1
|
Singh S, Julia E, Kalita P, Mason C, Ming Q, Lee-Sam A, Gordon S, Buitrago ME, Leung DW, Hwu P, Luca VC. Structure-guided engineering of CD112 receptor variants for optimized immunotherapy. Mol Ther 2025:S1525-0016(25)00311-9. [PMID: 40285356 DOI: 10.1016/j.ymthe.2025.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/13/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
The immune checkpoint protein, CD112 receptor (CD112R, also known as PVRIG), suppresses T and natural killer (NK) cell activation upon binding to tumor-expressed CD112 (Nectin-2) ligands. Here, we determine the structure of the CD112-CD112R complex and use it to guide the engineering of multiple CD112-targeting immunotherapy candidates. The 2.2 Å-resolution crystal structure reveals an antiparallel, lock-and-key binding mode in which CD112R disrupts CD112 homodimerization. Structural analysis informed directed evolution campaigns focused on remodeling the CD112-CD112R interface, resulting in the isolation of CD112R mutants with greatly increased expression and CD112-binding affinity. The highest-affinity variant, CD112RIVE, potently inhibits CD112-CD112R interactions when utilized as a soluble CD112 trap. Furthermore, incorporating CD112R variants into chimeric antigen receptors (CARs) and T cell engagers (TCEs) leads to more robust T cell activation and killing of CD112+ triple-negative breast cancer (TNBC) cells compared with wild-type CD112R. This strategy demonstrates how structural insights can be leveraged to efficiently generate panels of "affinity-tuned" biologics for immunotherapy.
Collapse
Affiliation(s)
- Srishti Singh
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, USA
| | - Estefania Julia
- Department of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Parismita Kalita
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Charlotte Mason
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Qianqian Ming
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Ansar Lee-Sam
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, USA
| | - Sumai Gordon
- Department of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Maria Emilia Buitrago
- Department of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Daisy W Leung
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Patrick Hwu
- Department of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Vincent C Luca
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
2
|
Schoufour TA, van der Plas - van Duijn A, Derksen I, Melgers M, van Veenendaal JM, Lensen C, Heemskerk MH, Neefjes J, Wijdeven RH, Scheeren FA. CRISPR-Cas9 screening reveals a distinct class of MHC-I binders with precise HLA-peptide recognition. iScience 2024; 27:110120. [PMID: 38939106 PMCID: PMC11209011 DOI: 10.1016/j.isci.2024.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Human leukocyte antigen (HLA) class-I molecules present fragments of the cellular proteome to the T cell receptor (TCR) of cytotoxic T cells to control infectious diseases and cancer. The large number of combinations of HLA class-I allotypes and peptides allows for highly specific and dedicated low-affinity interactions to a diverse array of TCRs and natural killer (NK) cell receptors. Whether the divergent HLA class-I peptide complex is exclusive for interactions with these proteins is unknown. Using genome-wide CRISPR-Cas9 activation and knockout screens, we identified peptide-specific HLA-C∗07 combinations that can interact with the surface molecules CD55 and heparan sulfate. These interactions closely resemble the HLA class-I interaction with the TCR regarding both the affinity range and the specificity of the peptide and HLA allele. These findings indicate that various proteins can specifically bind HLA class-I peptide complexes due to their polymorphic nature, which suggests there are more interactions like the ones we describe here.
Collapse
Affiliation(s)
- Tom A.W. Schoufour
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Anneloes van der Plas - van Duijn
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Ian Derksen
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Marije Melgers
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | | | - Claire Lensen
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Mirjam H.M. Heemskerk
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Ruud H.M. Wijdeven
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Medical Center, 1007 MB Amsterdam, Noord-Holland, the Netherlands
| | - Ferenc A. Scheeren
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| |
Collapse
|
3
|
Shevyrev DV, Tereshchenko VP, Sennikov SV. The Enigmatic Nature of the TCR-pMHC Interaction: Implications for CAR-T and TCR-T Engineering. Int J Mol Sci 2022; 23:ijms232314728. [PMID: 36499057 PMCID: PMC9740949 DOI: 10.3390/ijms232314728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
The interaction of the T-cell receptor (TCR) with a peptide in the major histocompatibility complex (pMHC) plays a central role in the adaptive immunity of higher chordates. Due to the high specificity and sensitivity of this process, the immune system quickly recognizes and efficiently responds to the appearance of foreign and altered self-antigens. This is important for ensuring anti-infectious and antitumor immunity, in addition to maintaining self-tolerance. The most common parameter used for assessing the specificity of TCR-pMHC interaction is affinity. This thermodynamic characteristic is widely used not only in various theoretical aspects, but also in practice, for example, in the engineering of various T-cell products with a chimeric (CAR-T) or artificial (TCR-engineered T-cell) antigen receptor. However, increasing data reveal the fact that, in addition to the thermodynamic component, the specificity of antigen recognition is based on the kinetics and mechanics of the process, having even greater influence on the selectivity of the process and T lymphocyte activation than affinity. Therefore, the kinetic and mechanical aspects of antigen recognition should be taken into account when designing artificial antigen receptors, especially those that recognize antigens in the MHC complex. This review describes the current understanding of the nature of the TCR-pMHC interaction, in addition to the thermodynamic, kinetic, and mechanical principles underlying the specificity and high sensitivity of this interaction.
Collapse
Affiliation(s)
- D. V. Shevyrev
- Laboratory of molecular Immunology, Research Institute for Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Center for Cell Technology and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Correspondence: ; Tel.: +7-9231345505
| | - V. P. Tereshchenko
- Laboratory of molecular Immunology, Research Institute for Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Center for Cell Technology and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - S. V. Sennikov
- Laboratory of molecular Immunology, Research Institute for Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| |
Collapse
|
4
|
Zhao X, Kolawole EM, Chan W, Feng Y, Yang X, Gee MH, Jude KM, Sibener LV, Fordyce PM, Germain RN, Evavold BD, Garcia KC. Tuning T cell receptor sensitivity through catch bond engineering. Science 2022; 376:eabl5282. [PMID: 35389803 PMCID: PMC9513562 DOI: 10.1126/science.abl5282] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adoptive cell therapy using engineered T cell receptors (TCRs) is a promising approach for targeting cancer antigens, but tumor-reactive TCRs are often weakly responsive to their target ligands, peptide-major histocompatibility complexes (pMHCs). Affinity-matured TCRs can enhance the efficacy of TCR-T cell therapy but can also cross-react with off-target antigens, resulting in organ immunopathology. We developed an alternative strategy to isolate TCR mutants that exhibited high activation signals coupled with low-affinity pMHC binding through the acquisition of catch bonds. Engineered analogs of a tumor antigen MAGE-A3-specific TCR maintained physiological affinities while exhibiting enhanced target killing potency and undetectable cross-reactivity, compared with a high-affinity clinically tested TCR that exhibited lethal cross-reactivity with a cardiac antigen. Catch bond engineering is a biophysically based strategy to tune high-sensitivity TCRs for T cell therapy with reduced potential for adverse cross-reactivity.
Collapse
Affiliation(s)
- Xiang Zhao
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elizabeth M Kolawole
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Waipan Chan
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yinnian Feng
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Xinbo Yang
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marvin H Gee
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leah V Sibener
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Polly M Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.,Chan Zuckerberg BioHub, San Francisco, CA 94158, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian D Evavold
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
CDR3 binding chemistry controls TCR V-domain rotational probability and germline CDR2 scanning of polymorphic MHC. Mol Immunol 2022; 144:138-151. [DOI: 10.1016/j.molimm.2021.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 11/21/2022]
|
6
|
Engineering the T cell receptor for fun and profit: Uncovering complex biology, interrogating the immune system, and targeting disease. Curr Opin Struct Biol 2022; 74:102358. [PMID: 35344834 DOI: 10.1016/j.sbi.2022.102358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022]
Abstract
T cell receptors (TCRs) orchestrate cellular immunity by recognizing peptide antigens bound and presented by major histocompatibility complex (MHC) proteins. Due to the TCR's central role in immunity and tight connection with human health, there has been significant interest in modulating TCR properties through protein engineering methods. Complicating these efforts is the complexity and vast diversity of TCR-peptide/MHC interfaces, the interdependency between TCR affinity, specificity, and cross-reactivity, and the sophisticated relationships between TCR binding properties and T cell function, many aspects of which are not well understood. Here we review TCR engineering, starting with a brief historical overview followed by discussions of more recent developments, including new efforts and opportunities to engineer TCR affinity, modulate specificity, and develop novel TCR-based constructs.
Collapse
|
7
|
Development of a peptide aptamer pair-linked rapid fluorescent diagnostic system for Zika virus detection. Biosens Bioelectron 2022; 197:113768. [PMID: 34763153 DOI: 10.1016/j.bios.2021.113768] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022]
Abstract
A rapid diagnostic system employing an antigen detection biosensing method is needed to discriminate between Zika virus (ZIKV) and Dengue virus (DENV) due to their close antigenic homology. We developed a novel peptide pair-based flow immunochromatographic test strip (FICT) assay to detect ZIKV. Peptide aptamers, P6.1 (KQERNNWPLTWT), P29.1 (KYTTSTLKSGV), and B2.33 (KRHVWVSLSYSCAEA) were designed by paratopes and modified against the ZIKV envelope protein based on the binding affinity. An antibody-free lateral FICT was developed using a pair of peptide aptamers. In the rapid diagnostic strip, the limit of detection (LOD) for the B2.33-P6.1 peptide pair for ZIKV was 2 × 104 tissue culture infective dose TCID50/mL. Significantly, FICT could discriminate ZIKV from DENV. The stability and performance of FICT were confirmed using human sera and urine, showing a comparable LOD value. Our study demonstrated that in silico modeling could be used to develop a novel peptide pair-based FICT assay for detecting ZIKV by a rapid diagnostic test.
Collapse
|
8
|
Strand A, Shen ST, Tomchick D, Wang J, Wang CR, Deisenhofer J. Structure and dynamics of major histocompatibility class Ib molecule H2-M3 complexed with mitochondrial-derived peptides. J Biomol Struct Dyn 2022; 40:10300-10312. [PMID: 34176438 PMCID: PMC8722451 DOI: 10.1080/07391102.2021.1942214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Presentation of antigenic peptides to T-cell receptors is an essential step in the adaptive immune response. In the mouse the class Ib major histocompatibility complex molecule, H2-M3, presents bacterial- and mitochondrial-derived peptides to T-cell receptors on cytotoxic T cells. Four mitochondrial heptapeptides, differing only at residue 6, form complexes with H2-M3 which can be distinguished by T cells. No structures of relevant receptors are available. To investigate the structural basis for this distinction, crystal structures were determined and molecular dynamics simulations over one microsecond were done for each complex. In the crystal structures of the heptapeptide complexes with H2-M3, presented here, the side chains of the peptide residues at position 6 all point into the H2-M3 binding groove, and are thus inaccessible, so that the very similar structures do not suggest how recognition and initiation of responses by the T cells may occur. However, conformational differences, which could be crucial to T-cell discrimination, appear within one microsecond during molecular dynamics simulations of the four complexes. Specifically, the three C-terminal residues of peptide ligands with alanine or threonine at position 6 partially exit the binding groove; this does not occur in peptide ligands with isoleucine or valine at position 6. Structural changes associated with partial peptide exit from the binding groove, along with relevant peptide binding energetics and immunological results are discussed. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arne Strand
- Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - San-Tai Shen
- AnTaimmu Biomed Co., Ltd., Zhubei City, Hsinchu County, Taiwan
| | - Diana Tomchick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas, United States of America,Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chyung-Ru Wang
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Johann Deisenhofer
- Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America,Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas, United States of America,Corresponding author
| |
Collapse
|
9
|
Ch'ng ACW, Lam P, Alassiri M, Lim TS. Application of phage display for T-cell receptor discovery. Biotechnol Adv 2021; 54:107870. [PMID: 34801662 DOI: 10.1016/j.biotechadv.2021.107870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/23/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
The immune system is tasked to keep our body unharmed and healthy. In the immune system, B- and T-lymphocytes are the two main components working together to stop and eliminate invading threats like virus particles, bacteria, fungi and parasite from attacking our healthy cells. The function of antibodies is relatively more direct in target recognition as compared to T-cell receptors (TCR) which recognizes antigenic peptides being presented on the major histocompatibility complex (MHC). Although phage display has been widely applied for antibody presentation, this is the opposite in the case of TCR. The cell surface TCR is a relatively large and complex molecule, making presentation on phage surfaces challenging. Even so, recombinant versions and modifications have been introduced to allow the growing development of TCR in phage display. In addition, the increasing application of TCR for immunotherapy has made it an important binding motif to be developed by phage display. This review will emphasize on the application of phage display for TCR discovery as well as the engineering aspect of TCR for improved characteristics.
Collapse
Affiliation(s)
- Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Paula Lam
- CellVec Private Limited, 118518, Singapore; National University of Singapore, Department of Physiology, 117597, Singapore; Duke-NUS Graduate Medical School, Cancer and Stem Cells Biology Program, 169857, Singapore
| | - Mohammed Alassiri
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
10
|
Fritz ZR, Schloss RS, Yarmush ML, Williams LJ. HSymM-guided engineering of the immunodominant p53 transactivation domain putative peptide antigen for improved binding to its anti-p53 monoclonal antibody. Bioorg Med Chem Lett 2021; 51:128341. [PMID: 34454062 PMCID: PMC8526406 DOI: 10.1016/j.bmcl.2021.128341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
A novel engineering strategy to improve autoantibody detection with peptide fragments derived from the parent antigen is presented. The model system studied was the binding of the putative p53 TAD peptide antigen (residues 46-55) to its cognate anti-p53 antibody, ab28. Each engineered peptide contained the full decapeptide epitope and differed only in the flanking regions. Since minimal structural information was available to guide the design, a simple epitope:paratope binding model was applied. The Hidden Symmetry Model, which we recently reported, was used to guide peptide design and estimate per-residue contributions to interaction free energy as a function of added C- and N-terminal flanking peptides. Twenty-four peptide constructs were designed, synthesized, and assessed for binding affinity to ab28 by surface plasmon resonance, and a subset of these peptides were evaluated in a simulated immunoassay for limit of detection. Many peptides exhibited over 200-fold enhancements in binding affinity and improved limits of detection. The epitope was reevaluated and is proposed to be the undecapeptide corresponding to residues 45-55. HSymM calculated binding free energy and experimental data were found to be in good agreement (R2 > 0.75).
Collapse
Affiliation(s)
- Zachary R Fritz
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, United States
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, United States
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, United States
| | - Lawrence J Williams
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, United States.
| |
Collapse
|
11
|
Puech PH, Bongrand P. Mechanotransduction as a major driver of cell behaviour: mechanisms, and relevance to cell organization and future research. Open Biol 2021; 11:210256. [PMID: 34753321 PMCID: PMC8586914 DOI: 10.1098/rsob.210256] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
How do cells process environmental cues to make decisions? This simple question is still generating much experimental and theoretical work, at the border of physics, chemistry and biology, with strong implications in medicine. The purpose of mechanobiology is to understand how biochemical and physical cues are turned into signals through mechanotransduction. Here, we review recent evidence showing that (i) mechanotransduction plays a major role in triggering signalling cascades following cell-neighbourhood interaction; (ii) the cell capacity to continually generate forces, and biomolecule properties to undergo conformational changes in response to piconewton forces, provide a molecular basis for understanding mechanotransduction; and (iii) mechanotransduction shapes the guidance cues retrieved by living cells and the information flow they generate. This includes the temporal and spatial properties of intracellular signalling cascades. In conclusion, it is suggested that the described concepts may provide guidelines to define experimentally accessible parameters to describe cell structure and dynamics, as a prerequisite to take advantage of recent progress in high-throughput data gathering, computer simulation and artificial intelligence, in order to build a workable, hopefully predictive, account of cell signalling networks.
Collapse
Affiliation(s)
- Pierre-Henri Puech
- Lab Adhesion and Inflammation (LAI), Inserm UMR 1067, CNRS UMR 7333, Aix-Marseille Université UM61, Marseille, France
| | - Pierre Bongrand
- Lab Adhesion and Inflammation (LAI), Inserm UMR 1067, CNRS UMR 7333, Aix-Marseille Université UM61, Marseille, France
| |
Collapse
|
12
|
Moretti M, La Rocca R, Perrone Donnorso M, Torre B, Canale C, Malerba M, Das G, Sottile R, Garofalo C, Achour A, Kärre K, Carbone E, Di Fabrizio E. Clustering of Major Histocompatibility Complex-Class I Molecules in Healthy and Cancer Colon Cells Revealed from Their Nanomechanical Properties. ACS NANO 2021; 15:7500-7512. [PMID: 33749234 DOI: 10.1021/acsnano.1c00897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The activation of the T cell mediated immune response relies on the fine interaction between the T cell receptor on the immune cell and the antigen-presenting major histocompatibility complex (MHC) molecules on the membrane surface of antigen-presenting cells. Both the distribution and quantity of MHC/peptide complexes and their adequate morphological presentation affect the activation of the immune cells. In several types of cancer the immune response is down-regulated due to the low expression of MHC-class I (MHC-I) molecules on the cell's surface, and in addition, the mechanical properties of the membrane seem to play a role. Herein, we investigate the distribution of MHC-I molecules and the related nanoscale mechanical environment on the cell surface of two cell lines derived from colon adenocarcinoma and a healthy epithelial colon reference cell line. Atomic force microscopy (AFM) force spectroscopy analysis using an antibody-tagged pyramidal probe specific for MHC-I molecules and a formula that relates the elasticity of the cell to the energy of adhesion revealed the different population distributions of MHC-I molecules in healthy cells compared to cancer cells. We found that MHC-I molecules are significantly less expressed in cancer cells. Moreover, the local elastic modulus is significantly reduced in cancer cells. We speculate that these results might be related to the proven ability of cancer cells to evade the immune system, not only by reducing MHC-I cell surface expression but also by modifying the local mechanical properties affecting the overall morphology of MHC-I synapse presentation to immune cells.
Collapse
Affiliation(s)
- Manola Moretti
- Single Molecule Imaging by Light Enhanced Spectroscopies Lab, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Jeddah, Kingdom of Saudi Arabia
| | - Rosanna La Rocca
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Bruno Torre
- Single Molecule Imaging by Light Enhanced Spectroscopies Lab, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Jeddah, Kingdom of Saudi Arabia
| | - Claudio Canale
- Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Mario Malerba
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Gobind Das
- Department of Physics, Khalifa University, P. O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Rosa Sottile
- Katharine Hsu Lab, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Cinzia Garofalo
- Department for Experimental and Clinical Medicine, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, 17176 Solna, Stockholm, Sweden
| | - Klas Kärre
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Biomedicum Solnavägen 9, 17165 Solna, Stockholm, Sweden
| | - Ennio Carbone
- Dipartimento Medicina di Precisione, Università della Campania, via L. De Crecchio, 7, 80138 Naples, Italy
| | - Enzo Di Fabrizio
- Department of Applied Physics, Polytechnic University of Turin, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| |
Collapse
|
13
|
Lee CH, Salio M, Napolitani G, Ogg G, Simmons A, Koohy H. Predicting Cross-Reactivity and Antigen Specificity of T Cell Receptors. Front Immunol 2020; 11:565096. [PMID: 33193332 PMCID: PMC7642207 DOI: 10.3389/fimmu.2020.565096] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Adaptive immune recognition is mediated by specific interactions between heterodimeric T cell receptors (TCRs) and their cognate peptide-MHC (pMHC) ligands, and the methods to accurately predict TCR:pMHC interaction would have profound clinical, therapeutic and pharmaceutical applications. Herein, we review recent developments in predicting cross-reactivity and antigen specificity of TCR recognition. We discuss current experimental and computational approaches to investigate cross-reactivity and antigen-specificity of TCRs and highlight how integrating kinetic, biophysical and structural features may offer valuable insights in modeling immunogenicity. We further underscore the close inter-relationship of these two interconnected notions and the need to investigate each in the light of the other for a better understanding of T cell responsiveness for the effective clinical applications.
Collapse
Affiliation(s)
- Chloe H. Lee
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Giorgio Napolitani
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Graham Ogg
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hashem Koohy
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Hoffmann MM, Slansky JE. T-cell receptor affinity in the age of cancer immunotherapy. Mol Carcinog 2020; 59:862-870. [PMID: 32386086 DOI: 10.1002/mc.23212] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022]
Abstract
The strength of the interaction between T-cell receptors (TCRs) and their ligands, peptide/major histocompatibility complex complexes (pMHCs), is one of the most frequently discussed and investigated features of T cells in immuno-oncology today. Although there are many molecules on the surface of T cells that interact with ligands on other cells, the TCR/pMHC is the only receptor-ligand pair that offers antigen specificity and dictates the functional response of the T cell. The strength of the TCR/pMHC interaction, along with the environment in which this interaction takes place, is key to how the T cell will respond. The TCR repertoire of T cells that interact with tumor-associated antigens is vast, although typically of low affinity. Here, we focus on the low-affinity interactions between TCRs from CD8+ T cells and different models used in immuno-oncology.
Collapse
Affiliation(s)
- Michele M Hoffmann
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jill E Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
15
|
Xu X, Li H, Xu C. Structural understanding of T cell receptor triggering. Cell Mol Immunol 2020; 17:193-202. [PMID: 32047259 PMCID: PMC7052162 DOI: 10.1038/s41423-020-0367-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/08/2020] [Indexed: 11/09/2022] Open
Abstract
The T cell receptor (TCR) is one of the most complicated receptors in mammalian cells, and its triggering mechanism remains mysterious. As an octamer complex, TCR comprises an antigen-binding subunit (TCRαβ) and three CD3 signaling subunits (CD3ζζ, CD3δε, and CD3γε). Engagement of TCRαβ with an antigen peptide presented on the MHC leads to tyrosine phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) in CD3 cytoplasmic domains (CDs), thus translating extracellular binding kinetics to intracellular signaling events. Whether conformational change plays an important role in the transmembrane signal transduction of TCR is under debate. Attracted by the complexity and functional importance of TCR, many groups have been studying TCR structure and triggering for decades using diverse biochemical and biophysical tools. Here, we synthesize these structural studies and discuss the relevance of the conformational change model in TCR triggering.
Collapse
Affiliation(s)
- Xinyi Xu
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Hua Li
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Chenqi Xu
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, 201210, Shanghai, China.
| |
Collapse
|
16
|
Jost C, Darowski D, Challier J, Pulko V, Hanisch LJ, Xu W, Mössner E, Bujotzek A, Klostermann S, Umana P, Kontermann RE, Klein C. CAR-J cells for antibody discovery and lead optimization of TCR-like immunoglobulins. MAbs 2020; 12:1840709. [PMID: 33136521 PMCID: PMC7646475 DOI: 10.1080/19420862.2020.1840709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
T-cell bispecific antibodies (TCBs) are a novel class of engineered immunoglobulins that unite monovalent binding to the T-cell receptor (TCR) CD3e chain and bivalent binding to tumor-associated antigens in order to recruit and activate T-cells for tumor cell killing. In vivo, T-cell activation is usually initiated via the interaction of the TCR with the peptide-HLA complex formed by the human leukocyte antigen (HLA) and peptides derived from intracellular proteins. TCR-like antibodies (TCRLs) that recognize pHLA-epitopes extend the target space of TCBs to peptides derived from intracellular proteins, such as those overexpressed during oncogenesis or created via mutations found in cancer. One challenge during lead identification of TCRL-TCBs is to identify TCRLs that specifically, and ideally exclusively, recognize the desired pHLA, but not unrelated pHLAs. In order to identify TCRLs suitable for TCRL-TCBs, large numbers of TCRLs have to be tested in the TCB format. Here, we propose a novel approach using chimeric antigen receptors (CARs) to facilitate the identification of highly selective TCRLs. In this new so-called TCRL-CAR-J approach, TCRL-candidates are transduced as CARs into Jurkat reporter-cells, and subsequently assessed for their specificity profile. This work demonstrates that the CAR-J reporter-cell assay can be applied to predict the profile of TCRL-TCBs without the need to produce each candidate in the final TCB format. It is therefore useful in streamlining the identification of TCRL-TCBs.
Collapse
Affiliation(s)
- Christian Jost
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
- Athebio AG, Zurich, Switzerland
| | - Diana Darowski
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - John Challier
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Vesna Pulko
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Lydia J Hanisch
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Wei Xu
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Ekkehard Mössner
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Alexander Bujotzek
- Roche Innovation Center Munich, Roche Pharma Research & Early Development, Penzberg, Germany
| | - Stefan Klostermann
- Roche Innovation Center Munich, Roche Pharma Research & Early Development, Penzberg, Germany
| | - Pablo Umana
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | | | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| |
Collapse
|
17
|
Spear TT, Evavold BD, Baker BM, Nishimura MI. Understanding TCR affinity, antigen specificity, and cross-reactivity to improve TCR gene-modified T cells for cancer immunotherapy. Cancer Immunol Immunother 2019; 68:1881-1889. [PMID: 31595324 PMCID: PMC11028285 DOI: 10.1007/s00262-019-02401-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022]
Abstract
Adoptive cell transfer (ACT) using T cell receptor (TCR) gene-modified T cells is an exciting and rapidly evolving field. Numerous preclinical and clinical studies have demonstrated various levels of feasibility, safety, and efficacy using TCR-engineered T cells to treat cancer and viral infections. Although evidence suggests their use can be effective, to what extent and how to improve these therapeutics are still matters of investigation. As TCR affinity has been generally accepted as the central role in defining T cell specificity and sensitivity, selection for and generation of high affinity TCRs has remained a fundamental approach to design more potent T cells. However, traditional methods for affinity-enhancement by random mutagenesis can induce undesirable cross-reactivity causing on- and off-target adverse events, generate exhausted effectors by overstimulation, and ignore other kinetic and cellular parameters that have been shown to impact antigen specificity. In this Focussed Research Review, we comment on the preclinical and clinical potential of TCR gene-modified T cells, summarize our contributions challenging the role TCR affinity plays in antigen recognition, and explore how structure-guided design can be used to manipulate antigen specificity and TCR cross-reactivity to improve the safety and efficacy of TCR gene-modified T cells used in ACT.
Collapse
Affiliation(s)
- Timothy T Spear
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA.
| | - Brian D Evavold
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46530, USA
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA
| |
Collapse
|
18
|
Linciano S, Pluda S, Bacchin A, Angelini A. Molecular evolution of peptides by yeast surface display technology. MEDCHEMCOMM 2019; 10:1569-1580. [PMID: 31803399 PMCID: PMC6836575 DOI: 10.1039/c9md00252a] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
Genetically encoded peptides possess unique properties, such as a small molecular weight and ease of synthesis and modification, that make them suitable to a large variety of applications. However, despite these favorable qualities, naturally occurring peptides are often limited by intrinsic weak binding affinities, poor selectivity and low stability that ultimately restrain their final use. To overcome these limitations, a large variety of in vitro display methodologies have been developed over the past few decades to evolve genetically encoded peptide molecules with superior properties. Phage display, mRNA display, ribosome display, bacteria display, and yeast display are among the most commonly used methods to engineer peptides. While most of these in vitro methodologies have already been described in detail elsewhere, this review describes solely the yeast surface display technology and its valuable use for the evolution of a wide range of peptide formats.
Collapse
Affiliation(s)
- Sara Linciano
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
| | - Stefano Pluda
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
- Fidia Farmaceutici S.p.A , Via Ponte della Fabbrica 3/A , Abano Terme 35031 , Italy
| | - Arianna Bacchin
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
- European Centre for Living Technology (ECLT) , Ca' Bottacin, Dorsoduro 3911, Calle Crosera , Venice 30123 , Italy .
| |
Collapse
|
19
|
Computational and Systems Immunology: A Student's Perspective. Trends Immunol 2019; 40:665-668. [PMID: 31288986 DOI: 10.1016/j.it.2019.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/11/2019] [Indexed: 12/28/2022]
Abstract
The big data revolution has transformed the landscape of immunology research. As inaugural students of Stanford's new Computational and Systems Immunology PhD track, we share our experiences and advice with other institutions considering a similar program.
Collapse
|
20
|
Hellman LM, Foley KC, Singh NK, Alonso JA, Riley TP, Devlin JR, Ayres CM, Keller GLJ, Zhang Y, Vander Kooi CW, Nishimura MI, Baker BM. Improving T Cell Receptor On-Target Specificity via Structure-Guided Design. Mol Ther 2018; 27:300-313. [PMID: 30617019 DOI: 10.1016/j.ymthe.2018.12.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 12/30/2022] Open
Abstract
T cell receptors (TCRs) have emerged as a new class of immunological therapeutics. However, though antigen specificity is a hallmark of adaptive immunity, TCRs themselves do not possess the high specificity of monoclonal antibodies. Although a necessary function of T cell biology, the resulting cross-reactivity presents a significant challenge for TCR-based therapeutic development, as it creates the potential for off-target recognition and immune toxicity. Efforts to enhance TCR specificity by mimicking the antibody maturation process and enhancing affinity can inadvertently exacerbate TCR cross-reactivity. Here we demonstrate this concern by showing that even peptide-targeted mutations in the TCR can introduce new reactivities against peptides that bear similarity to the original target. To counteract this, we explored a novel structure-guided approach for enhancing TCR specificity independent of affinity. Tested with the MART-1-specific TCR DMF5, our approach had a small but discernible impact on cross-reactivity toward MART-1 homologs yet was able to eliminate DMF5 cross-recognition of more divergent, unrelated epitopes. Our study provides a proof of principle for the use of advanced structure-guided design techniques for improving TCR specificity, and it suggests new ways forward for enhancing TCRs for therapeutic use.
Collapse
Affiliation(s)
- Lance M Hellman
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Kendra C Foley
- Department of Surgery and the Cardinal Bernardin Cancer Center, Loyola University of Chicago, Maywood, IL, USA
| | - Nishant K Singh
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Jesus A Alonso
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Timothy P Riley
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Jason R Devlin
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Cory M Ayres
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Grant L J Keller
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Yuting Zhang
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Michael I Nishimura
- Department of Surgery and the Cardinal Bernardin Cancer Center, Loyola University of Chicago, Maywood, IL, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|