(s)
- V Senthilkumaran
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - N F Beier
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - S Fourmaux
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications (INRS-EMT), 1650, Boulevard Lionel Boulet, Varennes, Quebec J3X 1S2, Canada
| | - P Shabaninezhad
- Department of Mechanical Engineering, Marquette University, W Wisconsin Ave., Milwaukee, Wisconsin 53233, USA
| | - J Stinehart
- Department of Mechanical Engineering, Marquette University, W Wisconsin Ave., Milwaukee, Wisconsin 53233, USA
| | - L Zhou
- Department of Mechanical Engineering, Marquette University, W Wisconsin Ave., Milwaukee, Wisconsin 53233, USA
| | - J A Moore
- Department of Mechanical Engineering, Marquette University, W Wisconsin Ave., Milwaukee, Wisconsin 53233, USA
| | - A E Hussein
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
3
|
Jain A, Yoffe SR, Ersfeld B, Holt GK, Gupta DN, Jaroszynski DA. The effect of laser pulse evolution on down-ramp injection in laser wakefield accelerators. Sci Rep 2024; 14:19127. [PMID: 39155327 PMCID: PMC11330977 DOI: 10.1038/s41598-024-69049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
Electron self-injection in laser wakefield accelerators (LWFAs) is an important determinator of electron beam parameters. Controllable and adjustable LWFA beams are essential for applications. Controlled injection by capturing sheath electrons can be achieved using plasma density down-ramps or bumps, which perturb the LWFA bubble phase velocity by varying the plasma frequency and by affecting relativistic self-focussing of the laser. We report on a comprehensive study, using particle-in-cell simulations, of the effect of laser pulse evolution on injection on density perturbations. We show how the LWFA can be optimised to make it suitable for use in a wide range of applications, in particular those requiring short duration, low slice-emittance and low energy spread, and high-charge electron bunches.
Collapse
Affiliation(s)
- Arohi Jain
- Department of Physics and Astrophysics, University of Delhi, Delhi, 110 007, India
| | - Samuel R Yoffe
- Department of Physics, SUPA and University of Strathclyde, Glasgow, G4 0NG, UK
| | - Bernhard Ersfeld
- Department of Physics, SUPA and University of Strathclyde, Glasgow, G4 0NG, UK
| | - George K Holt
- Department of Physics, SUPA and University of Strathclyde, Glasgow, G4 0NG, UK
| | - Devki Nandan Gupta
- Department of Physics and Astrophysics, University of Delhi, Delhi, 110 007, India.
| | - Dino A Jaroszynski
- Department of Physics, SUPA and University of Strathclyde, Glasgow, G4 0NG, UK.
| |
Collapse
|
4
|
Põder K, Wood JC, Lopes NC, Cole JM, Alatabi S, Backhouse MP, Foster PS, Hughes AJ, Kamperidis C, Kononenko O, Mangles SPD, Palmer CAJ, Rusby D, Sahai A, Sarri G, Symes DR, Warwick JR, Najmudin Z. Multi-GeV Electron Acceleration in Wakefields Strongly Driven by Oversized Laser Spots. PHYSICAL REVIEW LETTERS 2024; 132:195001. [PMID: 38804956 DOI: 10.1103/physrevlett.132.195001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/01/2024] [Indexed: 05/29/2024]
Abstract
Experiments were performed on laser wakefield acceleration in the highly nonlinear regime. With laser powers P<250 TW and using an initial spot size larger than the matched spot size for guiding, we were able to accelerate electrons to energies E_{max}>2.5 GeV, in fields exceeding 500 GV m^{-1}, with more than 80 pC of charge at energies E>1 GeV. Three-dimensional particle-in-cell simulations show that using an oversized spot delays injection, avoiding beam loss as the wakefield undergoes length oscillation. This enables injected electrons to remain in the regions of highest accelerating fields and leads to a doubling of energy gain as compared to results from using half the focal length with the same laser.
Collapse
Affiliation(s)
- K Põder
- The John Adams Institute for Accelerator Science, Imperial College, London SW7 2BZ, United Kingdom
- Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg, Germany
| | - J C Wood
- The John Adams Institute for Accelerator Science, Imperial College, London SW7 2BZ, United Kingdom
| | - N C Lopes
- The John Adams Institute for Accelerator Science, Imperial College, London SW7 2BZ, United Kingdom
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - J M Cole
- The John Adams Institute for Accelerator Science, Imperial College, London SW7 2BZ, United Kingdom
| | - S Alatabi
- The John Adams Institute for Accelerator Science, Imperial College, London SW7 2BZ, United Kingdom
| | - M P Backhouse
- The John Adams Institute for Accelerator Science, Imperial College, London SW7 2BZ, United Kingdom
| | - P S Foster
- Central Laser Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - A J Hughes
- The John Adams Institute for Accelerator Science, Imperial College, London SW7 2BZ, United Kingdom
| | - C Kamperidis
- The John Adams Institute for Accelerator Science, Imperial College, London SW7 2BZ, United Kingdom
- ELI-ALPS, ELI-HU Non-profit Ltd., Szeged, Hungary
| | - O Kononenko
- Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg, Germany
- LOA, ENSTA ParisTech-CNRS-École Polytechnique-Université Paris-Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex, France
| | - S P D Mangles
- The John Adams Institute for Accelerator Science, Imperial College, London SW7 2BZ, United Kingdom
| | - C A J Palmer
- Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg, Germany
- Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - D Rusby
- Central Laser Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - A Sahai
- The John Adams Institute for Accelerator Science, Imperial College, London SW7 2BZ, United Kingdom
| | - G Sarri
- Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - D R Symes
- Central Laser Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - J R Warwick
- Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - Z Najmudin
- The John Adams Institute for Accelerator Science, Imperial College, London SW7 2BZ, United Kingdom
| |
Collapse
|
5
|
Ong JF, Berceanu AC, Grigoriadis A, Andrianaki G, Dimitriou V, Tatarakis M, Papadogiannis NA, Benis EP. Non-linear QED approach for betatron radiation in a laser wakefield accelerator. Sci Rep 2024; 14:605. [PMID: 38182609 PMCID: PMC10770394 DOI: 10.1038/s41598-023-50030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024] Open
Abstract
Laser plasma-based accelerators provide an excellent source of collimated, bright, and adequately coherent betatron-type x-ray pulses with potential applications in science and industry. So far the laser plasma-based betatron radiation has been described within the concept of classical Liénard-Wiechert potentials incorporated in particle-in-cell simulations, a computing power-demanding approach, especially for the case of multi-petawatt lasers. In this work, we describe the laser plasma-based generation of betatron radiation at the most fundamental level of quantum mechanics. In our approach, photon emission from the relativistic electrons in the plasma bubble is described within a nonlinear quantum electrodynamics (QED) framework. The reported QED-based betatron radiation results are in excellent agreement with similar results using Liénard-Wiechert potentials, as well as in very good agreement with betatron radiation measurements, obtained with multi-10-TW lasers interacting with He and multielectron N[Formula: see text] gas targets. Furthermore, our QED approach results in a dramatic reduction of the computational runtime demands, making it a favorable tool for designing betatron radiation experiments, especially in multi-petawatt laser facilities.
Collapse
Affiliation(s)
- J F Ong
- Extreme Light Infrastructure - Nuclear Physics (ELI-NP), "Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125, Bucharest-Măgurele, RO, Romania.
| | - A C Berceanu
- Extreme Light Infrastructure - Nuclear Physics (ELI-NP), "Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125, Bucharest-Măgurele, RO, Romania
- Institute of Plasma Physics and Lasers, University Research and Innovation Centre, Hellenic Mediterranean University, 74100, Rethimno, Crete, Greece
| | - A Grigoriadis
- Institute of Plasma Physics and Lasers, University Research and Innovation Centre, Hellenic Mediterranean University, 74100, Rethimno, Crete, Greece
- Department of Physics, University of Ioannina, 45110, Ioannina, Greece
| | - G Andrianaki
- Institute of Plasma Physics and Lasers, University Research and Innovation Centre, Hellenic Mediterranean University, 74100, Rethimno, Crete, Greece
- School of Production Engineering and Management, Technical University of Crete, 73100, Chania, Greece
| | - V Dimitriou
- Institute of Plasma Physics and Lasers, University Research and Innovation Centre, Hellenic Mediterranean University, 74100, Rethimno, Crete, Greece
- Physical Acoustics and Optoacoustics Laboratory, Department of Music Technology and Acoustics, Hellenic Mediterranean University, 74100, Rethimnon, Greece
| | - M Tatarakis
- Institute of Plasma Physics and Lasers, University Research and Innovation Centre, Hellenic Mediterranean University, 74100, Rethimno, Crete, Greece
- Department of Electronic Engineering, Hellenic Mediterranean University, 73133, Chania, Greece
| | - N A Papadogiannis
- Institute of Plasma Physics and Lasers, University Research and Innovation Centre, Hellenic Mediterranean University, 74100, Rethimno, Crete, Greece
- Physical Acoustics and Optoacoustics Laboratory, Department of Music Technology and Acoustics, Hellenic Mediterranean University, 74100, Rethimnon, Greece
| | - E P Benis
- Institute of Plasma Physics and Lasers, University Research and Innovation Centre, Hellenic Mediterranean University, 74100, Rethimno, Crete, Greece
- Department of Physics, University of Ioannina, 45110, Ioannina, Greece
| |
Collapse
|
6
|
Lei B, Liu B, Shi M, Seidel A, Seipt D, Zepf M, Qiao B. Shot-to-shot electron beam pointing instability in a nonlinear plasma bubble. Phys Rev E 2024; 109:015204. [PMID: 38366402 DOI: 10.1103/physreve.109.015204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/04/2023] [Indexed: 02/18/2024]
Abstract
Shot-to-shot electron beam pointing instability in the plasma bubble, defined here as electron beam pointing jitter (EBJ), is a long-standing problem that limits the potential of the laser wakefield accelerator (LWFA) in a range of demanding applications. In general, EBJ is caused by variations in laser and plasma parameters from shot to shot, although the exact physical mechanism by which EBJ grows in the plasma wave remains unclear. In this work we theoretically investigate the fundamental physics of EBJ inside the plasma bubble and show how the intrinsic betatron oscillation can act as an amplifier to enhance EBJ growth. The analytical formulas for electron trajectory, pointing angle, and EBJ are derived from the basic momentum equation of an electron and verified numerically. It is shown that the shot-to-shot fluctuations of the laser and plasma parameters, such as laser strength, focus, and carrier-envelope phase, as well as the ambient plasma density and profile, lead to EBJ. The evolution of EBJ is dictated by the dynamics of the plasma bubble. Two amplification processes of the betatron oscillation are found in the rapidly evolving bubbles and play important roles in EBJ growth. The first is driven by a linear resonance in the wobbling bubble due to the coupling of the betatron oscillation and the bubble centroid oscillation. The second is a parametric resonance seen in the breathing bubble, where EBJ grows exponentially due to the strong frequency modulation of the betatron oscillation. Their characteristic functions, growth rates, and resonance conditions are deduced analytically and validated numerically. Finally, we also studied how radiation reaction affects EBJ. Our research provides a clear understanding of the basics of EBJ dynamics in LWFA and will help improve the use of LWFA in demanding applications.
Collapse
Affiliation(s)
- Bifeng Lei
- Center for Applied Physics and Technology, HEDPS, and SKLNPT, School of Physics, Peking University, Beijing 100871, China
| | - Bin Liu
- Guangdong Institute of Laser Plasma Accelerator Technology, Guangzhou 510415, China
| | - Mingyuan Shi
- Helmholtz-Institute Jena, Fröbelstieg 3, 07743 Jena, Germany
- Institute of Optics and Quantum Electronics, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Andreas Seidel
- Helmholtz-Institute Jena, Fröbelstieg 3, 07743 Jena, Germany
- Institute of Optics and Quantum Electronics, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Daniel Seipt
- Helmholtz-Institute Jena, Fröbelstieg 3, 07743 Jena, Germany
- Institute of Optics and Quantum Electronics, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Matt Zepf
- Helmholtz-Institute Jena, Fröbelstieg 3, 07743 Jena, Germany
- Institute of Optics and Quantum Electronics, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Bin Qiao
- Center for Applied Physics and Technology, HEDPS, and SKLNPT, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronic, Peking University, Beijing 100094, China
| |
Collapse
|
7
|
Doherty A, Fourmaux S, Astolfo A, Ziesche R, Wood J, Finlay O, Stolp W, Batey D, Manke I, Légaré F, Boone M, Symes D, Najmudin Z, Endrizzi M, Olivo A, Cipiccia S. Femtosecond multimodal imaging with a laser-driven X-ray source. COMMUNICATIONS PHYSICS 2023; 6:288. [PMID: 38665412 PMCID: PMC11041725 DOI: 10.1038/s42005-023-01412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/04/2023] [Indexed: 04/28/2024]
Abstract
Laser-plasma accelerators are compact linear accelerators based on the interaction of high-power lasers with plasma to form accelerating structures up to 1000 times smaller than standard radiofrequency cavities, and they come with an embedded X-ray source, namely betatron source, with unique properties: small source size and femtosecond pulse duration. A still unexplored possibility to exploit the betatron source comes from combining it with imaging methods able to encode multiple information like transmission and phase into a single-shot acquisition approach. In this work, we combine edge illumination-beam tracking (EI-BT) with a betatron X-ray source and present the demonstration of multimodal imaging (transmission, refraction, and scattering) with a compact light source down to the femtosecond timescale. The advantage of EI-BT is that it allows multimodal X-ray imaging technique, granting access to transmission, refraction and scattering signals from standard low-coherence laboratory X-ray sources in a single shot.
Collapse
Affiliation(s)
- Adam Doherty
- Department of Medical Physics and Biomedical Engineering, University College London, 2 Malet Pl, London, WC1E 7JE UK
| | - Sylvain Fourmaux
- Institut National de la Recherche Scientifique—Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Lionel Boulet, Varennes, J3X 1P7 QC Canada
| | - Alberto Astolfo
- Department of Medical Physics and Biomedical Engineering, University College London, 2 Malet Pl, London, WC1E 7JE UK
| | - Ralf Ziesche
- Helmholtz-Zentrum Berlin für Materialien und Energie Hahn Meitner Platz 1, 14109 Berlin, Germany
| | - Jonathan Wood
- The John Adam Institute for Accelerator Science, Imperial College London, Prince Consort Road, South Kensington, London, SW7 2BW UK
| | - Oliver Finlay
- Central Laser Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX UK
| | - Wiebe Stolp
- UGCT-RP, Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium
| | - Darren Batey
- Diamond Light Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX UK
| | - Ingo Manke
- Helmholtz-Zentrum Berlin für Materialien und Energie Hahn Meitner Platz 1, 14109 Berlin, Germany
| | - François Légaré
- Institut National de la Recherche Scientifique—Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Lionel Boulet, Varennes, J3X 1P7 QC Canada
| | - Matthieu Boone
- UGCT-RP, Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium
| | - Dan Symes
- Central Laser Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX UK
| | - Zulfikar Najmudin
- The John Adam Institute for Accelerator Science, Imperial College London, Prince Consort Road, South Kensington, London, SW7 2BW UK
| | - Marco Endrizzi
- Department of Medical Physics and Biomedical Engineering, University College London, 2 Malet Pl, London, WC1E 7JE UK
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, 2 Malet Pl, London, WC1E 7JE UK
| | - Silvia Cipiccia
- Department of Medical Physics and Biomedical Engineering, University College London, 2 Malet Pl, London, WC1E 7JE UK
| |
Collapse
|
8
|
von der Leyen MW, Holloway J, Ma Y, Campbell PT, Aboushelbaya R, Qian Q, Antoine AF, Balcazar M, Cardarelli J, Feng Q, Fitzgarrald R, Hou BX, Kalinchenko G, Latham J, Maksimchuk AM, McKelvey A, Nees J, Ouatu I, Paddock RW, Spiers B, Thomas AGR, Timmis R, Krushelnick K, Norreys PA. Observation of Monoenergetic Electrons from Two-Pulse Ionization Injection in Quasilinear Laser Wakefields. PHYSICAL REVIEW LETTERS 2023; 130:105002. [PMID: 36962018 DOI: 10.1103/physrevlett.130.105002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The generation of low emittance electron beams from laser-driven wakefields is crucial for the development of compact x-ray sources. Here, we show new results for the injection and acceleration of quasimonoenergetic electron beams in low amplitude wakefields experimentally and using simulations. This is achieved by using two laser pulses decoupling the wakefield generation from the electron trapping via ionization injection. The injection duration, which affects the beam charge and energy spread, is found to be tunable by adjusting the relative pulse delay. By changing the polarization of the injector pulse, reducing the ionization volume, the electron spectra of the accelerated electron bunches are improved.
Collapse
Affiliation(s)
- M W von der Leyen
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- John Adams Institute for Accelerator Science, Denys Wilkinson Building, Oxford OX1 3RH, United Kingdom
| | - J Holloway
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Y Ma
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - P T Campbell
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - R Aboushelbaya
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Q Qian
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - A F Antoine
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - M Balcazar
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - J Cardarelli
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Q Feng
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - R Fitzgarrald
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - B X Hou
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - G Kalinchenko
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - J Latham
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - A M Maksimchuk
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - A McKelvey
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - J Nees
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - I Ouatu
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - R W Paddock
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - B Spiers
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - A G R Thomas
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - R Timmis
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - K Krushelnick
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - P A Norreys
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- John Adams Institute for Accelerator Science, Denys Wilkinson Building, Oxford OX1 3RH, United Kingdom
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, OX11 0QX, United Kingdom
| |
Collapse
|
9
|
Huang R, Han L, Shou Y, Wang D, Yu T, Yu J, Yan X. High-flux and bright betatron X-ray source generated from femtosecond laser pulse interaction with sub-critical density plasma. OPTICS LETTERS 2023; 48:819-822. [PMID: 36723597 DOI: 10.1364/ol.480553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Recent progress on betatron X-ray source enables the exploration of new physics in fundamental science; however, the application range is still limited by the source flux and brightness. In this Letter, we show the generation of more than 1 × 1012 photons (energy > 1 keV) with a peak brightness of 7.8 × 1022 photons/(s mm2 mrad2) at 0.1% bandwidth (BW) at 10 keV, driven by a femtosecond laser pulse of ≈5.5 J and a sub-critical density plasma (SCDP). The source flux is more than two orders of magnitude higher than that from typical laser wakefield electron acceleration. This method to produce high-flux and bright X-ray source would open a wide range of applications.
Collapse
|
10
|
Tsurugizawa T, Kumamoto T, Yoshioka Y. Utilization of potato starch suspension for MR-microimaging in ex vivo mouse embryos. iScience 2022; 25:105694. [PMID: 36567713 PMCID: PMC9768372 DOI: 10.1016/j.isci.2022.105694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/31/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Magnetic resonance (MR) microimaging of the mouse embryo is a promising tool to noninvasively investigate the microstructure of the brain of a developing mouse. The proton-free fluid is used for the liquid surrounding the specimen in MR microimaging, but the potential issue of image quality remains due to the air bubbles on the specimen and the retained water proton in the curvature of the embryo. Furthermore, the specimen may move during the scanning, resulting in motion artifact. Here, we developed the new concept of the ex vivo microimaging protocol with the robust method using the potato starch-containing biological polymers. Potato starch suspension with PBS significantly reduced T1 and T2 signal intensity of the suspension and strongly suppressed the motion of the embryo. Furthermore, potato starch-PBS suspension is stable for long-time scanning at room temperature. These results indicate the utility of potato starch suspension for MR microimaging in mouse embryos.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8568, Japan,Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba 305-8573, Japan,Jikei University School of Medicine, 3-25-8 Nishishinbashi, Tokyo 105-8461, Japan,Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan,Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), Suita 565-0871, Japan,Corresponding author
| | - Takuma Kumamoto
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshichika Yoshioka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan,Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), Suita 565-0871, Japan,Corresponding author
| |
Collapse
|
11
|
Propagation of intense laser pulses in plasma with a prepared phase-space distribution. Sci Rep 2022; 12:20368. [DOI: 10.1038/s41598-022-24664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/18/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractOptimizing the laser wakefield accelerator (LWFA) requires control of the intense driving laser pulse and its stable propagation. This is usually challenging because of mode mismatching arising from relativistic self-focusing, which invariably alters the velocity and shape of the laser pulse. Here we show how an intense pre-pulse can prepare the momentum/density phase-space distribution of plasma electrons encountered by a trailing laser pulse to control its propagation. This can also be used to minimize the evolution of the wakefield thus enhancing the stability of the LWFA, which is important for applications.
Collapse
|
12
|
Handschuh S, Glösmann M. Mouse embryo phenotyping using X-ray microCT. Front Cell Dev Biol 2022; 10:949184. [PMID: 36187491 PMCID: PMC9523164 DOI: 10.3389/fcell.2022.949184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Microscopic X-ray computed tomography (microCT) is a structural ex vivo imaging technique providing genuine isotropic 3D images from biological samples at micron resolution. MicroCT imaging is non-destructive and combines well with other modalities such as light and electron microscopy in correlative imaging workflows. Protocols for staining embryos with X-ray dense contrast agents enable the acquisition of high-contrast and high-resolution datasets of whole embryos and specific organ systems. High sample throughput is achieved with dedicated setups. Consequently, microCT has gained enormous importance for both qualitative and quantitative phenotyping of mouse development. We here summarize state-of-the-art protocols of sample preparation and imaging procedures, showcase contemporary applications, and discuss possible pitfalls and sources for artefacts. In addition, we give an outlook on phenotyping workflows using microscopic dual energy CT (microDECT) and tissue-specific contrast agents.
Collapse
|
13
|
Dyer L, Parker A, Paphiti K, Sanderson J. Lightsheet Microscopy. Curr Protoc 2022; 2:e448. [PMID: 35838628 DOI: 10.1002/cpz1.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we review lightsheet (selective plane illumination) microscopy for mouse developmental biologists. There are different means of forming the illumination sheet, and we discuss these. We explain how we introduced the lightsheet microscope economically into our core facility and present our results on fixed and living samples. We also describe methods of clearing fixed samples for three-dimensional imaging and discuss the various means of preparing samples with particular reference to mouse cilia, adipose spheroids, and cochleae. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Laura Dyer
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Keanu Paphiti
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
14
|
McAnespie CA, Streeter MJV, Rankin M, Chaudhary P, McMahon SJ, Prise KM, Sarri G. High-dose femtosecond-scale gamma-ray beams for radiobiological applications. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5bfd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/09/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. In the irradiation of living tissue, the fundamental physical processes involved in radical production typically occur on a timescale of a few femtoseconds. A detailed understanding of these phenomena has thus far been limited by the relatively long duration of the radiation sources employed, extending well beyond the timescales for radical generation and evolution. Approach. Here, we propose a femtosecond-scale photon source, based on inverse Compton scattering of laser-plasma accelerated electron beams in the field of a second scattering laser pulse. Main results. Detailed numerical modelling indicates that existing laser facilities can provide ultra-short and high-flux MeV-scale photon beams, able to deposit doses tuneable from a fraction of Gy up to a few Gy per pulse, resulting in dose rates exceeding 1013 Gy/s. Significance. We envisage that such a source will represent a unique tool for time-resolved radiobiological experiments, with the prospect of further advancing radio-therapeutic techniques.
Collapse
|
15
|
Plasma-Generated X-ray Pulses: Betatron Radiation Opportunities at EuPRAXIA@SPARC_LAB. CONDENSED MATTER 2022. [DOI: 10.3390/condmat7010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
EuPRAXIA is a leading European project aimed at the development of a dedicated, ground-breaking, ultra-compact accelerator research infrastructure based on novel plasma acceleration concepts and laser technology and on the development of their users’ communities. Within this framework, the Laboratori Nazionali di Frascati (LNF, INFN) will be equipped with a unique combination of an X-band RF LINAC generating high-brightness GeV-range electron beams, a 0.5 PW class laser system and the first fifth-generation free electron laser (FEL) source driven by a plasma-based accelerator, the EuPRAXIA@SPARC_LAB facility. Wiggler-like radiation emitted by electrons accelerated in plasma wakefields gives rise to brilliant, ultra-short X-ray pulses, called betatron radiation. Extensive studies have been performed at the FLAME laser facility at LNF, INFN, where betatron radiation was measured and characterized. The purpose of this paper is to describe the betatron spectrum emitted by particle wakefield acceleration at EuPRAXIA@SPARC_LAB and provide an overview of the foreseen applications of this specific source, thus helping to establish a future user community interested in (possibly coupled) FEL and betatron radiation experiments. In order to provide a quantitative estimate of the expected betatron spectrum and therefore to present suitable applications, we performed simple simulations to determine the spectrum of the betatron radiation emitted at EuPRAXIA@SPARC_LAB. With reference to experiments performed exploiting similar betatron sources, we highlight the opportunities offered by its brilliant femtosecond pulses for ultra-fast X-ray spectroscopy and imaging measurements, but also as an ancillary tool for designing and testing FEL instrumentation and experiments.
Collapse
|
16
|
Martín L, Benlliure J, Cortina-Gil D, Haruna A, Ruiz C. Validation of a laser driven plasma X-ray microfocus source for high resolution radiography imaging. Phys Med 2021; 82:163-170. [PMID: 33640836 DOI: 10.1016/j.ejmp.2020.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 11/04/2020] [Accepted: 12/31/2020] [Indexed: 11/19/2022] Open
Abstract
Hard X-ray radiation with high brightness and high fluxes is nowadays available on the fourth generation of synchrotrons and X-FELs, but the large size and complexity of these sources makes its use difficult for widespread applications. New table top X-ray sources driven by ultrashort high power lasers offer a compelling route to expand the availability of hard X-ray sources. They can be used for advanced imaging techniques, due to its small source size and spatial coherence. We present in this paper the validation of a compact laser-driven X-ray microfocus source for high-resolution radiography imaging. This novel device was built at the Laser Laboratory for Acceleration and Applications (L2A2) at the University of Santiago de Compostela. This paper describes the laser-plasma X-ray source with improved stability and characterize some of its properties. We demonstrate the high-contrast and resolution of the images obtained with this source by using masks with well known geometries, and detailed analysis by using the modulation transfer function. Finally, we discuss the properties of this source in comparison to other compact microfocus X-ray sources.
Collapse
Affiliation(s)
- L Martín
- IGFAE, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - J Benlliure
- IGFAE, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - D Cortina-Gil
- IGFAE, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Haruna
- IGFAE, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - C Ruiz
- Instituto de Física Fundamental y Matemáticas, Universidad de Salamanca, Spain
| |
Collapse
|
17
|
Lécz Z, Andreev A, Hafz N. Substantial enhancement of betatron radiation in cluster targets. Phys Rev E 2020; 102:053205. [PMID: 33327060 DOI: 10.1103/physreve.102.053205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/12/2020] [Indexed: 11/07/2022]
Abstract
Betatron radiation generated by relativistic electrons during their wiggling motion in an ion channel is a well-studied source of x-ray photons. Due to the highly collimated emission such compact laser-driven sources have attracted significant attention in various laser or plasma-based applications, but the spectral intensity is still too low. The high repetition rate is also demanded, thus the pulse energy is strongly limited. Here, based on theory and computer simulations, we present a different method to enhance the radiation power by increasing the number of betatron oscillations along the acceleration path of electrons. A stronger wiggling of electrons is achieved by using clusterized gas targets, which allows one to achieve three orders of magnitude higher x-ray yield than in optimized uniform gas target with similar average electron density.
Collapse
Affiliation(s)
- Zs Lécz
- ELI-ALPS, ELI-HU Nonprofit Ltd. Wolfgang Sandner u. 3, H6728 Szeged, Hungary
| | - A Andreev
- Max-Born Institute, Berlin, Germany and ELI-ALPS, ELI-HU Nonprofit Ltd. Wolfgang Sandner u. 3, H6728 Szeged, Hungary
| | - N Hafz
- ELI-ALPS, ELI-HU Nonprofit Ltd. Wolfgang Sandner u. 3, H6728 Szeged, Hungary; National Laboratory on High Power Laser and Physics, SIOM, CAS, Shanghai 201800, China; and Department of Plasma and Nuclear Fusion, Nuclear Research Center, Atomic Energy Authority, Abu-Zabal 13759, Egypt
| |
Collapse
|
18
|
Labate L, Palla D, Panetta D, Avella F, Baffigi F, Brandi F, Di Martino F, Fulgentini L, Giulietti A, Köster P, Terzani D, Tomassini P, Traino C, Gizzi LA. Toward an effective use of laser-driven very high energy electrons for radiotherapy: Feasibility assessment of multi-field and intensity modulation irradiation schemes. Sci Rep 2020; 10:17307. [PMID: 33057078 PMCID: PMC7560873 DOI: 10.1038/s41598-020-74256-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022] Open
Abstract
Radiotherapy with very high energy electrons has been investigated for a couple of decades as an effective approach to improve dose distribution compared to conventional photon-based radiotherapy, with the recent intriguing potential of high dose-rate irradiation. Its practical application to treatment has been hindered by the lack of hospital-scale accelerators. High-gradient laser-plasma accelerators (LPA) have been proposed as a possible platform, but no experiments so far have explored the feasibility of a clinical use of this concept. We show the results of an experimental study aimed at assessing dose deposition for deep seated tumours using advanced irradiation schemes with an existing LPA source. Measurements show control of localized dose deposition and modulation, suitable to target a volume at depths in the range from 5 to 10 cm with mm resolution. The dose delivered to the target was up to 1.6 Gy, delivered with few hundreds of shots, limited by secondary components of the LPA accelerator. Measurements suggest that therapeutic doses within localized volumes can already be obtained with existing LPA technology, calling for dedicated pre-clinical studies.
Collapse
Affiliation(s)
- Luca Labate
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy.
| | - Daniele Palla
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy
| | - Daniele Panetta
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica, Pisa, Italy
| | - Federico Avella
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy
| | - Federica Baffigi
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy
| | - Fernando Brandi
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy
| | - Fabio Di Martino
- Unità Operativa di Fisica Sanitaria, Azienza Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Lorenzo Fulgentini
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy
| | - Antonio Giulietti
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy
| | - Petra Köster
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy
| | - Davide Terzani
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy
- Lawrence Berkeley National Laboratory, LBL, Berkeley, CA, USA
| | - Paolo Tomassini
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy
| | - Claudio Traino
- Unità Operativa di Fisica Sanitaria, Azienza Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Leonida A Gizzi
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy.
| |
Collapse
|
19
|
Numerical simulation of novel concept 4D cardiac microtomography for small rodents based on all-optical Thomson scattering X-ray sources. Sci Rep 2019; 9:8439. [PMID: 31186451 PMCID: PMC6560041 DOI: 10.1038/s41598-019-44779-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Accurate dynamic three-dimensional (4D) imaging of the heart of small rodents is required for the preclinical study of cardiac biomechanics and their modification under pathological conditions, but technological challenges are met in laboratory practice due to the very small size and high pulse rate of the heart of mice and rats as compared to humans. In 4D X-ray microtomography (4D μCT), the achievable spatio-temporal resolution is hampered by limitations in conventional X-ray sources and detectors. Here, we propose a proof-of-principle 4D μCT platform, exploiting the unique spatial and temporal features of novel concept, all-optical X-ray sources based on Thomson scattering (TS). The main spatial and spectral properties of the photon source are investigated using a TS simulation code. The entire data acquisition workflow has been also simulated, using a novel 4D numerical phantom of a mouse chest with realistic intra- and inter-cycle motion. The image quality of a typical single 3D time frame has been studied using Monte Carlo simulations, taking into account the effects of the typical structure of the TS X-ray beam. Finally, we discuss the perspectives and shortcomings of the proposed platform.
Collapse
|
20
|
High-resolution phase-contrast imaging of biological specimens using a stable betatron X-ray source in the multiple-exposure mode. Sci Rep 2019; 9:7796. [PMID: 31127147 PMCID: PMC6534593 DOI: 10.1038/s41598-019-42834-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/18/2019] [Indexed: 11/08/2022] Open
Abstract
Phase-contrast imaging using X-ray sources with high spatial coherence is an emerging tool in biology and material science. Much of this research is being done using large synchrotron facilities or relatively low-flux microfocus X-ray tubes. An alternative high-flux, ultra-short and high-spatial-coherence table-top X-ray source based on betatron motions of electrons in laser wakefield accelerators has the promise to produce high quality images. In previous phase-contrast imaging studies with betatron sources, single-exposure images with a spatial resolution of 6-70 μm were reported by using large-scale laser systems (60-200 TW). Furthermore, images obtained with multiple exposures tended to have a reduced contrast and resolution due to the shot-to-shot fluctuations. In this article, we demonstrate that a highly stable multiple-exposure betatron source, with an effective average source size of 5 μm, photon number and pointing jitters of <5% and spectral fluctuation of <10%, can be obtained by utilizing ionization injection in pure nitrogen plasma using a 30-40 TW laser. Using this source, high quality phase-contrast images of biological specimens with a 5-μm resolution are obtained for the first time. This work shows a way for the application of high resolution phase-contrast imaging with stable betatron sources using modest power, high repetition-rate lasers.
Collapse
|
21
|
Hussein AE, Senabulya N, Ma Y, Streeter MJV, Kettle B, Dann SJD, Albert F, Bourgeois N, Cipiccia S, Cole JM, Finlay O, Gerstmayr E, González IG, Higginbotham A, Jaroszynski DA, Falk K, Krushelnick K, Lemos N, Lopes NC, Lumsdon C, Lundh O, Mangles SPD, Najmudin Z, Rajeev PP, Schlepütz CM, Shahzad M, Smid M, Spesyvtsev R, Symes DR, Vieux G, Willingale L, Wood JC, Shahani AJ, Thomas AGR. Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures. Sci Rep 2019; 9:3249. [PMID: 30824838 PMCID: PMC6397215 DOI: 10.1038/s41598-019-39845-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
Laser-wakefield accelerators (LWFAs) are high acceleration-gradient plasma-based particle accelerators capable of producing ultra-relativistic electron beams. Within the strong focusing fields of the wakefield, accelerated electrons undergo betatron oscillations, emitting a bright pulse of X-rays with a micrometer-scale source size that may be used for imaging applications. Non-destructive X-ray phase contrast imaging and tomography of heterogeneous materials can provide insight into their processing, structure, and performance. To demonstrate the imaging capability of X-rays from an LWFA we have examined an irregular eutectic in the aluminum-silicon (Al-Si) system. The lamellar spacing of the Al-Si eutectic microstructure is on the order of a few micrometers, thus requiring high spatial resolution. We present comparisons between the sharpness and spatial resolution in phase contrast images of this eutectic alloy obtained via X-ray phase contrast imaging at the Swiss Light Source (SLS) synchrotron and X-ray projection microscopy via an LWFA source. An upper bound on the resolving power of 2.7 ± 0.3 μm of the LWFA source in this experiment was measured. These results indicate that betatron X-rays from laser wakefield acceleration can provide an alternative to conventional synchrotron sources for high resolution imaging of eutectics and, more broadly, complex microstructures.
Collapse
Affiliation(s)
- A E Hussein
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI, 48109-2099, USA.
| | - N Senabulya
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-2099, USA
| | - Y Ma
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI, 48109-2099, USA.,Physics Department, Lancaster University, Lancaster, LA1 4YB, UK.,The Cockcroft Institute, Keckwick Lane, Daresbury, WA4 4AD, UK
| | - M J V Streeter
- Physics Department, Lancaster University, Lancaster, LA1 4YB, UK.,The Cockcroft Institute, Keckwick Lane, Daresbury, WA4 4AD, UK.,The John Adams Institute for Accelerator Science, Imperial College London, London, SW7 2AZ, UK
| | - B Kettle
- The John Adams Institute for Accelerator Science, Imperial College London, London, SW7 2AZ, UK
| | - S J D Dann
- Physics Department, Lancaster University, Lancaster, LA1 4YB, UK.,The Cockcroft Institute, Keckwick Lane, Daresbury, WA4 4AD, UK
| | - F Albert
- Lawrence Livermore National Laboratory, NIF and Photon Sciences, Livermore, CA, 94550, USA
| | - N Bourgeois
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - S Cipiccia
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot, OX11 0DE, UK
| | - J M Cole
- The John Adams Institute for Accelerator Science, Imperial College London, London, SW7 2AZ, UK
| | - O Finlay
- Physics Department, Lancaster University, Lancaster, LA1 4YB, UK.,The Cockcroft Institute, Keckwick Lane, Daresbury, WA4 4AD, UK
| | - E Gerstmayr
- The John Adams Institute for Accelerator Science, Imperial College London, London, SW7 2AZ, UK
| | | | - A Higginbotham
- York Plasma Institute, Department of Physics, University of York, York, YO10 5DD, UK
| | - D A Jaroszynski
- The Cockcroft Institute, Keckwick Lane, Daresbury, WA4 4AD, UK.,SUPA, Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK
| | - K Falk
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany.,Institute of Physics of the ASCR, 182 21, Prague, Czech Republic
| | - K Krushelnick
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI, 48109-2099, USA
| | - N Lemos
- Lawrence Livermore National Laboratory, NIF and Photon Sciences, Livermore, CA, 94550, USA
| | - N C Lopes
- The John Adams Institute for Accelerator Science, Imperial College London, London, SW7 2AZ, UK.,GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, U.L., Lisboa, 1049-001, Portugal
| | - C Lumsdon
- York Plasma Institute, Department of Physics, University of York, York, YO10 5DD, UK
| | - O Lundh
- Department of Physics, Lund University, P.O. Box 118, S-22100, Lund, Sweden
| | - S P D Mangles
- The John Adams Institute for Accelerator Science, Imperial College London, London, SW7 2AZ, UK
| | - Z Najmudin
- The John Adams Institute for Accelerator Science, Imperial College London, London, SW7 2AZ, UK
| | - P P Rajeev
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - C M Schlepütz
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - M Shahzad
- The Cockcroft Institute, Keckwick Lane, Daresbury, WA4 4AD, UK.,SUPA, Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK
| | - M Smid
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.,ELI Beamlines, Institute of Physics of the ASCR, 182 21, Prague, Czech Republic
| | - R Spesyvtsev
- The Cockcroft Institute, Keckwick Lane, Daresbury, WA4 4AD, UK.,SUPA, Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK
| | - D R Symes
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - G Vieux
- The Cockcroft Institute, Keckwick Lane, Daresbury, WA4 4AD, UK.,SUPA, Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK
| | - L Willingale
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI, 48109-2099, USA
| | - J C Wood
- The John Adams Institute for Accelerator Science, Imperial College London, London, SW7 2AZ, UK
| | - A J Shahani
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-2099, USA
| | - A G R Thomas
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI, 48109-2099, USA.,Physics Department, Lancaster University, Lancaster, LA1 4YB, UK.,The Cockcroft Institute, Keckwick Lane, Daresbury, WA4 4AD, UK
| |
Collapse
|
22
|
Wu YC, Zhu B, Li G, Zhang XH, Yu MH, Dong KG, Zhang TK, Yang Y, Bi B, Yang J, Yan YH, Tan F, Fan W, Lu F, Wang SY, Zhao ZQ, Zhou WM, Cao LF, Gu YQ. Towards high-energy, high-resolution computed tomography via a laser driven micro-spot gamma-ray source. Sci Rep 2018; 8:15888. [PMID: 30367090 PMCID: PMC6203838 DOI: 10.1038/s41598-018-33844-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/02/2018] [Indexed: 02/04/2023] Open
Abstract
Computed Tomography (CT) is a powerful method for non-destructive testing (NDT) and metrology awakes with expanding application fields. To improve the spatial resolution of high energy CT, a micro-spot gamma-ray source based on bremsstrahlung from a laser wakefield accelerator was developed. A high energy CT using the source was performed, which shows that the resolution of reconstruction can reach 100 μm at 10% contrast. Our proof-of-principle demonstration indicates that laser driven micro-spot gamma-ray sources provide a prospective way to increase the spatial resolution and toward to high energy micro CT. Due to the advantage in spatial resolution, laser based high energy CT represents a large potential for many NDT applications.
Collapse
Affiliation(s)
- Y C Wu
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China.,IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - B Zhu
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China
| | - G Li
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China
| | - X H Zhang
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China.,Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - M H Yu
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China
| | - K G Dong
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China
| | - T K Zhang
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China
| | - Y Yang
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China
| | - B Bi
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China
| | - J Yang
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China
| | - Y H Yan
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China
| | - F Tan
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China.,University of Science and Technology of China, Hefei, 230026, China
| | - W Fan
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China
| | - F Lu
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China
| | - S Y Wang
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China
| | - Z Q Zhao
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China.,IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - W M Zhou
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China.,IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - L F Cao
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China.,IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Y Q Gu
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan, 621900, China. .,IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|