1
|
Sala N, Alcaraz-Castaño M, Arriolabengoa M, Martínez-Pillado V, Pantoja-Pérez A, Rodríguez-Hidalgo A, Téllez E, Cubas M, Castillo S, Arnold LJ, Demuro M, Duval M, Arteaga-Brieba A, Llamazares J, Ochando J, Cuenca-Bescós G, Marín-Arroyo AB, Seijo MM, Luque L, Alonso-Llamazares C, Arlegi M, Rodríguez-Almagro M, Calvo-Simal C, Izquierdo B, Cuartero F, Torres-Iglesias L, Agudo-Pérez L, Arribas A, Carrión JS, Magri D, Zhao JX, Pablos A. Nobody's land? The oldest evidence of early Upper Paleolithic settlements in inland Iberia. SCIENCE ADVANCES 2024; 10:eado3807. [PMID: 38924409 PMCID: PMC11809639 DOI: 10.1126/sciadv.ado3807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
The Iberian Peninsula is a key region for unraveling human settlement histories of Eurasia during the period spanning the decline of Neandertals and the emergence of anatomically modern humans (AMH). There is no evidence of human occupation in central Iberia after the disappearance of Neandertals ~42,000 years ago until approximately 26,000 years ago, rendering the region "nobody's land" during the Aurignacian period. The Abrigo de la Malia provides irrefutable evidence of human settlements dating back to 36,200 to 31,760 calibrated years before the present (cal B.P.) This site also records additional levels of occupation around 32,420 to 26,260 cal B.P., suggesting repeated settlement of this territory. Our multiproxy examination identifies a change in climate trending toward colder and more arid conditions. However, this climatic deterioration does not appear to have affected AMH subsistence strategies or their capacity to inhabit this region. These findings reveal the ability of AMH groups to colonize regions hitherto considered uninhabitable, reopening the debate on early Upper Paleolithic population dynamics of southwestern Europe.
Collapse
Affiliation(s)
- Nohemi Sala
- Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Burgos, Spain
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
| | - Manuel Alcaraz-Castaño
- Área de Prehistoria, Departamento de Historia y Filosofía, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Martin Arriolabengoa
- Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
| | - Virginia Martínez-Pillado
- Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Burgos, Spain
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
| | - Ana Pantoja-Pérez
- Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Burgos, Spain
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
| | - Antonio Rodríguez-Hidalgo
- Consejo Superior de Investigaciones Científicas, Instituto de Arqueología-Mérida (CSIC-Junta de Extremadura), Mérida, Spain
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
| | - Edgar Téllez
- Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Burgos, Spain
| | - Miriam Cubas
- Área de Prehistoria, Departamento de Historia y Filosofía, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Samuel Castillo
- Área de Prehistoria, Departamento de Historia y Filosofía, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Lee J. Arnold
- School of Physics, Chemistry and Earth Sciences, Environment Institute, and Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Martina Demuro
- School of Physics, Chemistry and Earth Sciences, Environment Institute, and Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Mathieu Duval
- Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Burgos, Spain
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, QLD, Australia
- Palaeoscience Laboratories, Department of Archaeology and History, La Trobe University, Melbourne, VIC, Australia
| | - Andion Arteaga-Brieba
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
| | - Javier Llamazares
- Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Burgos, Spain
| | - Juan Ochando
- Department of Plant Biology (Botany Area), Faculty of Biology, University of Murcia, Murcia, Spain
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Gloria Cuenca-Bescós
- Aragosaurus-IUCA-Departamento Ciencias de la Tierra, Universidad de Zaragoza, Zaragoza, Spain
| | - Ana B. Marín-Arroyo
- Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones Durante la Prehistoria), Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - María Martín Seijo
- Instituto de Ciencias del Patrimonio (INCIPIT), Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela, Spain
| | - Luis Luque
- Área de Prehistoria, Departamento de Historia y Filosofía, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Carmen Alonso-Llamazares
- Departamento de Biología Animal, Ecología, Parasitología, Edafología y Química Agrícola, Universidad de Salamanca, Salamanca, Spain
| | - Mikel Arlegi
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
| | | | - Cecilia Calvo-Simal
- Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Burgos, Spain
| | | | - Felipe Cuartero
- Área de Prehistoria, Departamento de Historia y Filosofía, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Leire Torres-Iglesias
- Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones Durante la Prehistoria), Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Lucía Agudo-Pérez
- Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones Durante la Prehistoria), Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Alfonso Arribas
- Estación Paleontológica Valle del río Fardes, Instituto Geológico y Minero de España (IGME), Tres Cantos, Madrid, Spain
| | - José S. Carrión
- Department of Plant Biology (Botany Area), Faculty of Biology, University of Murcia, Murcia, Spain
| | - Donatella Magri
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - J.-X. Zhao
- Radiogenic Isotope Facility, School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Adrián Pablos
- Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Burgos, Spain
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
- Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Prehistoria y Arqueología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
2
|
Limmer LS, Santon M, McGrath K, Harvati K, El Zaatari S. Differences in childhood stress between Neanderthals and early modern humans as reflected by dental enamel growth disruptions. Sci Rep 2024; 14:11293. [PMID: 38782948 PMCID: PMC11116461 DOI: 10.1038/s41598-024-61321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Neanderthals' lives were historically portrayed as highly stressful, shaped by constant pressures to survive in harsh ecological conditions, thus potentially contributing to their extinction. Recent work has challenged this interpretation, leaving the issue of stress among Paleolithic populations highly contested and warranting in-depth examination. Here, we analyze the frequency of dental enamel hypoplasia, a growth disruption indicator of early life stress, in the largest sample of Neanderthal and Upper Paleolithic dentitions investigated to date for these features. To track potential species-specific patterns in the ontogenetic distribution of childhood stress, we present the first comprehensive Bayesian modelling of the likelihood of occurrence of individual and matched enamel growth disruptions throughout ontogeny. Our findings support similar overall stress levels in both groups but reveal species-specific patterns in its ontogenetic distribution. While Neanderthal children faced increasing likelihoods of growth disruptions starting with the weaning process and culminating in intensity post-weaning, growth disruptions in Upper Paleolithic children were found to be limited around the period of weaning and substantially dropping after its expected completion. These results might, at least in part, reflect differences in childcare or other behavioral strategies between the two taxa, including those that were advantageous for modern humans' long-term survival.
Collapse
Affiliation(s)
- Laura Sophia Limmer
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany
- DFG Center of Advanced Studies 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural and Biological Trajectories of the Human Past', Tübingen, Germany
| | - Matteo Santon
- Ecology of Vision Group, University of Bristol, Bristol, UK
| | - Kate McGrath
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
- CENIEH, Burgos, Spain
| | - Katerina Harvati
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany
- DFG Center of Advanced Studies 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural and Biological Trajectories of the Human Past', Tübingen, Germany
| | - Sireen El Zaatari
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany.
- DFG Center of Advanced Studies 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural and Biological Trajectories of the Human Past', Tübingen, Germany.
| |
Collapse
|
3
|
Pederzani S, Britton K, Trost M, Fewlass H, Bourgon N, McCormack J, Jaouen K, Dietl H, Döhle HJ, Kirchner A, Lauer T, Le Corre M, McPherron SP, Meller H, Mylopotamitaki D, Orschiedt J, Rougier H, Ruebens K, Schüler T, Sinet-Mathiot V, Smith GM, Talamo S, Tütken T, Welker F, Zavala EI, Weiss M, Hublin JJ. Stable isotopes show Homo sapiens dispersed into cold steppes ~45,000 years ago at Ilsenhöhle in Ranis, Germany. Nat Ecol Evol 2024; 8:578-588. [PMID: 38297139 PMCID: PMC10927559 DOI: 10.1038/s41559-023-02318-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
The spread of Homo sapiens into new habitats across Eurasia ~45,000 years ago and the concurrent disappearance of Neanderthals represents a critical evolutionary turnover in our species' history. 'Transitional' technocomplexes, such as the Lincombian-Ranisian-Jerzmanowician (LRJ), characterize the European record during this period but their makers and evolutionary significance have long remained unclear. New evidence from Ilsenhöhle in Ranis, Germany, now provides a secure connection of the LRJ to H. sapiens remains dated to ~45,000 years ago, making it one of the earliest forays of our species to central Europe. Using many stable isotope records of climate produced from 16 serially sampled equid teeth spanning ~12,500 years of LRJ and Upper Palaeolithic human occupation at Ranis, we review the ability of early humans to adapt to different climate and habitat conditions. Results show that cold climates prevailed across LRJ occupations, with a temperature decrease culminating in a pronounced cold excursion at ~45,000-43,000 cal BP. Directly dated H. sapiens remains confirm that humans used the site even during this very cold phase. Together with recent evidence from the Initial Upper Palaeolithic, this demonstrates that humans operated in severe cold conditions during many distinct early dispersals into Europe and suggests pronounced adaptability.
Collapse
Affiliation(s)
- Sarah Pederzani
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Archaeological Micromorphology and Biomarkers Laboratory (AMBI Lab), Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, San Cristóbal de La Laguna, Spain.
| | - Kate Britton
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeology, University of Aberdeen, Aberdeen, UK
| | - Manuel Trost
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Helen Fewlass
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Ancient Genomics Lab, The Francis Crick Institute, London, UK
| | - Nicolas Bourgon
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- isoTROPIC Research Group, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Jeremy McCormack
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute of Geosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Klervia Jaouen
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Géosciences Environnement Toulouse, Observatoire Midi Pyrénées, UMR 5563, CNRS, Toulouse, France
| | - Holger Dietl
- State Office for Heritage Management and Archaeology Saxony-Anhalt-State Museum of Prehistory, Halle, Germany
| | - Hans-Jürgen Döhle
- State Office for Heritage Management and Archaeology Saxony-Anhalt-State Museum of Prehistory, Halle, Germany
| | - André Kirchner
- State Authority for Mining, Energy and Geology of Lower Saxony (LBEG), Hannover, Germany
| | - Tobias Lauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Terrestrial Sedimentology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Mael Le Corre
- Department of Archaeology, University of Aberdeen, Aberdeen, UK
- CNRS, UMR 7209 Archéozoologie et Archéobotanique-Sociétés, Pratiques et Environnements (MNHN-CNRS), Paris, France
| | - Shannon P McPherron
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Harald Meller
- State Office for Heritage Management and Archaeology Saxony-Anhalt-State Museum of Prehistory, Halle, Germany
| | - Dorothea Mylopotamitaki
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chair of Paleoanthropology, CIRB (UMR 7241-U1050), Collège de France, Paris, France
| | - Jörg Orschiedt
- State Office for Heritage Management and Archaeology Saxony-Anhalt-State Museum of Prehistory, Halle, Germany
| | - Hélène Rougier
- Department of Anthropology, California State University Northridge, Northridge, CA, USA
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Karen Ruebens
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chair of Paleoanthropology, CIRB (UMR 7241-U1050), Collège de France, Paris, France
| | - Tim Schüler
- Thuringian State Office for the Preservation of Historical Monuments and Archaeology, Weimar, Germany
| | - Virginie Sinet-Mathiot
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- University of Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR 5199, Pessac, France
| | - Geoff M Smith
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Sahra Talamo
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Thomas Tütken
- Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, Mainz, Germany
| | - Frido Welker
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Elena I Zavala
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Marcel Weiss
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Ur- und Frühgeschichte, Erlangen, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chair of Paleoanthropology, CIRB (UMR 7241-U1050), Collège de France, Paris, France
| |
Collapse
|
4
|
Smith GM, Ruebens K, Zavala EI, Sinet-Mathiot V, Fewlass H, Pederzani S, Jaouen K, Mylopotamitaki D, Britton K, Rougier H, Stahlschmidt M, Meyer M, Meller H, Dietl H, Orschiedt J, Krause J, Schüler T, McPherron SP, Weiss M, Hublin JJ, Welker F. The ecology, subsistence and diet of ~45,000-year-old Homo sapiens at Ilsenhöhle in Ranis, Germany. Nat Ecol Evol 2024; 8:564-577. [PMID: 38297138 PMCID: PMC10927544 DOI: 10.1038/s41559-023-02303-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
Recent excavations at Ranis (Germany) identified an early dispersal of Homo sapiens into the higher latitudes of Europe by 45,000 years ago. Here we integrate results from zooarchaeology, palaeoproteomics, sediment DNA and stable isotopes to characterize the ecology, subsistence and diet of these early H. sapiens. We assessed all bone remains (n = 1,754) from the 2016-2022 excavations through morphology (n = 1,218) or palaeoproteomics (zooarchaeology by mass spectrometry (n = 536) and species by proteome investigation (n = 212)). Dominant taxa include reindeer, cave bear, woolly rhinoceros and horse, indicating cold climatic conditions. Numerous carnivore modifications, alongside sparse cut-marked and burnt bones, illustrate a predominant use of the site by hibernating cave bears and denning hyaenas, coupled with a fluctuating human presence. Faunal diversity and high carnivore input were further supported by ancient mammalian DNA recovered from 26 sediment samples. Bulk collagen carbon and nitrogen stable isotope data from 52 animal and 10 human remains confirm a cold steppe/tundra setting and indicate a homogenous human diet based on large terrestrial mammals. This lower-density archaeological signature matches other Lincombian-Ranisian-Jerzmanowician sites and is best explained by expedient visits of short duration by small, mobile groups of pioneer H. sapiens.
Collapse
Affiliation(s)
- Geoff M Smith
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- School of Anthropology and Conservation, University of Kent, Kent, UK.
| | - Karen Ruebens
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France, Paris, France
| | - Elena Irene Zavala
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Virginie Sinet-Mathiot
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Univ. Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR 5199, Pessac, France
| | - Helen Fewlass
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Ancient Genomics Lab, Francis Crick Institute, London, UK
| | - Sarah Pederzani
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Archaeological Micromorphology and Biomarker Lab, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Klervia Jaouen
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Géosciences Environnement Toulouse (GET), Observatoire Midi-Pyrénées (OMP), Toulouse, France
| | - Dorothea Mylopotamitaki
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France, Paris, France
| | - Kate Britton
- Department of Archaeology, School of Geosciences, University of Aberdeen, Aberdeen, Scotland
| | - Hélène Rougier
- Department of Anthropology, California State University Northridge, Northridge, CA, USA
| | - Mareike Stahlschmidt
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Harald Meller
- State Office for Heritage Management and Archaeology Saxony-Anhalt-State Museum of Prehistory, Halle, Germany
| | - Holger Dietl
- State Office for Heritage Management and Archaeology Saxony-Anhalt-State Museum of Prehistory, Halle, Germany
| | - Jörg Orschiedt
- State Office for Heritage Management and Archaeology Saxony-Anhalt-State Museum of Prehistory, Halle, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tim Schüler
- Thuringian State Office for the Preservation of Historical Monuments and Archaeology, Weimar, Germany
| | - Shannon P McPherron
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Marcel Weiss
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Ur- und Frühgeschichte, Erlangen, Germany
| | - Jean-Jacques Hublin
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France, Paris, France
| | - Frido Welker
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Shichi K, Goebel T, Izuho M, Kashiwaya K. Climate amelioration, abrupt vegetation recovery, and the dispersal of Homo sapiens in Baikal Siberia. SCIENCE ADVANCES 2023; 9:eadi0189. [PMID: 37738346 PMCID: PMC10516500 DOI: 10.1126/sciadv.adi0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023]
Abstract
The dispersal of Homo sapiens in Siberia and Mongolia occurred by 45 to 40 thousand years (ka) ago; however, the climatic and environmental context of this event remains poorly understood. We reconstruct a detailed vegetation history for the Last Glacial period based on pollen spectra from Lake Baikal. While herb and shrub taxa including Artemisia and Alnus dominated throughout most of this period, coniferous forests rapidly expanded during Dansgaard-Oeschger (D-O) events 14 (55 ka ago) and 12 to 10 (48 to 41 ka ago), with the latter presenting the strongest signal for coniferous forest expansion and Picea trees, indicating remarkably humid conditions. These abrupt forestation events are consistent with obliquity maxima, so that we interpret last glacial vegetation changes in southern Siberia as being driven by obliquity change. Likewise, we posit that major climate amelioration and pronounced forestation precipitated H. sapiens dispersal into Baikal Siberia 45 ka ago, as chronicled by the appearance of the Initial Upper Paleolithic.
Collapse
Affiliation(s)
- Koji Shichi
- Shikoku Research Center, Forestry and Forest Products Research Institute, Kochi, Japan
| | - Ted Goebel
- Department of Anthropology, University of Kansas, Lawrence, KS, USA
| | - Masami Izuho
- Faculty of Humanities and Social Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Kenji Kashiwaya
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
6
|
Vidal-Cordasco M, Terlato G, Ocio D, Marín-Arroyo AB. Neanderthal coexistence with Homo sapiens in Europe was affected by herbivore carrying capacity. SCIENCE ADVANCES 2023; 9:eadi4099. [PMID: 37738342 PMCID: PMC10516502 DOI: 10.1126/sciadv.adi4099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/15/2023] [Indexed: 09/24/2023]
Abstract
It has been proposed that climate change and the arrival of modern humans in Europe affected the disappearance of Neanderthals due to their impact on trophic resources; however, it has remained challenging to quantify the effect of these factors. By using Bayesian age models to derive the chronology of the European Middle to Upper Paleolithic transition, followed by a dynamic vegetation model that provides the Net Primary Productivity, and a macroecological model to compute herbivore abundance, we show that in continental regions where the ecosystem productivity was low or unstable, Neanderthals disappeared before or just after the arrival of Homo sapiens. In contrast, regions with high and stable productivity witnessed a prolonged coexistence between both species. The temporal overlap between Neanderthals and H. sapiens is significantly correlated with the carrying capacity of small- and medium-sized herbivores. These results suggest that herbivore abundance released the trophic pressure of the secondary consumers guild, which affected the coexistence likelihood between both human species.
Collapse
Affiliation(s)
- Marco Vidal-Cordasco
- Grupo I+D+i EvoAdapta (Evolución Humana y Adaptaciones durante la Prehistoria), Dpto. Ciencias Históricas, Universidad de Cantabria, Avd, Los Castros 44, 39005 Santander, Spain
| | - Gabriele Terlato
- Grupo I+D+i EvoAdapta (Evolución Humana y Adaptaciones durante la Prehistoria), Dpto. Ciencias Históricas, Universidad de Cantabria, Avd, Los Castros 44, 39005 Santander, Spain
| | - David Ocio
- Mott MacDonald Ltd., 22 Station Road, Cambridge, UK
| | - Ana B. Marín-Arroyo
- Grupo I+D+i EvoAdapta (Evolución Humana y Adaptaciones durante la Prehistoria), Dpto. Ciencias Históricas, Universidad de Cantabria, Avd, Los Castros 44, 39005 Santander, Spain
| |
Collapse
|
7
|
Badino F, Pini R, Ravazzi C, Chytrý M, Bertuletti P, Bortolini E, Dudová L, Peresani M, Romandini M, Benazzi S. High-resolution ecosystem changes pacing the millennial climate variability at the Middle to Upper Palaeolithic transition in NE-Italy. Sci Rep 2023; 13:12478. [PMID: 37528143 PMCID: PMC10394073 DOI: 10.1038/s41598-023-38081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Observation of high-resolution terrestrial palaeoecological series can decipher relationships between past climatic transitions, their effects on ecosystems and wildfire cyclicity. Here we present a new radiocarbon dated record from Lake Fimon (NE-Italy) covering the 60-27 ka interval. Palynological, charcoal fragments and sediment lithology analysis were carried out at centennial to sub-centennial resolutions. Identification of the best modern analogues for MIS 3 ecosystems further enabled to thoroughly reconstruct structural changes in the vegetation through time. This series also represents an "off-site" reference record for chronologically well-constrained Palaeolithic sites documenting Neanderthal and Homo sapiens occupations within the same region. Neanderthals lived in a mosaic of grasslands and woodlands, composed of a mixture of boreal and broad-leaved temperate trees analogous to those of the modern Central-Eastern Europe, the Southern Urals and central-southern Siberia. Dry and other grassland types expanded steadily from 44 to 43 ka and peaked between 42 and 39 ka, i.e., about the same time when Sapiens reached this region. This vegetation, which finds very few reliable modern analogues in the adopted Eurasian calibration set, led to the expansion of ecosystems able to sustain large herds of herbivores. During 39-27 ka, the landscape was covered by steppe, desert-steppe and open dry boreal forests similar to those of the modern Altai-Sayan region. Both Neanderthal and Sapiens lived in contexts of expanded fire-prone ecosystems modulated by the high-frequency climatic cycles of MIS 3.
Collapse
Affiliation(s)
- Federica Badino
- Department of Cultural Heritage, University of Bologna, 48121, Ravenna, Italy.
- CNR-Institute of Environmental Geology and Geoengineering, Lab. of Palynology and Palaeoecology, Research Group on Vegetation, Climate and Human Stratigraphy, 20126, Milan, Italy.
| | - Roberta Pini
- CNR-Institute of Environmental Geology and Geoengineering, Lab. of Palynology and Palaeoecology, Research Group on Vegetation, Climate and Human Stratigraphy, 20126, Milan, Italy
| | - Cesare Ravazzi
- CNR-Institute of Environmental Geology and Geoengineering, Lab. of Palynology and Palaeoecology, Research Group on Vegetation, Climate and Human Stratigraphy, 20126, Milan, Italy
| | - Milan Chytrý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Paolo Bertuletti
- CNR-Institute of Environmental Geology and Geoengineering, Lab. of Palynology and Palaeoecology, Research Group on Vegetation, Climate and Human Stratigraphy, 20126, Milan, Italy
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, 48121, Ravenna, Italy
| | - Lydie Dudová
- Department of Paleoecology, Institute of Botany, Czech Academy of Sciences, Brno, Czech Republic
| | - Marco Peresani
- CNR-Institute of Environmental Geology and Geoengineering, Lab. of Palynology and Palaeoecology, Research Group on Vegetation, Climate and Human Stratigraphy, 20126, Milan, Italy
- Department of Humanities, Prehistoric and Anthropology Sciences, University of Ferrara, 44100, Ferrara, Italy
| | - Matteo Romandini
- Department of Cultural Heritage, University of Bologna, 48121, Ravenna, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, 48121, Ravenna, Italy
| |
Collapse
|
8
|
Klein K, Weniger GC, Ludwig P, Stepanek C, Zhang X, Wegener C, Shao Y. Assessing climatic impact on transition from Neanderthal to anatomically modern human population on Iberian Peninsula: a macroscopic perspective. Sci Bull (Beijing) 2023; 68:1176-1186. [PMID: 37202264 DOI: 10.1016/j.scib.2023.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 05/20/2023]
Abstract
The Iberian Peninsula is of particular interest for the research on the Neanderthal (NEA) to anatomically modern human (AMH) population transition. The AMHs arrived in Iberia last from Eastern Europe and thus any possible contacts between the two populations occurred here later than elsewhere. The transition process took place in the earlier part of the Marine Isotope Stage 3 (∼60-27 cal ka BP) as repeated and profound climate changes challenged the population stability. To investigate how climate change and population interactions influenced the transition, we combine climate data with archaeological-site data to reconstruct the Human Existence Potential, a measure of the probability of human existence, for both the NEA and AMH populations in the Greenland Interstadial 11-10 (GI11-10) and Stadial 10-9/Heinrich event 4 (GS10-9/HE4) times. It is found that during GS10-9/HE4, large parts of the peninsula became unsuitable for NEA human existence and the NEA settlement areas contracted to isolated coastal hot spots. As a consequence, the NEA networks became highly unstable, triggering the final collapse of the population. The AMHs arrived in Iberia in GI10 but were confined to patches in the northern most strip of the peninsula. They were soon facing the much colder climate of GS10-9/HE4, which prevented their further expansion or even caused a contraction of their settlement areas. Thus, due to the constellation of climate change and the dispersal of the two populations into different regions of the peninsula, it is unlikely that the NEAs and AMHs coexisted in extensive areas and the AMHs had a significant influence on the demography of the NEAs.
Collapse
Affiliation(s)
- Konstantin Klein
- Institute for Geophysics and Meteorology, University of Cologne, Cologne 50923, Germany
| | | | - Patrick Ludwig
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Christian Stepanek
- Paleoclimate Dynamics, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven 27570, Germany
| | - Xu Zhang
- Alpine Paleoecology and Human Adaption Group, State Key Laboratory of Tibetan Plateau Earth System, Chinese Academy of Sciences, Beijing 100101, China
| | - Christian Wegener
- Institute for Geophysics and Meteorology, University of Cologne, Cologne 50923, Germany
| | - Yaping Shao
- Institute for Geophysics and Meteorology, University of Cologne, Cologne 50923, Germany.
| |
Collapse
|
9
|
Marín-Arroyo AB, Terlato G, Vidal-Cordasco M, Peresani M. Subsistence of early anatomically modern humans in Europe as evidenced in the Protoaurignacian occupations of Fumane Cave, Italy. Sci Rep 2023; 13:3788. [PMID: 36882431 PMCID: PMC9992387 DOI: 10.1038/s41598-023-30059-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Documenting the subsistence strategies developed by early modern humans is relevant for understanding the success of their dispersal throughout Eurasia. Today, we know that there was not a single colonization event and that the process was progressive while coping with the MIS3 abrupt climatic oscillations. Modern humans expanded into the continent by adapting to different topographic situations and by exploiting resources in diverse ecological niches. The northern part of Italy is one of the first European regions where early modern humans are documented. Here, we present the subsistence regimen adopted by the Protoaurignacian groups in two different levels in Fumane Cave based on archaeozoological data. New radiocarbon dates confirm an overlap between Uluzzian and Protoaurignacian occupations, around 42 and 41,000 cal BP, and reveal that modern humans occupied the cave from GI10 to GS9, the last level coinciding with the Heinrich Event 4. The data indicate seasonal site occupations during late spring/summer and that prey exploitation was focused mostly on ibex and chamois, killed in nearby areas. The whole faunal assemblage suggests the presence of early modern humans in a cold environment with mostly open landscapes and patchy woodlands. The estimation of net primary productivity (NPP) in Fumane, compared with other contemporaneous Italian sites, reflects how the NPP fluctuations in the Prealpine area, where Fumane is located, affected the biotic resources in contrast to known Mediterranean sites. From a pan-European perspective, the spatiotemporal fluctuation of the NPP versus the subsistence strategies adopted by Protoaurignacian groups in the continent supports rapid Homo sapiens dispersal and resilience in a mosaic of environments that were affected by significant climate changes.
Collapse
Affiliation(s)
- Ana B Marín-Arroyo
- Grupo de I+D+I EVOADAPTA (Evolución Humana y Adaptaciones durante la Prehistoria), Dpto. Ciencias Históricas, Universidad de Cantabria, Avda. de Los Castros 44, 39005, Santander, Spain.
| | - Gabriele Terlato
- Grupo de I+D+I EVOADAPTA (Evolución Humana y Adaptaciones durante la Prehistoria), Dpto. Ciencias Históricas, Universidad de Cantabria, Avda. de Los Castros 44, 39005, Santander, Spain.
| | - Marco Vidal-Cordasco
- Grupo de I+D+I EVOADAPTA (Evolución Humana y Adaptaciones durante la Prehistoria), Dpto. Ciencias Históricas, Universidad de Cantabria, Avda. de Los Castros 44, 39005, Santander, Spain
| | - Marco Peresani
- Dipartimento di Studi Umanistici, Sezione di Scienze Preistoriche e Antropologiche, Università di Ferrara, Ferrara, Italy
- Istituto di Geologia Ambientale e Geoingegneria, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
10
|
Vidal-Cordasco M, Ocio D, Hickler T, Marín-Arroyo AB. Ecosystem productivity affected the spatiotemporal disappearance of Neanderthals in Iberia. Nat Ecol Evol 2022; 6:1644-1657. [PMID: 36175541 DOI: 10.1038/s41559-022-01861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
What role did fluctuations play in biomass availability for secondary consumers in the disappearance of Neanderthals and the survival of modern humans? To answer this, we quantify the effects of stadial and interstadial conditions on ecosystem productivity and human spatiotemporal distribution patterns during the Middle to Upper Palaeolithic transition (50,000-30,000 calibrated years before the present) in Iberia. First, we used summed probability distribution, optimal linear estimation and Bayesian age modelling to reconstruct an updated timescale for the transition. Next, we executed a generalized dynamic vegetation model to estimate the net primary productivity. Finally, we developed a macroecological model validated with present-day observations to calculate herbivore abundance. The results indicate that, in the Eurosiberian region, the disappearance of Neanderthal groups was contemporaneous with a significant decrease in the available biomass for secondary consumers, and the arrival of the first Homo sapiens populations coincided with an increase in herbivore carrying capacity. During stadials, the Mediterranean region had the most stable conditions and the highest biomass of medium and medium-large herbivores. These outcomes support an ecological cause for the hiatus between the Mousterian and Aurignacian technocomplexes in Northern Iberia and the longer persistence of Neanderthals in southern latitudes.
Collapse
Affiliation(s)
- M Vidal-Cordasco
- Grupo I+D+i EvoAdapta (Evolución Humana y Adaptaciones Económicas y Ecológicas durante la Prehistoria), Departamento Ciencias Históricas, Universidad de Cantabria, Santander, Spain.
| | - D Ocio
- Mott MacDonald, Cambridge, UK
| | - T Hickler
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany.,Department of Physical Geography, Goethe University, Frankfurt, Germany
| | - A B Marín-Arroyo
- Grupo I+D+i EvoAdapta (Evolución Humana y Adaptaciones Económicas y Ecológicas durante la Prehistoria), Departamento Ciencias Históricas, Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
11
|
Rathmann J, Korpela KM, Stojakowits P. Pleistocene Hypothesis - Moving Savanna Perceptual Preference Hypothesis Beyond Savanna. Front Psychol 2022; 13:901799. [PMID: 35707668 PMCID: PMC9191227 DOI: 10.3389/fpsyg.2022.901799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
We provide an extension of the Savanna perceptual preference hypothesis ("Savanna Hypothesis"), supposing that interaction with landscapes offering survival advantage for human groups during evolution might have gradually evolved to permanent landscape preferences. This additional support is based on the palaeoenvironmental analysis of the spread of modern humans into Europe in the late Pleistocene and their living environments there. Our hypothesis is that the preference for park-like landscapes after African savannas experienced a kind of "refreshment" in the Pleistocene. Thus, preferences for certain types of natural settings and scenes may have a more continuous evolutionary history than previously thought. The extended Savanna Hypothesis termed "Pleistocene Hypothesis" might stimulate further work on this important topic linking human evolution and human environmental preferences.
Collapse
Affiliation(s)
| | - Kalevi M. Korpela
- Faculty of Social Sciences/Psychology, Tampere University, Tampere, Finland
| | | |
Collapse
|
12
|
Borić D, Cristiani E, Hopkins R, Schwenninger J, Gerometta K, French CAI, Mutri G, Ćalić J, Dimitrijević V, Marín‐Arroyo AB, Jones JR, Stevens R, Masciana A, Uno K, Richter KK, Antonović D, Wehr K, Lane C, White D. Neanderthals on the Lower Danube: Middle Palaeolithic evidence in the Danube Gorges of the Balkans. JOURNAL OF QUATERNARY SCIENCE 2022; 37:142-180. [PMID: 35874300 PMCID: PMC9291232 DOI: 10.1002/jqs.3354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 06/15/2023]
Abstract
The article presents evidence about the Middle Palaeolithic and Middle to Upper Palaeolithic transition interval in the karst area of the Danube Gorges in the Lower Danube Basin. We review the extant data and present new evidence from two recently investigated sites found on the Serbian side of the Danube River - Tabula Traiana and Dubočka-Kozja caves. The two sites have yielded layers dating to both the Middle and Upper Palaeolithic and have been investigated by the application of modern standards of excavation and recovery along with a suite of state-of-the-art analytical procedures. The presentation focuses on micromorphological analyses of the caves' sediments, characterisation of cryptotephra, a suite of new radiometric dates (accelerator mass spectrometry and optically stimulated luminescence) as well as proteomics (zooarchaeology by mass spectrometry) and stable isotope data in discerning patterns of human occupation of these locales over the long term.
Collapse
Affiliation(s)
- Dušan Borić
- The Italian Academy for Advanced Studies in AmericaColumbia UniversityNew YorkNYUSA
- Department of Environmental BiologySapienza University of RomeRomeItaly
| | - Emanuela Cristiani
- DANTE ‐ Diet and Ancient Technology Laboratory, Department of Oral and Maxillo‐facial SciencesSapienza University of RomeRomeItaly
| | - Rachel Hopkins
- Research Laboratory for Archaeology and the History of Art, School of ArchaeologyUniversity of OxfordOxfordUK
| | - Jean‐Luc Schwenninger
- Research Laboratory for Archaeology and the History of Art, School of ArchaeologyUniversity of OxfordOxfordUK
| | - Katarina Gerometta
- Department of Archaeology, Faculty of PhilosophyJuraj Dobrila University of PulaPulaCroatia
| | | | | | - Jelena Ćalić
- Geographical Institute “Jovan Cvijić”Serbian Academy of Sciences and ArtsBelgradeSerbia
| | | | - Ana B. Marín‐Arroyo
- Department of ArchaeologyUniversity of CambridgeCambridgeUK
- EvoAdapta GroupUniversidad de CantabriaSantanderSpain
| | - Jennifer R. Jones
- School of Natural SciencesUniversity of Central LancashirePrestonLancashireUK
| | | | - Alana Masciana
- Lamont‐Doherty Earth Observatory of Columbia University, PalisadesNYUSA
| | - Kevin Uno
- Lamont‐Doherty Earth Observatory of Columbia University, PalisadesNYUSA
| | | | | | | | - Christine Lane
- Department of GeographyUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
13
|
Abstract
The genetic basis for the emergence of creativity in modern humans remains a mystery despite sequencing the genomes of chimpanzees and Neanderthals, our closest hominid relatives. Data-driven methods allowed us to uncover networks of genes distinguishing the three major systems of modern human personality and adaptability: emotional reactivity, self-control, and self-awareness. Now we have identified which of these genes are present in chimpanzees and Neanderthals. We replicated our findings in separate analyses of three high-coverage genomes of Neanderthals. We found that Neanderthals had nearly the same genes for emotional reactivity as chimpanzees, and they were intermediate between modern humans and chimpanzees in their numbers of genes for both self-control and self-awareness. 95% of the 267 genes we found only in modern humans were not protein-coding, including many long-non-coding RNAs in the self-awareness network. These genes may have arisen by positive selection for the characteristics of human well-being and behavioral modernity, including creativity, prosocial behavior, and healthy longevity. The genes that cluster in association with those found only in modern humans are over-expressed in brain regions involved in human self-awareness and creativity, including late-myelinating and phylogenetically recent regions of neocortex for autobiographical memory in frontal, parietal, and temporal regions, as well as related components of cortico-thalamo-ponto-cerebellar-cortical and cortico-striato-cortical loops. We conclude that modern humans have more than 200 unique non-protein-coding genes regulating co-expression of many more protein-coding genes in coordinated networks that underlie their capacities for self-awareness, creativity, prosocial behavior, and healthy longevity, which are not found in chimpanzees or Neanderthals.
Collapse
|
14
|
Abstract
Cooper et al. (Research Articles, 19 February 2021, p. 811) propose that a weakening geomagnetic field prior to the Laschamps Excursion explains megafaunal extinctions and human cultural changes that they claim happened 42,000 years ago. However, these authors misrepresent both the data and interpretations of cited work on extinctions and human cultural changes, so the specific claims they make about extinctions and cultural changes are false.
Collapse
Affiliation(s)
- John Hawks
- Department of Anthropology, University of Wisconsin, Madison, WI, USA, and Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
15
|
Cooper A, Turney CSM, Palmer J, Hogg A, McGlone M, Wilmshurst J, Lorrey AM, Heaton TJ, Russell JM, McCracken K, Anet JG, Rozanov E, Friedel M, Suter I, Peter T, Muscheler R, Adolphi F, Dosseto A, Faith JT, Fenwick P, Fogwill CJ, Hughen K, Lipson M, Liu J, Nowaczyk N, Rainsley E, Bronk Ramsey C, Sebastianelli P, Souilmi Y, Stevenson J, Thomas Z, Tobler R, Zech R. Response to Comment on "A global environmental crisis 42,000 years ago". Science 2021; 374:eabi9756. [PMID: 34793203 DOI: 10.1126/science.abi9756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Alan Cooper
- South Australian Museum, Adelaide, SA 5000, Australia, and BlueSky Genetics, P.O. Box 287, Adelaide, SA 5137, Australia
| | - Chris S M Turney
- Chronos 14Carbon-Cycle Facility and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jonathan Palmer
- Chronos Carbon-Cycle Facility and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alan Hogg
- Radiocarbon Dating Laboratory, University of Waikato, Hamilton, New Zealand
| | - Matt McGlone
- Ecosystems and Conservation, Landcare Research, P.O. Box 69040, Lincoln, New Zealand
| | - Janet Wilmshurst
- Ecosystems and Conservation, Landcare Research, P.O. Box 69040, Lincoln, New Zealand.,School of Environment, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew M Lorrey
- National Institute of Water and Atmospheric Research Ltd., Auckland, New Zealand
| | - Timothy J Heaton
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
| | - James M Russell
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | | | - Julien G Anet
- Zurich University of Applied Sciences, Centre for Aviation, Winterthur, Switzerland
| | - Eugene Rozanov
- Institute for Atmospheric and Climatic Science, ETH Zurich, Zurich, Switzerland.,Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center, Davos, Switzerland.,Department of Physics of Earth, Faculty of Physics, St. Petersburg State University, St. Petersburg, Russia
| | - Marina Friedel
- Institute for Atmospheric and Climatic Science, ETH Zurich, Zurich, Switzerland
| | - Ivo Suter
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climatic Science, ETH Zurich, Zurich, Switzerland
| | - Raimund Muscheler
- Department of Geology, Quaternary Sciences, Lund University, Lund, Sweden
| | - Florian Adolphi
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - J Tyler Faith
- Natural History Museum of Utah and Department of Anthropology, University of Utah, Salt Lake City, UT 84108, USA
| | - Pavla Fenwick
- Gondwana Tree-Ring Laboratory, P.O. Box 14, Little River, Canterbury 7546, New Zealand
| | - Christopher J Fogwill
- School of Geography, Geology and the Environment, University of Keele, Keele, Staffordshire, UK
| | - Konrad Hughen
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Matthew Lipson
- Centre for Excellence in Climate System Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jiabo Liu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Norbert Nowaczyk
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 4.3, Potsdam, Germany
| | - Eleanor Rainsley
- School of Geography, Geology and the Environment, University of Keele, Keele, Staffordshire, UK
| | - Christopher Bronk Ramsey
- Research Laboratory for Archaeology and the History of Art, School of Archaeology, University of Oxford, Oxford OX1 3TG, UK
| | - Paolo Sebastianelli
- Faculty of Mathematics, Astronomy and Physics (FAMAF), National University of Córdoba, Córdoba, Argentina, and School of Chemistry, University of New South Wales, Kensington, NSW 2052, Australia
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, SA 5000, Australia
| | - Janelle Stevenson
- Archaeology and Natural History, School of Culture History and Language, ANU College of Asia and the Pacific, Canberra, ACT 2601, Australia
| | - Zoe Thomas
- Chronos Carbon-Cycle Facility and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Raymond Tobler
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, SA 5000, Australia
| | - Roland Zech
- Institute of Geography, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
16
|
Cooper A, Turney CSM, Palmer J, Hogg A, McGlone M, Wilmshurst J, Lorrey AM, Heaton TJ, Russell JM, McCracken K, Anet JG, Rozanov E, Friedel M, Suter I, Peter T, Muscheler R, Adolphi F, Dosseto A, Faith JT, Fenwick P, Fogwill CJ, Hughen K, Lipson M, Liu J, Nowaczyk N, Rainsley E, Ramsey CB, Sebastianelli P, Souilmi Y, Stevenson J, Thomas Z, Tobler R, Zech R. Response to Comment on "A global environmental crisis 42,000 years ago". Science 2021; 374:eabh3655. [PMID: 34793228 DOI: 10.1126/science.abh3655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Our paper about the impacts of the Laschamps Geomagnetic Excursion 42,000 years ago has provoked considerable scientific and public interest, particularly in the so-called Adams Event associated with the initial transition of the magnetic poles. Although we welcome the opportunity to discuss our new ideas, Hawks' assertions of misrepresentation are especially disappointing given his limited examination of the material.
Collapse
Affiliation(s)
- Alan Cooper
- South Australian Museum, Adelaide, SA 5000, Australia, and BlueSky Genetics, P.O. Box 287, Adelaide, SA 5137, Australia
| | - Chris S M Turney
- Chronos 14Carbon-Cycle Facility and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jonathan Palmer
- Chronos Carbon-Cycle Facility and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alan Hogg
- Radiocarbon Dating Laboratory, University of Waikato, Hamilton, New Zealand
| | - Matt McGlone
- Ecosystems and Conservation, Landcare Research, P.O. Box 69040, Lincoln, New Zealand
| | - Janet Wilmshurst
- Ecosystems and Conservation, Landcare Research, P.O. Box 69040, Lincoln, New Zealand.,School of Environment, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew M Lorrey
- National Institute of Water and Atmospheric Research Ltd., Auckland, New Zealand
| | - Timothy J Heaton
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
| | - James M Russell
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | | | - Julien G Anet
- Zurich University of Applied Sciences, Centre for Aviation, Winterthur, Switzerland
| | - Eugene Rozanov
- Institute for Atmospheric and Climatic Science, ETH Zurich, Zurich, Switzerland.,Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center, Davos, Switzerland.,Department of Physics of Earth, Faculty of Physics, St. Petersburg State University, St. Petersburg, Russia
| | - Marina Friedel
- Institute for Atmospheric and Climatic Science, ETH Zurich, Zurich, Switzerland
| | - Ivo Suter
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climatic Science, ETH Zurich, Zurich, Switzerland
| | - Raimund Muscheler
- Department of Geology, Quaternary Sciences, Lund University, Lund, Sweden
| | - Florian Adolphi
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - J Tyler Faith
- Natural History Museum of Utah and Department of Anthropology, University of Utah, Salt Lake City, UT 84108, USA
| | - Pavla Fenwick
- Gondwana Tree-Ring Laboratory, P.O. Box 14, Little River, Canterbury 7546, New Zealand
| | - Christopher J Fogwill
- School of Geography, Geology and the Environment, University of Keele, Keele, Staffordshire, UK
| | - Konrad Hughen
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Matthew Lipson
- Centre for Excellence in Climate System Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jiabo Liu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Norbert Nowaczyk
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 4.3, Potsdam, Germany
| | - Eleanor Rainsley
- School of Geography, Geology and the Environment, University of Keele, Keele, Staffordshire, UK
| | - Christopher Bronk Ramsey
- Research Laboratory for Archaeology and the History of Art, School of Archaeology, University of Oxford, Oxford OX1 3TG, UK
| | - Paolo Sebastianelli
- Faculty of Mathematics, Astronomy and Physics (FAMAF), National University of Córdoba, Córdoba, Argentina, and School of Chemistry, University of New South Wales, Kensington, NSW 2052, Australia
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, SA 5000, Australia
| | - Janelle Stevenson
- Archaeology and Natural History, School of Culture History and Language, ANU College of Asia and the Pacific, Canberra, ACT 2601, Australia
| | - Zoe Thomas
- Chronos Carbon-Cycle Facility and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Raymond Tobler
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, SA 5000, Australia
| | - Roland Zech
- Institute of Geography, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
17
|
Smith GM, Spasov R, Martisius NL, Sinet-Mathiot V, Aldeias V, Rezek Z, Ruebens K, Pederzani S, McPherron SP, Sirakova S, Sirakov N, Tsanova T, Hublin JJ. Subsistence behavior during the Initial Upper Paleolithic in Europe: Site use, dietary practice, and carnivore exploitation at Bacho Kiro Cave (Bulgaria). J Hum Evol 2021; 161:103074. [PMID: 34628301 DOI: 10.1016/j.jhevol.2021.103074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
The behavioral dynamics underlying the expansion of Homo sapiens into Europe remains a crucial topic in human evolution. Owing to poor bone preservation, past studies have strongly focused on the Initial Upper Paleolithic (IUP) stone tool record. Recent excavations and extensive radiocarbon dating at Bacho Kiro Cave (Bulgaria) pushed back the arrival of IUP H. sapiens into Europe to ca. 45,000 years ago. This site has exceptional bone preservation, and we present the study of 7431 faunal remains from across two IUP layers (I and J) and one Middle Paleolithic layer (K). We identified a shift in site use and occupation intensity through time, marked by increased find density and human modifications in Layer I. Alongside a decrease in carnivore presence and seasonality data demonstrating human presence in all seasons, this indicates a more frequent or prolonged occupation of the site by IUP groups. Contrarily, the dietary focus across the IUP and Middle Paleolithic layers is similar, centered on the exploitation of species from a range of habitats including Bos/Bison, Cervidae, Equidae, and Caprinae. While body parts of large herbivores were selectively transported into the site, the bear remains suggest that these animals died in the cave itself. A distinct aspect of the IUP occupation is an increase in carnivore remains with human modifications, including these cave bears but also smaller taxa (e.g., Canis lupus, Vulpes vulpes). This can be correlated with their exploitation for pendants, and potentially for skins and furs. At a broader scale, we identified similarities in subsistence behavior across IUP sites in Europe and western Asia. It appears that the first IUP occupations were less intense with find densities and human modifications increasing in succeeding IUP layers. Moreover, the exploitation of small game appears to be limited across IUP sites, while carnivore exploitation seems a recurrent strategy.
Collapse
Affiliation(s)
- Geoff M Smith
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.
| | - Rosen Spasov
- Archaeology Department, New Bulgarian University, 21 Montevideo Str., 1618 Sofia, Bulgaria
| | - Naomi L Martisius
- Department of Anthropology, University of Tulsa, 800 South Tucker Drive, 74104, Tulsa, USA; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Virginie Sinet-Mathiot
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Vera Aldeias
- Interdisciplinary Centre for Archaeology and the Evolution of Human Behaviour, Universidade do Algarve, FCHS, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Zeljko Rezek
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany; University of Pennsylvania Museum of Archaeology and Anthropology, University of Pennsylvania, 3260 South Street, Philadelphia, PA 19104, USA
| | - Karen Ruebens
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Sarah Pederzani
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany; Department of Archaeology, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Shannon P McPherron
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Svoboda Sirakova
- National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, 2 Saborna Str., 1000 Sofia, Bulgaria
| | - Nikolay Sirakov
- National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, 2 Saborna Str., 1000 Sofia, Bulgaria
| | - Tsenka Tsanova
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany; Collège de France, 11, place Marcelin Berthelot, 75231, Paris Cedex 05, France
| |
Collapse
|
18
|
Pederzani S, Britton K, Aldeias V, Bourgon N, Fewlass H, Lauer T, McPherron SP, Rezek Z, Sirakov N, Smith GM, Spasov R, Tran NH, Tsanova T, Hublin JJ. Subarctic climate for the earliest Homo sapiens in Europe. SCIENCE ADVANCES 2021; 7:eabi4642. [PMID: 34550733 PMCID: PMC8457653 DOI: 10.1126/sciadv.abi4642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The expansion of Homo sapiens across Eurasia marked a major milestone in human evolution that would eventually lead to our species being found across every continent. Current models propose that these expansions occurred only during episodes of warm climate, based on age correlations between archaeological and climatic records. Here, we obtain direct evidence for the temperatures faced by some of these humans through the oxygen isotope analysis of faunal remains from Bacho Kiro Cave, Bulgaria, the earliest clear record of H. sapiens in Europe. The results indicate that humans ∼45,000 years ago experienced subarctic climates with far colder climatic conditions than previously suggested. This demonstrates that the early presence of H. sapiens in Europe was not contingent on warm climates. Our results necessitate the revision of key models of human expansion and highlight the need for a less deterministic role of climate in the study of our evolutionary history.
Collapse
Affiliation(s)
- Sarah Pederzani
- Department of Human Evolution, Max Planck Institute
for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeology, University of Aberdeen,
Aberdeen, UK
| | - Kate Britton
- Department of Human Evolution, Max Planck Institute
for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeology, University of Aberdeen,
Aberdeen, UK
| | - Vera Aldeias
- Department of Human Evolution, Max Planck Institute
for Evolutionary Anthropology, Leipzig, Germany
- Interdisciplinary Center for Archaeology and
Evolution of Human Behaviour, University of Algarve, Faro, Portugal
| | - Nicolas Bourgon
- Department of Human Evolution, Max Planck Institute
for Evolutionary Anthropology, Leipzig, Germany
- Institut für Geowissenschaften, Arbeitsgruppe
für Angewandte und Analytische Paläontologie, Johannes
Gutenberg-Universität Mainz, Mainz, Germany
| | - Helen Fewlass
- Department of Human Evolution, Max Planck Institute
for Evolutionary Anthropology, Leipzig, Germany
| | - Tobias Lauer
- Department of Human Evolution, Max Planck Institute
for Evolutionary Anthropology, Leipzig, Germany
| | - Shannon P. McPherron
- Department of Human Evolution, Max Planck Institute
for Evolutionary Anthropology, Leipzig, Germany
| | - Zeljko Rezek
- Department of Human Evolution, Max Planck Institute
for Evolutionary Anthropology, Leipzig, Germany
- University of Pennsylvania Museum of Archaeology and
Anthropology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikolay Sirakov
- National Institute of Archaeology with Museum,
Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Geoff M. Smith
- Department of Human Evolution, Max Planck Institute
for Evolutionary Anthropology, Leipzig, Germany
| | - Rosen Spasov
- Archaeology Department, New Bulgarian University,
Sofia, Bulgaria
| | - N.-Han Tran
- Department of Human Behavior, Ecology and Culture,
Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tsenka Tsanova
- Department of Human Evolution, Max Planck Institute
for Evolutionary Anthropology, Leipzig, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute
for Evolutionary Anthropology, Leipzig, Germany
- Collège de France, Paris, France
| |
Collapse
|
19
|
Heydari-Guran S, Benazzi S, Talamo S, Ghasidian E, Hariri N, Oxilia G, Asiabani S, Azizi F, Naderi R, Safaierad R, Hublin JJ, Foley RA, Lahr MM. The discovery of an in situ Neanderthal remain in the Bawa Yawan Rockshelter, West-Central Zagros Mountains, Kermanshah. PLoS One 2021; 16:e0253708. [PMID: 34437543 PMCID: PMC8389444 DOI: 10.1371/journal.pone.0253708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022] Open
Abstract
Neanderthal extinction has been a matter of debate for many years. New discoveries, better chronologies and genomic evidence have done much to clarify some of the issues. This evidence suggests that Neanderthals became extinct around 40,000–37,000 years before present (BP), after a period of coexistence with Homo sapiens of several millennia, involving biological and cultural interactions between the two groups. However, the bulk of this evidence relates to Western Eurasia, and recent work in Central Asia and Siberia has shown that there is considerable local variation. Southwestern Asia, despite having a number of significant Neanderthal remains, has not played a major part in the debate over extinction. Here we report a Neanderthal deciduous canine from the site of Bawa Yawan in the West-Central Zagros Mountains of Iran. The tooth is associated with Zagros Mousterian lithics, and its context is preliminary dated to between ~43,600 and ~41,500 years ago.
Collapse
Affiliation(s)
- Saman Heydari-Guran
- Stiftung Neanderthal Museum, Mettmann, Germany
- Department of Prehistoric Archaeology University of Cologne, Cologne, Germany
- DiyarMehr Centre for Palaeolithic Research, Kermanshah, Iran
- * E-mail:
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sahra Talamo
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Elham Ghasidian
- Stiftung Neanderthal Museum, Mettmann, Germany
- Department of Prehistoric Archaeology University of Cologne, Cologne, Germany
| | - Nemat Hariri
- Department of Prehistoric Archaeology University of Cologne, Cologne, Germany
- Department of Archaeology, University of Mohaghegh Ardabili University, Ardabil, Iran
| | - Gregorio Oxilia
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Samran Asiabani
- DiyarMehr Centre for Palaeolithic Research, Kermanshah, Iran
- Department of Architecture, Faculty of Art and Architecture, Bu-Ali Sina University, Hamedan, Iran
| | - Faramarz Azizi
- DiyarMehr Centre for Palaeolithic Research, Kermanshah, Iran
| | - Rahmat Naderi
- DiyarMehr Centre for Palaeolithic Research, Kermanshah, Iran
| | - Reza Safaierad
- Department of Physical Geography, University of Tehran, Tehran, Iran
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Collège de France, 11 Place Marcelin Berthelot, Paris, France
| | - Robert A. Foley
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
| | - Marta M. Lahr
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Ancient Faunal History Revealed by Interdisciplinary Biomolecular Approaches. DIVERSITY 2021. [DOI: 10.3390/d13080370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Starting four decades ago, studies have examined the ecology and evolutionary dynamics of populations and species using short mitochondrial DNA fragments and stable isotopes. Through technological and analytical advances, the methods and biomolecules at our disposal have increased significantly to now include lipids, whole genomes, proteomes, and even epigenomes. At an unprecedented resolution, the study of ancient biomolecules has made it possible for us to disentangle the complex processes that shaped the ancient faunal diversity across millennia, with the potential to aid in implicating probable causes of species extinction and how humans impacted the genetics and ecology of wild and domestic species. However, even now, few studies explore interdisciplinary biomolecular approaches to reveal ancient faunal diversity dynamics in relation to environmental and anthropogenic impact. This review will approach how biomolecules have been implemented in a broad variety of topics and species, from the extinct Pleistocene megafauna to ancient wild and domestic stocks, as well as how their future use has the potential to offer an enhanced understanding of drivers of past faunal diversity on Earth.
Collapse
|
21
|
Cooper A, Turney CSM, Palmer J, Hogg A, McGlone M, Wilmshurst J, Lorrey AM, Heaton TJ, Russell JM, McCracken K, Anet JG, Rozanov E, Friedel M, Suter I, Peter T, Muscheler R, Adolphi F, Dosseto A, Faith JT, Fenwick P, Fogwill CJ, Hughen K, Lipson M, Liu J, Nowaczyk N, Rainsley E, Bronk Ramsey C, Sebastianelli P, Souilmi Y, Stevenson J, Thomas Z, Tobler R, Zech R. A global environmental crisis 42,000 years ago. Science 2021; 371:811-818. [PMID: 33602851 DOI: 10.1126/science.abb8677] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Geological archives record multiple reversals of Earth's magnetic poles, but the global impacts of these events, if any, remain unclear. Uncertain radiocarbon calibration has limited investigation of the potential effects of the last major magnetic inversion, known as the Laschamps Excursion [41 to 42 thousand years ago (ka)]. We use ancient New Zealand kauri trees (Agathis australis) to develop a detailed record of atmospheric radiocarbon levels across the Laschamps Excursion. We precisely characterize the geomagnetic reversal and perform global chemistry-climate modeling and detailed radiocarbon dating of paleoenvironmental records to investigate impacts. We find that geomagnetic field minima ~42 ka, in combination with Grand Solar Minima, caused substantial changes in atmospheric ozone concentration and circulation, driving synchronous global climate shifts that caused major environmental changes, extinction events, and transformations in the archaeological record.
Collapse
Affiliation(s)
- Alan Cooper
- South Australian Museum, Adelaide, SA 5000, Australia. .,BlueSky Genetics, PO Box 287, Adelaide, SA 5137, Australia
| | - Chris S M Turney
- Chronos Carbon-Cycle Facility, and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jonathan Palmer
- Chronos Carbon-Cycle Facility, and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alan Hogg
- Radiocarbon Dating Laboratory, University of Waikato, Hamilton 3240, New Zealand
| | - Matt McGlone
- Landcare Research, PO Box 69040, Lincoln, New Zealand
| | - Janet Wilmshurst
- Landcare Research, PO Box 69040, Lincoln, New Zealand.,School of Environment, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew M Lorrey
- National Institute of Water and Atmospheric Research Ltd, Auckland 1010, New Zealand
| | - Timothy J Heaton
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
| | - James M Russell
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | - Ken McCracken
- University of New South Wales, Sydney, NSW 2052, Australia
| | - Julien G Anet
- Zurich University of Applied Sciences, Centre for Aviation, 8401 Winterthur, Switzerland
| | - Eugene Rozanov
- Institute for Atmospheric and Climatic Science, ETH Zurich, 8006 Zurich, Switzerland.,Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center, 7260 Davos, Switzerland.,Department of Physics of Earth, Faculty of Physics, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Marina Friedel
- Institute for Atmospheric and Climatic Science, ETH Zurich, 8006 Zurich, Switzerland
| | - Ivo Suter
- Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climatic Science, ETH Zurich, 8006 Zurich, Switzerland
| | - Raimund Muscheler
- Department of Geology, Quaternary Sciences, Lund University, 22362 Lund, Sweden
| | - Florian Adolphi
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - J Tyler Faith
- Natural History Museum of Utah and Department of Anthropology, University of Utah, Salt Lake City, UT 84108, USA
| | - Pavla Fenwick
- Gondwana Tree-Ring Laboratory, PO Box 14, Little River, Canterbury 7546, New Zealand
| | - Christopher J Fogwill
- School of Geography, Geology and the Environment, University of Keele, Keele, Staffordshire ST5 5BG, UK
| | - Konrad Hughen
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Mathew Lipson
- Centre of Excellence for Climate System Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jiabo Liu
- Southern University of Science and Technology, Department of Ocean Science and Engineering, Shenzhen 518055, China
| | - Norbert Nowaczyk
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 4.3, 14473 Potsdam, Germany
| | - Eleanor Rainsley
- School of Geography, Geology and the Environment, University of Keele, Keele, Staffordshire ST5 5BG, UK
| | - Christopher Bronk Ramsey
- Research Laboratory for Archaeology and the History of Art, School of Archaeology, University of Oxford, OX1 3TG, UK
| | - Paolo Sebastianelli
- Faculty of Mathematics, Astronomy and Physics (FAMAF), National University of Cordoba, X5000HUA, Argentina
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, SA 5000, Australia
| | - Janelle Stevenson
- Archaeology and Natural History, School of Culture History and Language, ANU College of Asia and the Pacific, Canberra, ACT 2601, Australia.,Australia ARC Centre of Excellence for Australian Biodiversity and Heritage, Australian National University, ACT 2601, Australia
| | - Zoë Thomas
- Chronos Carbon-Cycle Facility, and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Raymond Tobler
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, SA 5000, Australia
| | - Roland Zech
- Institute of Geography, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| |
Collapse
|
22
|
Abstract
We report the remarkable discovery of an early Aurignacian occupation, ∼5,000 years older than any Upper Paleolithic site in westernmost Eurasia. The archaeological and radiocarbon data provide definitive evidence that modern humans were in western Iberia at a time when, if present at all, Neanderthal populations would have been extremely sparse. This discovery has important ramifications for our understanding of the process of modern human dispersal and replacement of Neanderthal populations. The results support a very rapid, unimpeded dispersal of modern humans across western Eurasia and support the notion that climate and environmental change played a significant role in this process. Documenting the first appearance of modern humans in a given region is key to understanding the dispersal process and the replacement or assimilation of indigenous human populations such as the Neanderthals. The Iberian Peninsula was the last refuge of Neanderthal populations as modern humans advanced across Eurasia. Here we present evidence of an early Aurignacian occupation at Lapa do Picareiro in central Portugal. Diagnostic artifacts were found in a sealed stratigraphic layer dated 41.1 to 38.1 ka cal BP, documenting a modern human presence on the western margin of Iberia ∼5,000 years earlier than previously known. The data indicate a rapid modern human dispersal across southern Europe, reaching the westernmost edge where Neanderthals were thought to persist. The results support the notion of a mosaic process of modern human dispersal and replacement of indigenous Neanderthal populations.
Collapse
|
23
|
Breyl M. Triangulating Neanderthal cognition: A tale of not seeing the forest for the trees. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2020; 12:e1545. [PMID: 32918796 DOI: 10.1002/wcs.1545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 01/20/2023]
Abstract
The inference of Neanderthal cognition, including their cultural and linguistic capabilities, has persisted as a fiercely debated research topic for decades. This lack of consensus is substantially based on inherent uncertainties in reconstructing prehistory out of indirect evidence as well as other methodological limitations. Further factors include systemic difficulties within interdisciplinary discourse, data artifacts, historic research biases, and the sheer scope of the relevant research. Given the degrees of freedom in interpretation ensuing from these complications, any attempt to find approximate answers to the yet unsettled pertinent discourse may not rest on single studies, but instead a careful and comprehensive interdisciplinary synthesis of findings. Triangulating Neanderthals' cognition by considering the plethora of data, diverse perspectives and aforementioned complexities present within the literature constitutes the currently most reliable pathway to tentative conclusions. While some uncertainties remain, such an approach paints the picture of an extensive shared humanity between anatomically modern humans and Neanderthals. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Linguistics > Evolution of Language.
Collapse
Affiliation(s)
- Michael Breyl
- Germanistik, Komparatistik, Nordistik, Deutsch als Fremdsprache, Ludwig-Maximilians-University of Munich (LMU), Munich, Germany
| |
Collapse
|
24
|
Speleothem record attests to stable environmental conditions during Neanderthal-modern human turnover in southern Italy. Nat Ecol Evol 2020; 4:1188-1195. [PMID: 32632262 DOI: 10.1038/s41559-020-1243-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/09/2020] [Indexed: 11/09/2022]
Abstract
The causes of Neanderthal-modern human (MH) turnover are ambiguous. While potential biocultural interactions between the two groups are still little known, it is clear that Neanderthals in southern Europe disappeared about 42 thousand years ago (ka) after cohabitation for ~3,000 years with MH. Among a plethora of hypotheses on Neanderthal extinction, rapid climate changes during the Middle to Upper Palaeolithic transition (MUPT) are regarded as a primary factor. Here we show evidence for stable climatic and environmental conditions during the MUPT in a region (Apulia) where Neanderthals and MH coexisted. We base our findings on a rare glacial stalagmite deposited between ~106 and ~27 ka, providing the first continuous western Mediterranean speleothem palaeoclimate archive for this period. The uninterrupted growth of the stalagmite attests to the constant availability of rainfall and vegetated soils, while its δ13C-δ18O palaeoclimate proxies demonstrate that Apulia was not affected by dramatic climate oscillations during the MUPT. Our results imply that, because climate did not play a key role in the disappearance of Neanderthals in this area, Neanderthal-MH turnover must be approached from a perspective that takes into account climatic and environmental conditions favourable for both species.
Collapse
|
25
|
A 14C chronology for the Middle to Upper Palaeolithic transition at Bacho Kiro Cave, Bulgaria. Nat Ecol Evol 2020; 4:794-801. [DOI: 10.1038/s41559-020-1136-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/03/2020] [Indexed: 11/09/2022]
|
26
|
State of the Art in Paleoenvironment Mapping for Modeling Applications in Archeology—Summary, Conclusions, and Future Directions from the PaleoMaps Workshop. QUATERNARY 2020. [DOI: 10.3390/quat3020013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this report, we present the contributions, outcomes, ideas, discussions and conclusions obtained at the PaleoMaps Workshop 2019, that took place at the Institute of Geography of the University of Cologne on 23 and 24 September 2019. The twofold aim of the workshop was: (1) to provide an overview of approaches and methods that are presently used to incorporate paleoenvironmental information in human–environment interaction modeling applications, and building thereon; (2) to devise new approaches and solutions that might be used to enhance the reconstruction of past human–environmental interconnections. This report first outlines the presented papers, and then provides a joint protocol of the often extensive discussions that came up following the presentations or else during the refreshment intervals. It concludes by adressing the open points to be resolved in future research avenues, e.g., implementation of open science practices, new procedures for reviewing of publications, and future concepts for quality assurance of the often complex paleoenvironmental data. This report may serve as an overview of the state of the art in paleoenvironment mapping and modeling. It includes an extensive compilation of the basic literature, as provided by the workshop attendants, which will itself facilitate the necessary future research.
Collapse
|
27
|
Zeeden C, Obreht I, Veres D, Kaboth-Bahr S, Hošek J, Marković SB, Bösken J, Lehmkuhl F, Rolf C, Hambach U. Smoothed millennial-scale palaeoclimatic reference data as unconventional comparison targets: Application to European loess records. Sci Rep 2020; 10:5455. [PMID: 32214119 PMCID: PMC7096450 DOI: 10.1038/s41598-020-61528-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/24/2020] [Indexed: 11/09/2022] Open
Abstract
Millennial-scale palaeoclimate variability has been documented in various terrestrial and marine palaeoclimate proxy records throughout the Northern Hemisphere for the last glacial cycle. Its clear expression and rapid shifts between different states of climate (Greenland Interstadials and Stadials) represents a correlation tool beyond the resolution of e.g. luminescence dating, especially relevant for terrestrial deposits. Usually, comparison of terrestrial proxy datasets and the Greenland ice cores indicates a complex expression of millennial-scale climate variability as recorded in terrestrial geoarchives including loess. Loess is the most widespread terrestrial geoarchive of the Quaternary and especially widespread over Eurasia. However, loess often records a smoothed representation of millennial-scale variability without all fidelity when compared to the Greenland data, this being a relevant limiting feature in integrating loess with other palaeoclimate records. To better understand the loess proxy-response to millennial-scale climate variability, we simulate a proxy signal smoothing by natural processes through application of low-pass filters of δ18O data from Greenland, a high-resolution palaeoclimate reference record, alongside speleothem isotope records from the Black Sea-Mediterranean region. We show that low-pass filters represent rather simple models for better constraining the expression of millennial-scale climate variability in low sedimentation environments, and in sediments where proxy-response signals are most likely affected by natural smoothing (by e.g. bioturbation). Interestingly, smoothed datasets from Greenland and the Black Sea-Mediterranean region are most similar in the last ~15 ka and between ~50-30 ka. Between ~30-15 ka, roughly corresponding to the Last Glacial Maximum and the deglaciation, the records show dissimilarities, challenging the construction of robust correlative time-scales in this age range. From our analysis it becomes apparent that patterns of palaeoclimate signals in loess-palaeosol sequences often might be better explained by smoothed Greenland reference data than the original high-resolution Greenland dataset, or other reference data. This opens the possibility to better assess the temporal resolution and palaeoclimate potential of loess-palaeosol sequences in recording supra-regional climate patterns, as well as to securely integrate loess with other chronologically better-resolved palaeoclimate records.
Collapse
Affiliation(s)
- Christian Zeeden
- LIAG, Leibniz Institute for Applied Geophysics, Hannover, Germany.
- IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Lille, Paris, France.
| | - Igor Obreht
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Daniel Veres
- Romanian Academy, Institute of Speleology, Cluj-Napoca, Romania
| | - Stefanie Kaboth-Bahr
- Institute of Earth Sciences, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- Institut für Geowissenschaften, Universität Potsdam, Potsdam, Germany
| | - Jan Hošek
- Czech Geological Survey, Prague, Czech Republic
- Center for Theoretical Study, Charles University and the Academy of Sciences, Prague, Czech Republic
| | - Slobodan B Marković
- Chair of Physical Geography, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Janina Bösken
- Department of Geography, RWTH Aachen University, Aachen, Germany
| | - Frank Lehmkuhl
- Department of Geography, RWTH Aachen University, Aachen, Germany
| | - Christian Rolf
- LIAG, Leibniz Institute for Applied Geophysics, Hannover, Germany
| | - Ulrich Hambach
- BayCEER & Chair of Geomorphology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
28
|
Speleothem Records from the Eastern Part of Europe and Turkey—Discussion on Stable Oxygen and Carbon Isotopes. QUATERNARY 2019. [DOI: 10.3390/quat2030031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The region comprising of East Central Europe, South East Europe and Turkey contributed to the SISAL (Speleothem Isotopes Synthesis and AnaLysis) global database with stable carbon and oxygen isotope time-series from 18 speleothems from 14 caves. The currently available oldest record from the studied region is the ABA-2 flowstone record (Abaliget Cave; Hungary) reaching back to MIS 6. The temporal distribution of the compiled 18 records from the region points out a ~20 kyr-long period, centering around 100 ka BP, lacking speleothem stable isotope data. The regional subset of SISAL_v1 records displays a continuous coverage for the past ~90 kyr for both δ13C and δ18O, with a mean temporal resolution of ~12 yr for the Holocene, and >50 yr for the pre-Holocene period. The highest temporal resolution both for the Holocene and the pre-Holocene was achieved in the So-1 record (Sofular Cave; Turkey). The relationship between modern day precipitation δ18O (amount weighted annual and winter season mean values; 1961–2017) and climatological parameters was evaluated. The strong positive correlation found in East Central Europe reinforces the link between modern day precipitation δ18O, temperature and large-scale circulation (North Atlantic Oscillation) expected to be preserved in the speleothem δ18O record; while a negative relationship was documented between precipitation amount and oxygen isotope compositions in South East Europe. Variations of δ13C values are primarily interpreted as reflecting dry/wet periods across the region. Elevation gradients from three non-overlapping periods of the last ~5 kyr indicated elevation gradients around −0.26‰ per 100 m−1 for calcite δ18O.
Collapse
|
29
|
Rhodes SE, Starkovich BM, Conard NJ. Did climate determine Late Pleistocene settlement dynamics in the Ach Valley, SW Germany? PLoS One 2019; 14:e0215172. [PMID: 31048924 PMCID: PMC6497257 DOI: 10.1371/journal.pone.0215172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/27/2019] [Indexed: 11/18/2022] Open
Abstract
The loss of Neanderthal groups across Western and Central Europe during Oxygen Isotope Stage (OIS) 3 has held the attention of archaeologists for decades. The role that climatic change, genetic interbreeding, and interspecies competition played in the extinction of Neanderthal groups is still debated. Hohle Fels is one of several important Middle and Upper Paleolithic sites from the Ach Valley in southwestern Germany which documents the presence of Neanderthals and modern humans in the region. Chronological and stratigraphic records indicate that these two groups occupied the site with little to no overlap or interaction. This provides the opportunity to examine the behavioural variability of Swabian Neanderthal populations without the complication of cross-cultural influence. In this study we contribute a terrestrial paleoenvironmental record derived from the small mammal material from Hohle Fels Cave to the ever-growing archaeological record of this period. By reconstructing the climate and landscape of the Ach Valley during this time we can identify the effect that the OIS 3 environment had on the presence of Neanderthals in the region. Based on indicator taxa and the habitat weighing method, the small mammal record, which includes rodents, insectivores, and bats, from Hohle Fels shows that the earliest Neanderthal occupation took place on a landscape characterized by substantial woodland and forest, rivers and ponds, as well as moist meadows and grasslands. A gradual increase in cold tundra and arctic environments is clear towards the end of the Middle Paleolithic, extending to the end of the early Aurignacian which may correlate with the onset of the Heinrich 4 event (~42,000 kya). Our taphonomic analysis indicates the material was accumulated primarily by opportunistic predators such as the great grey owl, snowy owl, and European eagle owl, and therefore reflects the diversity of landscapes present around the site in the past. Importantly, at the time Neanderthals abandoned the Ach Valley we find no indication for dramatic climatic deterioration. Rather, we find evidence of a gradual cooling of the Swabian landscape which may have pushed Neanderthal groups out of the Ach Valley prior to the arrival of modern human Aurignacian groups.
Collapse
Affiliation(s)
- Sara E. Rhodes
- Institut für Naturwissenschaftliche Archäologie, Universität Tübingen, Tübingen, Germany
- * E-mail:
| | - Britt M. Starkovich
- Institut für Naturwissenschaftliche Archäologie, Universität Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Universität Tübingen, Tübingen, Germany
| | - Nicholas J. Conard
- Institut für Naturwissenschaftliche Archäologie, Universität Tübingen, Tübingen, Germany
- Abteilung Ältere Urgeschichte und Quartärökologie, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Did Human Reality Denial Breach the Evolutionary Psychological Barrier of Mortality Salience? A Theory that Can Explain Unusual Features of the Origin and Fate of Our Species. EVOLUTIONARY PSYCHOLOGY 2019. [DOI: 10.1007/978-3-030-25466-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|