1
|
Smit N. Strategies, costs and counter-strategies to sexual coercion. Biol Rev Camb Philos Soc 2025. [PMID: 40302432 DOI: 10.1111/brv.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 05/02/2025]
Abstract
Sexual conflict, the conflict between the evolutionary interests of females and males over mating, occasionally results in the evolution of traits favourable for one sex and adverse for the other. In this context, males can use sexual coercion to increase their mating success, at the expense of their female targets' mate choice. An increasing number of studies highlight a great diversity of male and female behaviours that serve as strategies and counter-strategies, respectively, to sexual coercion. Previous studies have reviewed the literature on infanticide but not the literature on forced copulation, sexual harassment, intimidation or punishment. This qualitative review synthesises the empirical evidence and draws a unified framework of the ecology of sexual coercion across animals, presenting male sexually coercive strategies and co-evolved female counter-strategies that can reduce coercion and its fitness costs. Using examples from insects to humans, it shows that different strategies of sexual coercion can lead to the evolution of similar counter-strategies. These counter-strategies include female promiscuity, deception of males (e.g. concealed ovulation or pseudo-oestrus), avoidance of certain males and association with others for protection, female aggregation to dilute coercion and ultimately physical resistance by single or allied females. Extending previous work, this review provides compelling evidence of sexually antagonistic coevolution amid sexual coercion. It also calls for future work to clarify, first, which individual traits are linked to greater coercion rates in males and a higher likelihood of receiving coercion in females and, second, any causal relationships between different strategies of sexual coercion and the evolution of different social and mating systems.
Collapse
Affiliation(s)
- Nikolaos Smit
- Institut des Sciences de l'Évolution, Université de Montpellier, Place Eugène Bataillon, Montpellier, 34090, France
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| |
Collapse
|
2
|
Zheng H, Chen D, Zhong Z, Li Z, Yuan M, Zhang Z, Zhou X, Zhu G, Sun H, Sun L. Behavioral tests for the assessment of social hierarchy in mice. Front Behav Neurosci 2025; 19:1549666. [PMID: 40110389 PMCID: PMC11920152 DOI: 10.3389/fnbeh.2025.1549666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
Social hierarchy refers to the set of social ranks in a group of animals where individuals can gain priority access to resources through repeated social interactions. Key mechanisms involved in this process include conflict, social negotiation, prior experience, and physical advantages. The establishment and maintenance of social hierarchies not only promote group stability and well-being but also shape individual social behaviors by fostering cooperation and reducing conflict. Existing research indicates that social hierarchy is closely associated with immune responses, neural regulation, metabolic processes, and endocrine functions. These physiological systems collectively modulate an individual's sensitivity to stress and influence adaptive responses, thereby playing a critical role in the development of psychiatric disorders such as depression and anxiety. This review summarizes the primary behavioral methods used to assess social dominance in mice, evaluates their applicability and limitations, and discusses potential improvements. Additionally, it explores the underlying neural mechanisms associated with these methods to deepen our understanding of their biological basis. By critically assessing existing methodologies and proposing refinements, this study aims to provide a systematic reference framework and methodological guidance for future research, facilitating a more comprehensive exploration of the neural mechanisms underlying social behavior. The role of sex differences in social hierarchy formation remains underexplored. Most studies focus predominantly on males, while the distinct social strategies and physiological mechanisms of females are currently overlooked. Future studies should place greater emphasis on evaluating social hierarchy in female mice to achieve a more comprehensive understanding of sex-specific social behaviors and their impact on group structure and individual health. Advances in automated tracking technologies may help address this gap by improving behavioral assessments in female mice. Future research may also benefit from integrating physiological data (e.g., hormone levels) to gain deeper insights into the relationships between social status, stress regulation, and mental health. Additionally, developments in artificial intelligence and deep learning could enhance individual recognition and behavioral analysis, potentially reducing reliance on chemical markers or implanted devices.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Psychology, Shandong Second Medical University, Weifang, China
| | - Dantong Chen
- Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Zilong Zhong
- Department of Psychology, Shandong Second Medical University, Weifang, China
| | - Ziyi Li
- Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Meng Yuan
- Department of Psychology, Shandong Second Medical University, Weifang, China
| | - Zhenkun Zhang
- Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Xiaoping Zhou
- Network Information Center, Shandong Second Medical University, Weifang, China
| | - Guohui Zhu
- Depression Treatment Center, Weifang Mental Health Center, Weifang, China
| | - Hongwei Sun
- Department of Psychology, Shandong Second Medical University, Weifang, China
| | - Lin Sun
- Department of Psychology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
3
|
Dehnen T, Nyaguthii B, Cherono W, Boogert NJ, Farine DR. Breeding-Related Changes in Social Interactions Among Female Vulturine Guineafowl. Ecol Evol 2025; 15:e70943. [PMID: 39896772 PMCID: PMC11783233 DOI: 10.1002/ece3.70943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
Agonistic and affiliative interactions with group members dictate individual access to resources, and investment in competing for resources is often traded off with other needs. For example, reproductive investment can reduce body condition and, thereby, an individual's ability to win future agonistic interactions. However, group members may also alter their behaviour towards reproductive individuals, such as becoming more or less aggressive. Here, we investigated the social consequences of reproduction in female vulturine guineafowl Acryllium vulturinum, a plural breeder in which females disperse and are subordinate to males. We found opposing patterns for within- and between-sex dominance interactions experienced by females from before to after breeding. Specifically, breeding females became far less likely to win dominance interactions with non-breeding females after breeding than before breeding, but received considerably fewer male aggressions than non-breeding females after breeding. Despite a limited sample size, our study reveals that reproduction can have nuanced trade-offs with dominance and suggests that the study of dominance may benefit from explicitly considering variation in interaction rates as an additional factor affecting individuals.
Collapse
Affiliation(s)
- Tobit Dehnen
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- Department of Collective BehaviorMax Planck Institute of Animal BehaviorKonstanzGermany
| | - Brendah Nyaguthii
- Department of OrnithologyNational Museums of KenyaNairobiKenya
- Mpala Research CentreNanyukiKenya
- Department of Wildlife, School of Natural Resource ManagementUniversity of EldoretEldoretKenya
| | | | | | - Damien R. Farine
- Department of Collective BehaviorMax Planck Institute of Animal BehaviorKonstanzGermany
- Department of OrnithologyNational Museums of KenyaNairobiKenya
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
4
|
Redhead D. Social structure and the evolutionary ecology of inequality. Trends Cogn Sci 2025; 29:201-213. [PMID: 39632153 DOI: 10.1016/j.tics.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
From rising disparities in income to limited socio-political representation for minority groups, inequality is a topic of perennial interest for contemporary society. Research in the evolutionary sciences has started to investigate how social structure allows inequality to evolve, but is developing in silo from existing work in the social and cognitive sciences. I synthesise these literatures to present a theoretical framework of how and why cultural and ecological conditions can create social structure that either produces or constrains inequality. According to this framework, such conditions dictate the costs and benefits of cooperation that shape individuals' social preferences and resulting behaviours. These behaviours aggregate to produce distinct structures of a society's social networks, which generate different levels of inequality observed across societies.
Collapse
Affiliation(s)
- Daniel Redhead
- Department of Sociology, University of Groningen, Grote Rozenstraat 31, 9712 TG Groningen, The Netherlands; Inter-University Center for Social Science Theory and Methodology, University of Groningen, Groningen, The Netherlands; Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany.
| |
Collapse
|
5
|
Zipple MN, Chang Kuo D, Meng X, Reichard TM, Guess K, Vogt CC, Moeller AH, Sheehan MJ. Competitive social feedback amplifies the role of early life contingency in male mice. Science 2025; 387:81-85. [PMID: 39745972 DOI: 10.1126/science.adq0579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/08/2024] [Indexed: 01/04/2025]
Abstract
Contingency (or "luck") in early life plays an important role in shaping individuals' development. By comparing the developmental trajectories of functionally genetically identical free-living mice who either experienced high levels of resource competition (males) or did not (females), we show that competition magnifies early contingency. Male resource competition results in a feedback loop that magnifies the importance of early contingency and pushes individuals onto divergent, self-reinforcing life trajectories, while the same process appears absent in females. Our results indicate that the strength of sexual selection may be self-limiting, and they highlight the potential for contingency to lead to differences in life outcomes, even in the absence of any underlying differences in ability ("merit").
Collapse
Affiliation(s)
- Matthew N Zipple
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Daniel Chang Kuo
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Xinmiao Meng
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Tess M Reichard
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Kwynn Guess
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Caleb C Vogt
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Andrew H Moeller
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Michael J Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| |
Collapse
|
6
|
Smit N, Robbins MM. Female gorillas form highly stable dominance relationships. Biol Lett 2025; 21:20240556. [PMID: 39838735 PMCID: PMC11751638 DOI: 10.1098/rsbl.2024.0556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 01/23/2025] Open
Abstract
Animals commonly form dominance relationships that determine the priority of access to resources and influence fitness. Dominance relationships based on age, immigration order or nepotism (alliances with kin) conventions are usually more stable than those based on intrinsic characteristics such as physical strength. Unlike most mammals, female gorillas disperse from their groups, typically more than once in their lifetimes, disrupting their group tenures and/or any alliances. Thus, we predicted that they form unstable dominance relationships that are not based on conventions. Contrarily, using a 24-year dataset on five groups of both gorilla species, we found that females form strikingly stable dominance relationships, maintained over their whole co-residence in a group (mean dyadic co-residence = 4.8, max = 17.3 years). Specifically, we observed rank reversals in only two out of 92 female dyads, and all other rank improvements resulted from emigration or death of higher-ranking females (passive mobility). These results mirror observations in chimpanzees, suggesting that dominance dynamics might have deep roots in hominid evolution. Our study challenges a hypothesized link between hierarchy instability and dispersal, particularly among animals in which fitness consequences of rank improvement may not be great enough to counterbalance the potentially high costs of challenging higher-ranking individuals.
Collapse
Affiliation(s)
- Nikolaos Smit
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Martha M. Robbins
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| |
Collapse
|
7
|
Jerdee M, Newman MEJ. Luck, skill, and depth of competition in games and social hierarchies. SCIENCE ADVANCES 2024; 10:eadn2654. [PMID: 39504380 PMCID: PMC11540035 DOI: 10.1126/sciadv.adn2654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Patterns of wins and lo sses in pairwise contests, such as occur in sports and games, consumer research and paired comparison studies, and human and animal social hierarchies, are commonly analyzed using probabilistic models that allow one to quantify the strength of competitors or predict the outcome of future contests. Here, we generalize this approach to incorporate two additional features: an element of randomness or luck that leads to upset wins, and a "depth of competition" variable that measures the complexity of a game or hierarchy. Fitting the resulting model, we estimate depth and luck in a range of games, sports, and social situations. In general, we find that social competition tends to be "deep," meaning it has a pronounced hierarchy with many distinct levels, but also that there is often a nonzero chance of an upset victory. Competition in sports and games, by contrast, tends to be shallow, and in most cases, there is little evidence of upset wins.
Collapse
Affiliation(s)
- Maximilian Jerdee
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
| | - M. E. J. Newman
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Westra E, Fitzpatrick S, Brosnan SF, Gruber T, Hobaiter C, Hopper LM, Kelly D, Krupenye C, Luncz LV, Theriault J, Andrews K. In search of animal normativity: a framework for studying social norms in non-human animals. Biol Rev Camb Philos Soc 2024; 99:1058-1074. [PMID: 38268182 PMCID: PMC11078603 DOI: 10.1111/brv.13056] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Social norms - rules governing which behaviours are deemed appropriate or inappropriate within a given community - are typically taken to be uniquely human. Recently, this position has been challenged by a number of philosophers, cognitive scientists, and ethologists, who have suggested that social norms may also be found in certain non-human animal communities. Such claims have elicited considerable scepticism from norm cognition researchers, who doubt that any non-human animals possess the psychological capacities necessary for normative cognition. However, there is little agreement among these researchers about what these psychological prerequisites are. This makes empirical study of animal social norms difficult, since it is not clear what we are looking for and thus what should count as behavioural evidence for the presence (or absence) of social norms in animals. To break this impasse, we offer an approach that moves beyond contested psychological criteria for social norms. This approach is inspired by the animal culture research program, which has made a similar shift away from heavily psychological definitions of 'culture' to become organised around a cluster of more empirically tractable concepts of culture. Here, we propose an analogous set of constructs built around the core notion of a normative regularity, which we define as a socially maintained pattern of behavioural conformity within a community. We suggest methods for studying potential normative regularities in wild and captive primates. We also discuss the broader scientific and philosophical implications of this research program with respect to questions of human uniqueness, animal welfare and conservation.
Collapse
Affiliation(s)
- Evan Westra
- Department of Philosophy, Purdue University, 100 N. University Street, West Lafayette, IN, 47905, USA
| | - Simon Fitzpatrick
- Department of Philosophy, John Carroll University, 1 John Carroll Boulevard, University Heights, Ohio 44118, USA
| | - Sarah F. Brosnan
- Departments of Psychology & Philosophy, Neuroscience Institute, Center for Behavioral Neuroscience, and the Language Research Center, Georgia State University, Georgia State University, Dept of Psychology, PO Box 5010, Atlanta, GA 30302-5010 USA
| | - Thibaud Gruber
- Faculty of Psychology and Educational Sciences, and Swiss Center for Affective Sciences, Campus Biotech - University of Geneva, Chemin des Mines 9, 1202 Geneva, Switzerland
| | - Catherine Hobaiter
- School of Psychology and Neuroscience, University of St Andrews, St Mary’s Quad, South St, Fife KY16 9JP, Scotland
| | - Lydia M. Hopper
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, Maryland, 21205, USA
| | - Daniel Kelly
- Department of Philosophy, Purdue University, 100 N. University Street, West Lafayette, IN, 47905, USA
| | - Christopher Krupenye
- Department of Psychological & Brain Sciences, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
| | - Lydia V. Luncz
- Technological Primates Research Group, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Jordan Theriault
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Suite 2301, 149 Thirteenth Street, Charlestown, MA 02129, USA
| | - Kristin Andrews
- Department of Philosophy, York University, S448 Ross Building, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
9
|
Zipple MN, Kuo DC, Meng X, Reichard TM, Guess K, Vogt CC, Moeller AH, Sheehan MJ. Sex-specific competitive social feedback amplifies the role of early life contingency in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590322. [PMID: 38659792 PMCID: PMC11042324 DOI: 10.1101/2024.04.19.590322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Contingency (or 'luck') in early life plays an important role in shaping individuals' development. When individuals live within larger societies, social experiences may cause the importance of early contingencies to be magnified or dampened. Here we test the hypothesis that competition magnifies the importance of early contingency in a sex-specific manner by comparing the developmental trajectories of genetically identical, free-living mice who either experienced high levels of territorial competition (males) or did not (females). We show that male territoriality results in a competitive feedback loop that magnifies the importance of early contingency and pushes individuals onto divergent, self-reinforcing life trajectories, while the same process appears absent in females. Our results indicate that the strength of sexual selection may be self-limiting, as within-sex competition increases the importance of early life contingency, thereby reducing the ability of selection to lead to evolution. They also demonstrate the potential for contingency to lead to dramatic differences in life outcomes, even in the absence of any underlying differences in ability ('merit').
Collapse
|
10
|
Kaburu SSK, Balasubramaniam KN, Marty PR, Beisner B, Fuji K, Bliss-Moreau E, McCowan B. Effect of behavioural sampling methods on local and global social network metrics: a case-study of three macaque species. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231001. [PMID: 38077223 PMCID: PMC10698479 DOI: 10.1098/rsos.231001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
Social network analysis (SNA) is a powerful, quantitative tool to measure animals' direct and indirect social connectedness in the context of social groups. However, the extent to which behavioural sampling methods influence SNA metrics remains unclear. To fill this gap, here we compare network indices of grooming, huddling, and aggression calculated from data collected from three macaque species through two sampling methods: focal animal sampling (FAS) and all-occurrences behaviour sampling (ABS). We found that measures of direct connectedness (degree centrality, and network density) were correlated between FAS and ABS for all social behaviours. Eigenvector and betweenness centralities were correlated for grooming and aggression networks across all species. By contrast, for huddling, we found a correlation only for betweenness centrality while eigenvector centralities were correlated only for the tolerant bonnet macaque but not so for the despotic rhesus macaque. Grooming and huddling network modularity and centralization were correlated between FAS and ABS for all but three of the eight groups. By contrast, for aggression network, we found a correlation for network centralization but not modularity between the sampling methodologies. We discuss how our findings provide researchers with new guidelines regarding choosing the appropriate sampling method to estimate social network metrics.
Collapse
Affiliation(s)
- Stefano S. K. Kaburu
- School of Animal Rural & Environmental Sciences, Nottingham Trent University, Southwell NG25 0QF, UK
| | - Krishna N. Balasubramaniam
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | | | - Brianne Beisner
- Animal Resources Division, Emory National Primate Research Center, Emory University, 16 Atlanta, GA 30329, USA
| | - Kevin Fuji
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis CA 95616, USA
| | - Eliza Bliss-Moreau
- Department of Psychology, University of California, Davis CA 95616, USA
- California National Primate Research Center, University of California, Davis CA 95616, USA
| | - Brenda McCowan
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis CA 95616, USA
- California National Primate Research Center, University of California, Davis CA 95616, USA
| |
Collapse
|
11
|
Montgomery TM, Lehmann KDS, Gregg S, Keyser K, McTigue LE, Beehner JC, Holekamp KE. Determinants of hyena participation in risky collective action. Proc Biol Sci 2023; 290:20231390. [PMID: 38018101 PMCID: PMC10685128 DOI: 10.1098/rspb.2023.1390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Collective action problems arise when cooperating individuals suffer costs of cooperation, while the benefits of cooperation are received by both cooperators and defectors. We address this problem using data from spotted hyenas fighting with lions. Lions are much larger and kill many hyenas, so these fights require cooperative mobbing by hyenas for them to succeed. We identify factors that predict when hyena groups engage in cooperative fights with lions, which individuals choose to participate and how the benefits of victory are distributed among cooperators and non-cooperators. We find that cooperative mobbing is better predicted by lower costs (no male lions, more hyenas) than higher benefits (need for food). Individual participation is facilitated by social factors, both over the long term (close kin, social bond strength) and the short term (greeting interactions prior to cooperation). Finally, we find some direct benefits of participation: after cooperation, participants were more likely to feed at contested carcasses than non-participants. Overall, these results are consistent with the hypothesis that, when animals face dangerous cooperative dilemmas, selection favours flexible strategies that are sensitive to dynamic factors emerging over multiple time scales.
Collapse
Affiliation(s)
- Tracy M. Montgomery
- Department of Integrative Biology and Program in Ecology, Evolution, and behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
- Mara Hyena Project, PO Box 164-00502, Karen, Nairobi, Kenya
- Department for the Ecology of Animal Societies, Max Planck Institute for Animal Behavior, Bücklestraße 5a, 78467 Konstanz, Germany
- Center for the Advanced Study of Collective Behavior, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Kenna D. S. Lehmann
- Department of Integrative Biology and Program in Ecology, Evolution, and behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
- Human Biology Program, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
- Mara Hyena Project, PO Box 164-00502, Karen, Nairobi, Kenya
| | - Samantha Gregg
- Department of Integrative Biology and Program in Ecology, Evolution, and behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
| | - Kathleen Keyser
- Department of Integrative Biology and Program in Ecology, Evolution, and behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
| | - Leah E. McTigue
- Department of Integrative Biology and Program in Ecology, Evolution, and behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
- Rocky Mountain Research Station, Colorado State University, 240 W Prospect St, Fort Collins, CO 80525, USA
| | - Jacinta C. Beehner
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA
- Department of Anthropology, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109, USA
| | - Kay E. Holekamp
- Department of Integrative Biology and Program in Ecology, Evolution, and behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
- Mara Hyena Project, PO Box 164-00502, Karen, Nairobi, Kenya
| |
Collapse
|
12
|
Minasandra P, Jensen FH, Gersick AS, Holekamp KE, Strauss ED, Strandburg-Peshkin A. Accelerometer-based predictions of behaviour elucidate factors affecting the daily activity patterns of spotted hyenas. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230750. [PMID: 38026018 PMCID: PMC10645113 DOI: 10.1098/rsos.230750] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Animal activity patterns are highly variable and influenced by internal and external factors, including social processes. Quantifying activity patterns in natural settings can be challenging, as it is difficult to monitor animals over long time periods. Here, we developed and validated a machine-learning-based classifier to identify behavioural states from accelerometer data of wild spotted hyenas (Crocuta crocuta), social carnivores that live in large fission-fusion societies. By combining this classifier with continuous collar-based accelerometer data from five hyenas, we generated a complete record of activity patterns over more than one month. We used these continuous behavioural sequences to investigate how past activity, individual idiosyncrasies, and social synchronization influence hyena activity patterns. We found that hyenas exhibit characteristic crepuscular-nocturnal daily activity patterns. Time spent active was independent of activity level on previous days, suggesting that hyenas do not show activity compensation. We also found limited evidence for an effect of individual identity on activity, and showed that pairs of hyenas who synchronized their activity patterns must have spent more time together. This study sheds light on the patterns and drivers of activity in spotted hyena societies, and also provides a useful tool for quantifying behavioural sequences from accelerometer data.
Collapse
Affiliation(s)
- Pranav Minasandra
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Biology Department, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- International Max Planck Research School for Organismal Biology, Konstanz, Germany
| | - Frants H. Jensen
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Biology Department, Syracuse University, Syracuse, NY, USA
| | - Andrew S. Gersick
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Department of Computer Science, San Diego State University, San Diego, CA, USA
| | - Kay E. Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
| | - Eli D. Strauss
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Biology Department, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Ariana Strandburg-Peshkin
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Biology Department, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
13
|
Hoffmann LB, McVicar EA, Harris RV, Collar-Fernández C, Clark MB, Hannan AJ, Pang TY. Increased paternal corticosterone exposure influences offspring behaviour and expression of urinary pheromones. BMC Biol 2023; 21:186. [PMID: 37667240 PMCID: PMC10478242 DOI: 10.1186/s12915-023-01678-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/07/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Studies have shown that paternal stress prior to conception can influence the innate behaviours of their offspring. The evolutionary impacts of such intergenerational effects are therefore of considerable interest. Our group previously showed in a model of daily stress that glucocorticoid treatment of adult male mouse breeders prior to conception leads to increased anxiety-related behaviours in male offspring. Here, we aimed to understand the transgenerational effects of paternal stress exposure on the social behaviour of progeny and its potential influence on reproductive success. RESULTS We assessed social parameters including social reward, male attractiveness and social dominance, in the offspring (F1) and grand-offspring (F2). We report that paternal corticosterone treatment was associated with increased display of subordination towards other male mice. Those mice were unexpectedly more attractive to female mice while expressing reduced levels of the key rodent pheromone Darcin, contrary to its conventional role in driving female attraction. We investigated the epigenetic regulation of major urinary protein (Mup) expression by performing the first Oxford Nanopore direct methylation of sperm DNA in a mouse model of stress, but found no differences in Mup genes that could be attributed to corticosterone-treatment. Furthermore, no overt differences of the prefrontal cortex transcriptome were found in F1 offspring, implying that peripheral mechanisms are likely contributing to the phenotypic differences. Interestingly, no phenotypic differences were observed in the F2 grand-offspring. CONCLUSIONS Overall, our findings highlight the potential of moderate paternal stress to affect intergenerational (mal)adaptive responses, informing future studies of adaptiveness in rodents, humans and other species.
Collapse
Affiliation(s)
- Lucas B Hoffmann
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia
| | - Evangeline A McVicar
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Rebekah V Harris
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Coralina Collar-Fernández
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia
| | - Michael B Clark
- Centre for Stem Cell Systems, Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Terence Y Pang
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia.
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
14
|
Smith EA, Smith JE, Codding BF. Toward an evolutionary ecology of (in)equality. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220287. [PMID: 37381851 PMCID: PMC10291428 DOI: 10.1098/rstb.2022.0287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023] Open
Abstract
Inequality is increasingly recognized as a major problem in contemporary society. The causes and consequences of inequality in wealth and power have long been central concerns in the social sciences, whereas comparable research in biology has focused on dominance and reproductive skew. This theme issue builds on these existing research traditions, exploring ways they might enrich each other, with evolutionary ecology as a possibly unifying framework. Contributors investigate ways in which inequality is resisted or avoided and developed or imposed in societies of past and contemporary humans, as well as a variety of social mammals. Particular attention is paid to systematic, socially driven inequality in wealth (defined broadly) and the effects this has on differential power, health, survival and reproduction. Analyses include field studies, simulations, archaeological and ethnographic case studies, and analytical models. The results reveal similarities and divergences between human and non-human patterns in wealth, power and social dynamics. We draw on these insights to present a unifying conceptual framework for analysing the evolutionary ecology of (in)equality, with the hope of both understanding the past and improving our collective future. This article is part of the theme issue 'Evolutionary ecology of inequality'.
Collapse
Affiliation(s)
- Eric Alden Smith
- Department of Anthropology, University of Washington, Seattle, WA 98195, USA
| | - Jennifer E Smith
- Department of Biology, University of Wisconsin Eau Claire, 105 Garfield Avenue, Eau Claire, WI 54702, USA
| | - Brian F Codding
- Department of Anthropology and Archaeological Center, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
15
|
Smith JE, Natterson-Horowitz B, Mueller MM, Alfaro ME. Mechanisms of equality and inequality in mammalian societies. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220307. [PMID: 37381860 PMCID: PMC10291435 DOI: 10.1098/rstb.2022.0307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/09/2023] [Indexed: 06/30/2023] Open
Abstract
The extent of (in)equality is highly diverse across species of social mammals, but we have a poor understanding of the factors that produce or inhibit equitable social organizations. Here, we adopt a comparative evolutionary perspective to test whether the evolution of social dominance hierarchies, a measure of social inequality in animals, exhibits phylogenetic conservatism and whether interspecific variation in these traits can be explained by sex, age or captivity. We find that hierarchy steepness and directional consistency evolve rapidly without any apparent constraint from evolutionary history. Given this extraordinary variability, we next consider multiple factors that have evolved to mitigate social inequality. Social networks, coalitionary support and knowledge transfer advantage to privilege some individuals over others. Nutritional access and prenatal stressors can impact the development of offspring, generating health disparities with intergenerational consequences. Intergenerational transfer of material resources (e.g. stone tools, food stashes, territories) advantage those who receive. Nonetheless, many of the same social species that experience unequal access to food (survival) and mates (reproduction) engage in levelling mechanisms such as food sharing, adoption, revolutionary coalitions, forgiveness and inequity aversion. Taken together, mammals rely upon a suite of mechanisms of (in)equality to balance the costs and benefits of group living. This article is part of the theme issue 'Evolutionary ecology of inequality'.
Collapse
Affiliation(s)
- Jennifer E. Smith
- Biology Department, University of Wisconsin Eau Claire, 105 Garfield Avenue, Eau Claire, WI 54702, USA
| | - Barbara Natterson-Horowitz
- School of Medicine, Division of Cardiology, University of California, 650 Charles Young Drive South, A2-237 CHS, Los Angeles, CA 90095, USA
| | - Maddison M. Mueller
- Biology Department, University of Wisconsin Eau Claire, 105 Garfield Avenue, Eau Claire, WI 54702, USA
| | - Michael E. Alfaro
- Department of Ecology and Evolutionary Biology, University of California, 2149 Terasaki Life Sciences Building, 612 Charles E. Young Drive South, Box 957246, Los Angeles, CA 90095-7246, USA
| |
Collapse
|
16
|
Strauss ED. Demographic turnover can be a leading driver of hierarchy dynamics, and social inheritance modifies its effects. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220308. [PMID: 37381857 PMCID: PMC10291429 DOI: 10.1098/rstb.2022.0308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/10/2023] [Indexed: 06/30/2023] Open
Abstract
Individuals and societies are linked through a feedback loop of mutual influence. Demographic turnover shapes group composition and structure by adding and removing individuals, and social inheritance shapes social structure through the transmission of social traits from parents to offspring. Here I examine how these drivers of social structure feedback to influence individual outcomes. I explore these society-to-individual effects in systems with social inheritance of hierarchy position, as occur in many primates and spotted hyenas. Applying Markov chain models to empirical and simulated data reveals how demography and social inheritance interact to strongly shape individual hierarchy positions. In hyena societies, demographic processes-not status seeking-account for the majority of hierarchy dynamics and cause an on-average lifetime decline in social hierarchy position. Simulated societies clarify how social inheritance alters demographic effects-demographic processes cause hierarchy position to regress to the mean, but the addition of social inheritance modifies this pattern. Notably, the combination of social inheritance and rank-related reproductive success causes individuals to decline in rank over their lifespans, as seen in the hyena data. Further analyses explore how 'queens' escape this pattern of decline, and how variation in social inheritance generates variability in reproductive inequality. This article is part of the theme issue 'Evolutionary ecology of inequality'.
Collapse
Affiliation(s)
- Eli D. Strauss
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Baden-Württemberg, 78464, Germany
- Ecology of Animal Societies Department, Max Planck Institute of Animal Behavior, Radolfzell, Baden-Württemberg, 78315, Germany
- Collective Behavior Department, Max Planck Institute of Animal Behavior, Radolfzell, Baden-Württemberg, 78315, Germany
- Integrative Biology Department, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
17
|
Grethen KJ, Gómez Y, Toscano MJ. Coup in the coop: Rank changes in chicken dominance hierarchies over maturation. Behav Processes 2023:104904. [PMID: 37302665 DOI: 10.1016/j.beproc.2023.104904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Chicken dominance hierarchies or pecking orders are established before maturation and maintained by consistent submissive responses of subordinate individuals, leading to stable ranks within unchanged groups. We observed interactions of 418 laying hens (Gallus gallus domesticus) distributed across three small (20) and three large (~120) groups. The observations were performed before sexual maturation (young period) and additionally after onset of maturation (mature period) to confirm stability of ranks. Dominance ranks were estimated via the Elo rating system across both observation periods. Diagnostics of the ranks revealed unexpected uncertainty and rank instability for the full dataset, although sampling appeared to be adequate. Subsequent evaluations of ranks based on the mature period only, showed more reliable ranks than across both observation periods. Furthermore, winning success during the young period did not directly predict high rank during the mature period. These results indicated rank changes between observation periods. The current study design could not discern whether ranks were stable in all pens before maturation. However, our data rather suggested active rank mobility after hierarchy establishment to be the cause for our findings. Once thought to be stable, chicken hierarchies may provide an excellent system to study causes and implications of active rank mobility.
Collapse
Affiliation(s)
- Klara J Grethen
- Center for Proper Housing: Poultry and Rabbits (ZTHZ), Division of Animal Welfare, VPH Institute, University of Bern, Burgerweg 22, 3052 Zollikofen, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - Yamenah Gómez
- Center for Proper Housing: Poultry and Rabbits (ZTHZ), Division of Animal Welfare, VPH Institute, University of Bern, Burgerweg 22, 3052 Zollikofen, Switzerland.
| | - Michael J Toscano
- Center for Proper Housing: Poultry and Rabbits (ZTHZ), Division of Animal Welfare, VPH Institute, University of Bern, Burgerweg 22, 3052 Zollikofen, Switzerland.
| |
Collapse
|
18
|
McCormick SK, Laubach ZM, Strauss ED, Montgomery TM, Holekamp KE. Evaluating drivers of female dominance in the spotted hyena. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.934659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IntroductionDominance relationships in which females dominate males are rare among mammals. Mechanistic hypotheses explaining the occurrence of female dominance suggest that females dominate males because (1) they are intrinsically more aggressive or less submissive than males, and/or (2) they have access to more social support than males.MethodsHere, we examine the determinants of female dominance across ontogenetic development in spotted hyenas (Crocuta crocuta) using 30 years of detailed behavioral observations from the Mara Hyena Project to evaluate these two hypotheses.ResultsAmong adult hyenas, we find that females spontaneously aggress at higher rates than males, whereas males spontaneously submit at higher rates than females. Once an aggressive interaction has been initiated, adult females are more likely than immigrant males to elicit submission from members of the opposite sex, and both adult natal and immigrant males are more likely than adult females to offer submission in response to an aggressive act. We also find that adult male aggressors are more likely to receive social support than are adult female aggressors, and that both adult natal and immigrant males are 2–3 times more likely to receive support when attacking a female than when attacking another male. Across all age classes, females are more likely than males to be targets of aggressive acts that occur with support. Further, receiving social support does slightly help immigrant males elicit submission from adult females compared to immigrant males acting alone, and it also helps females elicit submission from other females. However, adult females can dominate immigrant males with or without support far more often than immigrant males can dominate females, even when the immigrants are supported against females.DiscussionOverall, we find evidence for both mechanisms hypothesized to mediate female dominance in this species: (1) male and female hyenas clearly differ in their aggressive and submissive tendencies, and (2) realized social support plays an important role in shaping dominance relationships within a clan. Nevertheless, our results suggest that social support alone cannot explain sex-biased dominance in spotted hyenas. Although realized social support can certainly influence fight outcomes among females, adult females can easily dominate immigrant males without any support at all.
Collapse
|
19
|
Spagnuolo OSB, Lemerle MA, Holekamp KE, Wiesel I. The value of individual identification in studies of free-living hyenas and aardwolves. Mamm Biol 2022; 102:1089-1112. [PMID: 36530605 PMCID: PMC9744671 DOI: 10.1007/s42991-022-00309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 09/09/2022] [Indexed: 12/15/2022]
Abstract
From population estimates to social evolution, much of our understanding of the family Hyaenidae is drawn from studies of known individuals. The extant species in this family (spotted hyenas, Crocuta crocuta, brown hyenas, Parahyaena brunnea, striped hyenas, Hyaena hyaena, and aardwolves, Proteles cristata) are behaviorally diverse, presenting an equally diverse set of logistical constraints on capturing and marking individuals. All these species are individually identifiable by their coat patterns, providing a useful alternative to man-made markings. Many studies have demonstrated the utility of this method in answering a wide range of research questions across all four species, with some employing a creative fusion of techniques. Despite its pervasiveness in basic research on hyenas and aardwolves, individual identification has rarely been applied to the conservation and management of these species. We argue that individual identification using naturally occurring markings in applied research could prove immensely helpful, as this could further improve accuracy of density estimates, reveal characteristics of suitable habitat, identify threats to population persistence, and help to identify individual problem animals.
Collapse
Affiliation(s)
| | | | | | - Ingrid Wiesel
- Brown Hyena Research Project, Lüderitz, 9000 Namibia
| |
Collapse
|
20
|
Smit N, Ngoubangoye B, Charpentier MJE, Huchard E. Dynamics of intersexual dominance in a highly dimorphic primate. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.931226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intersexual dominance, which is measured by the probability that members of one sex elicit submission of members of the other sex during agonistic interactions, is often skewed in favor of males. However, even in sexually dimorphic species, several factors may influence intersexual dominance. Here, we use an 8-year dataset to examine the dynamics of intersexual dominance in wild-living mandrills (Mandrillus sphinx). Mandrills exhibit an extreme male-biased sexual size dimorphism but females show pronounced kin-differentiated social relationships and occasionally form coalitions against males. We established intersexual hierarchies across consecutive 6-month time blocks, representing either mating or birth seasons. Although females appeared to outrank 11% of males, they elicited male submission in only 2% of agonistic interactions against males. This discrepancy is likely due to the temporary residency of most males in the exceptionally large mandrill groups, the sexually coercive male mating strategies and the scarce number of agonistic interactions within most dyads, that may limit hierarchical inferences. In a second step, we found that the intersexual hierarchy mixes the intrasexual ones respecting their respective order. Females outranked mostly young and old males during the mating (vs. birth) season and social integration was positively correlated to dominance status in both sexes. In a third step, we found that females win more conflicts against young or old males which are closer to them in the intersexual hierarchy. These results extend our understanding of female-male dominance relationships by indicating that female mandrills occasionally outrank males who are considerably larger than them, and that a combination of demographic and social factors can influence the intersexual hierarchy.
Collapse
|
21
|
Aloni I, Ilany A. Maladaptive evolution or how a beneficial mutation may get lost due to nepotism. Commun Biol 2022; 5:965. [PMID: 36109659 PMCID: PMC9477802 DOI: 10.1038/s42003-022-03901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Spotted hyenas are an exception in the animal kingdom not only due to female dominance over males, but also because of the strict female linear hierarchy which determines priority of access to resources and produces considerable female reproductive skew. This special social system raises a question: what would become of a beneficial mutation if it occurred in a low-ranking female? We used several simulation models in order to address this question. Our modeling results indicate that such a social system may inhibit the establishment of a beneficial mutation. However, this negative effect may be counteracted by random choice of mates by females. Evolutionary simulations demonstrate how beneficial mutations may not be preserved in societies characterized by female dominance and social inheritance of rank, such as in spotted hyenas.
Collapse
|
22
|
Jennings DJ, Gammell MP. Bystander fallow deer engage in third-party behaviour based on similarities in contestant resource-holding potential. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
23
|
Lehmann KDS, Jensen FH, Gersick AS, Strandburg-Peshkin A, Holekamp KE. Long-distance vocalizations of spotted hyenas contain individual, but not group, signatures. Proc Biol Sci 2022; 289:20220548. [PMID: 35855604 PMCID: PMC9297016 DOI: 10.1098/rspb.2022.0548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In animal societies, identity signals are common, mediate interactions within groups, and allow individuals to discriminate group-mates from out-group competitors. However, individual recognition becomes increasingly challenging as group size increases and as signals must be transmitted over greater distances. Group vocal signatures may evolve when successful in-group/out-group distinctions are at the crux of fitness-relevant decisions, but group signatures alone are insufficient when differentiated within-group relationships are important for decision-making. Spotted hyenas are social carnivores that live in stable clans of less than 125 individuals composed of multiple unrelated matrilines. Clan members cooperate to defend resources and communal territories from neighbouring clans and other mega carnivores; this collective defence is mediated by long-range (up to 5 km range) recruitment vocalizations, called whoops. Here, we use machine learning to determine that spotted hyena whoops contain individual but not group signatures, and that fundamental frequency features which propagate well are critical for individual discrimination. For effective clan-level cooperation, hyenas face the cognitive challenge of remembering and recognizing individual voices at long range. We show that serial redundancy in whoop bouts increases individual classification accuracy and thus extended call bouts used by hyenas probably evolved to overcome the challenges of communicating individual identity at long distance.
Collapse
Affiliation(s)
- Kenna D. S. Lehmann
- School of Biological Sciences, University of Nebraska—Lincoln, 1101T Street, Lincoln, NE 68588, USA
| | - Frants H. Jensen
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA,Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Andrew S. Gersick
- Dept of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ 08544, USA
| | - Ariana Strandburg-Peshkin
- Biology Department, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany,Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behaviour, Bücklestrasse 5a, 78467 Konstanz, Germany
| | - Kay E. Holekamp
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI 48824 USA,Ecology, Evolution, and Behavior Program, Michigan State University, 293 Farm Lane, East Lansing, MI 48824, USA
| |
Collapse
|
24
|
Kajokaite K, Whalen A, Koster J, Perry S. Social integration predicts survival in female white-faced capuchin monkeys. Behav Ecol 2022; 33:807-815. [PMID: 35812363 PMCID: PMC9262163 DOI: 10.1093/beheco/arac043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 03/22/2022] [Accepted: 05/08/2022] [Indexed: 11/14/2022] Open
Abstract
Across multiple species of social mammals, a growing number of studies have found that individual sociality is associated with survival. In long-lived species, like primates, lifespan is one of the main components of fitness. We used 18 years of data from the Lomas Barbudal Monkey Project to quantify social integration in 11 capuchin (Cebus capucinus) groups and tested whether female survivorship was associated with females' tendencies to interact with three types of partners: (1) all group members, (2) adult females, and (3) adult males. We found strong evidence that females who engaged more with other females in affiliative interactions and foraged in close proximity experienced increased survivorship. We found some weak evidence that females might also benefit from engaging in more support in agonistic contexts with other females. These benefits were evident in models that account for the females' rank and group size. Female interactions with all group members also increased survival, but the estimates of the effects were more uncertain. In interactions with adult males, only females who provided more grooming to males survived longer. The results presented here suggest that social integration may result in survival-related benefits. Females might enjoy these benefits through exchanging grooming for other currencies, such as coalitionary support or tolerance.
Collapse
Affiliation(s)
- Kotrina Kajokaite
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Andrew Whalen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University ofEdinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Jeremy Koster
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Department of Anthropology, University of Cincinnati, PO BOX 210380 481 Braunstein Hall, Cincinnati, OH 45221-0380, USA
| | - Susan Perry
- Department of Anthropology, University of California, 375 Portola Plaza, Los Angeles, CA 90095, USA
- Behavior, Evolution and Culture Program, University of California, 375 Portola Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
McCormick SK, Holekamp KE, Smale L, Weldele ML, Glickman SE, Place NJ. Sex Differences in Spotted Hyenas. Cold Spring Harb Perspect Biol 2022; 14:a039180. [PMID: 34649923 PMCID: PMC9248831 DOI: 10.1101/cshperspect.a039180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The apparent virilization of the female spotted hyena raises questions about sex differences in behavior and morphology. We review these sex differences to find a mosaic of dimorphic traits, some of which conform to mammalian norms. These include space-use, dispersal behavior, sexual behavior, and parental behavior. By contrast, sex differences are reversed from mammalian norms in the hyena's aggressive behavior, social dominance, and territory defense. Androgen exposure early in development appears to enhance aggressiveness in female hyenas. Weapons, hunting behavior, and neonatal body mass do not differ between males and females, but females are slightly larger than males as adults. Sex differences in the hyena's nervous system are relatively subtle. Overall, it appears that the "masculinized" behavioral traits in female spotted hyenas are those, such as aggression, that are essential to ensuring consistent access to food; food critically limits female reproductive success in this species because female spotted hyenas have the highest energetic investment per litter of any mammalian carnivore. Evidently, natural selection has acted to modify traits related to food access, but has left intact those traits that are unrelated to acquiring food, such that they conform to patterns of sexual dimorphism in other mammals.
Collapse
Affiliation(s)
- S Kevin McCormick
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Laura Smale
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Psychology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Mary L Weldele
- Departments of Psychology and Integrative Biology, University of California, Berkeley, California 94720, USA
| | - Stephen E Glickman
- Departments of Psychology and Integrative Biology, University of California, Berkeley, California 94720, USA
| | - Ned J Place
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
26
|
Strauss ED, Shizuka D. The ecology of wealth inequality in animal societies. Proc Biol Sci 2022; 289:20220500. [PMID: 35506231 PMCID: PMC9065979 DOI: 10.1098/rspb.2022.0500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Individuals vary in their access to resources, social connections and phenotypic traits, and a central goal of evolutionary biology is to understand how this variation arises and influences fitness. Parallel research on humans has focused on the causes and consequences of variation in material possessions, opportunity and health. Central to both fields of study is that unequal distribution of wealth is an important component of social structure that drives variation in relevant outcomes. Here, we advance a research framework and agenda for studying wealth inequality within an ecological and evolutionary context. This ecology of inequality approach presents the opportunity to reintegrate key evolutionary concepts as different dimensions of the link between wealth and fitness by (i) developing measures of wealth and inequality as taxonomically broad features of societies, (ii) considering how feedback loops link inequality to individual and societal outcomes, (iii) exploring the ecological and evolutionary underpinnings of what makes some societies more unequal than others, and (iv) studying the long-term dynamics of inequality as a central component of social evolution. We hope that this framework will facilitate a cohesive understanding of inequality as a widespread biological phenomenon and clarify the role of social systems as central to evolutionary biology.
Collapse
Affiliation(s)
- Eli D. Strauss
- Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, Lansing, MI, USA
| | - Daizaburo Shizuka
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
27
|
Chittka L, Rossi N. Social cognition in insects. Trends Cogn Sci 2022; 26:578-592. [DOI: 10.1016/j.tics.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/26/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
|
28
|
Gerber L, Connor RC, Allen SJ, Horlacher K, King SL, Sherwin WB, Willems EP, Wittwer S, Krützen M. Social integration influences fitness in allied male dolphins. Curr Biol 2022; 32:1664-1669.e3. [PMID: 35334228 DOI: 10.1016/j.cub.2022.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 12/26/2022]
Abstract
Understanding determinants of differential reproductive success is at the core of evolutionary biology because of its connection to fitness. Early work has linked variation in reproductive success to differences in age,1 rank,2 or size,3,4 as well as habitat characteristics.5 More recently, studies in group-living taxa have revealed that social relationships also have measurable effects on fitness.6-8 The influence of social bonds on fitness is particularly interesting in males who compete over reproductive opportunities. In Shark Bay, Western Australia, groups of 4-14 unrelated male bottlenose dolphins cooperate in second-order alliances to compete with rival alliances over access to females.9-12 Nested within second-order alliances, pairs or trios of males, which can vary in composition, form first-order alliances to herd estrus females. Using 30 years of behavioral data, we examined how individual social factors, such as first-order alliance stability, social connectivity, and variation in social bond strength within second-order alliances, affect male fitness. Analyzing the reproductive careers of 85 males belonging to 10 second-order alliances, we found that the number of paternities a male achieved was positively correlated with his cumulative social bond strength but negatively correlated with his variation in bond strength. Thus, well-integrated males with more homogeneous social bonds to second-order allies obtained most paternities. Our findings provide novel insights into the fitness benefits of polyadic cooperation among unrelated males and highlight the adaptive value of social bonds in this context.
Collapse
Affiliation(s)
- Livia Gerber
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland; Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia.
| | - Richard C Connor
- Biology Department, UMASS Dartmouth, North Dartmouth, MA 02747, USA; Department of Biological Sciences, Marine Sciences Program, Florida International University, North Miami, FL 33181, USA
| | - Simon J Allen
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland; School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK; School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Kay Horlacher
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
| | - Stephanie L King
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK; School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - William B Sherwin
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia
| | - Erik P Willems
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
| | - Samuel Wittwer
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Krützen
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
29
|
Bartel SL, Orrock JL. The important role of animal social status in vertebrate seed dispersal. Ecol Lett 2022; 25:1094-1109. [PMID: 35235713 DOI: 10.1111/ele.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/08/2021] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
Seed dispersal directly affects plant establishment, gene flow and fitness. Understanding patterns in seed dispersal is, therefore, fundamental to understanding plant ecology and evolution, as well as addressing challenges of extinction and global change. Our ability to understand dispersal is limited because seeds may be dispersed by multiple agents, and the effectiveness of these agents can be highly variable both among and within species. We provide a novel framework that links seed dispersal to animal social status, a key component of behaviour. Because social status affects individual resource access and movement, it provides a critical link to two factors that determine seed dispersal: the quantity of seeds dispersed and the spatial patterns of dispersal. Social status may have unappreciated effects on post-dispersal seed survival and recruitment when social status affects individual habitat use. Hence, environmental changes, such as selective harvesting and urbanisation, that affect animal social structure may have unappreciated consequences for seed dispersal. This framework highlights these exciting new hypotheses linking environmental change, social structure and seed dispersal. By outlining experimental approaches to test these hypotheses, we hope to facilitate studies across a wide diversity of plant-animal networks, which may uncover emerging hotspots or significant declines in seed dispersal.
Collapse
Affiliation(s)
- Savannah L Bartel
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
30
|
Strauss ED, DeCasien AR, Galindo G, Hobson EA, Shizuka D, Curley JP. DomArchive: a century of published dominance data. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200436. [PMID: 35000444 PMCID: PMC8743893 DOI: 10.1098/rstb.2020.0436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/21/2021] [Indexed: 11/18/2022] Open
Abstract
Dominance behaviours have been collected for many groups of animals since 1922 and serve as a foundation for research on social behaviour and social structure. Despite a wealth of data from the last century of research on dominance hierarchies, these data are only rarely used for comparative insight. Here, we aim to facilitate comparative studies of the structure and function of dominance hierarchies by compiling published dominance interaction datasets from the last 100 years of work. This compiled archive includes 436 datasets from 190 studies of 367 unique groups (mean group size 13.8, s.d. = 13.4) of 135 different species, totalling over 243 000 interactions. These data are presented in an R package alongside relevant metadata and a tool for subsetting the archive based on biological or methodological criteria. In this paper, we explain how to use the archive, discuss potential limitations of the data, and reflect on best practices in publishing dominance data based on our experience in assembling this dataset. This archive will serve as an important resource for future comparative studies and will promote the development of general unifying theories of dominance in behavioural ecology that can be grounded in testing with empirical data. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Eli D. Strauss
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, 68588-0118 USA
| | - Alex R. DeCasien
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MA, USA
| | - Gabriela Galindo
- Department of Anthropology, New York University, New York, NY, USA
| | - Elizabeth A. Hobson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Daizaburo Shizuka
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, 68588-0118 USA
| | - James P. Curley
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
31
|
Hobson EA. Quantifying the dynamics of nearly 100 years of dominance hierarchy research. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200433. [PMID: 35000439 PMCID: PMC8743886 DOI: 10.1098/rstb.2020.0433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Dominance hierarchies have been studied for almost 100 years. The science of science approach used here provides high-level insight into how the dynamics of dominance hierarchy research have shifted over this long timescale. To summarize these patterns, I extracted publication metadata using a Google Scholar search for the phrase 'dominance hierarchy', resulting in over 26 000 publications. I used text mining approaches to assess patterns in three areas: (1) general patterns in publication frequency and rate, (2) dynamics of term usage and (3) term co-occurrence in publications across the history of the field. While the overall number of publications per decade continues to rise, the percent growth rate has fallen in recent years, demonstrating that although there is sustained interest in dominance hierarchies, the field is no longer experiencing the explosive growth it showed in earlier decades. Results from title term co-occurrence networks and community structure show that the different subfields of dominance hierarchy research were most strongly separated early in the field's history while modern research shows more evidence for cohesion and a lack of distinct term community boundaries. These methods provide a general view of the history of research on dominance hierarchies and can be applied to other fields or search terms to gain broad synthetic insight into patterns of interest, especially in fields with large bodies of literature. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Elizabeth A. Hobson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
32
|
Milewski TM, Lee W, Champagne FA, Curley JP. Behavioural and physiological plasticity in social hierarchies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200443. [PMID: 35000436 PMCID: PMC8743892 DOI: 10.1098/rstb.2020.0443] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Individuals occupying dominant and subordinate positions in social hierarchies exhibit divergent behaviours, physiology and neural functioning. Dominant animals express higher levels of dominance behaviours such as aggression, territorial defence and mate-guarding. Dominants also signal their status via auditory, visual or chemical cues. Moreover, dominant animals typically increase reproductive behaviours and show enhanced spatial and social cognition as well as elevated arousal. These biobehavioural changes increase energetic demands that are met via shifting both energy intake and metabolism and are supported by coordinated changes in physiological systems including the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes as well as altered gene expression and sensitivity of neural circuits that regulate these behaviours. Conversely, subordinate animals inhibit dominance and often reproductive behaviours and exhibit physiological changes adapted to socially stressful contexts. Phenotypic changes in both dominant and subordinate individuals may be beneficial in the short-term but lead to long-term challenges to health. Further, rapid changes in social ranks occur as dominant animals socially ascend or descend and are associated with dynamic modulations in the brain and periphery. In this paper, we provide a broad overview of how behavioural and phenotypic changes associated with social dominance and subordination are expressed in neural and physiological plasticity. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- T. M. Milewski
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - W. Lee
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - F. A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - J. P. Curley
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
33
|
Anderson JA, Lea AJ, Voyles TN, Akinyi MY, Nyakundi R, Ochola L, Omondi M, Nyundo F, Zhang Y, Campos FA, Alberts SC, Archie EA, Tung J. Distinct gene regulatory signatures of dominance rank and social bond strength in wild baboons. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200441. [PMID: 35000452 PMCID: PMC8743882 DOI: 10.1098/rstb.2020.0441] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
The social environment is a major determinant of morbidity, mortality and Darwinian fitness in social animals. Recent studies have begun to uncover the molecular processes associated with these relationships, but the degree to which they vary across different dimensions of the social environment remains unclear. Here, we draw on a long-term field study of wild baboons to compare the signatures of affiliative and competitive aspects of the social environment in white blood cell gene regulation, under both immune-stimulated and non-stimulated conditions. We find that the effects of dominance rank on gene expression are directionally opposite in males versus females, such that high-ranking males resemble low-ranking females, and vice versa. Among females, rank and social bond strength are both reflected in the activity of cellular metabolism and proliferation genes. However, while we observe pronounced rank-related differences in baseline immune gene activity, only bond strength predicts the fold-change response to immune (lipopolysaccharide) stimulation. Together, our results indicate that the directionality and magnitude of social effects on gene regulation depend on the aspect of the social environment under study. This heterogeneity may help explain why social environmental effects on health and longevity can also vary between measures. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Jordan A. Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Amanda J. Lea
- Department of Biology, Duke University, Durham, NC 27708, USA
- Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA
- Department of Ecology and Evolution, Princeton University, Princeton, NJ 08544, USA
| | - Tawni N. Voyles
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Mercy Y. Akinyi
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Ruth Nyakundi
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Lucy Ochola
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Martin Omondi
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Fred Nyundo
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Yingying Zhang
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Fernando A. Campos
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
- Duke Population Research Institute, Duke University, Durham, NC 27708, USA
- Canadian Institute for Advanced Research, Toronto, Canada M5G 1M1
| |
Collapse
|
34
|
Tibbetts EA, Pardo-Sanchez J, Weise C. The establishment and maintenance of dominance hierarchies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200450. [PMID: 35000449 PMCID: PMC8743888 DOI: 10.1098/rstb.2020.0450] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/17/2021] [Indexed: 12/19/2022] Open
Abstract
Animal groups are often organized hierarchically, with dominant individuals gaining priority access to resources and reproduction over subordinate individuals. Initial dominance hierarchy formation may be influenced by multiple interacting factors, including an animal's individual attributes, conventions and self-organizing social dynamics. After establishment, hierarchies are typically maintained over the long-term because individuals save time, energy and reduce the risk of injury by recognizing and abiding by established dominance relationships. A separate set of behaviours are used to maintain dominance relationships within groups, including behaviours that stabilize ranks (punishment, threats, behavioural asymmetry), as well as signals that provide information about dominance rank (individual identity signals, signals of dominance). In this review, we describe the behaviours used to establish and maintain dominance hierarchies across different taxa and types of societies. We also review opportunities for future research including: testing how self-organizing behavioural dynamics interact with other factors to mediate dominance hierarchy formation, measuring the long-term stability of social hierarchies and the factors that disrupt hierarchy stability, incorporating phenotypic plasticity into our understanding of the behavioural dynamics of hierarchies and considering how cognition coevolves with the behaviours used to establish and maintain hierarchies. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
| | | | - Chloe Weise
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Strauss ED, Shizuka D. The dynamics of dominance: open questions, challenges and solutions. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200445. [PMID: 35000440 PMCID: PMC8743878 DOI: 10.1098/rstb.2020.0445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/07/2021] [Indexed: 12/14/2022] Open
Abstract
Although social hierarchies are recognized as dynamic systems, they are typically treated as static entities for practical reasons. Here, we ask what we can learn from a dynamical view of dominance, and provide a research agenda for the next decades. We identify five broad questions at the individual, dyadic and group levels, exploring the causes and consequences of individual changes in rank, the dynamics underlying dyadic dominance relationships, and the origins and impacts of social instability. Although challenges remain, we propose avenues for overcoming them. We suggest distinguishing between different types of social mobility to provide conceptual clarity about hierarchy dynamics at the individual level, and emphasize the need to explore how these dynamic processes produce dominance trajectories over individual lifespans and impact selection on status-seeking behaviour. At the dyadic level, there is scope for deeper exploration of decision-making processes leading to observed interactions, and how stable but malleable relationships emerge from these interactions. Across scales, model systems where rank is manipulable will be extremely useful for testing hypotheses about dominance dynamics. Long-term individual-based studies will also be critical for understanding the impact of rare events, and for interrogating dynamics that unfold over lifetimes and generations. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Eli D. Strauss
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, Lansing, MI, USA
| | - Daizaburo Shizuka
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, USA
| |
Collapse
|
36
|
McCowan B, Vandeleest J, Balasubramaniam K, Hsieh F, Nathman A, Beisner B. Measuring dominance certainty and assessing its impact on individual and societal health in a nonhuman primate model: a network approach. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200438. [PMID: 35000448 PMCID: PMC8743881 DOI: 10.1098/rstb.2020.0438] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
The notion of dominance is ubiquitous across the animal kingdom, wherein some species/groups such relationships are strictly hierarchical and others are not. Modern approaches for measuring dominance have emerged in recent years taking advantage of increased computational power. One such technique, named Percolation and Conductance (Perc), uses both direct and indirect information about the flow of dominance relationships to generate hierarchical rank order that makes no assumptions about the linearity of these relationships. It also provides a new metric, known as 'dominance certainty', which is a complimentary measure to dominance rank that assesses the degree of ambiguity of rank relationships at the individual, dyadic and group levels. In this focused review, we will (i) describe how Perc measures dominance rank while accounting for both nonlinear hierarchical structure as well as sparsity in data-here we also provide a metric of dominance certainty estimated by Perc, which can be used to compliment the information dominance rank supplies; (ii) summarize a series of studies by our research team reflecting the importance of 'dominance certainty' on individual and societal health in large captive rhesus macaque breeding groups; and (iii) provide some concluding remarks and suggestions for future directions for dominance hierarchy research. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Brenda McCowan
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Jessica Vandeleest
- California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Krishna Balasubramaniam
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Fushing Hsieh
- Department of Statistics, University of California, Davis, CA 95616, USA
| | - Amy Nathman
- California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Brianne Beisner
- Colony Management Department, Yerkes National Primate Research Center Field Station, Lawrenceville, GA, USA
| |
Collapse
|
37
|
Dehnen T, Arbon JJ, Farine DR, Boogert NJ. How feedback and feed-forward mechanisms link determinants of social dominance. Biol Rev Camb Philos Soc 2022; 97:1210-1230. [PMID: 35150197 DOI: 10.1111/brv.12838] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/21/2022]
Abstract
In many animal societies, individuals differ consistently in their ability to win agonistic interactions, resulting in dominance hierarchies. These differences arise due to a range of factors that can influence individuals' abilities to win agonistic interactions, spanning from genetically driven traits through to individuals' recent interaction history. Yet, despite a century of study since Schjelderup-Ebbe's seminal paper on social dominance, we still lack a general understanding of how these different factors work together to determine individuals' positions in hierarchies. Here, we first outline five widely studied factors that can influence interaction outcomes: intrinsic attributes, resource value asymmetry, winner-loser effects, dyadic interaction-outcome history and third-party support. A review of the evidence shows that a variety of factors are likely important to interaction outcomes, and thereby individuals' positions in dominance hierarchies, in diverse species. We propose that such factors are unlikely to determine dominance outcomes independently, but rather form part of feedback loops whereby the outcomes of previous agonistic interactions (e.g. access to food) impact factors that might be important in subsequent interactions (e.g. body condition). We provide a conceptual framework that illustrates the multitude potential routes through which such feedbacks can occur, and how the factors that determine the outcomes of dominance interactions are highly intertwined and thus rarely act independently of one another. Further, we generalise our framework to include multi-generational feed-forward mechanisms: how interaction outcomes in one generation can influence the factors determining interaction outcomes in the next generation via a range of parental effects. This general framework describes how interaction outcomes and the factors determining them are linked within generations via feedback loops, and between generations via feed-forward mechanisms. We then highlight methodological approaches that will facilitate the study of feedback loops and dominance dynamics. Lastly, we discuss how our framework could shape future research, including: how feedbacks generate variation in the factors discussed, and how this might be studied experimentally; how the relative importance of different feedback mechanisms varies across timescales; the role of social structure in modulating the effect of feedbacks on hierarchy structure and stability; and the routes of parental influence on the dominance status of offspring. Ultimately, by considering dominance interactions as part of a dynamic feedback system that also feeds forward into subsequent generations, we will understand better the factors that structure dominance hierarchies in animal groups.
Collapse
Affiliation(s)
- Tobit Dehnen
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, U.K.,Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätsstraße 10, Konstanz, 78464, Germany.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Josh J Arbon
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, U.K
| | - Damien R Farine
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätsstraße 10, Konstanz, 78464, Germany.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, Konstanz, 78464, Germany
| | - Neeltje J Boogert
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, U.K
| |
Collapse
|
38
|
Smith JE, Natterson-Horowitz B, Alfaro ME. The nature of privilege: intergenerational wealth in animal societies. Behav Ecol 2021. [DOI: 10.1093/beheco/arab137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Wealth inequality is widespread across human societies, from pastoral and small-scale agricultural groups to large modern social structures. The intergenerational transfer of wealth privileges some individuals over others through the transmission of resources external to an individual organism. Privileged access to household wealth (e.g., land, shelter, silver) positively influences the destinies of some (and their descendants) over others in human societies. Strikingly parallel phenomena exist in animal societies. Inheritance of nongenetic commodities (e.g., a nest, territory, tool) external to an individual also contributes greatly to direct fitness in animals. Here, we illustrate the evolutionary diversity of privilege and its disparity-generating effects on the evolutionary trajectories of lineages across the Tree of Life. We propose that integration of approaches used to study these patterns in humans may offer new insights into a core principle from behavioral ecology—differential access to inherited resources—and help to establish a broad, comparative framework for studying inequality in animals.
Collapse
Affiliation(s)
| | - B Natterson-Horowitz
- School of Medicine, Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
39
|
Brown AK, Pioon MO, Holekamp KE, Strauss ED. Infanticide by Females Is a Leading Source of Juvenile Mortality in a Large Social Carnivore. Am Nat 2021; 198:642-652. [PMID: 34648402 DOI: 10.1086/716636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSocial animals benefit from their groupmates, so why do they sometimes kill each other's offspring? Using 30 years of data from multiple groups of wild spotted hyenas, we address three critical aims for understanding infanticide in any species: (1) quantify the contribution of infanticide to overall mortality, (2) describe the circumstances under which infanticide occurs, and (3) evaluate hypotheses about the evolution of infanticide. We find that infanticide, although observed only rarely, is in fact a leading source of juvenile mortality. Infanticide accounted for 24% of juvenile mortality, and one in 10 hyenas born in our population perished as a result of infanticide. In all observed cases of infanticide, killers were adult females, but victims could be of both sexes. Of four hypotheses regarding the evolution of infanticide, we found the most support for the hypothesis that infanticide in spotted hyenas reflects competition over social status among matrilines.
Collapse
|
40
|
Phased contests allow rapid hierarchy formation in paired bumble bee workers. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Ilany A, Holekamp KE, Akçay E. Rank-dependent social inheritance determines social network structure in spotted hyenas. Science 2021; 373:348-352. [PMID: 34437155 DOI: 10.1126/science.abc1966] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
The structure of animal social networks influences survival and reproductive success, as well as pathogen and information transmission. However, the general mechanisms determining social structure remain unclear. Using data from 73,767 social interactions among wild spotted hyenas collected over 27 years, we show that the process of social inheritance determines how offspring relationships are formed and maintained. Relationships between offspring and other hyenas bear resemblance to those of their mothers for as long as 6 years, and the degree of similarity increases with maternal social rank. Mother-offspring relationship strength affects social inheritance and is positively correlated with offspring longevity. These results support the hypothesis that social inheritance of relationships can structure animal social networks and be subject to adaptive tradeoffs.
Collapse
Affiliation(s)
- Amiyaal Ilany
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.,Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Holekamp KE, Strauss ED. Reproduction Within a Hierarchical Society from a Female's Perspective. Integr Comp Biol 2021; 60:753-764. [PMID: 32667986 DOI: 10.1093/icb/icaa068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The reproductive biology of many female mammals is affected by their social environment and their interactions with conspecifics. In mammalian societies structured by linear dominance hierarchies, such as that of the spotted hyena (Crocuta crocuta), a female's social rank can have profound effects on both her reproductive success and her longevity. In this species, social rank determines priority of access to food, which is the resource limiting reproduction. Due largely to rank-related variation in access to food, reproduction from the perspective of a female spotted hyena can only be understood in the context of her position in the social hierarchy. In this review, we examine the effects of rank on the various phases of reproduction, from mating to weaning. Summed over many individual reproductive lifespans, the effect of rank at these different reproductive phases leads to dramatic rank-related variation in fitness among females and their lineages. Finally, we ask why females reproduce socially despite these apparent costs of group living to low-ranking females. Gregariousness enhances the fitness of females regardless of their positions in the social hierarchy, and females attempting to survive and reproduce without clanmates lose all their offspring. The positive effects of gregariousness appear to result from having female allies, both kin and non-kin, who cooperate to advertise and defend a shared territory, acquire, and defend food resources, maintain the status quo, and occasionally also to rise in social rank.
Collapse
Affiliation(s)
- Kay E Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Eli D Strauss
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA.,School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
43
|
|
44
|
Hobson EA, Mønster D, DeDeo S. Aggression heuristics underlie animal dominance hierarchies and provide evidence of group-level social information. Proc Natl Acad Sci U S A 2021; 118:e2022912118. [PMID: 33658380 PMCID: PMC7958391 DOI: 10.1073/pnas.2022912118] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of a social species need to make appropriate decisions about who, how, and when to interact with others in their group. However, it has been difficult for researchers to detect the inputs to these decisions and, in particular, how much information individuals actually have about their social context. We present a method that can serve as a social assay to quantify how patterns of aggression depend upon information about the ranks of individuals within social dominance hierarchies. Applied to existing data on aggression in 172 social groups across 85 species in 23 orders, it reveals three main patterns of rank-dependent social dominance: the downward heuristic (aggress uniformly against lower-ranked opponents), close competitors (aggress against opponents ranked slightly below self), and bullying (aggress against opponents ranked much lower than self). The majority of the groups (133 groups, 77%) follow a downward heuristic, but a significant minority (38 groups, 22%) show more complex social dominance patterns (close competitors or bullying) consistent with higher levels of social information use. These patterns are not phylogenetically constrained and different groups within the same species can use different patterns, suggesting that heuristic use may depend on context and the structuring of aggression by social information should not be considered a fixed characteristic of a species. Our approach provides opportunities to study the use of social information within and across species and the evolution of social complexity and cognition.
Collapse
Affiliation(s)
- Elizabeth A Hobson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221;
- Santa Fe Institute, Santa Fe, NM 87501
| | - Dan Mønster
- Interacting Minds Centre, Aarhus University, 8000 Aarhus C, Denmark
- School of Business and Social Sciences, Aarhus University, 8210 Aarhus V, Denmark
- Cognition and Behavior Lab, Aarhus University, 8210 Aarhus V, Denmark
| | - Simon DeDeo
- Santa Fe Institute, Santa Fe, NM 87501
- Department of Social and Decision Sciences, Dietrich College of Humanities and Social Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
45
|
Culbert BM, Ligocki IY, Salena MG, Wong MYL, Bernier NJ, Hamilton IM, Balshine S. Glucocorticoids do not promote prosociality in a wild group-living fish. Horm Behav 2021; 127:104879. [PMID: 33121993 DOI: 10.1016/j.yhbeh.2020.104879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/13/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
Individuals often respond to social disturbances by increasing prosociality, which can strengthen social bonds, buffer against stress, and promote overall group cohesion. Given their importance in mediating stress responses, glucocorticoids have received considerable attention as potential proximate regulators of prosocial behaviour during disturbances. However, previous investigations have largely focused on mammals and our understanding of the potential prosocial effects of glucocorticoids across vertebrates more broadly is still lacking. Here, we assessed whether experimentally elevated glucocorticoid levels (simulating endogenous cortisol responses mounted following disturbances) promote prosocial behaviours in wild groups of the cichlid fish, Neolamprologus pulcher. Using SCUBA in Lake Tanganyika, we observed how subordinate group members adjusted affiliation, helping, and submission (all forms of prosocial behaviour) following underwater injections of either cortisol or saline. Cortisol treatment reduced affiliative behaviours-but only in females-suggesting that glucocorticoids may reduce overall prosociality. Fish with elevated glucocorticoid levels did not increase performance of submission or helping behaviours. Taken together, our results do not support a role for glucocorticoids in promoting prosocial behaviour in this species and emphasize the complexity of the proximate mechanisms that underlie prosociality.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Isaac Y Ligocki
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Biology, Millersville University, Millersville, PA, USA
| | - Matthew G Salena
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Marian Y L Wong
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
46
|
Social Structure. Anim Behav 2021. [DOI: 10.1007/978-3-030-82879-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Cantor M, Maldonado‐Chaparro AA, Beck KB, Brandl HB, Carter GG, He P, Hillemann F, Klarevas‐Irby JA, Ogino M, Papageorgiou D, Prox L, Farine DR. The importance of individual‐to‐society feedbacks in animal ecology and evolution. J Anim Ecol 2020; 90:27-44. [DOI: 10.1111/1365-2656.13336] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Maurício Cantor
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
- Departamento de Ecologia e Zoologia Universidade Federal de Santa Catarina Florianópolis Brazil
- Centro de Estudos do Mar Universidade Federal do Paraná Pontal do Paraná Brazil
| | - Adriana A. Maldonado‐Chaparro
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Kristina B. Beck
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology Seewiesen Germany
| | - Hanja B. Brandl
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Gerald G. Carter
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Evolution, Ecology and Organismal Biology The Ohio State University Columbus OH USA
| | - Peng He
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Friederike Hillemann
- Edward Grey Institute of Field Ornithology Department of Zoology University of Oxford Oxford UK
| | - James A. Klarevas‐Irby
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
- Department of Migration Max Planck Institute of Animal Behavior Konstanz Germany
| | - Mina Ogino
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Danai Papageorgiou
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Lea Prox
- Department of Biology University of Konstanz Konstanz Germany
- Department of Sociobiology/Anthropology Johann‐Friedrich‐Blumenbach Institute of Zoology & Anthropology University of Göttingen Göttingen Germany
- Behavioral Ecology & Sociobiology Unit German Primate Center Göttingen Germany
| | - Damien R. Farine
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| |
Collapse
|
48
|
Differences in social information are critical to understanding aggressive behavior in animal dominance hierarchies. Curr Opin Psychol 2020; 33:209-215. [DOI: 10.1016/j.copsyc.2019.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 01/03/2023]
|
49
|
Snyder-Mackler N, Burger JR, Gaydosh L, Belsky DW, Noppert GA, Campos FA, Bartolomucci A, Yang YC, Aiello AE, O'Rand A, Harris KM, Shively CA, Alberts SC, Tung J. Social determinants of health and survival in humans and other animals. Science 2020; 368:eaax9553. [PMID: 32439765 PMCID: PMC7398600 DOI: 10.1126/science.aax9553] [Citation(s) in RCA: 362] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
The social environment, both in early life and adulthood, is one of the strongest predictors of morbidity and mortality risk in humans. Evidence from long-term studies of other social mammals indicates that this relationship is similar across many species. In addition, experimental studies show that social interactions can causally alter animal physiology, disease risk, and life span itself. These findings highlight the importance of the social environment to health and mortality as well as Darwinian fitness-outcomes of interest to social scientists and biologists alike. They thus emphasize the utility of cross-species analysis for understanding the predictors of, and mechanisms underlying, social gradients in health.
Collapse
Affiliation(s)
- Noah Snyder-Mackler
- Social and Biological Determinants of Health Working Group, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Psychology, University of Washington, Seattle, WA, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Joseph Robert Burger
- Social and Biological Determinants of Health Working Group, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- Institute of the Environment, University of Arizona, Tucson, AZ, USA
| | - Lauren Gaydosh
- Social and Biological Determinants of Health Working Group, NC, USA
- Center for Medicine, Health, and Society, Vanderbilt University, Nashville, TN, USA
| | - Daniel W Belsky
- Social and Biological Determinants of Health Working Group, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Grace A Noppert
- Social and Biological Determinants of Health Working Group, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Center for Population Health and Aging, Duke University, Durham, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for the Study of Aging and Human Development, Duke University, Durham, NC, USA
| | - Fernando A Campos
- Social and Biological Determinants of Health Working Group, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Yang Claire Yang
- Social and Biological Determinants of Health Working Group, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison E Aiello
- Social and Biological Determinants of Health Working Group, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angela O'Rand
- Social and Biological Determinants of Health Working Group, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Center for Population Health and Aging, Duke University, Durham, NC, USA
| | - Kathleen Mullan Harris
- Social and Biological Determinants of Health Working Group, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carol A Shively
- Social and Biological Determinants of Health Working Group, NC, USA
- Comparative Medicine Section, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Susan C Alberts
- Social and Biological Determinants of Health Working Group, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Center for Population Health and Aging, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Institute of Primate Research, Nairobi, Kenya
| | - Jenny Tung
- Social and Biological Determinants of Health Working Group, NC, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Population Research Institute, Duke University, Durham, NC, USA
- Center for Population Health and Aging, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Institute of Primate Research, Nairobi, Kenya
| |
Collapse
|
50
|
Mapping Kenyan Grassland Heights Across Large Spatial Scales with Combined Optical and Radar Satellite Imagery. REMOTE SENSING 2020. [DOI: 10.3390/rs12071086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Grassland monitoring can be challenging because it is time-consuming and expensive to measure grass condition at large spatial scales. Remote sensing offers a time- and cost-effective method for mapping and monitoring grassland condition at both large spatial extents and fine temporal resolutions. Combinations of remotely sensed optical and radar imagery are particularly promising because together they can measure differences in moisture, structure, and reflectance among land cover types. We combined multi-date radar (PALSAR-2 and Sentinel-1) and optical (Sentinel-2) imagery with field data and visual interpretation of aerial imagery to classify land cover in the Masai Mara National Reserve, Kenya using machine learning (Random Forests). This study area comprises a diverse array of land cover types and changes over time due to seasonal changes in precipitation, seasonal movements of large herds of resident and migratory ungulates, fires, and livestock grazing. We classified twelve land cover types with user’s and producer’s accuracies ranging from 66%–100% and an overall accuracy of 86%. These methods were able to distinguish among short, medium, and tall grass cover at user’s accuracies of 83%, 82%, and 85%, respectively. By yielding a highly accurate, fine-resolution map that distinguishes among grasses of different heights, this work not only outlines a viable method for future grassland mapping efforts but also will help inform local management decisions and research in the Masai Mara National Reserve.
Collapse
|