1
|
Neureiter EG, Erickson-Oberg MQ, Nigam A, Johnson JW. Inhibition of NMDA receptors and other ion channel types by membrane-associated drugs. Front Pharmacol 2025; 16:1561956. [PMID: 40371334 PMCID: PMC12075551 DOI: 10.3389/fphar.2025.1561956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels present at most excitatory synapses in the brain that play essential roles in cognitive functions including learning and memory consolidation. However, NMDAR dysregulation is implicated in many nervous system disorders. Diseases that involve pathological hyperactivity of NMDARs can be treated clinically through inhibition by channel blocking drugs. NMDAR channel block can occur via two known mechanisms. First, in traditional block, charged drug molecules can enter the channel directly from the extracellular solution after NMDAR activation and channel opening. Second, uncharged molecules of channel blocking drug can enter the hydrophobic plasma membrane, and upon NMDAR activation the membrane-associated drug can transit into the channel through a fenestration within the NMDAR. This membrane-associated mechanism of action is called membrane to channel inhibition (MCI) and is not well understood despite the clinical importance of NMDAR channel blocking drugs. Intriguingly, a hydrophobic route of access for drugs is not unique to NMDARs. Our review will address inhibition of NMDARs and other ion channels by membrane-associated drugs and consider how the path of access may affect a drug's therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Jon W. Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Tang R, Perez R, Brogan DM, Berezin MY, McCarthy JE. Imaging Peripheral Nerves In Vivo with CT Neurogram Using Novel 2,4,6-Tri-Iodinated Lidocaine Contrast Agent. Bioengineering (Basel) 2025; 12:422. [PMID: 40281782 PMCID: PMC12024922 DOI: 10.3390/bioengineering12040422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Peripheral nerve injuries are a significant concern in surgical procedures, often leading to chronic pain and functional impairment. Despite advancements in imaging, preoperative and intraoperative visualization of peripheral nerves remains a challenge. This study introduces and evaluates a novel tri-iodinated lidocaine-based contrast agent for computed tomography neurography, aiming to enhance the intraoperative visibility of peripheral nerves in vivo. A tri-iodinated lidocaine analogue was synthesized and characterized for its radiodensity, sodium channel binding and nerve affinity. Sodium channel affinity was performed using molecular docking. In vitro contrast enhancement was assessed by comparing the agent's Hounsfield unit (HU) values with those of Omnipaque, a clinically approved contrast medium. In vivo imaging was conducted on rat sciatic nerves using micro-CT, followed by ex vivo validation. Nerve conduction blockade was assessed via electrical stimulation and histological analysis was performed to evaluate neurotoxicity. Experimental results revealed the tri-iodinated lidocaine analogue to have similar or higher affinity toward voltage-gated sodium channels than the parent lidocaine and a radiodensity comparable to the commercial CT contrast agent Omnipaque in vitro. In vivo, the contrast agent provided CT visualization of the sciatic nerve, with a significant increase in HU values compared to untreated nerves. Electrical stimulation confirmed transient nerve conduction blockade without observable histological damage, supporting its dual role as an imaging and nerve-blocking agent. This study presents a novel tri-iodinated lidocaine-based contrast agent that enables clear CT visualization of peripheral nerves while maintaining reversible nerve inhibition. These findings support its potential application in preoperative planning and intraoperative nerve protection to reduce surgical nerve injuries. Further studies are warranted to optimize imaging conditions and evaluate its clinical feasibility.
Collapse
Affiliation(s)
- Rui Tang
- Department of Radiology, School of Medicine, Washington University, St. Louis, MO 63110, USA;
| | - Ron Perez
- Department of Orthopedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110, USA; (R.P.); (D.M.B.)
| | - David M. Brogan
- Department of Orthopedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110, USA; (R.P.); (D.M.B.)
| | - Mikhail Y. Berezin
- Department of Radiology, School of Medicine, Washington University, St. Louis, MO 63110, USA;
| | | |
Collapse
|
3
|
Ghovanloo MR, Tyagi S, Effraim PR, Waxman SG. In vitro inhibition of voltage-dependent sodium currents by the antifungal drug amorolfine. J Biol Chem 2025; 301:108407. [PMID: 40090585 PMCID: PMC12004706 DOI: 10.1016/j.jbc.2025.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/19/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025] Open
Abstract
Voltage-gated sodium (Nav) channels are critical for electrical signaling, and their pharmacological modulation can be leveraged for the development of therapeutic agents targeting various disorders. The local anesthetic (LA) site on Nav channels is particularly important, as it is a common target for many clinically used inhibitors, including anticonvulsants and antiarrhythmics. Our goal was to identify novel Nav channel inhibitors by leveraging physicochemical criteria, focusing on potential LA site binding candidates. We identified amorolfine (AMF), a phenyl-propyl morpholine derivative, as a putative modulator. Our results demonstrate that AMF acts as a state-dependent inhibitor of Nav channels, with a ∼30-fold preference for inactivated states. It stabilizes channel inactivation and prevents channel from conducting, driven through its stabilization of inactivation. These findings suggest that AMF represents a new compound that inhibits Nav channels, offering insights into the development of future therapeutic agents targeting Nav and potentially other ion channels.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA; Center for Neuroscience & Regeneration Research, Yale University, West Haven, Connecticut, USA; Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA.
| | - Sidharth Tyagi
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA; Center for Neuroscience & Regeneration Research, Yale University, West Haven, Connecticut, USA; Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA; Medical Scientist Training Program, Yale School of Medicine, New Haven, Connecticut, USA
| | - Philip R Effraim
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, Connecticut, USA; Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA; Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Stephen G Waxman
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA; Center for Neuroscience & Regeneration Research, Yale University, West Haven, Connecticut, USA; Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA.
| |
Collapse
|
4
|
Pipatpolkai T. How could simulations elucidate Nav1.5 channel blockers mechanism? J Gen Physiol 2025; 157:e202413730. [PMID: 39774836 PMCID: PMC11706210 DOI: 10.1085/jgp.202413730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Tao and Corry used metadynamics, an enhanced sampling method to identify and classify Nav channel blockers.
Collapse
Affiliation(s)
- Tanadet Pipatpolkai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
5
|
Tao E, Corry B. Drugs exhibit diverse binding modes and access routes in the Nav1.5 cardiac sodium channel pore. J Gen Physiol 2025; 157:e202413658. [PMID: 39774837 PMCID: PMC11706274 DOI: 10.1085/jgp.202413658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/05/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Small molecule inhibitors of the sodium channel are common pharmacological agents used to treat a variety of cardiac and nervous system pathologies. They act on the channel via binding within the pore to directly block the sodium conduction pathway and/or modulate the channel to favor a non-conductive state. Despite their abundant clinical use, we lack specific knowledge of their protein-drug interactions and the subtle variations between different compound structures. This study investigates the binding and accessibility of nine different compounds in the pore cavity of the Nav1.5 sodium channel using enhanced sampling simulations. We find that most compounds share a common location of pore binding-near the mouth of the DII-III fenestration-associated with the high number of aromatic residues in this region. In contrast, some other compounds prefer binding within the lateral fenestrations where they compete with lipids, rather than binding in the central cavity. Overall, our simulation results suggest that the drug binding within the pore is highly promiscuous, with most drugs having multiple low-affinity binding sites. Access to the pore interior via two out of four of the hydrophobic fenestrations is favorable for the majority of compounds. Our results indicate that the polyspecific and diffuse binding of inhibitors in the pore contributes to the varied nature of their inhibitory effects and can be exploited for future drug discovery and optimization.
Collapse
Affiliation(s)
- Elaine Tao
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, Australia
| | - Ben Corry
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
6
|
Guadarrama E, Vanoye CG, DeCaen PG. Defining the Polycystin Pharmacophore Through HTS & Computational Biophysics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632808. [PMID: 39868095 PMCID: PMC11761769 DOI: 10.1101/2025.01.13.632808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background and Purpose Polycystins (PKD2, PKD2L1) are voltage-gated and Ca2+-modulated members of the transient receptor potential (TRP) family of ion channels. Loss of PKD2L1 expression results in seizure-susceptibility and autism-like features in mice, whereas variants in PKD2 cause autosomal dominant polycystic kidney disease. Despite decades of evidence clearly linking their dysfunction to human disease and demonstrating their physiological importance in the brain and kidneys, the polycystin pharmacophore remains undefined. Contributing to this knowledge gap is their resistance to drug screening campaigns, which are hindered by these channels' unique subcellular trafficking to organelles such as the primary cilium. PKD2L1 is the only member of the polycystin family to form constitutively active ion channels on the plasma membrane when overexpressed. Experimental Approach HEK293 cells stably expressing PKD2L1 F514A were pharmacologically screened via high-throughput electrophysiology to identify potent polycystin channel modulators. In-silico docking analysis and mutagenesis were used to define the receptor sites of screen hits. Inhibition by membrane-impermeable QX-314 was used to evaluate PKD2L1's binding site accessibility. Key Results Screen results identify potent PKD2L1 antagonists with divergent chemical core structures and highlight striking similarities between the molecular pharmacology of PKD2L1 and voltage-gated sodium channels. Docking analysis, channel mutagenesis, and physiological recordings identify an open-state accessible lateral fenestration receptor within the pore, and a mechanism of inhibition that stabilizes the PKD2L1 inactivated state. Conclusion and Implication Outcomes establish the suitability of our approach to expand our chemical knowledge of polycystins and delineates novel receptor moieties for the development of channel-specific antagonists in TRP channel research.
Collapse
Affiliation(s)
- Eduardo Guadarrama
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Carlos G. Vanoye
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Paul G. DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
7
|
Şulea TA, Draga S, Mernea M, Corlan AD, Radu BM, Petrescu AJ, Amuzescu B. Differential Inhibition by Cenobamate of Canonical Human Nav1.5 Ion Channels and Several Point Mutants. Int J Mol Sci 2025; 26:358. [PMID: 39796214 PMCID: PMC11720074 DOI: 10.3390/ijms26010358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/21/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
Cenobamate is a new and highly effective antiseizure compound used for the treatment of adults with focal onset seizures and particularly for epilepsy resistant to other antiepileptic drugs. It acts on multiple targets, as it is a positive allosteric activator of γ-aminobutyric acid type A (GABAA) receptors and an inhibitor of neuronal sodium channels, particularly of the late or persistent Na+ current. We recently evidenced the inhibitory effects of cenobamate on the peak and late current component of the human cardiac isoform hNav1.5. The determined apparent IC50 values of 87.6 µM (peak) and 46.5 µM (late current) are within a clinically relevant range of concentrations (the maximal plasma therapeutic effective concentration for a daily dose of 400 mg in humans is 170 µM). In this study, we built a 3D model of the canonical hNav1.5 channel (UniProt Q14524-1) in open conformation using AlphaFold2, embedded it in a DPPC lipid bilayer, corrected the residue protonation state (pH 7.2) with H++, and added 2 Na+ ions in the selectivity filter. By molecular docking, we found the cenobamate binding site in the central cavity. We identified 10-point mutant variants in the binding site region and explored them via docking and MD. Mutants N1462K/Y (rs1064795922, rs199473614) and M1765R (rs752476527) (by docking) and N932S (rs2061582195) (by MD) featured higher predicted affinity than wild-type.
Collapse
Affiliation(s)
- Teodor Asvadur Şulea
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania; (T.A.Ş.); (A.-J.P.)
| | - Sorin Draga
- Biotehnos SA, Gorunului Str. 3-5, 075100 Otopeni, Romania;
- Non-Governmental Research Organization Biologic, 14 Schitului Str., 032044 Bucharest, Romania
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (B.M.R.); (B.A.)
| | - Alexandru Dan Corlan
- Cardiology Research Unit, University and Emergency Hospital of Bucharest, Splaiul Independenței 169, 050098 Bucharest, Romania;
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (B.M.R.); (B.A.)
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania; (T.A.Ş.); (A.-J.P.)
| | - Bogdan Amuzescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (B.M.R.); (B.A.)
| |
Collapse
|
8
|
Lopez-Mateos D, Harris BJ, Hernández-González A, Narang K, Yarov-Yarovoy V. Harnessing Deep Learning Methods for Voltage-Gated Ion Channel Drug Discovery. Physiology (Bethesda) 2025; 40:0. [PMID: 39189871 DOI: 10.1152/physiol.00029.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Voltage-gated ion channels (VGICs) are pivotal in regulating electrical activity in excitable cells and are critical pharmaceutical targets for treating many diseases including cardiac arrhythmia and neuropathic pain. Despite their significance, challenges such as achieving target selectivity persist in VGIC drug development. Recent progress in deep learning, particularly diffusion models, has enabled the computational design of protein binders for any clinically relevant protein based solely on its structure. These developments coincide with a surge in experimental structural data for VGICs, providing a rich foundation for computational design efforts. This review explores the recent advancements in computational protein design using deep learning and diffusion methods, focusing on their application in designing protein binders to modulate VGIC activity. We discuss the potential use of these methods to computationally design protein binders targeting different regions of VGICs, including the pore domain, voltage-sensing domains, and interface with auxiliary subunits. We provide a comprehensive overview of the different design scenarios, discuss key structural considerations, and address the practical challenges in developing VGIC-targeting protein binders. By exploring these innovative computational methods, we aim to provide a framework for developing novel strategies that could significantly advance VGIC pharmacology and lead to the discovery of effective and safe therapeutics.
Collapse
Affiliation(s)
- Diego Lopez-Mateos
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, United States
- Biophysics Graduate Group, University of California School of Medicine, Davis, California, United States
| | - Brandon John Harris
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, United States
- Biophysics Graduate Group, University of California School of Medicine, Davis, California, United States
| | - Adriana Hernández-González
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, United States
- Biophysics Graduate Group, University of California School of Medicine, Davis, California, United States
| | - Kush Narang
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, United States
- Biophysics Graduate Group, University of California School of Medicine, Davis, California, United States
- Department of Anesthesiology and Pain Medicine, University of California School of Medicine, Davis, California, United States
| |
Collapse
|
9
|
Gaburjakova J, Domsicova M, Poturnayova A, Gaburjakova M. Flecainide Specifically Targets the Monovalent Countercurrent Through the Cardiac Ryanodine Receptor, While a Dominant Opposing Ca 2+/Ba 2+ Current Is Present. Int J Mol Sci 2024; 26:203. [PMID: 39796059 PMCID: PMC11719481 DOI: 10.3390/ijms26010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na+ channel, also affecting the intracellular RyR2 channel. The therapeutic relevance of the flecainide-RyR2 interaction remains controversial, as flecainide blocks only the RyR2 current flowing in the opposite direction to the physiological Ca2+ release from the sarcoplasmic reticulum (SR). However, it has been proposed that charge-compensating countercurrent from the cytosol to SR lumen plays a critical role, and its reduction may indeed suppress excessive diastolic SR Ca2+ release through RyR2 channels in CPVT. Monitoring single-channel properties, we examined whether flecainide can target intracellular pathways for charge-balancing currents carried by RyR2 and SR Cl- channels under cell-like conditions. Particularly, the Tris+ countercurrent flowed through the RyR2 channel simultaneously with a dominant reverse Ca2+/Ba2+ current. We demonstrate that flecainide blocked the RyR2-mediated countercurrent without affecting channel activity. In contrast, the SR Cl- channel was completely resistant to flecainide. Based on these findings, it is reasonable to propose that the primary intracellular target of flecainide in vivo is the RyR2-mediated countercurrent.
Collapse
Affiliation(s)
| | | | | | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia; (J.G.); (M.D.); (A.P.)
| |
Collapse
|
10
|
Bandarupalli R, Roth R, Klipp RC, Bankston JR, Li J. Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3. J Phys Chem B 2024; 128:12685-12697. [PMID: 39666997 DOI: 10.1021/acs.jpcb.4c04289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Polyunsaturated fatty acids (PUFAs) and their analogs play a significant role in modulating the activity of diverse ion channels, and recent studies show that these lipids potentiate acid-sensing ion channels (ASICs), leading to increased activity. The potentiation of the channel stems from multiple gating changes, but the exact mechanism of these effects remains uncertain. We posit a mechanistic explanation for one of these changes in channel function, the increase in the maximal current, by applying a combination of electrophysiology and all-atom molecular dynamics simulations on open-state hASIC3. Microsecond-scale simulations were performed on open-state hASIC3 in the absence and presence of a PUFA, docosahexaenoic acid (DHA), and a PUFA analogue, N-arachidonyl glycine (AG). Intriguingly, our simulations in the absence of PUFA or PUFA analogs reveal that a tail from the membrane phospholipid POPC inserts itself into the pore of the channel through lateral fenestrations on the sides of the transmembrane segments, obstructing ion permeation through the channel. The binding of either DHA or AG prevented POPC from accessing the pore in our simulations, which relied on the block of ionic conduction by phospholipids. Finally, we use single-channel recording to show that DHA increases the amplitude of the single-channel currents in ASIC3, which is consistent with our hypothesis that PUFAs relieve the pore block of the channel induced by POPCs. Together, these findings offer a potential mechanistic explanation of how PUFAs modulate the ASIC maximal current, revealing a novel mechanism of action for PUFA-induced modulation of ion channels.
Collapse
Affiliation(s)
- Ramya Bandarupalli
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Rebecca Roth
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Robert C Klipp
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi 38677, United States
| |
Collapse
|
11
|
Li Z, Wu Q, Yan N. A structural atlas of druggable sites on Na v channels. Channels (Austin) 2024; 18:2287832. [PMID: 38033122 PMCID: PMC10732651 DOI: 10.1080/19336950.2023.2287832] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Voltage-gated sodium (Nav) channels govern membrane excitability by initiating and propagating action potentials. Consistent with their physiological significance, dysfunction, or mutations in these channels are associated with various channelopathies. Nav channels are thereby major targets for various clinical and investigational drugs. In addition, a large number of natural toxins, both small molecules and peptides, can bind to Nav channels and modulate their functions. Technological breakthrough in cryo-electron microscopy (cryo-EM) has enabled the determination of high-resolution structures of eukaryotic and eventually human Nav channels, alone or in complex with auxiliary subunits, toxins, and drugs. These studies have not only advanced our comprehension of channel architecture and working mechanisms but also afforded unprecedented clarity to the molecular basis for the binding and mechanism of action (MOA) of prototypical drugs and toxins. In this review, we will provide an overview of the recent advances in structural pharmacology of Nav channels, encompassing the structural map for ligand binding on Nav channels. These findings have established a vital groundwork for future drug development.
Collapse
Affiliation(s)
- Zhangqiang Li
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiurong Wu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong Province, China
| |
Collapse
|
12
|
Hollingworth D, Herold KF, Kelly G, Mykhaylyk VB, Xiang J, Zhang D, Wallace BA, Hemmings HC. Functionally important binding site for a volatile anesthetic in a voltage-gated sodium channel identified by X-ray crystallography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621342. [PMID: 39574657 PMCID: PMC11580951 DOI: 10.1101/2024.11.04.621342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Volatile general anesthetics are used for inhalational anesthesia in hundreds of millions of surgical procedures annually, yet their mechanisms of action remain unclear. Membrane proteins involved in cell signaling are major targets for anesthetics, and voltage-gated ion channels that mediate neurotransmission, movement, and cognition are sensitive to volatile anesthetics (VAs). In many cases, the effects produced by VAs on mammalian ion channels are reproduced in prokaryotic orthologues, providing an opportunity to investigate VA interactions at high resolution using these structurally simpler prokaryotic proteins. We utilized the bacterial voltage-gated sodium channel (VGSC) NavMs from Magnetococcus marinus to investigate its interaction with the widely used VA sevoflurane. Sevoflurane interacted directly with NavMs, producing effects consistent with multisite binding models for VA actions on their targets. We report the identification of one of these interactions at atomic detail providing the first high-resolution structure of a VA bound to a voltage-gated ion channel. The X-ray crystal structure shows sevoflurane binding to NavMs within an intramembrane hydrophobic pocket formed by residues from the voltage sensor and channel pore, domains essential for channel gating. Mutation of the dominant sevoflurane binding-site residue within this pocket, and analogous residues found in similar sites in human VGSCs, profoundly affected channel properties, supporting a critical role for this site in VGSC function. These findings provide the basis for future work to understand the role of VA interactions with VGSCs in both the anesthetic and toxic effects associated with general anesthesia.
Collapse
Affiliation(s)
| | - Karl F Herold
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, London, UK
| | - Vitaliy B Mykhaylyk
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, UK
| | - Jiaxin Xiang
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Donghang Zhang
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - B A Wallace
- School of Natural Sciences, Birkbeck University of London, London, UK
| | - Hugh C Hemmings
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
13
|
Xiao Y, Pan Y, Xiao J, Cummins TR. Molecular determinants of resurgent sodium currents mediated by Navβ4 peptide and A-type FHFs. Front Mol Neurosci 2024; 17:1433981. [PMID: 39416265 PMCID: PMC11480954 DOI: 10.3389/fnmol.2024.1433981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Resurgent current (INaR ) generated by voltage-gated sodium channels (VGSCs) plays an essential role in maintaining high-frequency firing of many neurons and contributes to disease pathophysiology such as epilepsy and painful disorders. Targeting INaR may present a highly promising strategy in the treatment of these diseases. Navβ4 and A-type fibroblast growth factor homologous factors (FHFs) have been identified as two classes of important INaR mediators; however, their receptor sites in VGSCs remain unknown, which hinders the development of novel agents to effectively target INaR . Methods Navβ4 and FHF4A can mediate INaR generation through the amino acid segment located in their C-terminus and N-terminus, respectively. We mainly employed site-directed mutagenesis, chimera construction and whole-cell patch-clamp recording to explore the receptor sites of Navβ4 peptide and FHF4A in Nav1.7 and Nav1.8. Results We show that the receptor of Navβ4-peptide involves four residues, N395, N945, F1737 and Y1744, in Nav1.7 DI-S6, DII-S6, and DIV-S6. We show that A-type FHFs generating INaR depends on the segment located at the very beginning, not at the distal end, of the FHF4 N-terminus domain. We show that the receptor site of A-type FHFs also resides in VGSC inner pore region. We further show that an asparagine at DIIS6, N891 in Nav1.8, is a major determinant of INaR generated by A-type FHFs in VGSCs. Discussion Cryo-EM structures reveal that the side chains of the critical residues project into the VGSC channel pore. Our findings provide additional evidence that Navβ4 peptide and A-type FHFs function as open-channel pore blockers and highlight channel inner pore region as a hotspot for development of novel agents targeting INaR .
Collapse
Affiliation(s)
- Yucheng Xiao
- Biology Department, School of Science, Indiana University Indianapolis, Indianapolis, IN, United States
| | - Yanling Pan
- Biology Department, School of Science, Indiana University Indianapolis, Indianapolis, IN, United States
| | - Jingyu Xiao
- School of Engineering, Purdue University, West Lafayette, IN, United States
| | - Theodore R. Cummins
- Biology Department, School of Science, Indiana University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
14
|
Hollingworth D, Thomas F, Page DA, Fouda MA, De Castro RLR, Sula A, Mykhaylyk VB, Kelly G, Ulmschneider MB, Ruben PC, Wallace BA. Structural basis for the rescue of hyperexcitable cells by the amyotrophic lateral sclerosis drug Riluzole. Nat Commun 2024; 15:8426. [PMID: 39341837 PMCID: PMC11438954 DOI: 10.1038/s41467-024-52539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Neuronal hyperexcitability is a key element of many neurodegenerative disorders including the motor neuron disease Amyotrophic Lateral Sclerosis (ALS), where it occurs associated with elevated late sodium current (INaL). INaL results from incomplete inactivation of voltage-gated sodium channels (VGSCs) after their opening and shapes physiological membrane excitability. However, dysfunctional increases can cause hyperexcitability-associated diseases. Here we reveal the atypical binding mechanism which explains how the neuroprotective ALS-treatment drug riluzole stabilises VGSCs in their inactivated state to cause the suppression of INaL that leads to reversed cellular overexcitability. Riluzole accumulates in the membrane and enters VGSCs through openings to their membrane-accessible fenestrations. Riluzole binds within these fenestrations to stabilise the inactivated channel state, allowing for the selective allosteric inhibition of INaL without the physical block of Na+ conduction associated with traditional channel pore binding VGSC drugs. We further demonstrate that riluzole can reproduce these effects on a disease variant of the non-neuronal VGSC isoform Nav1.4, where pathologically increased INaL is caused directly by mutation. Overall, we identify a model for VGSC inhibition that produces effects consistent with the inhibitory action of riluzole observed in models of ALS. Our findings will aid future drug design and supports research directed towards riluzole repurposing.
Collapse
Affiliation(s)
- David Hollingworth
- School of Natural Sciences, Birkbeck University of London, London, United Kingdom
| | - Frances Thomas
- School of Natural Sciences, Birkbeck University of London, London, United Kingdom
| | - Dana A Page
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Mohamed A Fouda
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Raquel Lopez-Rios De Castro
- Department of Chemistry, King's College London, London, United Kingdom
- Biological Physics and Soft Matter Group, Department of Physics, King's College London, London, United Kingdom
| | - Altin Sula
- Syngenta Crop Protection, Jealott's Hill International Research Centre, Bracknell, Berkshire, United Kingdom
| | - Vitaliy B Mykhaylyk
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, London, UK
| | | | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | - B A Wallace
- School of Natural Sciences, Birkbeck University of London, London, United Kingdom.
| |
Collapse
|
15
|
Bandarupalli R, Roth R, Klipp RC, Bankston JR, Li J. Molecular Insights into Single Chain Lipid Modulation of Acid-Sensing Ion Channel 3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610156. [PMID: 39257759 PMCID: PMC11383688 DOI: 10.1101/2024.08.29.610156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Polyunsaturated fatty acids (PUFAs) and their analogs play a significant role in modulating the activity of diverse ion channels, and recent studies show that these lipids potentiate acid-sensing ion channels (ASICs), leading to increased activity. The potentiation of the channel stems from multiple gating changes, but the exact mechanism of these effects remains uncertain. We posit a mechanistic explanation for one of these changes in channel function, the increase in the maximal current, by applying a combination of electrophysiology and all-atom molecular dynamics simulations on the open-state hASIC3. Microsecond-scale simulations were performed on open-state hASIC3 in the absence and presence of a PUFA, docosahexaenoic acid (DHA), and a PUFA analog, N-arachidonyl glycine (AG). Intriguingly, our simulations in the absence of PUFA or PUFA analogs reveal that a tail from the membrane phospholipid POPC inserts itself into the pore of the channel through lateral fenestrations on the sides of the transmembrane segments, obstructing ion permeation through the channel. The binding of either DHA or AG prevented POPC from accessing the pore in our simulations, relieving the block of ionic conduction by phospholipids. Finally, we use the single-channel recording to show that DHA increases the amplitude of the single-channel currents in ASIC3, which is consistent with our hypothesis that PUFAs relieve the pore block of the channel induced by POPCs. Together, these findings offer a potential mechanistic explanation of how PUFAs modulate ASIC maximal current, revealing a novel mechanism of action for PUFA-induced modulation of ion channels.
Collapse
Affiliation(s)
- Ramya Bandarupalli
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| | - Rebecca Roth
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Robert C Klipp
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| |
Collapse
|
16
|
Palmisano VF, Anguita-Ortiz N, Faraji S, Nogueira JJ. Voltage-Gated Ion Channels: Structure, Pharmacology and Photopharmacology. Chemphyschem 2024; 25:e202400162. [PMID: 38649320 DOI: 10.1002/cphc.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Voltage-gated ion channels are transmembrane proteins responsible for the generation and propagation of action potentials in excitable cells. Over the last decade, advancements have enabled the elucidation of crystal structures of ion channels. This progress in structural understanding, particularly in identifying the binding sites of local anesthetics, opens avenues for the design of novel compounds capable of modulating ion conduction. However, many traditional drugs lack selectivity and come with adverse side effects. The emergence of photopharmacology has provided an orthogonal way of controlling the activity of compounds, enabling the regulation of ion conduction with light. In this review, we explore the central pore region of voltage-gated sodium and potassium channels, providing insights from both structural and pharmacological perspectives. We discuss the different binding modes of synthetic compounds that can physically occlude the pore and, therefore, block ion conduction. Moreover, we examine recent advances in the photopharmacology of voltage-gated ion channels, introducing molecular approaches aimed at controlling their activity by using photosensitive drugs.
Collapse
Affiliation(s)
- Vito F Palmisano
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Nuria Anguita-Ortiz
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Shirin Faraji
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Juan J Nogueira
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- IADCHEM, Institute for Advanced Research in Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
17
|
Catterall WA, Gamal El-Din TM, Wisedchaisri G. The chemistry of electrical signaling in sodium channels from bacteria and beyond. Cell Chem Biol 2024; 31:1405-1421. [PMID: 39151407 PMCID: PMC12084679 DOI: 10.1016/j.chembiol.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Electrical signaling is essential for all fast processes in biology, but its molecular mechanisms have been uncertain. This review article focuses on studies of bacterial sodium channels in order to home in on the essential molecular and chemical mechanisms underlying transmembrane ion conductance and voltage-dependent gating without the overlay of complex protein interactions and regulatory mechanisms in mammalian sodium channels. This minimalist approach has yielded a nearly complete picture of sodium channel function at the atomic level that are mostly conserved in mammalian sodium channels, including sodium selectivity and conductance, voltage sensing and activation, electromechanical coupling to pore opening and closing, slow inactivation, and pathogenic dysfunction in a debilitating channelopathy. Future studies of nature's simplest sodium channels may continue to yield key insights into the fundamental molecular and chemical principles of their function and further elucidate the chemical basis of electrical signaling.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Tamer M Gamal El-Din
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Goragot Wisedchaisri
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| |
Collapse
|
18
|
Krogman WL, Woodard T, McKay RSF. Anesthetic Mechanisms: Synergistic Interactions With Lipid Rafts and Voltage-Gated Sodium Channels. Anesth Analg 2024; 139:92-106. [PMID: 37968836 DOI: 10.1213/ane.0000000000006738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Despite successfully utilizing anesthetics for over 150 years, the mechanism of action remains relatively unknown. Recent studies have shown promising results, but due to the complex interactions between anesthetics and their targets, there remains a clear need for further mechanistic research. We know that lipophilicity is directly connected to anesthetic potency since lipid solubility relates to anesthetic partition into the membrane. However, clinically relevant concentrations of anesthetics do not significantly affect lipid bilayers but continue to influence various molecular targets. Lipid rafts are derived from liquid-ordered phases of the plasma membrane that contain increased concentrations of cholesterol and sphingomyelin and act as staging platforms for membrane proteins, including ion channels. Although anesthetics do not perturb membranes at clinically relevant concentrations, they have recently been shown to target lipid rafts. In this review, we summarize current research on how different types of anesthetics-local, inhalational, and intravenous-bind and affect both lipid rafts and voltage-gated sodium channels, one of their major targets, and how those effects synergize to cause anesthesia and analgesia. Local anesthetics block voltage-gated sodium channel pores while also disrupting lipid packing in ordered membranes. Inhalational anesthetics bind to the channel pore and the voltage-sensing domain while causing an increase in the number, size, and diameter of lipid rafts. Intravenous anesthetics bind to the channel primarily at the voltage-sensing domain and the selectivity filter, while causing lipid raft perturbation. These changes in lipid nanodomain structure possibly give proteins access to substrates that have translocated as a result of these structural alterations, resulting in lipid-driven anesthesia. Overall, anesthetics can impact channel activity either through direct interaction with the channel, indirectly through the lipid raft, or both. Together, these result in decreased sodium ion flux into the cell, disrupting action potentials and producing anesthetic effects. However, more research is needed to elucidate the indirect mechanisms associated with channel disruption through the lipid raft, as not much is known about anionic lipid products and their influence over voltage-gated sodium channels. Anesthetics' effect on S-palmitoylation, a promising mechanism for direct and indirect influence over voltage-gated sodium channels, is another auspicious avenue of research. Understanding the mechanisms of different types of anesthetics will allow anesthesiologists greater flexibility and more specificity when treating patients.
Collapse
Affiliation(s)
- William L Krogman
- From the Department of Anesthesiology, University of Kansas School of Medicine - Wichita, Wichita, Kansas
| | | | | |
Collapse
|
19
|
Schott K, Usher SG, Serra O, Carnevale V, Pless SA, Chua HC. Unplugging lateral fenestrations of NALCN reveals a hidden drug binding site within the pore region. Proc Natl Acad Sci U S A 2024; 121:e2401591121. [PMID: 38787877 PMCID: PMC11145269 DOI: 10.1073/pnas.2401591121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/09/2024] [Indexed: 05/26/2024] Open
Abstract
The sodium (Na+) leak channel (NALCN) is a member of the four-domain voltage-gated cation channel family that includes the prototypical voltage-gated sodium and calcium channels (NaVs and CaVs, respectively). Unlike NaVs and CaVs, which have four lateral fenestrations that serve as routes for lipophilic compounds to enter the central cavity to modulate channel function, NALCN has bulky residues (W311, L588, M1145, and Y1436) that block these openings. Structural data suggest that occluded fenestrations underlie the pharmacological resistance of NALCN, but functional evidence is lacking. To test this hypothesis, we unplugged the fenestrations of NALCN by substituting the four aforementioned residues with alanine (AAAA) and compared the effects of NaV, CaV, and NALCN blockers on both wild-type (WT) and AAAA channels. Most compounds behaved in a similar manner on both channels, but phenytoin and 2-aminoethoxydiphenyl borate (2-APB) elicited additional, distinct responses on AAAA channels. Further experiments using single alanine mutants revealed that phenytoin and 2-APB enter the inner cavity through distinct fenestrations, implying structural specificity to their modes of access. Using a combination of computational and functional approaches, we identified amino acid residues critical for 2-APB activity, supporting the existence of drug binding site(s) within the pore region. Intrigued by the activity of 2-APB and its analogues, we tested compounds containing the diphenylmethane/amine moiety on WT channels. We identified clinically used drugs that exhibited diverse activity, thus expanding the pharmacological toolbox for NALCN. While the low potencies of active compounds reiterate the pharmacological resistance of NALCN, our findings lay the foundation for rational drug design to develop NALCN modulators with refined properties.
Collapse
Affiliation(s)
- Katharina Schott
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen2100, Denmark
| | - Samuel George Usher
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen2100, Denmark
| | - Oscar Serra
- Department of Biology, Temple University, Philadelphia, PA19122
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA19122
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA19122
| | - Vincenzo Carnevale
- Department of Biology, Temple University, Philadelphia, PA19122
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA19122
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA19122
| | - Stephan Alexander Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen2100, Denmark
| | - Han Chow Chua
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen2100, Denmark
| |
Collapse
|
20
|
Chen H, Xia Z, Dong J, Huang B, Zhang J, Zhou F, Yan R, Shi Y, Gong J, Jiang J, Huang Z, Jiang D. Structural mechanism of voltage-gated sodium channel slow inactivation. Nat Commun 2024; 15:3691. [PMID: 38693179 PMCID: PMC11063143 DOI: 10.1038/s41467-024-48125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Voltage-gated sodium (NaV) channels mediate a plethora of electrical activities. NaV channels govern cellular excitability in response to depolarizing stimuli. Inactivation is an intrinsic property of NaV channels that regulates cellular excitability by controlling the channel availability. The fast inactivation, mediated by the Ile-Phe-Met (IFM) motif and the N-terminal helix (N-helix), has been well-characterized. However, the molecular mechanism underlying NaV channel slow inactivation remains elusive. Here, we demonstrate that the removal of the N-helix of NaVEh (NaVEhΔN) results in a slow-inactivated channel, and present cryo-EM structure of NaVEhΔN in a potential slow-inactivated state. The structure features a closed activation gate and a dilated selectivity filter (SF), indicating that the upper SF and the inner gate could serve as a gate for slow inactivation. In comparison to the NaVEh structure, NaVEhΔN undergoes marked conformational shifts on the intracellular side. Together, our results provide important mechanistic insights into NaV channel slow inactivation.
Collapse
Affiliation(s)
- Huiwen Chen
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhanyi Xia
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Bo Huang
- Beijing StoneWise Technology Co Ltd., 15 Haidian street, Haidian district, Beijing, China
| | - Jiangtao Zhang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Zhou
- Beijing StoneWise Technology Co Ltd., 15 Haidian street, Haidian district, Beijing, China
| | - Rui Yan
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiqiang Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jianke Gong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
21
|
Tonggu L, Wisedchaisri G, Gamal El-Din TM, Lenaeus MJ, Logan MM, Toma T, Du Bois J, Zheng N, Catterall WA. Dual receptor-sites reveal the structural basis for hyperactivation of sodium channels by poison-dart toxin batrachotoxin. Nat Commun 2024; 15:2306. [PMID: 38485923 PMCID: PMC10940626 DOI: 10.1038/s41467-024-45958-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/08/2024] [Indexed: 03/18/2024] Open
Abstract
The poison dart toxin batrachotoxin is exceptional for its high potency and toxicity, and for its multifaceted modification of the function of voltage-gated sodium channels. By using cryogenic electron microscopy, we identify two homologous, but nonidentical receptor sites that simultaneously bind two molecules of toxin, one at the interface between Domains I and IV, and the other at the interface between Domains III and IV of the cardiac sodium channel. Together, these two bound toxin molecules stabilize α/π helical conformation in the S6 segments that gate the pore, and one of the bound BTX-B molecules interacts with the crucial Lys1421 residue that is essential for sodium conductance and selectivity via an apparent water-bridged hydrogen bond. Overall, our structure provides insight into batrachotoxin's potency, efficacy, and multifaceted functional effects on voltage-gated sodium channels via a dual receptor site mechanism.
Collapse
Affiliation(s)
- Lige Tonggu
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | | | | | - Michael J Lenaeus
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Matthew M Logan
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Vividion Therapeutics, Inc., 5820 Nancy Ridge Dr., San Diego, CA, 92121, USA
| | - Tatsuya Toma
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- PRISM BioLab Co., Ltd., 2-26-1 Muraokahigashi, Fujisawa-shi, Kanagawa, 251-8555, Japan
| | - Justin Du Bois
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
22
|
Lin Y, Tao E, Champion JP, Corry B. A binding site for phosphoinositides described by multiscale simulations explains their modulation of voltage-gated sodium channels. eLife 2024; 12:RP91218. [PMID: 38465747 DOI: 10.7554/elife.91218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Voltage-gated sodium channels (Naᵥ) are membrane proteins which open to facilitate the inward flux of sodium ions into excitable cells. In response to stimuli, Naᵥ channels transition from the resting, closed state to an open, conductive state, before rapidly inactivating. Dysregulation of this functional cycle due to mutations causes diseases including epilepsy, pain conditions, and cardiac disorders, making Naᵥ channels a significant pharmacological target. Phosphoinositides are important lipid cofactors for ion channel function. The phosphoinositide PI(4,5)P2 decreases Naᵥ1.4 activity by increasing the difficulty of channel opening, accelerating fast inactivation and slowing recovery from fast inactivation. Using multiscale molecular dynamics simulations, we show that PI(4,5)P2 binds stably to inactivated Naᵥ at a conserved site within the DIV S4-S5 linker, which couples the voltage-sensing domain (VSD) to the pore. As the Naᵥ C-terminal domain is proposed to also bind here during recovery from inactivation, we hypothesize that PI(4,5)P2 prolongs inactivation by competitively binding to this site. In atomistic simulations, PI(4,5)P2 reduces the mobility of both the DIV S4-S5 linker and the DIII-IV linker, responsible for fast inactivation, slowing the conformational changes required for the channel to recover to the resting state. We further show that in a resting state Naᵥ model, phosphoinositides bind to VSD gating charges, which may anchor them and impede VSD activation. Our results provide a mechanism by which phosphoinositides alter the voltage dependence of activation and the rate of recovery from inactivation, an important step for the development of novel therapies to treat Naᵥ-related diseases.
Collapse
Affiliation(s)
- Yiechang Lin
- Research School of Biology, Australian National University, Canberra, Australia
| | - Elaine Tao
- Research School of Biology, Australian National University, Canberra, Australia
| | - James P Champion
- Research School of Biology, Australian National University, Canberra, Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
23
|
Schott K, Usher SG, Serra O, Carnevale V, Pless SA, Chua HC. Unplugging lateral fenestrations of NALCN reveals a hidden drug binding site within the pore module. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.12.536537. [PMID: 38328210 PMCID: PMC10849497 DOI: 10.1101/2023.04.12.536537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The sodium (Na + ) leak channel (NALCN) is a member of the four-domain voltage-gated cation channel family that includes the prototypical voltage-gated sodium and calcium channels (Na V s and Ca V s, respectively). Unlike Na V s and Ca V s, which have four lateral fenestrations that serve as routes for lipophilic compounds to enter the central cavity to modulate channel function, NALCN has bulky residues (W311, L588, M1145 and Y1436) that block these openings. Structural data suggest that oc-cluded lateral fenestrations underlie the pharmacological resistance of NALCN to lipophilic compounds, but functional evidence is lacking. To test this hypothesis, we unplugged the fenestrations of NALCN by substituting the four aforementioned resi-dues with alanine (AAAA) and compared the effects of Na V , Ca V and NALCN block-ers on both wild-type (WT) and AAAA channels. Most compounds behaved in a simi-lar manner on both channels, but phenytoin and 2-aminoethoxydiphenyl borate (2-APB) elicited additional, distinct responses on AAAA channels. Further experiments using single alanine mutants revealed that phenytoin and 2-APB enter the inner cav-ity through distinct fenestrations, implying structural specificity to their modes of ac-cess. Using a combination of computational and functional approaches, we identified amino acid residues critical for 2-APB activity, supporting the existence of drug bind-ing site(s) within the pore region. Intrigued by the activity of 2-APB and its ana-logues, we tested additional compounds containing the diphenylmethane/amine moiety on WT channels. We identified compounds from existing clinically used drugs that exhibited diverse activity, thus expanding the pharmacological toolbox for NALCN. While the low potencies of active compounds reiterate the resistance of NALCN to pharmacological targeting, our findings lay the foundation for rational drug design to develop NALCN modulators with refined properties. Significance statement The sodium leak channel (NALCN) is essential for survival: mutations cause life-threatening developmental disorders in humans. However, no treatment is currently available due to the resistance of NALCN to pharmacological targeting. One likely reason is that the lateral fenestrations, a common route for clinically used drugs to enter and block related ion channels, are occluded in NALCN. Using a combination of computational and functional approaches, we unplugged the fenestrations of NALCN which led us to the first molecularly defined drug binding site within the pore region. Besides that, we also identified additional NALCN modulators from existing clinically used therapeutics, thus expanding the pharmacological toolbox for this leak channel.
Collapse
|
24
|
Moreira-Junior L, Leal-Cardoso JH, Cassola AC, Carvalho-de-Souza JL. State-Dependent Blockade of Dorsal Root Ganglion Voltage-Gated Na + Channels by Anethole. Int J Mol Sci 2024; 25:1034. [PMID: 38256108 PMCID: PMC10816912 DOI: 10.3390/ijms25021034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Anethole is a phenolic compound synthesized by many aromatic plants. Anethole is a substance that humans can safely consume and has been studied for years as a biologically active molecule to treat a variety of conditions, including nerve damage, gastritis, inflammation, and nociception. Anethole is thought to carry out its biological activities through direct interaction with ion channels. Anethole is beneficial for neurodegenerative Alzheimer's and Parkinson's diseases. Nevertheless, nothing has been investigated regarding the effects of anethole on voltage-gated Na+ channels (VGSCs), which are major players in neuronal function. We used cultured dorsal root ganglion neurons from neonatal rats as a source of natively expressed VGSCs for electrophysiological studies using the whole-cell patch-clamp technique. Our data show that anethole interacts directly with VGSCs. Anethole quickly blocks and unblocks (when removed) voltage-activated Na+ currents in this preparation in a fully reversible manner. Anethole's binding affinity to these channels increases when the inactive states of these channels are populated, similar to lidocaine's effect on the same channels. Our data show that anethole inhibits neuronal activity by blocking VGSCs in a state-dependent manner. These findings relate to the putative anesthetic activity attributable to anethole, in addition to its potential benefit in neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Jose Henrique Leal-Cardoso
- Superior Institute of Biomedical Sciences, State University of Ceará, Campus of Itaperi, Fortaleza 607402, CE, Brazil
| | - Antonio Carlos Cassola
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo, São Paulo 05508, SP, Brazil
| | - Joao Luis Carvalho-de-Souza
- Department of Anesthesiology, University of Arizona, Tucson, AZ 85724, USA;
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo, São Paulo 05508, SP, Brazil
| |
Collapse
|
25
|
Fan C, Flood E, Sukomon N, Agarwal S, Allen TW, Nimigean CM. Calcium-gated potassium channel blockade via membrane-facing fenestrations. Nat Chem Biol 2024; 20:52-61. [PMID: 37653172 PMCID: PMC10847966 DOI: 10.1038/s41589-023-01406-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Quaternary ammonium blockers were previously shown to bind in the pore to block both open and closed conformations of large-conductance calcium-activated potassium (BK and MthK) channels. Because blocker entry was assumed through the intracellular entryway (bundle crossing), closed-pore access suggested that the gate was not at the bundle crossing. Structures of closed MthK, a Methanobacterium thermoautotrophicum homolog of BK channels, revealed a tightly constricted intracellular gate, leading us to investigate the membrane-facing fenestrations as alternative pathways for blocker access directly from the membrane. Atomistic free energy simulations showed that intracellular blockers indeed access the pore through the fenestrations, and a mutant channel with narrower fenestrations displayed no closed-state TPeA block at concentrations that blocked the wild-type channel. Apo BK channels display similar fenestrations, suggesting that blockers may use them as access paths into closed channels. Thus, membrane fenestrations represent a non-canonical pathway for selective targeting of specific channel conformations, opening novel ways to selectively drug BK channels.
Collapse
Affiliation(s)
- Chen Fan
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria, Australia
- Schrödinger, Inc., New York, NY, USA
| | - Nattakan Sukomon
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Shubhangi Agarwal
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Toby W Allen
- School of Science, RMIT University, Melbourne, Victoria, Australia.
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Catterall WA. Voltage gated sodium and calcium channels: Discovery, structure, function, and Pharmacology. Channels (Austin) 2023; 17:2281714. [PMID: 37983307 PMCID: PMC10761118 DOI: 10.1080/19336950.2023.2281714] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve and muscle, and voltage-gated calcium channels couple depolarization of the plasma membrane to intracellular events such as secretion, contraction, synaptic transmission, and gene expression. In this Review and Perspective article, I summarize early work that led to identification, purification, functional reconstitution, and determination of the amino acid sequence of the protein subunits of sodium and calcium channels and showed that their pore-forming subunits are closely related. Decades of study by antibody mapping, site-directed mutagenesis, and electrophysiological recording led to detailed two-dimensional structure-function maps of the amino acid residues involved in voltage-dependent activation and inactivation, ion permeation and selectivity, and pharmacological modulation. Most recently, high-resolution three-dimensional structure determination by X-ray crystallography and cryogenic electron microscopy has revealed the structural basis for sodium and calcium channel function and pharmacological modulation at the atomic level. These studies now define the chemical basis for electrical signaling and provide templates for future development of new therapeutic agents for a range of neurological and cardiovascular diseases.
Collapse
|
27
|
Huang J, Fan X, Jin X, Jo S, Zhang HB, Fujita A, Bean BP, Yan N. Cannabidiol inhibits Na v channels through two distinct binding sites. Nat Commun 2023; 14:3613. [PMID: 37330538 PMCID: PMC10276812 DOI: 10.1038/s41467-023-39307-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023] Open
Abstract
Cannabidiol (CBD), a major non-psychoactive phytocannabinoid in cannabis, is an effective treatment for some forms of epilepsy and pain. At high concentrations, CBD interacts with a huge variety of proteins, but which targets are most relevant for clinical actions is still unclear. Here we show that CBD interacts with Nav1.7 channels at sub-micromolar concentrations in a state-dependent manner. Electrophysiological experiments show that CBD binds to the inactivated state of Nav1.7 channels with a dissociation constant of about 50 nM. The cryo-EM structure of CBD bound to Nav1.7 channels reveals two distinct binding sites. One is in the IV-I fenestration near the upper pore. The other binding site is directly next to the inactivated "wedged" position of the Ile/Phe/Met (IFM) motif on the short linker between repeats III and IV, which mediates fast inactivation. Consistent with producing a direct stabilization of the inactivated state, mutating residues in this binding site greatly reduced state-dependent binding of CBD. The identification of this binding site may enable design of compounds with improved properties compared to CBD itself.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Hanxiong Bear Zhang
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Akie Fujita
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA.
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
28
|
Lenaeus M, Gamal El-Din TM, Tonggu L, Zheng N, Catterall WA. Structural basis for inhibition of the cardiac sodium channel by the atypical antiarrhythmic drug ranolazine. NATURE CARDIOVASCULAR RESEARCH 2023; 2:587-594. [PMID: 39185478 PMCID: PMC11343317 DOI: 10.1038/s44161-023-00271-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/13/2023] [Indexed: 08/27/2024]
Affiliation(s)
- Michael Lenaeus
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | | - Lige Tonggu
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
29
|
Pukkanasut P, Whitt J, Guenter R, Lynch SE, Gallegos C, Rosendo-Pineda MJ, Gomora JC, Chen H, Lin D, Sorace A, Jaskula-Sztul R, Velu SE. Voltage-Gated Sodium Channel Na V1.7 Inhibitors with Potent Anticancer Activities in Medullary Thyroid Cancer Cells. Cancers (Basel) 2023; 15:2806. [PMID: 37345144 PMCID: PMC10216335 DOI: 10.3390/cancers15102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
Our results from quantitative RT-PCR, Western blotting, immunohistochemistry, and the tissue microarray of medullary thyroid cancer (MTC) cell lines and patient specimens confirm that VGSC subtype NaV1.7 is uniquely expressed in aggressive MTC and not expressed in normal thyroid cells and tissues. We establish the druggability of NaV1.7 in MTC by identifying a novel inhibitor (SV188) and investigate its mode of binding and ability to inhibit INa current in NaV1.7. The whole-cell patch-clamp studies of the SV188 in the NaV1.7 channels expressed in HEK-293 cells show that SV188 inhibited the INa current in NaV1.7 with an IC50 value of 3.6 µM by a voltage- and use-dependent blockade mechanism, and the maximum inhibitory effect is observed when the channel is open. SV188 inhibited the viability of MTC cell lines, MZ-CRC-1 and TT, with IC50 values of 8.47 μM and 9.32 μM, respectively, and significantly inhibited the invasion of MZ-CRC-1 cells by 35% and 52% at 3 μM and 6 μM, respectively. In contrast, SV188 had no effect on the invasion of TT cells derived from primary tumor, which have lower basal expression of NaV1.7. In addition, SV188 at 3 μM significantly inhibited the migration of MZ-CRC-1 and TT cells by 27% and 57%, respectively.
Collapse
Affiliation(s)
- Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Jason Whitt
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.W.); (R.G.); (H.C.)
| | - Rachael Guenter
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.W.); (R.G.); (H.C.)
| | - Shannon E. Lynch
- Graduate Biomedical Sciences, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.G.)
| | - Carlos Gallegos
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.G.)
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Margarita Jacaranda Rosendo-Pineda
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.J.R.-P.); (J.C.G.)
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.J.R.-P.); (J.C.G.)
| | - Herbert Chen
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.W.); (R.G.); (H.C.)
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Diana Lin
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Anna Sorace
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.G.)
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Renata Jaskula-Sztul
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.W.); (R.G.); (H.C.)
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
30
|
The effect of urethane and MS-222 anesthesia on the electric organ discharge of the weakly electric fish Apteronotus leptorhynchus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:437-457. [PMID: 36799986 DOI: 10.1007/s00359-022-01606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 02/18/2023]
Abstract
Urethane and MS-222 are agents widely employed for general anesthesia, yet, besides inducing a state of unconsciousness, little is known about their neurophysiological effects. To investigate these effects, we developed an in vivo assay using the electric organ discharge (EOD) of the weakly electric fish Apteronotus leptorhynchus as a proxy for the neural output of the pacemaker nucleus. The oscillatory neural activity of this brainstem nucleus drives the fish's EOD in a one-to-one fashion. Anesthesia induced by urethane or MS-222 resulted in pronounced decreases of the EOD frequency, which lasted for up to 3 h. In addition, each of the two agents caused a manifold increase in the generation of transient modulations of the EOD known as chirps. The reduction in EOD frequency can be explained by the modulatory effect of urethane on neurotransmission, and by the blocking of voltage-gated sodium channels by MS-222, both within the circuitry controlling the neural oscillations of the pacemaker nucleus. The present study demonstrates a marked effect of urethane and MS-222 on neural activity within the central nervous system and on the associated animal's behavior. This calls for caution when conducting neurophysiological experiments under general anesthesia and interpreting their results.
Collapse
|
31
|
Han S, Vance J, Jones S, DeCata J, Tran K, Cummings J, Wang S. Voltage sensor dynamics of a bacterial voltage-gated sodium channel NavAb reveal three conformational states. J Biol Chem 2023; 299:102967. [PMID: 36736429 PMCID: PMC9986516 DOI: 10.1016/j.jbc.2023.102967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
High-resolution structures of voltage-gated sodium channels (Nav) were first obtained from a prokaryotic ortholog NavAb, which provided important mechanistic insights into Na+ selectivity and voltage gating. Unlike eukaryotic Navs, the NavAb channel is formed by four identical subunits, but its ion selectivity and pharmacological profiles are very similar to eukaryotic Navs. Recently, the structures of the NavAb voltage sensor at resting and activated states were obtained by cryo-EM, but its intermediate states and transition dynamics remain unclear. In the present work, we used liposome flux assays to show that purified NavAb proteins were functional to conduct both H+ and Na+ and were blocked by the local anesthetic lidocaine. Additionally, we examined the real-time conformational dynamics of the NavAb voltage sensor using single-molecule FRET. Our single-molecule FRET measurements on the tandem NavAb channel labeled with Cy3/5 FRET fluorophore pair revealed spontaneous transitions of the NavAb S4 segment among three conformational states, which fitted well with the kinetic model developed for the S4 segment of the human voltage-gated proton channel hHv1. Interestingly, even under strong activating voltage, the NavAb S4 segment seems to adopt a conformational distribution similar to that of the hHv1 S4 segment at a deep resting state. The conformational behaviors of the NavAb voltage sensor under different voltages need to be further examined to understand the mechanisms of voltage sensing and gating in the canonical voltage-gated ion channel superfamily.
Collapse
Affiliation(s)
- Shuo Han
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Joshua Vance
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Samuel Jones
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Jenna DeCata
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Kimberly Tran
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - John Cummings
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Shizhen Wang
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA.
| |
Collapse
|
32
|
Choudhury K, Howard RJ, Delemotte L. An α-π transition in S6 shapes the conformational cycle of the bacterial sodium channel NavAb. J Gen Physiol 2022; 155:213748. [PMID: 36515966 PMCID: PMC9754703 DOI: 10.1085/jgp.202213214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/17/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels play an important role in electrical signaling in excitable cells. In response to changes in membrane potential, they cycle between nonconducting and conducting conformations. With recent advances in structural biology, structures of sodium channels have been captured in several distinct conformations, which are thought to represent different functional states. However, it has been difficult to capture the intrinsically transient open state. We recently showed that a proposed open state of the bacterial sodium channel NavMs was not conductive and that a conformational change involving a transition to a π-helix in the pore-lining S6 helix converted this structure into a conducting state. However, the relevance of this structural feature in other sodium channels, and its implications for the broader gating cycle, remained unclear. Here, we propose a comparable open state of another class of bacterial channel from Aliarcobacter butzleri (NavAb) with characteristic pore hydration, ion permeation, and drug binding properties. Furthermore, we show that a π-helix transition can lead to pore opening and that such a conformational change blocks fenestrations in the inner helix bundle. We also discover that a region in the C-terminal domain can undergo a disordering transition proposed to be important for pore opening. These results support a role for a π-helix transition in the opening of NavAb, enabling new proposals for the structural annotation and drug modulation mechanisms in this important sodium channel model.
Collapse
Affiliation(s)
- Koushik Choudhury
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Rebecca J. Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden,Correspondence to Lucie Delemotte:
| |
Collapse
|
33
|
Zhorov BS. Molecular Modeling of Cardiac Sodium Channel with Mexiletine. MEMBRANES 2022; 12:1252. [PMID: 36557159 PMCID: PMC9786191 DOI: 10.3390/membranes12121252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 05/15/2023]
Abstract
A sodium channel blocker mexiletine (MEX) is used to treat chronic pain, myotonia and some arrhythmias. Mutations in the pore domain (PD) of voltage-gated sodium channels differently affect tonic block (TB) and use-dependent block (UDB) by MEX. Previous studies identified several MEX-sensing residues in the hNav1.5 channel and demonstrated that the channel block by MEX increases with activation of the voltage-sensing domain III (VSDIII), whereas MEX stabilizes the activated state of VSDIII. Structural rationales for these observations are unclear. Here, Monte Carlo (MC) energy minimizations were used to dock MEX and its more potent analog, Thio-Me2, into the hNav1.5 cryo-EM structure with activated VSDs and presumably inactivated PD. Computations yielded two ensembles of ligand binding poses in close contacts with known MEX-sensing residues in helices S6III, S6IV and P1IV. In both ensembles, the ligand NH3 group approached the cation-attractive site between backbone carbonyls at the outer-pore bottom, while the aromatic ring protruded ether into the inner pore (putative UDB pose) or into the III/IV fenestration (putative TB pose). In silico deactivation of VSDIII shifted helices S4-S5III, S5III, S6III and S6IV and tightened the TB site. In a model with activated VSDIII and three resting VSDs, MC-minimized energy profile of MEX pulled from the TB site towards lipids shows a deep local minimum due to interactions with 11 residues in S5III, P1III, S6III and S6IV. The minimum may correspond to an interim binding site for MEX in the hydrophobic path to the TB site along the lipid-exposed sides of repeats III and IV where 15 polar and aromatic residues would attract cationic blockers. The study explains numerous experimental data and suggests the mechanism of allosteric modification of the MEX binding site by VSDIII.
Collapse
Affiliation(s)
- Boris S. Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| |
Collapse
|
34
|
Zhou Y, Hao Y, Sun P, Chen M, Zhang T, Wu H. Relationship among surface electric double layer of cardiomyocyte membrane and toxicology of digoxin and opening of ion channels. Sci Rep 2022; 12:20749. [PMID: 36456624 PMCID: PMC9715572 DOI: 10.1038/s41598-022-25205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
We applied a new idea that the potential effect can change the ion adsorption structure on the cell surface to explore the mechanism of digoxin poisoning and the regulation of ion channels. The effects of digoxin on the electrophoretic mobility and behaviors (non-contraction or contraction or autorhythmicity) of cardiomyocytes were observed by single-cell electrophoresis technique (imitate the opening method of in vivo channel) and the method of decomposing surface potential components on the cells. As well as affect the association with electrical activity. The results suggested that the increase of cardiomyocytes transmembrane potential and the Na+-K+ exchange on the cell surface of the action potential phase 4 caused by the poisoning dose of digoxin, leading to the oscillation of adsorbed ions on the cell surface and the incomplete channel structure, which were the mechanism of cardiac ectopic beats. The results revealed that the opening of ion channels is regulated by the surface electric double layer of the cell membrane.
Collapse
Affiliation(s)
- Ying Zhou
- grid.414252.40000 0004 1761 8894The Sixth Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, 100142 China
| | - Yanfei Hao
- grid.414252.40000 0004 1761 8894The Eighth Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, 100091 China
| | - Pei Sun
- grid.414252.40000 0004 1761 8894The Eighth Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, 100091 China
| | - Ming Chen
- grid.414252.40000 0004 1761 8894The Medical Security Center, Chinese People’s Liberation Army General Hospital, Beijing, 100039 China
| | - Ting Zhang
- grid.414252.40000 0004 1761 8894The Eighth Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, 100091 China
| | - Hong Wu
- grid.414252.40000 0004 1761 8894The Medical Security Center, Chinese People’s Liberation Army General Hospital, Beijing, 100039 China
| |
Collapse
|
35
|
Gamal El-Din TM. When the Gates Swing Open Only: Arrhythmia Mutations That Target the Fast Inactivation Gate of Na v1.5. Cells 2022; 11:cells11233714. [PMID: 36496974 PMCID: PMC9735811 DOI: 10.3390/cells11233714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Nav1.5 is the main voltage-gated sodium channel found in cardiac muscle, where it facilitates the fast influx of Na+ ions across the cell membrane, resulting in the fast depolarization phase-phase 0 of the cardiac action potential. As a result, it plays a major role in determining the amplitude and the upstroke velocity of the cardiac impulse. Quantitively, cardiac sodium channel activates in less than a millisecond to trigger the cardiac action potential and inactivates within 2-3 ms to facilitate repolarization and return to the resting state in preparation for firing the next action potential. Missense mutations in the gene that encodes Nav1.5 (SCN5A), change these time constants which leads to a wide spectrum of cardiac diseases ranging from long QT syndrome type 3 (LQT3) to sudden cardiac death. In this mini-review I will focus on the missense mutations in the inactivation gate of Nav1.5 that results in arrhythmia, attempting to correlate the location of the missense mutation to their specific phenotype.
Collapse
|
36
|
Ghovanloo MR, Dib-Hajj SD, Goodchild SJ, Ruben PC, Waxman SG. Non-psychotropic phytocannabinoid interactions with voltage-gated sodium channels: An update on cannabidiol and cannabigerol. Front Physiol 2022; 13:1066455. [PMID: 36439273 PMCID: PMC9691960 DOI: 10.3389/fphys.2022.1066455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2023] Open
Abstract
Phytocannabinoids, found in the plant, Cannabis sativa, are an important class of natural compounds with physiological effects. These compounds can be generally divided into two classes: psychoactive and non-psychoactive. Those which do not impart psychoactivity are assumed to predominantly function via endocannabinoid receptor (CB) -independent pathways and molecular targets, including other receptors and ion channels. Among these targets, the voltage-gated sodium (Nav) channels are particularly interesting due to their well-established role in electrical signalling in the nervous system. The interactions between the main non-psychoactive phytocannabinoid, cannabidiol (CBD), and Nav channels were studied in detail. In addition to CBD, cannabigerol (CBG), is another non-psychoactive molecule implicated as a potential therapeutic for several conditions, including pain via interactions with Nav channels. In this mini review, we provide an update on the interactions of Nav channels with CBD and CBG.
Collapse
Affiliation(s)
| | - Sulayman D. Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Samuel J. Goodchild
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
37
|
Reid AR, Côté PD, McDougall JJ. Long-Term Blockade of Nociceptive Na v1.7 Channels Is Analgesic in Rat Models of Knee Arthritis. Biomolecules 2022; 12:1571. [PMID: 36358921 PMCID: PMC9687684 DOI: 10.3390/biom12111571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
The voltage gated sodium channels (Nav) 1.7, 1.8, and 1.9 are primarily located on nociceptors where they are involved in signalling neuropathic pain. This study examined the effect of Nav1.7 blockade on joint pain using either the small molecule inhibitor PF05089771 or an antibody directed towards the intracellular domain of the ion channel. Male Wistar rats were assigned to one of three experimental groups consisting of either intra-articular injection of 3 mg sodium monoiodoacetate (MIA-joint degeneration group), intra-articular injection of 100 μg lysophosphatidic acid (LPA-joint neuropathy group), or transection of the medial meniscus (MMT-posttraumatic osteoarthritis group). G-ratio calculations were performed to determine potential demyelination and immunohistochemistry was used to measure Nav1.7 expression on joint afferent cell bodies. Pain behaviour was evaluated over 3 h by von Frey hair algesiometry and hindlimb weight bearing before and after local administration of PF05089771 (0.1 mg/50 µL). Chronic pain behaviour was assessed over 28 days following peripheral treatment with a Nav1.7 antibody (Ab) in conjunction with the transmembrane carrier peptide Pep1. Demyelination and increased Nav1.7 channel expression were observed in MIA and LPA rats, but not with MMT. Acute secondary allodynia was diminished by PF05089771 while a single injection of Nav1.7 Ab-Pep1 reduced pain up to 28 days. This analgesia only occurred in MIA and LPA animals. Hindlimb incapacitance was not affected by any treatment. These data indicate that joint pain associated with neural demyelination can be alleviated somewhat by Nav1.7 channel blockade. Biologics that inactivate Nav1.7 channels have the potential to reduce arthritis pain over a protracted period of time.
Collapse
Affiliation(s)
- Allison R. Reid
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Patrice D. Côté
- Department of Biology, Dalhousie University, 1355 Oxford, Halifax, NS B3H 4R2, Canada
| | - Jason J. McDougall
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
38
|
Abdelsayed M, Page D, Ruben PC. ARumenamides: A novel class of potential antiarrhythmic compounds. Front Pharmacol 2022; 13:976903. [PMID: 36249789 PMCID: PMC9554508 DOI: 10.3389/fphar.2022.976903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Most therapeutics targeting cardiac voltage-gated sodium channels (Nav1.5) attenuate the sodium current (INa) conducted through the pore of the protein. Whereas these drugs may be beneficial for disease states associated with gain-of-function (GoF) in Nav1.5, few attempts have been made to therapeutically treat loss-of-function (LoF) conditions. The primary impediment to designing efficacious therapies for LoF is a tendency for drugs to occlude the Nav1.5 central pore. We hypothesized that molecular candidates with a high affinity for the fenestrations would potentially reduce pore block.Methods and Results: Virtual docking was performed on 21 compounds, selected based on their affinity for the fenestrations in Nav1.5, which included a class of sulfonamides and carboxamides we identify as ARumenamide (AR). Six ARs, AR-051, AR-189, AR-674, AR-802, AR-807 and AR-811, were further docked against Nav1.5 built on NavAb and rNav1.5. Based on the virtual docking results, these particular ARs have a high affinity for Domain III-IV and Domain VI-I fenestrations. Upon functional characterization, a trend was observed in the effects of the six ARs on INa. An inverse correlation was established between the aromaticity of the AR’s functional moieties and compound block. Due to its aromaticity, AR-811 blocked INa the least compared with other aromatic ARs, which also decelerated fast inactivation onset. AR-674, with its aliphatic functional group, significantly suppresses INa and enhances use-dependence in Nav1.5. AR-802 and AR-811, in particular, decelerated fast inactivation kinetics in the most common Brugada Syndrome Type 1 and Long-QT Syndrome Type 3 mutant, E1784K, without affecting peak or persistent INa.Conclusion: Our hypothesis that LoF in Nav1.5 may be therapeutically treated was supported by the discovery of ARs, which appear to preferentially block the fenestrations. ARs with aromatic functional groups as opposed to aliphatic groups efficaciously maintained Nav1.5 availability. We predict that these bulkier side groups may have a higher affinity for the hydrophobic milieu of the fenestrations, remaining there rather than in the central pore of the channel. Future refinements of AR compound structures and additional validation by molecular dynamic simulations and screening against more Brugada variants will further support their potential benefits in treating certain LoF cardiac arrhythmias.
Collapse
Affiliation(s)
- Mena Abdelsayed
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
- Department of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Mena Abdelsayed, ; Peter C. Ruben,
| | - Dana Page
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- *Correspondence: Mena Abdelsayed, ; Peter C. Ruben,
| |
Collapse
|
39
|
Inhibition of NMDA receptors through a membrane-to-channel path. Nat Commun 2022; 13:4114. [PMID: 35840593 PMCID: PMC9287434 DOI: 10.1038/s41467-022-31817-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are transmembrane proteins that are activated by the neurotransmitter glutamate and are found at most excitatory vertebrate synapses. NMDAR channel blockers, an antagonist class of broad pharmacological and clinical significance, inhibit by occluding the NMDAR ion channel. A vast literature demonstrates that NMDAR channel blockers, including MK-801, phencyclidine, ketamine, and the Alzheimer’s disease drug memantine, can bind and unbind only when the NMDAR channel is open. Here we use electrophysiological recordings from transfected tsA201 cells and cultured neurons, NMDAR structural modeling, and custom-synthesized compounds to show that NMDAR channel blockers can enter the channel through two routes: the well-known hydrophilic path from extracellular solution to channel through the open channel gate, and also a hydrophobic path from plasma membrane to channel through a gated fenestration (“membrane-to-channel inhibition” (MCI)). Our demonstration that ligand-gated channels are subject to MCI, as are voltage-gated channels, highlights the broad expression of this inhibitory mechanism. Wilcox et al. (2022) show that NMDA receptor channel blockers, some of which are clinically important drugs, can access their binding site via 2 routes: a well-known path from the extracellular solution, and another path through the plasma membrane.
Collapse
|
40
|
Gamal El-Din TM, Zimmer T, Chahine M. Editorial: Structure Related Druggability of Voltage-Gated Sodium and Calcium Ion-Channels to Treat Diseases. Front Pharmacol 2022; 13:947511. [PMID: 35784759 PMCID: PMC9240746 DOI: 10.3389/fphar.2022.947511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tamer M. Gamal El-Din
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- *Correspondence: Tamer M. Gamal El-Din,
| | - Thomas Zimmer
- Institute of Physiology, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Mohamed Chahine
- Department of Medicine, and CERVO Brain Research Centre, Laval University, Québec, QC, Canada
| |
Collapse
|
41
|
Jiang D, Zhang J, Xia Z. Structural Advances in Voltage-Gated Sodium Channels. Front Pharmacol 2022; 13:908867. [PMID: 35721169 PMCID: PMC9204039 DOI: 10.3389/fphar.2022.908867] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Voltage-gated sodium (NaV) channels are responsible for the rapid rising-phase of action potentials in excitable cells. Over 1,000 mutations in NaV channels are associated with human diseases including epilepsy, periodic paralysis, arrhythmias and pain disorders. Natural toxins and clinically-used small-molecule drugs bind to NaV channels and modulate their functions. Recent advances from cryo-electron microscopy (cryo-EM) structures of NaV channels reveal invaluable insights into the architecture, activation, fast inactivation, electromechanical coupling, ligand modulation and pharmacology of eukaryotic NaV channels. These structural analyses not only demonstrate molecular mechanisms for NaV channel structure and function, but also provide atomic level templates for rational development of potential subtype-selective therapeutics. In this review, we summarize recent structural advances of eukaryotic NaV channels, highlighting the structural features of eukaryotic NaV channels as well as distinct modulation mechanisms by a wide range of modulators from natural toxins to synthetic small-molecules.
Collapse
Affiliation(s)
- Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Daohua Jiang,
| | - Jiangtao Zhang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanyi Xia
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Thomaidi M, Vagiaki LE, Tripolitsiotis NP, Angeli GK, Zarganes-Tzitzikas T, Sidiropoulou K, Neochoritis C. Local anesthetics via multicomponent reactions. ChemMedChem 2022; 17:e202200246. [PMID: 35642621 DOI: 10.1002/cmdc.202200246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/31/2022] [Indexed: 11/10/2022]
Abstract
Local anesthetics occupy a prime position in clinical medicine as they temporarily relieve the pain by blocking the voltage-gated sodium channels. However, limited structural diversity, problems with the efficiency of syntheses and increasing toxicity, mean that alternative scaffolds with improved chemical syntheses are urgently needed. Here, we demonstrate an MCR-based approach both towards the synthesis of commercial local anesthetics and towards novel derivatives as potential anesthesia candidates via scaffold hopping. The reactions are efficient and scalable and several single-crystal structures have been obtained. In addition, our methodology has been applied to the synthesis of the antianginal drug ranolazine, via an Ugi three-component reaction. Representative derivatives from our libraries were evaluated as neuronal activity inhibitors using local field potential recordings (LFPs) in mouse hippocampal brain slices and showed very promising results. This study highlights new opportunities in drug discovery targeting local anesthetics.
Collapse
Affiliation(s)
- Maria Thomaidi
- University of Crete: Panepistemio Kretes, Chemistry, GREECE
| | | | | | | | | | | | | |
Collapse
|
43
|
Fouda MA, Ghovanloo MR, Ruben PC. Late sodium current: incomplete inactivation triggers seizures, myotonias, arrhythmias, and pain syndromes. J Physiol 2022; 600:2835-2851. [PMID: 35436004 DOI: 10.1113/jp282768] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
Acquired and inherited dysfunction in voltage-gated sodium channels underlies a wide range of diseases. "In addition to the defects in trafficking and expression, sodium channelopathies are also caused by dysfunction in one or several gating properties, for instance activation or inactivation. Disruption of the channel inactivation leads to the increased late sodium current, which is a common defect in seizure disorders, cardiac arrhythmias skeletal muscle myotonia and pain. An increase in late sodium current leads to repetitive action potential in neurons and skeletal muscles, and prolonged action potential duration in the heart. In this topical review, we compare the effects of late sodium current in brain, heart, skeletal muscle, and peripheral nerves. Abstract figure legend Shows cartoon illustration of general Nav channel transitions between (1) resting, (2) open, and (3) fast inactivated states. Disruption of the inactivation process exacerbates (4) late sodium currents. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohamed A Fouda
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada.,Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | | | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
44
|
Körner J, Albani S, Sudha Bhagavath Eswaran V, Roehl AB, Rossetti G, Lampert A. Sodium Channels and Local Anesthetics-Old Friends With New Perspectives. Front Pharmacol 2022; 13:837088. [PMID: 35418860 PMCID: PMC8996304 DOI: 10.3389/fphar.2022.837088] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
The long history of local anesthetics (LAs) starts out in the late 19th century when the content of coca plant leaves was discovered to alleviate pain. Soon after, cocaine was established and headed off to an infamous career as a substance causing addiction. Today, LAs and related substances-in modified form-are indispensable in our clinical everyday life for pain relief during and after minor and major surgery, and dental practices. In this review, we elucidate on the interaction of modern LAs with their main target, the voltage-gated sodium channel (Navs), in the light of the recently published channel structures. Knowledge of the 3D interaction sites of the drug with the protein will allow to mechanistically substantiate the comprehensive data available on LA gating modification. In the 1970s it was suggested that LAs can enter the channel pore from the lipid phase, which was quite prospective at that time. Today we know from cryo-electron microscopy structures and mutagenesis experiments, that indeed Navs have side fenestrations facing the membrane, which are likely the entrance for LAs to induce tonic block. In this review, we will focus on the effects of LA binding on fast inactivation and use-dependent inhibition in the light of the proposed new allosteric mechanism of fast inactivation. We will elaborate on subtype and species specificity and provide insights into modelling approaches that will help identify the exact molecular binding orientation, access pathways and pharmacokinetics. With this comprehensive overview, we will provide new perspectives in the use of the drug, both clinically and as a tool for basic ion channel research.
Collapse
Affiliation(s)
- Jannis Körner
- Institute of Physiology, Aachen, Germany.,Clinic of Anesthesiology, Medical Faculty, Uniklinik RWTH Aachen, Aachen, Germany
| | - Simone Albani
- Institute for Neuroscience and Medicine (INM-9/IAS-5), Forschungszentrum Jülich, Jülich, Germany.,Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, Germany
| | | | - Anna B Roehl
- Clinic of Anesthesiology, Medical Faculty, Uniklinik RWTH Aachen, Aachen, Germany
| | - Giulia Rossetti
- Institute for Neuroscience and Medicine (INM-9/IAS-5), Forschungszentrum Jülich, Jülich, Germany.,Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, Aachen, Germany.,Department of Neurology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
45
|
Wisedchaisri G, Gamal El-Din TM. Druggability of Voltage-Gated Sodium Channels-Exploring Old and New Drug Receptor Sites. Front Pharmacol 2022; 13:858348. [PMID: 35370700 PMCID: PMC8968173 DOI: 10.3389/fphar.2022.858348] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 01/12/2023] Open
Abstract
Voltage-gated ion channels are important drug targets because they play crucial physiological roles in both excitable and non-excitable cells. About 15% of clinical drugs used for treating human diseases target ion channels. However, most of these drugs do not provide sufficient specificity to a single subtype of the channels and their off-target side effects can be serious and sometimes fatal. Recent advancements in imaging techniques have enabled us for the first time to visualize unique and hidden parts of voltage-gated sodium channels in different structural conformations, and to develop drugs that further target a selected functional state in each channel subtype with the potential for high precision and low toxicity. In this review we describe the druggability of voltage-gated sodium channels in distinct functional states, which could potentially be used to selectively target the channels. We review classical drug receptors in the channels that have recently been structurally characterized by cryo-electron microscopy with natural neurotoxins and clinical drugs. We further examine recent drug discoveries for voltage-gated sodium channels and discuss opportunities to use distinct, state-dependent receptor sites in the voltage sensors as unique drug targets. Finally, we explore potential new receptor sites that are currently unknown for sodium channels but may be valuable for future drug discovery. The advancement presented here will help pave the way for drug development that selectively targets voltage-gated sodium channels.
Collapse
Affiliation(s)
- Goragot Wisedchaisri
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Tamer M Gamal El-Din
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
46
|
Gamal El-Din TM, Lenaeus MJ. Fenestropathy of Voltage-Gated Sodium Channels. Front Pharmacol 2022; 13:842645. [PMID: 35222049 PMCID: PMC8873592 DOI: 10.3389/fphar.2022.842645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
Voltage-gated sodium channels (Nav) are responsible for the initiation and propagation of action potentials in excitable cells. From pain to heartbeat, these integral membrane proteins are the ignition stations for every sensation and action in human bodies. They are large (>200 kDa, 24 transmembrane helices) multi-domain proteins that couple changes in membrane voltage to the gating cycle of the sodium-selective pore. Nav mutations lead to a multitude of diseases - including chronic pain, cardiac arrhythmia, muscle illnesses, and seizure disorders - and a wide variety of currently used therapeutics block Nav. Despite this, the mechanisms of action of Nav blocking drugs are only modestly understood at this time and many questions remain to be answered regarding their state- and voltage-dependence, as well as the role of the hydrophobic membrane access pathways, or fenestrations, in drug ingress or egress. Nav fenestrations, which are pathways that connect the plasma membrane to the central cavity in the pore domain, were discovered through functional studies more than 40 years ago and once thought to be simple pathways. A variety of recent genetic, structural, and pharmacological data, however, shows that these fenestrations are actually key functional regions of Nav that modulate drug binding, lipid binding, and influence gating behaviors. We discovered that some of the disease mutations that cause arrhythmias alter amino acid residues that line the fenestrations of Nav1.5. This indicates that fenestrations may play a critical role in channel's gating, and that individual genetic variation may also influence drug access through the fenestrations for resting/inactivated state block. In this review, we will discuss the channelopathies associated with these fenestrations, which we collectively name "Fenestropathy," and how changes in the fenestrations associated with the opening of the intracellular gate could modulate the state-dependent ingress and egress of drugs binding in the central cavity of voltage gated sodium channels.
Collapse
Affiliation(s)
| | - Michael J. Lenaeus
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
47
|
Tao E, Corry B. Characterizing fenestration size in sodium channel subtypes and their accessibility to inhibitors. Biophys J 2022; 121:193-206. [PMID: 34958776 PMCID: PMC8790208 DOI: 10.1016/j.bpj.2021.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 01/21/2023] Open
Abstract
Voltage-gated sodium channels (Nav) underlie the electrical activity of nerve and muscle cells. Humans have nine different subtypes of these channels, which are the target of small-molecule inhibitors commonly used to treat a range of conditions. Structural studies have identified four lateral fenestrations within the Nav pore module that have been shown to influence Nav pore blocker access during resting-state inhibition. However, the structural differences among the nine subtypes are still unclear. In particular, the dimensions of the four individual fenestrations across the Nav subtypes and their differential accessibility to pore blockers is yet to be characterized. To address this, we applied classical molecular dynamics simulations to study the recently published structures of Nav1.1, Nav1.2, Nav1.4, Nav1.5, and Nav1.7. Although there is significant variability in the bottleneck sizes of the Nav fenestrations, the subtypes follow a common pattern, with wider DI-II and DIII-IV fenestrations, a more restricted DII-III fenestration, and the most restricted DI-IV fenestration. We further identify the key bottleneck residues in each fenestration and show that the motions of aromatic residue sidechains govern the bottleneck radii. Well-tempered metadynamics simulations of Nav1.4 and Nav1.5 in the presence of the pore blocker lidocaine also support the DI-II fenestration being the most likely access route for drugs. Our computational results provide a foundation for future in vitro experiments examining the route of drug access to sodium channels. Understanding the fenestrations and their accessibility to drugs is critical for future analyses of diseases mutations across different sodium channel subtypes, with the potential to inform pharmacological development of resting-state inhibitors and subtype-selective drug design.
Collapse
Affiliation(s)
- Elaine Tao
- Research School of Biology, Australian National University, Canberra, Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, Australia.
| |
Collapse
|
48
|
Choudhury K, Kasimova MA, McComas S, Howard RJ, Delemotte L. An open state of a voltage-gated sodium channel involving a π-helix and conserved pore-facing asparagine. Biophys J 2022; 121:11-22. [PMID: 34890580 PMCID: PMC8758419 DOI: 10.1016/j.bpj.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
Voltage-gated sodium (Nav) channels play critical roles in propagating action potentials and otherwise manipulating ionic gradients in excitable cells. These channels open in response to membrane depolarization, selectively permeating sodium ions until rapidly inactivating. Structural characterization of the gating cycle in this channel family has proved challenging, particularly due to the transient nature of the open state. A structure from the bacterium Magnetococcus marinus Nav (NavMs) was initially proposed to be open, based on its pore diameter and voltage-sensor conformation. However, the functional annotation of this model, and the structural details of the open state, remain disputed. In this work, we used molecular modeling and simulations to test possible open-state models of NavMs. The full-length experimental structure, termed here the α-model, was consistently dehydrated at the activation gate, indicating an inability to conduct ions. Based on a spontaneous transition observed in extended simulations, and sequence/structure comparison to other Nav channels, we built an alternative π-model featuring a helix transition and the rotation of a conserved asparagine residue into the activation gate. Pore hydration, ion permeation, and state-dependent drug binding in this model were consistent with an open functional state. This work thus offers both a functional annotation of the full-length NavMs structure and a detailed model for a stable Nav open state, with potential conservation in diverse ion-channel families.
Collapse
Affiliation(s)
- Koushik Choudhury
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Marina A. Kasimova
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Sarah McComas
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rebecca J. Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden,Corresponding author
| |
Collapse
|
49
|
Manzur-Villalobos I, Contreras-Puentes N, Díaz-Caballero A, Durán-Lengua M, Alviz-Amador A. In silico study of local anesthetics analogues on sodium channel Nav 1.7 a pharmacological target on inflamed dental pulp. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
50
|
Abstract
Biophysics is a way of approaching biological problems through numbers, physical laws, models, and quantitative logic. In a long scientific career, I have seen the formation and fruition of the ion channel concept through biophysical study. Marvelous discoveries were made as our instruments evolved from vacuum tubes to transistors; computers evolved from the size of an entire building to a few chips inside our instruments; and genome sequencing, gene expression, and atom-level structural biology became accessible to all laboratories. Science is rewarding and exhilarating. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Bertil Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA;
| |
Collapse
|