1
|
Li ZY, Li MF, He YY, Zheng GS, Chen JR, Guo YM, Lian Q, Yue CF. Construction of a Prognostic Model based on CSC-related Genes in Patients with Colorectal Cancer. J Cancer 2025; 16:2375-2387. [PMID: 40302814 PMCID: PMC12036084 DOI: 10.7150/jca.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/06/2025] [Indexed: 05/02/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most common and deadly malignancies. Lack of efficient biomarkers for prognosis has limited the improvement of survival outcome in patients with CRC. Numerous studies have demonstrated the important roles of cancer stem cells (CSCs) in both treatment resistance and disease recurrence of CRC. Thus, the current study aims to construct a prognostic model based on expression level of CSC-related genes for precise molecular subtyping of CRC patients with different prognoses, TME infiltration patterns and therapeutic responses. The RNA sequencing data and clinical information were obtained from UCSC Xena database, followed by identification of differential expressed genes, univariate Cox regression, and LASSO regression to identify prognostic CSC-related genes and construct a novel prognostic risk scoring model consisting of 21 CSC-related genes. The patients in high-risk group suffered poor survival outcome (P<0.0001). Moreover, the performance of CSC-related prognostic model was validated in individual GEO datasets including GSE41258 and GSE39582 (P<0.05). Furthermore, patients with high-risk score exhibited lower response rate to immune checkpoint inhibitors as compared to those in low-risk group (17.4% vs. 28.2%), indicating the potential of CSC-related prognostic model to predict the immunotherapy response. Collectively, our findings provide an effective model to predict the immunotherapy response and survival outcome in patients with CRC.
Collapse
Affiliation(s)
- Zi-Yue Li
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, China
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ming-Feng Li
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, China
| | - Ying-Ying He
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, P. R. China
| | - Guan-Sheng Zheng
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jie-Rong Chen
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yun-Miao Guo
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, China
| | - Qizhou Lian
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Cai-Feng Yue
- Department of Laboratory Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, China
| |
Collapse
|
2
|
Xing Y, Zhang Y, Li J, Tang Y, Zhang J, Yang R, Tang H, Qian H, Huang D, Chen W, Zhong Y. Bioresponsive Nanoparticles Boost Starvation Therapy and Prevent Premetastatic Niche Formation for Pulmonary Metastasis Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51798-51806. [PMID: 39301793 DOI: 10.1021/acsami.4c11686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
In the process of tumor metastasis, tumor cells can acquire invasion by excessive uptake of nutrients and energy and interact with the host microenvironment to shape a premetastatic niche (PMN) that facilitates their colonization and progression in the distal sites. Pyruvate is an essential nutrient that engages in both energy metabolism and remodeling of the extracellular matrix (ECM) in the lungs for PMN formation, thus providing a target for tumor metastasis treatment. There is a paucity of strategies focusing on PMN prevention, which is key to metastasis inhibition. Here, we design a bioresponsive nanoparticle (HP/GU) based on a disulfide-cross-linked hyperbranched polyethylenimine (D-PEI) core and a hyaluronic acid (HA) shell with a reactive oxygen species (ROS)-sensitive cross-linker between them to encapsulate glucose oxidase (GOX) and a mitochondrial pyruvate carrier (MPC) inhibitor via electrostatic interaction, which reinforces starvation therapy and reduces PMN formation in the lungs via inhibiting pyruvate metabolism. In tumor cells, GOX and MPC inhibitors can be rapidly released and synergistically reduce the energy supply of tumor cells by consuming glucose and inhibiting pyruvate uptake to decrease tumor cell invasion. MPC inhibitors can also reduce ECM remodeling by blocking cellular pyruvate metabolism to prevent PMN formation. Consequently, HP/GU achieves an efficient inhibition of both primary and metastatic tumors and provides an innovative strategy for the treatment of tumor metastases.
Collapse
Affiliation(s)
- Yanran Xing
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jingqian Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yecheng Tang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Rui Yang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Tang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Wang P, Kong G. Comprehensive Analysis of Angiogenesis and Ferroptosis Genes for Predicting the Survival Outcome and Immunotherapy Response of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1845-1859. [PMID: 39364435 PMCID: PMC11448465 DOI: 10.2147/jhc.s483647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024] Open
Abstract
Background Angiogenesis and ferroptosis are both linked to hepatocellular carcinoma (HCC) development, recurrence, and medication resistance. As a result, a thorough examination of the link between genes associated with angiogenesis and ferroptosis and immunotherapy efficacy is required to improve the dismal prognosis of HCC patients. Methods The molecular subtypes were found using a non-negative matrix factorization technique (NMF) based on the genes associated with angiogenesis and ferroptosis. Based on the differentially expressed genes (DEGs) screed between different molecular subtypes, an angiogenesis and ferroptosis-related prognostic stratification model was built using LASSO-COX regression, random forest technique, and extreme gradient boosting (XGBoost), which was further validated in the ICGC and GSE14520 databases. The impact of this model on tumor microenvironment (TME) and immunotherapy sensitivity was also investigated. The expression levels of candidate genes were detected and validated by Real-Time PCR and immunohistochemistry between liver cancer tissues and adjacent non-tumor liver tissues. Results Both angiogenesis and ferroptosis-related genes can significantly divide HCC patients into two subgroups with different survival outcomes, mutation profiles, and immune microenvironments. We screened six core genes (SLC10A1, PAEP, DPYSL4, MSC, NQO1, and CD24) for the construction of prognostic models by three machine learning methods after intersecting DEGs between angiogenesis and ferroptosis-related subgroups. In both the TCGA, ICGC, and GSE14520 datasets, the model exhibits high prediction efficiency based on the analysis of KM survival curves and ROC curves. Immunomodulatory genes analysis suggested that the model could be used to predict which patients are most likely to benefit from immunotherapy. Furthermore, the transcriptional expression levels of SLC10A1 in the validation experiment matched the outcomes derived from public datasets. Conclusions We identified a new angiogenesis and ferroptosis-related signature that might offer the molecular characteristic information needed for an efficient prognostic assessment and perhaps tailored treatment for HCC patients.
Collapse
Affiliation(s)
- Peng Wang
- Department of Nuclear Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, 450003, People's Republic of China
| | - Guilian Kong
- Department of Nuclear Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, 450003, People's Republic of China
| |
Collapse
|
4
|
Li J, Su P, Li T, Hao Y, Wang T, Fu L, Liu X. The Role and Clinical Relevance of Glycolysis-Associated Genes on Immune Infiltration in Hepatocellular Carcinoma. J Cell Biochem 2024; 125:e30620. [PMID: 38923014 DOI: 10.1002/jcb.30620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Hepatocellular carcinoma (HCC) poses a significant challenge with dismal survival rates, necessitating a deeper understanding of its molecular mechanisms and the development of improved therapies. Metabolic reprogramming, particularly heightened glycolysis, plays a crucial role in HCC progression. Glycolysis-associated genes (GAGs) emerge as key players in HCC pathogenesis, influencing the tumor microenvironment and immune responses. This study aims to investigate the intricate interplay between GAGs and the immune landscape within HCC, offering valuable insights into potential prognostic markers and therapeutic targets to enhance treatment strategies and patient outcomes. Through the exploration of GAGs, we have identified two distinct molecular glycolytic subtypes in HCC patients, each exhibiting significant differences in both the immune microenvironment and prognosis. A risk model comprising five key GAGs was formulated and subsequently evaluated for their predictive accuracy. Our findings underscore the diverse tumor microenvironment and immune responses associated with the varying glycolytic subtypes observed in HCC. The identified key GAGs hold promise as prognostic indicators for evaluating HCC risk levels, predicting patient outcomes, and guiding clinical treatment decisions, particularly in the context of anticipating responses to immunotherapy drugs.
Collapse
Affiliation(s)
- Jing Li
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Peng Su
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Ting Li
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yang Hao
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tianjun Wang
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lei Fu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xin Liu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
5
|
Lv M, Zhao B, Zhang J, Miao G, Wei S, Tang Y, Liu X, Qian H, Huang D, Chen W, Zhong Y. ROS-responsive core-shell nano-inhibitor impedes pyruvate metabolism for reinforced photodynamic therapy and interrupted pre-metastatic niche formation. Acta Biomater 2024; 182:288-300. [PMID: 38729547 DOI: 10.1016/j.actbio.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
The formation of pre-metastatic niche (PMN) in a hospitable organ derived from the primary tumor requires the communication between the tumor cells and the host environment. Pyruvate is a fundamental nutrient by which the tumor cells metabolically reshape the extracellular matrix in the lung to facilitate their own metastatic development. Here we report a combination regimen by integrating the photo-sensitizer and the mitochondrial pyruvate carrier (MPC) inhibitor in a dendritic polycarbonate core-hyaluronic acid shell nano-platform with multivalent reversible crosslinker embedded in it (DOH-NI+L) to reinforce photodynamic therapy (PDT) toward the primary tumor and interrupt PMN formation in the lung via impeding pyruvate uptake. We show that DOH-NI+L mediates tumor-specific MPC inhibitor liberation, inhibiting the aerobic respiration for facilitated PDT and restraining ATP generation for paralyzing cell invasion. Remarkably, DOH-NI+L is demonstrated to block the metabolic crosstalk of tumor cell-host environment by dampening pyruvate metabolism, provoking a series of metabolic responses and resulting in the pulmonary PMN interruption. Consequently, DOH-NI+L realizes a significant primary tumor inhibition and an efficient pulmonary metastasis prevention. Our research extends nano-based anti-metastatic strategies aiming at PMN intervention and such a dendritic core-shell nano-inhibitor provides an innovative paradigm to inhibit tumor growth and prevent metastasis efficiently. STATEMENT OF SIGNIFICANCE: In the progression of cancer metastasis, the formation of a pre-metastatic niche (PMN) in a hospitable organ derived from the primary tumor is one of the rate-limiting stages. The current nano-based anti-metastatic modalities mainly focus on targeted killing of tumor cells and specific inhibition of tumor cell invasion, while nanomedicine-mediated interruption of PMN formation has been rarely reported. Here we report a combination regimen by integrating a photo-sensitizer and an inhibitor of mitochondrial pyruvate carrier in a dendritic core-shell nano-platform with a reversible crosslinker embedded in it to reinforce PDT toward the primary tumor and interrupt PMN formation via impeding the uptake of pyruvate that is a fundamental nutrient facilitating aerobic respiration and PMN formation. Our research proposed a nano-based anti-metastatic strategy aiming at PMN intervention.
Collapse
Affiliation(s)
- Mengtong Lv
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Guizhi Miao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Siming Wei
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yecheng Tang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Liu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Li Z, Zhang W, Guo S, Qi G, Huang J, Gao J, Zhao J, Kang L, Li Q. A Review of Advances in Mitochondrial Research in Cancer. Cancer Control 2024; 31:10732748241299072. [PMID: 39487853 PMCID: PMC11531673 DOI: 10.1177/10732748241299072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/28/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Abnormalities in mitochondrial structure or function are closely related to the development of malignant tumors. Mitochondrial metabolic reprogramming provides precursor substances and energy for the vital activities of tumor cells, so that cancer cells can rapidly adapt to the unfavorable environment of hypoxia and nutrient deficiency. Mitochondria can enable tumor cells to gain the ability to proliferate, escape immune responses, and develop drug resistance by altering constitutive junctions, oxidative phosphorylation, oxidative stress, and mitochondrial subcellular relocalization. This greatly reduces the rate of effective clinical control of tumors. PURPOSE Explore the major role of mitochondria in cancer, as well as targeted mitochondrial therapies and mitochondria-associated markers. CONCLUSIONS This review provides a comprehensive analysis of the various aspects of mitochondrial aberrations and addresses drugs that target mitochondrial therapy, providing a basis for clinical mitochondria-targeted anti-tumor therapy.
Collapse
Affiliation(s)
- Zhiru Li
- Graduate School, North China University of Science and Technology, Tangshan, China
- The Fourth Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Wu Zhang
- Center of Treatment of Myasthenia Gravis, People’s Hospital of Shijiazhuang Affiliated to Hebei Medical, Shijiazhuang, China
| | - Shaowei Guo
- The Fourth Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Guoyan Qi
- Center of Treatment of Myasthenia Gravis, People’s Hospital of Shijiazhuang Affiliated to Hebei Medical, Shijiazhuang, China
| | - Jiandi Huang
- The Fourth Department of Oncology, Hebei General Hospital, Shijiazhuang, China
- Graduate School, Hebei North University, Zhangjiakou, China
| | - Jin Gao
- Department of Thyroid & Breast Surgery Ward, Hebei General Hospital, Shijiazhuang, China
| | - Jing Zhao
- The Sixth Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Lin Kang
- Department of Pathology, Hebei General Hospital, Shijiazhuang, China
| | - Qingxia Li
- The Fourth Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
7
|
Demicco M, Liu XZ, Leithner K, Fendt SM. Metabolic heterogeneity in cancer. Nat Metab 2024; 6:18-38. [PMID: 38267631 DOI: 10.1038/s42255-023-00963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Cancer cells rewire their metabolism to survive during cancer progression. In this context, tumour metabolic heterogeneity arises and develops in response to diverse environmental factors. This metabolic heterogeneity contributes to cancer aggressiveness and impacts therapeutic opportunities. In recent years, technical advances allowed direct characterisation of metabolic heterogeneity in tumours. In addition to the metabolic heterogeneity observed in primary tumours, metabolic heterogeneity temporally evolves along with tumour progression. In this Review, we summarize the mechanisms of environment-induced metabolic heterogeneity. In addition, we discuss how cancer metabolism and the key metabolites and enzymes temporally and functionally evolve during the metastatic cascade and treatment.
Collapse
Affiliation(s)
- Margherita Demicco
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Xiao-Zheng Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
8
|
Yu Z, Xu C, Song B, Zhang S, Chen C, Li C, Zhang S. Tissue fibrosis induced by radiotherapy: current understanding of the molecular mechanisms, diagnosis and therapeutic advances. J Transl Med 2023; 21:708. [PMID: 37814303 PMCID: PMC10563272 DOI: 10.1186/s12967-023-04554-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Cancer remains the leading cause of death around the world. In cancer treatment, over 50% of cancer patients receive radiotherapy alone or in multimodal combinations with other therapies. One of the adverse consequences after radiation exposure is the occurrence of radiation-induced tissue fibrosis (RIF), which is characterized by the abnormal activation of myofibroblasts and the excessive accumulation of extracellular matrix. This phenotype can manifest in multiple organs, such as lung, skin, liver and kidney. In-depth studies on the mechanisms of radiation-induced fibrosis have shown that a variety of extracellular signals such as immune cells and abnormal release of cytokines, and intracellular signals such as cGAS/STING, oxidative stress response, metabolic reprogramming and proteasome pathway activation are involved in the activation of myofibroblasts. Tissue fibrosis is extremely harmful to patients' health and requires early diagnosis. In addition to traditional serum markers, histologic and imaging tests, the diagnostic potential of nuclear medicine techniques is emerging. Anti-inflammatory and antioxidant therapies are the traditional treatments for radiation-induced fibrosis. Recently, some promising therapeutic strategies have emerged, such as stem cell therapy and targeted therapies. However, incomplete knowledge of the mechanisms hinders the treatment of this disease. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of radiation-induced fibrosis.
Collapse
Affiliation(s)
- Zuxiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chaoyu Xu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Bin Song
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China
| | - Shihao Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chong Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221200, China
| | - Changlong Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Molecular Biology and Biochemistry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China.
| |
Collapse
|
9
|
Li Z, Fang X, Wang S. Omentum provides a special cell microenvironment for ovarian cancer. Cancer Rep (Hoboken) 2023; 6:e1858. [PMID: 37605299 PMCID: PMC10598246 DOI: 10.1002/cnr2.1858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/18/2023] [Accepted: 06/25/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Ovarian cancer seriously threatens women's health because of its poor prognosis and high mortality. Due to the lack of efficient early detection and screening methods, when patients seek doctors' help with complaints of abdominal distension, back pain and other nonspecific signs, the clinical results always hint at the widespread metastasis of disease. When referring to the metastasis of this disease, the omentum always takes precedence. RECENT FINDINGS The distinguishing feature of the omentum is adipose tissue, which satisfies the energy demand of cancer cells and supplies a more aggressive environment for ovarian cancer cells. In this review, we mainly focus on three important cell types: adipocytes, macrophages, and mesenchymal stem cells. Besides, several mechanisms underlying cancer-associated adipocytes (CAA)-facilitated ovarian cancer cell development have been revealed, including their capacities for storing lipids and endocrine function, and the release of hormones, growth factors, and adipokines. Blocking the reciprocity among cancer cells and various cells located on the omentum might contribute to ovarian cancer therapy. The inhibition of hormones, growth factors and adipokines produced by adipocytes will be a novel therapeutic strategy. However, a sufficient number of trials has not been performed. In spite of this, the therapeutic potential of metformin and the roles of exercise in ovarian cancer will be worth mentioning. CONCLUSION It is almost impossible to overcome completely ovarian cancer at the moment. What we can do is trying our best to improve these patients' prognoses. In this process, adipocytes may bring promising future for the therapy of ovarian cancer.
Collapse
Affiliation(s)
- Zeying Li
- The Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Xiaoling Fang
- The Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Sixue Wang
- The Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
10
|
Dong L, Zhang L, Zhao X, Zou H, Lin S, Zhu X, Cao J, Zhou C, Yu Z, Zhu Y, Chai K, Li M, Li Q. LncRNA CYP4A22-AS1 promotes the progression of lung adenocarcinoma through the miR-205-5p/EREG and miR-34c-5p/BCL-2 axes. Cancer Cell Int 2023; 23:194. [PMID: 37670265 PMCID: PMC10478502 DOI: 10.1186/s12935-023-03036-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/19/2023] [Indexed: 09/07/2023] Open
Abstract
OBJECTIVES Lung adenocarcinoma (LUAD) exhibits a higher fatality rate among all cancer types worldwide, yet the precise mechanisms underlying its initiation and progression remain unknown. Mounting evidence suggests that long non-coding RNAs (lncRNAs) exert significant regulatory roles in cancer development and progression. Nevertheless, the precise involvement of lncRNA CYP4A22-AS1 in LUAD remains incompletely comprehended. METHODS Bioinformatics analyses evaluated the expression level of CYP4A22-AS1 in lung adenocarcinoma and paracancer. The LUAD cell line with a high expression of CYP4A22-AS1 was constructed to evaluate the role of CYP4A22-AS1 in the proliferation and metastasis of LUAD by CCK8, scratch healing, transwell assays, and animal experiments. We applied transcriptome and microRNA sequencing to examine the mechanism of CYP4A22-AS1 enhancing the proliferation and metastasis of LUAD. Luciferase reporter gene analyses, west-blotting, and qRT-PCR were carried out to reveal the interaction between CYP4A22-AS1, miR-205-5p/EREG, and miR-34c-5p/BCL-2 axes. RESULTS CYP4A22-AS1 expression was significantly higher in LUAD tissues than in the adjacent tissues. Furthermore, we constructed a LUAD cell line with a high expression of CYP4A22-AS1 and noted that the high expression of CYP4A22-AS1 significantly enhanced the proliferation and metastasis of LUAD. We applied transcriptome and microRNA sequencing to examine the mechanism of CYP4A22-AS1 enhancing the proliferation and metastasis of LUAD. CYP4A22-AS1 increased the expression of EREG and BCL-2 by reducing the expression of miR-205-5p and miR-34-5p and activating the downstream signaling pathway of EGFR and the anti-apoptotic signaling pathway of BCL-2, thereby triggering the proliferation and metastasis of LUAD. The transfection of miR-205-5p and miR-34-5p mimics inhibited the role of CYP4A22-AS1 in enhancing tumor progression. CONCLUSION This study elucidates the molecular mechanism whereby CYP4A22-AS1 overexpression promotes LUAD progression through the miR-205-5p/EREG and miR-34c-5p/BCL-2 axes.
Collapse
Affiliation(s)
- Liyao Dong
- College of Life Science, Sichuan Normal University, Chengdu, 610101, Sichuan, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Lin Zhang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Xinyun Zhao
- College of Life Science, Sichuan Normal University, Chengdu, 610101, Sichuan, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Hongling Zou
- College of Life Science, Sichuan Normal University, Chengdu, 610101, Sichuan, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Sisi Lin
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Xinping Zhu
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Jili Cao
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Chun Zhou
- People's Liberation Army Joint Logistic Support Force 903th Hospital, Hangzhou, 330000, Zhejiang, China
| | - Zhihong Yu
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Yongqiang Zhu
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Kequn Chai
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Mingqian Li
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China.
| | - Qun Li
- College of Life Science, Sichuan Normal University, Chengdu, 610101, Sichuan, China.
| |
Collapse
|
11
|
Chen H, Li K, Qin Y, Zhou J, Li T, Qian L, Yang C, Ji X, Wu D. Recent advances in the role of endogenous hydrogen sulphide in cancer cells. Cell Prolif 2023; 56:e13449. [PMID: 36929586 PMCID: PMC10472536 DOI: 10.1111/cpr.13449] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Hydrogen sulphide (H2 S) is a gaseous neurotransmitter that can be self-synthesized by living organisms. With the deepening of research, the pathophysiological mechanisms of endogenous H2 S in cancer have been increasingly elucidated: (1) promote angiogenesis, (2) stimulate cell bioenergetics, (3) promote migration and proliferation thereby invasion, (4) inhibit apoptosis and (5) activate abnormal cell cycle. However, the increasing H2 S levels via exogenous sources show the opposite trend. This phenomenon can be explained by the bell-shaped pharmacological model of H2 S, that is, the production of endogenous (low concentration) H2 S promotes tumour growth while the exogenous (high concentration) H2 S inhibits tumour growth. Here, we review the impact of endogenous H2 S synthesis and metabolism on tumour progression, summarize the mechanism of action of H2 S in tumour growth, and discuss the possibility of H2 S as a potential target for tumour treatment.
Collapse
Affiliation(s)
- Hao‐Jie Chen
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Ke Li
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Yang‐Zhe Qin
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Jing‐Jing Zhou
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Tao Li
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Lei Qian
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Chang‐Yong Yang
- School of Nursing and HealthHenan UniversityKaifengHenan475004China
| | - Xin‐Ying Ji
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
| | - Dong‐Dong Wu
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
- School of StomatologyHenan UniversityKaifengHenan475004China
| |
Collapse
|
12
|
Zhang K, Chen L, Wang B, Chen D, Ye X, Han X, Fang Q, Yu C, Wu J, Guo S, Chen L, Shi Y, Wang L, Cheng H, Li H, Shen L, Zhao Q, Jin L, Lyu J, Fang H. Mitochondrial supercomplex assembly regulates metabolic features and glutamine dependency in mammalian cells. Theranostics 2023; 13:3165-3187. [PMID: 37351168 PMCID: PMC10283060 DOI: 10.7150/thno.78292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/08/2023] [Indexed: 06/24/2023] Open
Abstract
Rationale: Mitochondria generate ATP via the oxidative phosphorylation system, which mainly comprises five respiratory complexes found in the inner mitochondrial membrane. A high-order assembly of respiratory complexes is called a supercomplex. COX7A2L is a supercomplex assembly factor that has been well-investigated for studying supercomplex function and assembly. To date, the effects of mitochondrial supercomplexes on cell metabolism have not been elucidated. Methods: We depleted COX7A2L or Cox7a2l in human and mouse cells to generate cell models lacking mitochondrial supercomplexes as well as in DBA/2J mice as animal models. We tested the effect of impaired supercomplex assembly on cell proliferation with different nutrient supply. We profiled the metabolic features in COX7A2L-/- cells and Cox7a2l-/- mice via the combined use of targeted and untargeted metabolic profiling and metabolic flux analysis. We further tested the role of mitochondrial supercomplexes in pancreatic ductal adenocarcinoma (PDAC) through PDAC cell lines and a nude mouse model. Results: Impairing mitochondrial supercomplex assembly by depleting COX7A2L in human cells reprogrammed metabolic pathways toward anabolism and increased glutamine metabolism, cell proliferation and antioxidative defense. Similarly, knockout of Cox7a2l in DBA/2J mice promoted the use of proteins/amino acids as oxidative carbon sources. Mechanistically, impaired supercomplex assembly increased electron flux from CII to CIII/CIV and promoted CII-dependent respiration in COX7A2L-/- cells which further upregulated glutaminolysis and glutamine oxidation to accelerate the reactions of the tricarboxylic acid cycle. Moreover, the proliferation of PDAC cells lacking COX7A2L was inhibited by glutamine deprivation. Conclusion: Our results reveal the regulatory role of mitochondrial supercomplexes in glutaminolysis which may fine-tune the fate of cells with different nutrient availability.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
- Department of Clinical Laboratory, Xi'an Daxing Hospital, Xi'an 710016, China
| | - Linjie Chen
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory of Biomarkers and In vitro Diagnosis Translation of Zhejiang province, Zhejiang, Hangzhou 310063, China
| | - Bo Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Deyu Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xianglai Ye
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyu Han
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Quan Fang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310053, China
| | - Can Yu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jia Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Sihan Guo
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lifang Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yu Shi
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lan Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Huang Cheng
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hao Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lu Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qiongya Zhao
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Liqin Jin
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| |
Collapse
|
13
|
Development of a 5-FU modified miR-129 mimic as a therapeutic for non-small cell lung cancer. Mol Ther Oncolytics 2023; 28:277-292. [PMID: 36911069 PMCID: PMC9995506 DOI: 10.1016/j.omto.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths in the United States with non-small cell lung cancer (NSCLC) accounting for most cases. Despite advances in cancer therapeutics, the 5-year survival rate has remained poor due to several contributing factors, including its resistance to therapeutics. Therefore, there is a pressing need to develop therapeutics that can overcome resistance. Non-coding RNAs, including microRNAs (miRNAs), have been found to contribute to cancer resistance and therapeutics by modulating the expression of several targets involving multiple key mechanisms. In this study, we investigated the therapeutic potential of miR-129 modified with 5-fluorouracil (5-FU) in NSCLC. Our results show that 5-FU modified miR-129 (5-FU-miR-129) inhibits proliferation, induces apoptosis, and retains function as an miRNA in NSCLC cell lines A549 and Calu-1. Notably, we observed that 5-FU-miR-129 was able to overcome resistance to tyrosine kinase inhibitors and chemotherapy in cell lines resistant to erlotinib or 5-FU. Furthermore, we observed that the inhibitory effect of 5-FU-miR-129 can also be achieved in NSCLC cells under vehicle-free conditions. Finally, 5-FU-miR-129 inhibited NSCLC tumor growth and extended survival in vivo without toxic side effects. Altogether, our results demonstrate the potential of 5-FU-miR-129 as a highly potent cancer therapeutic in NSCLC.
Collapse
|
14
|
Qiu L, Sheng P, Wang X. Identification of Metabolic Syndrome-Related miRNA-mRNA Regulatory Networks and Key Genes Based on Bioinformatics Analysis. Biochem Genet 2023; 61:428-447. [PMID: 35877019 DOI: 10.1007/s10528-022-10257-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/18/2022] [Indexed: 01/24/2023]
Abstract
Metabolic syndrome, which affects approximately one-quarter of the world's population, is a combination of multiple traits and is associated with high all-cause mortality, increased cancer risk, and other hazards. It has been shown that the epigenetic functions of miRNAs are closely related to metabolic syndrome, but epigenetic studies have not yet fully elucidated the regulatory network and key genes associated with metabolic syndrome. To perform data analysis and screening of potential differentially expressed target miRNAs, mRNAs and genes based on a bioinformatics approach using a metabolic syndrome mRNA and miRNA gene microarray, leading to further analysis and identification of metabolic syndrome-related miRNA-mRNA regulatory networks and key genes. The miRNA gene set (GSE98896) and mRNA gene set (GSE98895) of peripheral blood samples from patients with metabolic syndrome from the GEO database were screened, and set|logFC|> 1 and adjusted P < 0.05 were used to identify the differentially expressed miRNAs and mRNAs. Differentially expressed miRNA transcription factors were predicted using FunRich software and subjected to GO and KEGG enrichment analysis. Next, biological process enrichment analysis of differentially expressed mRNAs was performed with Metascape. Differentially expressed miRNAs and mRNAs were identified and visualized as miRNA-mRNA regulatory networks based on the complementary pairing principle. Data analysis of genome-wide metabolic syndrome-related mRNAs was performed using the gene set enrichment analysis (GSEA) database. Finally, further WGCNA of the set of genes most closely associated with metabolic syndrome was performed to validate the findings. A total of 217 differentially expressed mRNAs and 158 differentially expressed miRNAs were identified by screening the metabolic syndrome miRNA and mRNA gene sets, and these molecules mainly included transcription factors, such as SP1, SP4, and EGR1, that function in the IL-17 signalling pathway; cytokine-cytokine receptor interaction; proteoglycan syndecan-mediated signalling events; and the glypican pathway, which is involved in the inflammatory response and glucose and lipid metabolism. miR-34C-5P, which was identified by constructing a miRNA-mRNA regulatory network, could regulate DPYSL4 expression to influence insulin β-cells, the inflammatory response and glucose oxidative catabolism. Based on GSEA, metabolic syndrome is known to be closely related to oxidative phosphorylation, DNA repair, neuronal damage, and glycolysis. Finally, RStudio and DAVID were used to perform WGCNA of the gene sets most closely associated with metabolic syndrome, and the results further validated the conclusions. Metabolic syndrome is a common metabolic disease worldwide, and its mechanism of action is closely related to the inflammatory response, glycolipid metabolism, and impaired mitochondrial function. miR-34C-5P can regulate DPYSL4 expression and can be a potential research target. In addition, UQCRQ and NDUFA8 are core genes of oxidative phosphorylation and have also been identified as potential targets for the future treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Lingyan Qiu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China.,The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Pei Sheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China.,The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xu Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China. .,The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
15
|
Rao X, Zhou D, Deng H, Chen Y, Wang J, Zhou X, Jie X, Xu Y, Wu Z, Wang G, Dong X, Zhang S, Meng R, Wu C, Xing S, Fan K, Wu G, Zhou R. Activation of NLRP3 inflammasome in lung epithelial cells triggers radiation-induced lung injury. Respir Res 2023; 24:25. [PMID: 36694200 PMCID: PMC9872296 DOI: 10.1186/s12931-023-02331-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is the most common and serious complication of chest radiotherapy. However, reported radioprotective agents usually lead to radiation resistance in tumor cells. The key to solving this problem is to distinguish between the response of tumor cells and normal lung epithelial cells to radiation damage. METHODS RNA-Seq was used to recognize potential target of alleviating the progression of RILI as well as inhibiting tumor growth. The activation of NLRP3 inflammasome in lung epithelial cells was screened by qRT-PCR, western blotting, immunofluorescence, and ELISA. An in vivo model of RILI and in vitro conditioned culture model were constructed to evaluate the effect of NLRP3/interleukin-1β on fibroblasts activation. ROS, ATP, and (NADP)+/NADP(H) level in lung epithelial cells was detected to explore the mechanism of NLRP3 inflammasome activation. The lung macrophages of the mice were deleted to evaluate the role of lung epithelial cells in RILI. Moreover, primary cells were extracted to validate the results obtained from cell lines. RESULTS NLRP3 activation in epithelial cells after radiation depends on glycolysis-related reactive oxygen species accumulation. DPYSL4 is activated and acts as a negative regulator of this process. The NLRP3 inflammasome triggers interleukin-1β secretion, which directly affects fibroblast activation, proliferation, and migration, eventually leading to lung fibrosis. CONCLUSIONS Our study suggests that NLRP3 inflammasome activation in lung epithelial cells is essential for radiation-induced lung injury. These data strongly indicate that targeting NLRP3 may be effective in reducing radiation-induced lung injury in clinical settings.
Collapse
Affiliation(s)
- Xinrui Rao
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Dong Zhou
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Huilin Deng
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yunshang Chen
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Jian Wang
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xiaoshu Zhou
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xiaohua Jie
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yingzhuo Xu
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zilong Wu
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Geng Wang
- grid.33199.310000 0004 0368 7223Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xiaorong Dong
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Sheng Zhang
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Rui Meng
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Chuangyan Wu
- grid.33199.310000 0004 0368 7223Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Shijie Xing
- grid.33199.310000 0004 0368 7223Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kai Fan
- grid.33199.310000 0004 0368 7223Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Gang Wu
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Rui Zhou
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
16
|
Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed Pharmacother 2023; 157:113993. [PMID: 36379120 DOI: 10.1016/j.biopha.2022.113993] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal energy metabolism, as one of the important hallmarks of cancer, was induced by multiple carcinogenic factors and tumor-specific microenvironments. It comprises aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis. Considering that metabolic reprogramming provides various nutrients for tumor survival and development, it has been considered a potential target for cancer therapy. Cannabinoids have been shown to exhibit a variety of anticancer activities by unclear mechanisms. This paper first reviews the recent progress of related signaling pathways (reactive oxygen species (ROS), AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), hypoxia-inducible factor-1alpha (HIF-1α), and p53) mediating the reprogramming of cancer metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism). Then we comprehensively explore the latest discoveries and possible mechanisms of the anticancer effects of cannabinoids through the regulation of the above-mentioned related signaling pathways, to provide new targets and insights for cancer prevention and treatment.
Collapse
|
17
|
Arslan ME, Tatar A, Yıldırım ÖÇ, Şahin İO, Ozdemir O, Sonmez E, Hacımuftuoglu A, Acikyildiz M, Geyikoğlu F, Mardinoğlu A, Türkez H. In Vitro Transcriptome Analysis of Cobalt Boride Nanoparticles on Human Pulmonary Alveolar Cells. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8683. [PMID: 36500178 PMCID: PMC9740129 DOI: 10.3390/ma15238683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Nanobiotechnology influences many different areas, including the medical, food, energy, clothing, and cosmetics industries. Considering the wide usage of nanomaterials, it is necessary to investigate the toxicity potentials of specific nanosized molecules. Boron-containing nanoparticles (NPs) are attracting much interest from scientists due to their unique physicochemical properties. However, there is limited information concerning the toxicity of boron-containing NPs, including cobalt boride (Co2B) NPs. Therefore, in this study, Co2B NPs were characterized using X-ray crystallography (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX) techniques. Then, we performed 3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) release, and neutral red (NR) assays for assessing cell viability against Co2B NP exposure on cultured human pulmonary alveolar epithelial cells (HPAEpiC). In addition, whole-genome microarray analysis was carried out to reveal the global gene expression differentiation of HPAEpiC cells after Co2B NP application. The cell viability tests unveiled an IC50 value for Co2B NPs of 310.353 mg/L. The results of our microarray analysis displayed 719 gene expression differentiations (FC ≥ 2) among the analyzed 40,000 genes. The performed visualization and integrated discovery (DAVID) analysis revealed that there were interactions between various gene pathways and administration of the NPs. Based on gene ontology biological processes analysis, we found that the P53 signaling pathway, cell cycle, and cancer-affecting genes were mostly affected by the Co2B NPs. In conclusion, we suggested that Co2B NPs would be a safe and effective nanomolecule for industrial applications, particularly for medical purposes.
Collapse
Affiliation(s)
- Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25050, Turkey
| | - Arzu Tatar
- Department of Otorhinolaryngology, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey
| | - Özge Çağlar Yıldırım
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25050, Turkey
| | - İrfan Oğuz Şahin
- Department of Pediatrics, Pediatric Cardiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun 55139, Turkey
| | - Ozlem Ozdemir
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25050, Turkey
| | - Erdal Sonmez
- Advanced Materials Research Laboratory, Department of Nanoscience & Nanoengineering, Graduate School of Natural and Applied Sciences, Ataturk University, Erzurum 25240, Turkey
| | - Ahmet Hacımuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Atatürk University, Erzurum 25240, Turkey
| | - Metin Acikyildiz
- Department of Chemistry, Faculty of Science and Art, Kilis 7 Aralık University, Kilis 79000, Turkey
| | - Fatime Geyikoğlu
- Department of Biology, Faculty of Arts and Sciences, Atatürk University, Erzurum 25240, Turkey
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
| |
Collapse
|
18
|
Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol 2022; 85:4-32. [PMID: 33785447 PMCID: PMC8473587 DOI: 10.1016/j.semcancer.2021.03.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Although the classic activities of p53 including induction of cell-cycle arrest, senescence, and apoptosis are well accepted as critical barriers to cancer development, accumulating evidence suggests that loss of these classic activities is not sufficient to abrogate the tumor suppression activity of p53. Numerous studies suggest that metabolic regulation contributes to tumor suppression, but the mechanisms by which it does so are not completely understood. Cancer cells rewire cellular metabolism to meet the energetic and substrate demands of tumor development. It is well established that p53 suppresses glycolysis and promotes mitochondrial oxidative phosphorylation through a number of downstream targets against the Warburg effect. The role of p53-mediated metabolic regulation in tumor suppression is complexed by its function to promote both cell survival and cell death under different physiological settings. Indeed, p53 can regulate both pro-oxidant and antioxidant target genes for complete opposite effects. In this review, we will summarize the roles of p53 in the regulation of glucose, lipid, amino acid, nucleotide, iron metabolism, and ROS production. We will highlight the mechanisms underlying p53-mediated ferroptosis, AKT/mTOR signaling as well as autophagy and discuss the complexity of p53-metabolic regulation in tumor development.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
19
|
Wu Y, Zhang X, Wang Z, Zheng W, Cao H, Shen W. Targeting oxidative phosphorylation as an approach for the treatment of ovarian cancer. Front Oncol 2022; 12:971479. [PMID: 36147929 PMCID: PMC9486401 DOI: 10.3389/fonc.2022.971479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer is an aggressive tumor that remains to be the most lethal gynecological malignancy in women. Metabolic adaptation is an emerging hallmark of tumors. It is important to exploit metabolic vulnerabilities of tumors as promising strategies to develop more effective anti-tumor regimens. Tumor cells reprogram the metabolic pathways to meet the bioenergetic, biosynthetic, and mitigate oxidative stress required for tumor cell proliferation and survival. Oxidative phosphorylation has been found to be altered in ovarian cancer, and oxidative phosphorylation is proposed as a therapeutic target for management of ovarian cancer. Herein, we initially introduced the overview of oxidative phosphorylation in cancer. Furthermore, we discussed the role of oxidative phosphorylation and chemotherapeutic resistance of ovarian cancer. The role of oxidative phosphorylation in other components of tumor microenvironment of ovarian cancer has also been discussed.
Collapse
Affiliation(s)
- Yinjie Wu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuewei Zhang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ziyi Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wanzhen Zheng
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, China
| | - Huimin Cao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenjing Shen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Senabouth A, Daniszewski M, Lidgerwood GE, Liang HH, Hernández D, Mirzaei M, Keenan SN, Zhang R, Han X, Neavin D, Rooney L, Lopez Sanchez MIG, Gulluyan L, Paulo JA, Clarke L, Kearns LS, Gnanasambandapillai V, Chan CL, Nguyen U, Steinmann AM, McCloy RA, Farbehi N, Gupta VK, Mackey DA, Bylsma G, Verma N, MacGregor S, Watt MJ, Guymer RH, Powell JE, Hewitt AW, Pébay A. Transcriptomic and proteomic retinal pigment epithelium signatures of age-related macular degeneration. Nat Commun 2022; 13:4233. [PMID: 35882847 PMCID: PMC9325891 DOI: 10.1038/s41467-022-31707-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 06/29/2022] [Indexed: 11/08/2022] Open
Abstract
There are currently no treatments for geographic atrophy, the advanced form of age-related macular degeneration. Hence, innovative studies are needed to model this condition and prevent or delay its progression. Induced pluripotent stem cells generated from patients with geographic atrophy and healthy individuals were differentiated to retinal pigment epithelium. Integrating transcriptional profiles of 127,659 retinal pigment epithelium cells generated from 43 individuals with geographic atrophy and 36 controls with genotype data, we identify 445 expression quantitative trait loci in cis that are asssociated with disease status and specific to retinal pigment epithelium subpopulations. Transcriptomics and proteomics approaches identify molecular pathways significantly upregulated in geographic atrophy, including in mitochondrial functions, metabolic pathways and extracellular cellular matrix reorganization. Five significant protein quantitative trait loci that regulate protein expression in the retinal pigment epithelium and in geographic atrophy are identified - two of which share variants with cis- expression quantitative trait loci, including proteins involved in mitochondrial biology and neurodegeneration. Investigation of mitochondrial metabolism confirms mitochondrial dysfunction as a core constitutive difference of the retinal pigment epithelium from patients with geographic atrophy. This study uncovers important differences in retinal pigment epithelium homeostasis associated with geographic atrophy.
Collapse
Affiliation(s)
- Anne Senabouth
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Maciej Daniszewski
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Grace E Lidgerwood
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Helena H Liang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Damián Hernández
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Stacey N Keenan
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ran Zhang
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Xikun Han
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Drew Neavin
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Louise Rooney
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Lerna Gulluyan
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Linda Clarke
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Lisa S Kearns
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | | | - Chia-Ling Chan
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Uyen Nguyen
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Angela M Steinmann
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Rachael A McCloy
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Nona Farbehi
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Vivek K Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - David A Mackey
- Lions Eye Institute, Centre for Vision Sciences, University of Western Australia, Perth, WA, 6009, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Guy Bylsma
- Lions Eye Institute, Centre for Vision Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Nitin Verma
- School of Medicine, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Department of Surgery, Ophthalmology, Royal Victorian Eye and Ear Hospital, The University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia.
- School of Medicine, University of Tasmania, Hobart, TAS, 7005, Australia.
- Department of Surgery, Ophthalmology, Royal Victorian Eye and Ear Hospital, The University of Melbourne, East Melbourne, VIC, 3002, Australia.
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia.
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia.
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
21
|
Risk Factors of Incident Lung Cancer in Patients with Non-Cystic Fibrosis Bronchiectasis: A Korean Population-Based Study. Cancers (Basel) 2022; 14:cancers14112604. [PMID: 35681584 PMCID: PMC9179333 DOI: 10.3390/cancers14112604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Patients with non-cystic fibrosis bronchiectasis have an increased risk of lung cancer, followed by higher mortality in this population. Because the risk factors of lung cancer have not been well identified, this study aimed to investigate the risk factors of lung cancer in individuals with newly diagnosed bronchiectasis. METHODS This cohort study using the Korean National Health Insurance Service database identified 7425 individuals with incident bronchiectasis among those who participated in the health screening exam in 2009. The cohort was followed from baseline to the date of incident: lung cancer, death, or until the end of the study period. We investigated the risk factors of lung cancer in participants with bronchiectasis using the Cox-proportional hazard models. RESULTS During median 8.3 years of follow-up duration, 1.9% (138/7425) developed lung cancer. In multivariable analyses, significant factors associated with increased risk of incident lung cancer included: males (adjusted hazard ratio [HR] = 3.54, 95% confidence interval [CI] = 2.17-5.79) than females, the overweight (adjusted HR = 1.55, 95% CI = 1.03-2.35) than the normal weight, current smokers (adjusted HR = 3.10, 95% CI = 2.00-4.79) than never smokers, participants living in the rural area (adjusted HR = 2.54, 95% CI = 1.68-3.85) than those living in the metropolitan area. Among comorbidities, chronic obstructive pulmonary disease was associated with an increased risk of lung cancer (adjusted HR = 1.46, 95% CI = 1.01-2.13) in participants with bronchiectasis. In contrast, mild alcohol consumption was associated with reduced risk of lung cancer (adjusted HR = 0.47, 95% CI = 0.29-0.74) in those with bronchiectasis. CONCLUSION This Korean population-based study showed that males, current smoking, overweight, living in rural areas, and comorbid chronic obstructive pulmonary disease are associated with increased risk of lung cancer in individuals with bronchiectasis.
Collapse
|
22
|
Lyu X, Zhang Q, Fares HM, Wang Y, Han Y, Sun L. Contribution of adipocytes in the tumor microenvironment to breast cancer metabolism. Cancer Lett 2022; 534:215616. [DOI: 10.1016/j.canlet.2022.215616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/19/2022] [Accepted: 03/01/2022] [Indexed: 12/17/2022]
|
23
|
Li C, Wan Y, Deng W, Fei F, Wang L, Qi F, Zheng Z. Promising novel biomarkers and candidate small-molecule drugs for lung adenocarcinoma: Evidence from bioinformatics analysis of high-throughput data. Open Med (Wars) 2022; 17:96-112. [PMID: 35028418 PMCID: PMC8692660 DOI: 10.1515/med-2021-0375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer associated with an unstable prognosis. Thus, there is an urgent demand for the identification of novel diagnostic and prognostic biomarkers as well as targeted drugs for LUAD. The present study aimed to identify potential new biomarkers associated with the pathogenesis and prognosis of LUAD. Three microarray datasets (GSE10072, GSE31210, and GSE40791) from the Gene Expression Omnibus database were integrated to identify the differentially expressed genes (DEGs) in normal and LUAD samples using the limma package. Bioinformatics tools were used to perform functional and signaling pathway enrichment analyses for the DEGs. The expression and prognostic values of the hub genes were further evaluated by Gene Expression Profiling Interactive Analysis and real-time quantitative polymerase chain reaction. Furthermore, we mined the “Connectivity Map” (CMap) to explore candidate small molecules that can reverse the tumoral of LUAD based on the DEGs. A total of 505 DEGs were identified, which included 337 downregulated and 168 upregulated genes. The PPI network was established with 1,860 interactions and 373 nodes. The most significant pathway and functional enrichment associated with the genes were cell adhesion and extracellular matrix-receptor interaction, respectively. Seven DEGs with high connectivity degrees (ZWINT, RRM2, NDC80, KIF4A, CEP55, CENPU, and CENPF) that were significantly associated with worse survival were chosen as hub genes. Lastly, top 20 most important small molecules which reverses the LUAD gene expressions were identified. The findings contribute to revealing the molecular mechanisms of the initiation and progression of LUAD and provide new insights for integrating multiple biomarkers in clinical practice.
Collapse
Affiliation(s)
- Chengrui Li
- Department of Anesthesiology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, People's Republic of China
| | - Yufeng Wan
- Department of Respiratory Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, Jiangsu 223002, People's Republic of China
| | - Weijun Deng
- Department of Thoracic Surgery, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, People's Republic of China
| | - Fan Fei
- Department of Anesthesiology, The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Linlin Wang
- Department of Respiratory Medicine, The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fuwei Qi
- Department of Anesthesiology, The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhong Zheng
- Department of Anesthesiology, The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
24
|
Dholariya S, Parchwani D, Radadiya M, Singh RD, Sonagra A, Patel D, Sharma G. CRISPR/Cas9: A Molecular Tool for Ovarian Cancer Management beyond Gene Editing. Crit Rev Oncog 2022; 27:1-22. [PMID: 37199299 DOI: 10.1615/critrevoncog.2022043814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ovarian cancer manifests with early metastases and has an adverse outcome, impacting the health of women globally. Currently, this malignancy is often treated with cytoreductive surgery and platinum-based chemotherapy. This treatment option has a limited success rate due to tumor recurrence and chemoresistance. Consequently, the fundamental objective of ovarian cancer treatment is the development of novel treatment approaches. As a new robust tool, the CRISPR/Cas9 gene-editing system has shown immense promise in elucidating the molecular basis of all the facets of ovarian cancer. Due to the precise gene editing capabilities of CRISPR-Cas9, researchers have been able to conduct a more comprehensive investigation of the genesis of ovarian cancer. This gained knowledge can be translated into the development of novel diagnostic approaches and newer therapeutic targets for this dreadful malignancy. There is encouraging preclinical evidence that suggests that CRISPR/Cas9 is a powerful versatile tool for selectively targeting cancer cells and inhibiting tumor growth, establishing new signaling pathways involved in carcinogenesis, and verifying biomolecules as druggable targets. In this review, we analyzed the current research and progress made using CRISPR/Cas9-based engineering strategies in the diagnosis and treatment, as well as the challenges in bringing this method to clinics. This comprehensive analysis will lay the basis for subsequent research in the future for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Madhuri Radadiya
- Department of Radiology, Pandit Dindayal Upadhyay (PDU) Medical College, Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Amit Sonagra
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | | - Gaurav Sharma
- Department of Physiology, AIIMS, Rajkot, Gujarat, India
| |
Collapse
|
25
|
Cogliati S, Cabrera-Alarcón JL, Enriquez JA. Regulation and functional role of the electron transport chain supercomplexes. Biochem Soc Trans 2021; 49:2655-2668. [PMID: 34747989 PMCID: PMC8786287 DOI: 10.1042/bst20210460] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022]
Abstract
Mitochondria are one of the most exhaustively investigated organelles in the cell and most attention has been paid to the components of the mitochondrial electron transport chain (ETC) in the last 100 years. The ETC collects electrons from NADH or FADH2 and transfers them through a series of electron carriers within multiprotein respiratory complexes (complex I to IV) to oxygen, therefore generating an electrochemical gradient that can be used by the F1-F0-ATP synthase (also named complex V) in the mitochondrial inner membrane to synthesize ATP. The organization and function of the ETC is a continuous source of surprises. One of the latest is the discovery that the respiratory complexes can assemble to form a variety of larger structures called super-complexes (SCs). This opened an unexpected level of complexity in this well-known and fundamental biological process. This review will focus on the current evidence for the formation of different SCs and will explore how they modulate the ETC organization according to the metabolic state. Since the field is rapidly growing, we also comment on the experimental techniques used to describe these SC and hope that this overview may inspire new technologies that will help to advance the field.
Collapse
Affiliation(s)
- Sara Cogliati
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | | | - Jose Antonio Enriquez
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| |
Collapse
|
26
|
Xia L, Wang Z, Wu X, Zeng T, Luo W, Hu X, Ni Y, Che G, Liu L, Zhang W, Xie D, Li W. Multiplatform discovery and regulatory function analysis of structural variations in non-small cell lung carcinoma. Cell Rep 2021; 36:109660. [PMID: 34496260 DOI: 10.1016/j.celrep.2021.109660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/06/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC), the most common form of lung cancer, is the leading cause of cancer-related death worldwide. We perform whole-genome sequencing (WGS) on samples from 43 primary patients with NSCLC and matched normal samples and analyze their matched open chromatin data and transcriptome data. Our results indicate that next-generation sequencing (NGS) and the Bionano Genomics (BNG) platform should be viewed as complementary technologies in terms of structural variations detection. By creating a framework integrating these two platforms, we detect high-technical-confidence somatic structural variations (SVs) in NSCLC cases, which could aid in the efficient investigation of new candidate oncogenes, such as TRIO and SESTD1. Our findings highlight the impact of somatic SVs on NSCLC oncogenesis and lay a foundation for exploring associations among somatic SVs, gene expression, and regulatory networks in patients with NSCLC.
Collapse
Affiliation(s)
- Lin Xia
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China
| | - Zhoufeng Wang
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China; Precision Medicine Research Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Xinyue Wu
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China
| | - Tianfu Zeng
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China
| | - Wenxin Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Xinlei Hu
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China
| | - Yinyun Ni
- Precision Medicine Research Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, the Second Military Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Dan Xie
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China; Precision Medicine Research Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China.
| | - Weimin Li
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China; Precision Medicine Research Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China; Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China.
| |
Collapse
|
27
|
Bennett CF, O’Malley KE, Perry EA, Balsa E, Latorre-Muro P, Riley CL, Luo C, Jedrychowski M, Gygi SP, Puigserver P. Peroxisomal-derived ether phospholipids link nucleotides to respirasome assembly. Nat Chem Biol 2021; 17:703-710. [PMID: 33723432 PMCID: PMC8159895 DOI: 10.1038/s41589-021-00772-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
The protein complexes of the mitochondrial electron transport chain exist in isolation and in higher order assemblies termed supercomplexes (SCs) or respirasomes (SC I+III2+IV). The association of complexes I, III and IV into the respirasome is regulated by unknown mechanisms. Here, we designed a nanoluciferase complementation reporter for complex III and IV proximity to determine in vivo respirasome levels. In a chemical screen, we found that inhibitors of the de novo pyrimidine synthesis enzyme dihydroorotate dehydrogenase (DHODH) potently increased respirasome assembly and activity. By-passing DHODH inhibition via uridine supplementation decreases SC assembly by altering mitochondrial phospholipid composition, specifically elevated peroxisomal-derived ether phospholipids. Cell growth rates upon DHODH inhibition depend on ether lipid synthesis and SC assembly. These data reveal that nucleotide pools signal to peroxisomes to modulate synthesis and transport of ether phospholipids to mitochondria for SC assembly, which are necessary for optimal cell growth in conditions of nucleotide limitation.
Collapse
Affiliation(s)
- Christopher F. Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine E. O’Malley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth A. Perry
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Eduardo Balsa
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher L. Riley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Chi Luo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Correspondence:
| |
Collapse
|
28
|
Shou Y, Yang L, Yang Y, Zhu X, Li F, Xu J. Determination of hypoxia signature to predict prognosis and the tumor immune microenvironment in melanoma. Mol Omics 2021; 17:307-316. [PMID: 33624645 DOI: 10.1039/d0mo00159g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Melanoma is one of the highly malignant skin tumors, the incidence and death of which continue to increase. The hypoxic microenvironment drives tumor growth, progression, and heterogeneity; it also triggers a cascade of immunosuppressive responses and affects the levels of T cells, macrophages, and natural killer cells. Here, we aim to develop a hypoxia-based gene signature for prognosis evaluation and help evaluate the status of hypoxia and the immune microenvironment in melanoma. Based on the data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, we performed integrated bioinformatics to analyze the hypoxia-related genes. Using Lasso Cox regression, a hypoxia model was constructed. The receiver operating characteristic and the Kaplan-Meier curve were used to evaluate the predictive capacity of the model. With the CIBERSORT algorithm, the abundance of 22 immune cells in the melanoma microenvironment was analyzed. A total of 20 hypoxia-related genes were significantly related to prognosis in the log-rank test. Lasso regression showed that FBP1, SDC3, FOXO3, IGFBP1, S100A4, EGFR, ISG20, CP, PPARGC1A, KIF5A, and DPYSL4 displayed the best features. Based on these genes, a hypoxia model was established, and the area under the curve for the model was 0.734. Furthermore, the hypoxia score was identified as an independent prognostic factor. Besides, the hypoxia score could also predict the immune microenvironment in melanoma. Down-regulated activated CD4 memory T cells, CD8 T cells, and M1-like macrophages, and up-regulated Tregs were observed in patients with a high hypoxia score. The hypoxia-related genes were identified, and the hypoxia score was found to be a prognostic factor for overall survival and a predictor for the immune microenvironment. Our findings provide new ideas for evaluation and require further validation in clinical practice.
Collapse
Affiliation(s)
- Yanhong Shou
- Department of Dermatology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, P. R. China.
| | | | | | | | | | | |
Collapse
|
29
|
Zhao X, He M. Comprehensive pathway-related genes signature for prognosis and recurrence of ovarian cancer. PeerJ 2020; 8:e10437. [PMID: 33344083 PMCID: PMC7718801 DOI: 10.7717/peerj.10437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background Ovarian cancer (OC) is a highly malignant disease with a poor prognosis and high recurrence rate. At present, there is no accurate strategy to predict the prognosis and recurrence of OC. The aim of this study was to identify gene-based signatures to predict OC prognosis and recurrence. Methods mRNA expression profiles and corresponding clinical information regarding OC were collected from The Cancer Genome Atlas (TCGA) database. Gene set enrichment analysis (GSEA) and LASSO analysis were performed, and Kaplan–Meier curves, time-dependent ROC curves, and nomograms were constructed using R software and GraphPad Prism7. Results We first identified several key signalling pathways that affected ovarian tumorigenesis by GSEA. We then established a nine-gene-based signature for overall survival (OS) and a five-gene-based-signature for relapse-free survival (RFS) using LASSO Cox regression analysis of the TCGA dataset and validated the prognostic value of these signatures in independent GEO datasets. We also confirmed that these signatures were independent risk factors for OS and RFS by multivariate Cox analysis. Time-dependent ROC analysis showed that the AUC values for OS and RFS were 0.640, 0.663, 0.758, and 0.891, and 0.638, 0.722, 0.813, and 0.972 at 1, 3, 5, and 10 years, respectively. The results of the nomogram analysis demonstrated that combining two signatures with the TNM staging system and tumour status yielded better predictive ability. Conclusion In conclusion, the two-gene-based signatures established in this study may serve as novel and independent prognostic indicators for OS and RFS.
Collapse
Affiliation(s)
- Xinnan Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Miao He
- Department of Pharmacology, China Medical University, Shenyang, China
| |
Collapse
|
30
|
Ramírez-Camacho I, García-Niño W, Flores-García M, Pedraza-Chaverri J, Zazueta C. Alteration of mitochondrial supercomplexes assembly in metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165935. [DOI: 10.1016/j.bbadis.2020.165935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 01/05/2023]
|
31
|
Mitochondrial respiratory supercomplexes in mammalian cells: structural versus functional role. J Mol Med (Berl) 2020; 99:57-73. [PMID: 33201259 DOI: 10.1007/s00109-020-02004-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are recognized as the main source of ATP to meet the energy demands of the cell. ATP production occurs by oxidative phosphorylation when electrons are transported through the electron transport chain (ETC) complexes and develop the proton motive force across the inner mitochondrial membrane that is used for ATP synthesis. Studies since the 1960s have been concentrated on the two models of structural organization of ETC complexes known as "solid-state" and "fluid-state" models. However, advanced new techniques such as blue-native gel electrophoresis, mass spectroscopy, and cryogenic electron microscopy for analysis of macromolecular protein complexes provided new data in favor of the solid-state model. According to this model, individual ETC complexes are assembled into macromolecular structures known as respiratory supercomplexes (SCs). A large number of studies over the last 20 years proposed the potential role of SCs to facilitate substrate channeling, maintain the integrity of individual ETC complexes, reduce electron leakage and production of reactive oxygen species, and prevent excessive and random aggregation of proteins in the inner mitochondrial membrane. However, many other studies have challenged the proposed functional role of SCs. Recently, a third model known as the "plasticity" model was proposed that partly reconciles both "solid-state" and "fluid-state" models. According to the "plasticity" model, respiratory SCs can co-exist with the individual ETC complexes. To date, the physiological role of SCs remains unknown, although several studies using tissue samples of patients or animal/cell models of human diseases revealed an associative link between functional changes and the disintegration of SC assembly. This review summarizes and discusses previous studies on the mechanisms and regulation of SC assembly under physiological and pathological conditions.
Collapse
|
32
|
Esparza-Moltó PB, Cuezva JM. Reprogramming Oxidative Phosphorylation in Cancer: A Role for RNA-Binding Proteins. Antioxid Redox Signal 2020; 33:927-945. [PMID: 31910046 DOI: 10.1089/ars.2019.7988] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Cancer is a major disease imposing high personal and economic burden draining large part of National Health Care and Research budgets worldwide. In the last decade, research in cancer has underscored the reprogramming of metabolism to an enhanced aerobic glycolysis as a major trait of the cancer phenotype with great potential for targeted therapy. Recent Advances: Mitochondria are essential organelles in metabolic reprogramming for controlling the production of biological energy through oxidative phosphorylation (OXPHOS) and the supply of metabolic precursors that sustain proliferation. In addition, mitochondria are critical hubs that integrate different signaling pathways that control cellular metabolism and cell fate. The mitochondrial ATP synthase plays a fundamental role in OXPHOS and cellular signaling. Critical Issues: This review overviews mitochondrial metabolism and OXPHOS, and the major changes reported in the expression and function of mitochondrial proteins of OXPHOS in oncogenesis and in cellular differentiation. We summarize the prominent role that RNA-binding proteins (RNABPs) play in the sorting and localized translation of nuclear-encoded mRNAs that help define the mitochondrial cell-type-specific phenotype. Moreover, we emphasize the mechanisms that contribute to restrain the activity and expression of the mitochondrial ATP synthase in carcinomas, and illustrate that the dysregulation of proteins that control energy metabolism correlates with patients' survival. Future Directions: Future research should elucidate the mechanisms and RNABPs that promote the specific alterations of the mitochondrial phenotype in carcinomas arising from different tissues with the final aim of developing new therapeutic strategies to treat cancer.
Collapse
Affiliation(s)
- Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
33
|
Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz ADH, Cotter DJ, Parsana P, Kasela S, Balliu B, Viñuela A, Castel SE, Mohammadi P, Aguet F, Zou Y, Khramtsova EA, Skol AD, Garrido-Martín D, Reverter F, Brown A, Evans P, Gamazon ER, Payne A, Bonazzola R, Barbeira AN, Hamel AR, Martinez-Perez A, Soria JM, Pierce BL, Stephens M, Eskin E, Dermitzakis ET, Segrè AV, Im HK, Engelhardt BE, Ardlie KG, Montgomery SB, Battle AJ, Lappalainen T, Guigó R, Stranger BE. The impact of sex on gene expression across human tissues. Science 2020; 369:eaba3066. [PMID: 32913072 PMCID: PMC8136152 DOI: 10.1126/science.aba3066] [Citation(s) in RCA: 380] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Many complex human phenotypes exhibit sex-differentiated characteristics. However, the molecular mechanisms underlying these differences remain largely unknown. We generated a catalog of sex differences in gene expression and in the genetic regulation of gene expression across 44 human tissue sources surveyed by the Genotype-Tissue Expression project (GTEx, v8 release). We demonstrate that sex influences gene expression levels and cellular composition of tissue samples across the human body. A total of 37% of all genes exhibit sex-biased expression in at least one tissue. We identify cis expression quantitative trait loci (eQTLs) with sex-differentiated effects and characterize their cellular origin. By integrating sex-biased eQTLs with genome-wide association study data, we identify 58 gene-trait associations that are driven by genetic regulation of gene expression in a single sex. These findings provide an extensive characterization of sex differences in the human transcriptome and its genetic regulation.
Collapse
Affiliation(s)
- Meritxell Oliva
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Manuel Muñoz-Aguirre
- Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain
| | - Sarah Kim-Hellmuth
- Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Valentin Wucher
- Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
| | - Ariel D H Gewirtz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Daniel J Cotter
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Princy Parsana
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Silva Kasela
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Brunilda Balliu
- Department of Computational Medicine, University of California, Los Angeles, CA, USA
| | - Ana Viñuela
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Stephane E Castel
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Pejman Mohammadi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Scripps Research Translational Institute, La Jolla, CA, USA
| | | | - Yuxin Zou
- Department of Statistics, University of Chicago, Chicago, IL, USA
| | - Ekaterina A Khramtsova
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
- Computational Sciences, Janssen Pharmaceuticals, Spring House, PA, USA
| | - Andrew D Skol
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
- Center for Translational Data Science, University of Chicago, Chicago, IL, USA
- Department of Pathology and Laboratory Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Diego Garrido-Martín
- Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
| | - Ferran Reverter
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | | | - Patrick Evans
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric R Gamazon
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Clare Hall, University of Cambridge, Cambridge, UK
| | - Anthony Payne
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rodrigo Bonazzola
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Alvaro N Barbeira
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Andrew R Hamel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Angel Martinez-Perez
- Genomics of Complex Diseases Group, Research Institute Hospital de la Sant Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - José Manuel Soria
- Genomics of Complex Diseases Group, Research Institute Hospital de la Sant Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Matthew Stephens
- Department of Statistics, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Eleazar Eskin
- Departments of Computational Medicine, Computer Science, and Human Genetics, University of California, Los Angeles, CA, USA
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Ayellet V Segrè
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Barbara E Engelhardt
- Department of Computer Science, Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, USA
- Genomics plc, Oxford, UK
| | | | - Stephen B Montgomery
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Alexis J Battle
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Roderic Guigó
- Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Barbara E Stranger
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
- Center for Translational Data Science, University of Chicago, Chicago, IL, USA
- Center for Genetic Medicine, Department of Pharmacology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
34
|
Zhang X, Lin Y, Lin S, Li C, Gao J, Feng Z, Wang J, Zhang J, Zhang H, Zhang Y, Chen X, Chen S, Xu C, Li Y, Yu C, Zeng H. Silencing of functional p53 attenuates NAFLD by promoting HMGB1-related autophagy induction. Hepatol Int 2020; 14:828-841. [PMID: 32607732 PMCID: PMC7561543 DOI: 10.1007/s12072-020-10068-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease worldwide, but its pathogenesis remains imprecisely understood and requires further clarification. Recently, the tumor suppressor p53 has received growing attention for its role in metabolic diseases. In this study, we performed in vivo and in vitro experiments to identify the contribution of p53-autophagy regulation to NAFLD. METHODS Livers from wild-type and p53 knockout mice as well as p53-functional HepG2 cells and p53-dysfunctional Huh7 cells were examined for autophagy status and HMGB1 translocation. In vivo and in vitro NAFLD models were established, and steatosis was detected. In the cell models, autophagy status and steatosis were examined by p53 and/or HMGB1 silencing. RESULTS First, the silencing of p53 could induce autophagy both in vivo and in vitro. In addition, p53 knockout attenuated high-fat diet-induced NAFLD in mice. Similarly, knockdown of p53 could alleviate palmitate-induced lipid accumulation in cell models. Furthermore, high mobility group box 1 (HMGB1) was proven to contribute to the effect of silencing p53 on alleviating NAFLD in vitro as an autophagy regulator. CONCLUSION The anti-NAFLD effect of functional p53 silencing is associated with the HMGB1-mediated induction of autophagy.
Collapse
Affiliation(s)
- Xuequn Zhang
- Department of GastroenterologyFirst Affiliated HospitalSchool of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yiming Lin
- Department of GastroenterologyFirst Affiliated HospitalSchool of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Sisi Lin
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Chunxiao Li
- Department of GastroenterologyFirst Affiliated HospitalSchool of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianguo Gao
- Department of GastroenterologyFirst Affiliated HospitalSchool of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zemin Feng
- Department of GastroenterologyFirst Affiliated HospitalSchool of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jinghua Wang
- Department of GastroenterologyFirst Affiliated HospitalSchool of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jie Zhang
- Department of GastroenterologyFirst Affiliated HospitalSchool of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hong Zhang
- Department of GastroenterologyFirst Affiliated HospitalSchool of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yuwei Zhang
- Department of GastroenterologyFirst Affiliated HospitalSchool of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xueyang Chen
- Department of GastroenterologyFirst Affiliated HospitalSchool of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Shenghui Chen
- Department of GastroenterologyFirst Affiliated HospitalSchool of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chengfu Xu
- Department of GastroenterologyFirst Affiliated HospitalSchool of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Youming Li
- Department of GastroenterologyFirst Affiliated HospitalSchool of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chaohui Yu
- Department of GastroenterologyFirst Affiliated HospitalSchool of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Hang Zeng
- Department of GastroenterologyFirst Affiliated HospitalSchool of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
35
|
Xu Z, Wu Z, Zhang J, Zhou R, Ye L, Yang P, Yu B. Development and validation of an oxidative phosphorylation-related gene signature in lung adenocarcinoma. Epigenomics 2020; 12:1333-1348. [PMID: 32787683 DOI: 10.2217/epi-2020-0217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: To develop an oxidative phosphorylation (OXPHOS)-related gene signature of lung adenocarcinoma (LUAD). Materials & methods: We split The Cancer Genome Atlas LUAD cohort into a training set and a test set; we used the least absolute shrinkage and selection operator Cox method to structure the OXPHOS-related prognostic signature in the training set and verified in the test set and GSE30219 dataset. Meanwhile, the diagnostic model was constructed using the logistic Cox method. Results: The signature consisted of seven genes (LDHA, CFTR, HSPD1, SNHG3, MAP1LC3C, COX6B2, and TWIST1). LUAD patients were divided into high- and low-risk groups, demonstrating good diagnostic and prognostic capabilities. Conclusion: We developed the first-ever OXPHOS-related signature with both prognostic predictive power and diagnostic efficacy.
Collapse
Affiliation(s)
- Zihao Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China.,Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Zilong Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Jingtao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Ruihao Zhou
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, PR China
| | - Ling Ye
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, PR China
| | - Pingliang Yang
- Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Xindu, Sichuan, 610500, PR China
| | - Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| |
Collapse
|
36
|
Park MG, Seo S, Ham SW, Choi SH, Kim H. Dihydropyrimidinase-related protein 5 controls glioblastoma stem cell characteristics as a biomarker of proneural-subtype glioblastoma stem cells. Oncol Lett 2020; 20:1153-1162. [PMID: 32724355 PMCID: PMC7377049 DOI: 10.3892/ol.2020.11668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and malignant brain tumor, resulting in a poor prognosis. The current therapy for GBM consists in concurrent radiation and chemotherapy following removal of the tumor. Although the therapy prolongs patient survival, recurrence often occurs. The major cause of tumor recurrence is thought to be GBM stem cells (GSCs), which aid the development of chemo-radiotherapy resistance, and can self-renew and aberrantly differentiate. Therefore, GSCs should be targeted to eradicate the tumor and prevent recurrence. Transcriptomic analysis has categorized GBM into proneural (PN), mesenchymal and classical subtypes, and the outcome of recurrence and prognosis markedly depends on subtype. To identify specific GSC markers, the present study analyzed public microarray and RNA-seq data and identified dihydropyrimidinase-related protein 5 (DRP5) as a candidate GSC marker. DRP5 is known to mediate semaphorin 3A signaling and is involved in the regulation of neurite outgrowth and axon guidance during neuronal development. In the present study, DRP5 was specifically upregulated in the PN-subtype GSCs and served crucial roles in maintaining GSC properties, including tumor sphere formation, stem cell marker expression and xenograft tumor growth. Furthermore, bioinformatics analysis revealed that DRP5 expression was positively correlated with signatures of stemness, including Notch, Hedgehog and Wnt/β-catenin expression, which are also known to be positively correlated with PN-subtype gene signatures. Conversely, DRP5 expression was negatively correlated with NF-κB and signal transducer and activator of transcription 3 stemness signatures, which are negatively correlated with PN-subtype gene signatures. Taken together, these findings suggested that DRP5 was specifically expressed in PN-subtype GSCs and may be used as a functional marker of PN-subtype GSCs.
Collapse
Affiliation(s)
- Min Gi Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sunyoung Seo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seok Won Ham
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Hun Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
37
|
Liang L, Chen Y, Yu Y, Pan W, Cui Y, Xu X, Peng K, Liu M, Rashid K, Hou Y, Liu T. SLC25A18 has prognostic value in colorectal cancer and represses Warburg effect and cell proliferation via Wnt signaling. Am J Cancer Res 2020; 10:1548-1567. [PMID: 32509397 PMCID: PMC7269784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor worldwide. The solute carrier family 25 member 18 (SLC25A18) transports glutamate across the inner mitochondrial membrane and involves some non-tumor diseases, yet little is known about its role in malignancy. Here, we studied the function and mechanism of SLC25A18 in CRC. We conducted a bioinformatic analysis of the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to identify the correlation of SLC25A18 expression with clinic-pathological characteristics. Function experiments were implemented to estimate the variation of aerobic glycolysis and cell proliferation due to in vitro and in vivo up- or down-regulation of SLC25A18. Immunohistochemical staining of SLC25A18 was performed on a tissue microarray of 106 patients with primary or metastatic CRC to evaluate its predictive and prognostic value. SLC25A18 expression was low in the CRC samples and was negatively correlated with stage, age and serum carcinoembryonic antigen levels. High expression of SLC25A18 indicated longer disease-free survival time after surgery. Exogenous overexpression of SLC25A18 decreased glucose consumption, lactate production, intracellular ATP concentration and cell proliferation and abrogated expression of CTNNB1, PKM2, LDHA and MYC. Inhibition of Wnt/β-catenin restored SLC25A18-repressed cellular activities. SLC25A18 clinically predicted a longer survival time after surgery or medicine treatment. These results showed that increased SLC25A18 expression inhibits Warburg effect and cell proliferation via Wnt/β-catenin cascade, and suggest a better prognosis after treatment.
Collapse
Affiliation(s)
- Li Liang
- Department of Medical Oncology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yanjie Chen
- Department of Gastroenterology and Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yiyi Yu
- Department of Medical Oncology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Weiyu Pan
- Department of Pathology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yuehong Cui
- Department of Medical Oncology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Xiaojing Xu
- Department of Medical Oncology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Ke Peng
- Department of Medical Oncology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Mengling Liu
- Department of Medical Oncology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Khalid Rashid
- Department of Medical Oncology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| |
Collapse
|
38
|
Chang YH, Tsai JN, Chang SW, Hsu WT, Yang CP, Hsiao CW, Shiau MY. Regulation of Adipogenesis and Lipid Deposits by Collapsin Response Mediator Protein 2. Int J Mol Sci 2020; 21:ijms21062172. [PMID: 32245267 PMCID: PMC7139951 DOI: 10.3390/ijms21062172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022] Open
Abstract
As emerging evidence suggesting neurodegenerative diseases and metabolic diseases have common pathogenesis, we hypothesized that the neurite outgrowth-controlling collapsin response mediator protein 2 (CRMP2) was involved in energy homeostasis. Therefore, putative roles of CRMP2 in adipocyte differentiation (adipogenesis) and lipid metabolism were explored and addressed in this study. CRMP2 expression profiles were in vitro and in vivo characterized during adipogenic process of 3T3-L1 pre-adipocytes and diet-induced obese (DIO) mice, respectively. Effects of CRMP2 on lipid metabolism and deposits were also analyzed. Our data revealed that CRMP2 expression pattern was coupled with adipogenic stages. CRMP2 overexpression inhibited cell proliferation at MCE phase, and significantly reduced lipid contents by down-regulating adipogenesis-driving transcription factors and lipid-synthesizing enzymes. Interestingly, GLUT4 translocation and the lipid droplets fusion were disturbed in CRMP2-silencing cells by affecting actin polymerization. Moreover, adipose CRMP2 was significantly increased in DIO mice, indicating CRMP2 is associated with obesity. Accordingly, CRMP2 exerts multiple functions in adipogenesis and lipid deposits through mediating cell proliferation, glucose/lipid metabolism and cytoskeleton dynamics. The present study identifies novel roles of CRMP2 in mediating adipogenesis and possible implication in metabolic disorders, as well as provides molecular evidence supporting the link of pathogenesis between neurodegenerative diseases and metabolic abnormalities.
Collapse
Affiliation(s)
- Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
| | - Jen-Ning Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan;
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shu-Wen Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
| | - Wei-Ting Hsu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
| | - Ching-Ping Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
| | - Chiao-Wan Hsiao
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 112, Taiwan
| | - Ming-Yuh Shiau
- Department of Nursing, College of Nursing, Hungkuang University, Taichung 433, Taiwan
- Correspondence: or ; Tel.: +886-4-26318652 (ext. 7090); Fax: +886-4-26331198
| |
Collapse
|
39
|
Zhang F, Liu S. Mechanistic insights of adipocyte metabolism in regulating breast cancer progression. Pharmacol Res 2020; 155:104741. [PMID: 32151679 DOI: 10.1016/j.phrs.2020.104741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Adipocyte account for the largest component in breast tissue. Dysfunctional adipocyte metabolism, such as metaflammation in metabolically abnormal obese patients, will cause hyperplasia and hypertrophy of its constituent adipocytes. Inflamed adipose tissue is one of the biggest risk factors causing breast cancer. Factors linking adipocyte metabolism to breast cancer include dysfunctional secretion of proinflammatory mediators, proangiogenic factors and estrogens. The accumulation of tumor supporting cells and systemic effects, such as insulin resistance, dyslipidemia and oxidative stress, which are caused by abnormal adipocyte metabolism, further contribute to a more aggressive tumor microenvironment and stimulate breast cancer stem cell to influence the development and progression of breast cancer. Here, in this review, we focus on the adipocyte metabolism in regulating breast cancer progression, and discuss the potential targets which can be used for breast cancer therapy.
Collapse
Affiliation(s)
- Fuchuang Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Key Laboratory of Medical Epigenetics and Metabolism, Innovation Center for Cell Signaling Network, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Key Laboratory of Medical Epigenetics and Metabolism, Innovation Center for Cell Signaling Network, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
40
|
Wei D, Liao L, Wang H, Zhang W, Wang T, Xu Z. Canagliflozin ameliorates obesity by improving mitochondrial function and fatty acid oxidation via PPARα in vivo and in vitro. Life Sci 2020; 247:117414. [PMID: 32035928 DOI: 10.1016/j.lfs.2020.117414] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 01/07/2023]
Abstract
AIMS Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been reported to significantly reduce body weight. This study investigated whether SGLT2 inhibitors directly affect adipose tissues and the underlying mechanisms in vivo and in vitro. MAIN METHODS Male C57BL/6 mice were fed a normal diet, high-fat diet (HFD), or HFD with canagliflozin for 14 weeks. 3T3-L1 adipocytes were treated with canagliflozin. Metabolic parameters were measured. KEY FINDINGS Canagliflozin reduced body weight, fat mass, and white adipose tissue (WAT) weight and inhibited adipocyte hypertrophy. Canagliflozin improved glucose and lipid metabolic disorders induced by HFD. Furthermore, canagliflozin treatment reversed the suppressed mRNA and protein expression of PGC-1α, NRF1, tfam and CPT1b, which are markers of mitochondrial biogenesis, function and fatty acid oxidation in mice with obesity. In vitro, canagliflozin increased mitochondrial DNA to nuclear DNA and upregulated the expression of PGC-1α, NRF1, tfam, COX5b, COX8b, Atp5o, and CPT1b mRNA and PGC-1α, NRF1, tfam, COX5b, CPT1b protein in 3T3-L1 adipocytes in a dose-dependent manner, while these increases were inhibited by GW6471, a PPARα antagonist. SIGNIFICANCE Our study showed that canagliflozin protected against HFD-induced obesity and obesity-related metabolic disorders by improving mitochondrial function and fatty acid oxidation in adipose tissue and adipocytes. Such energy-dissipating effects of canagliflozin may be mediated by PPARα.
Collapse
Affiliation(s)
- Dan Wei
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China; Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China.
| | - Lin Liao
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China; Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Huanjun Wang
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China; Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Wei Zhang
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China; Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Tingting Wang
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China; Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Zhipeng Xu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China; Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
41
|
Adipose-Derived Stem Cells and Ceiling Culture-Derived Preadipocytes Cultured from Subcutaneous Fat Tissue Differ in Their Epigenetic Characteristics and Osteogenic Potential. Plast Reconstr Surg 2020; 144:644-655. [PMID: 31461020 DOI: 10.1097/prs.0000000000005913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Adipose-derived stem cells and ceiling culture-derived preadipocytes can be harvested from subcutaneous adipose tissue. Little is known about the epigenetic differences, which may contribute to differences in osteogenic potential, between these cell types. The purpose of this study was to address the osteogenic potential and underlying epigenetic status of adipose-derived stem cells and ceiling culture-derived preadipocytes. METHODS Adipose-derived stem cells and ceiling culture-derived preadipocytes were cultured from abdominal subcutaneous fat tissues of four metabolically healthy, lean female patients. After 7 weeks of culture, cellular responses to osteogenic differentiation media were examined. To evaluate the osteogenic potentials of undifferentiated adipose-derived stem cells and ceiling culture-derived preadipocytes, two types of epigenetic assessment were performed using next-generation sequencing: DNA methylation assays with the Human Methylation 450K BeadChip, and chromatin immunoprecipitation assays for trimethylation of histone H3 at lysine 4. RESULTS Human ceiling culture-derived preadipocytes showed greater osteogenic differentiation ability than did adipose-derived stem cells. In an epigenetic survey of the promoters of four osteogenic regulator genes (RUNX2, SP7, ATF4, and BGLAP), the authors found a general trend toward decreased CpG methylation and increased trimethylation of histone H3 at lysine 4 levels in ceiling culture-derived preadipocytes as compared to adipose-derived stem cells, indicating that these genes were more likely to be highly expressed in ceiling culture-derived preadipocytes. CONCLUSIONS The surveyed epigenetic differences between adipose-derived stem cells and ceiling culture-derived preadipocytes were consistent with the observed differences in osteogenic potential. These results enhance the authors' understanding of these cells and will facilitate their further application in regenerative medicine.
Collapse
|
42
|
Karlsson T, Rask-Andersen M, Pan G, Höglund J, Wadelius C, Ek WE, Johansson Å. Contribution of genetics to visceral adiposity and its relation to cardiovascular and metabolic disease. Nat Med 2019; 25:1390-1395. [DOI: 10.1038/s41591-019-0563-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/29/2019] [Indexed: 12/17/2022]
|
43
|
Hashimoto N, Nagano H, Tanaka T. The role of tumor suppressor p53 in metabolism and energy regulation, and its implication in cancer and lifestyle-related diseases. Endocr J 2019; 66:485-496. [PMID: 31105124 DOI: 10.1507/endocrj.ej18-0565] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The tumor suppressor gene p53 is mutated in approximately more than 50% of human cancers. p53 is also referred to as the "cellular gatekeeper" or "guardian of the genome" because it protects the body from spreading mutated genome induced by various stress. When the cells receives stimuli such as DNA damage, oncogene activation, oxidative stress or undernutrition, p53 gives rise to a number of cellular responses, including cell cycle arrest, apoptosis, cellular senescence and metabolic adaptation. Related to energy metabolisms, it has been reported that p53 reduces glycolysis and enhances mitochondrial respiration. p53 is also involved in the regulation of other cellular metabolism and energy production systems: amino acid metabolism, fatty acid metabolism, nucleic acid metabolism, anti-oxidation, mitochondrial quality control, and autophagy. Moreover, recent studies have shown that p53 gene polymorphisms affect life expectancy and lifestyle-related disease such as type 2 diabetes, suggesting that there is a certain relationship between p53 function and metabolic disorders. In addition, mutant p53 protein does not only lose the tumor suppressor function, but it also gains novel oncogenic function and contributes to tumor development, involving cellular metabolism modification. Therefore, the importance of multifunctionality of p53, particularly with regard to intracellular metabolisms, arouses therapeutic interest and calls attention as the key molecule among cancer, lifestyle-related diseases and life expectancy.
Collapse
Affiliation(s)
- Naoko Hashimoto
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hidekazu Nagano
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
44
|
Gao Y, Bado I, Wang H, Zhang W, Rosen JM, Zhang XHF. Metastasis Organotropism: Redefining the Congenial Soil. Dev Cell 2019; 49:375-391. [PMID: 31063756 PMCID: PMC6506189 DOI: 10.1016/j.devcel.2019.04.012] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Metastasis is the most devastating stage of cancer progression and causes the majority of cancer-related deaths. Clinical observations suggest that most cancers metastasize to specific organs, a process known as "organotropism." Elucidating the underlying mechanisms may help identify targets and treatment strategies to benefit patients. This review summarizes recent findings on tumor-intrinsic properties and their interaction with unique features of host organs, which together determine organ-specific metastatic behaviors. Emerging insights related to the roles of metabolic changes, the immune landscapes of target organs, and variation in epithelial-mesenchymal transitions open avenues for future studies of metastasis organotropism.
Collapse
Affiliation(s)
- Yang Gao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
45
|
Mavridis K, Michaelidou K. The obesity paradox in lung cancer: is there a missing biological link? J Thorac Dis 2019; 11:S363-S366. [PMID: 30997222 DOI: 10.21037/jtd.2018.12.69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Kleita Michaelidou
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|