1
|
Wang T, He F, He T, Lin C, Guan X, Qin Z, Xue X. Reconstruction of a robust bacterial replication module. Nucleic Acids Res 2024; 52:11394-11407. [PMID: 39271106 PMCID: PMC11472063 DOI: 10.1093/nar/gkae786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Chromosomal DNA replication is a fundamental process of life, involving the assembly of complex machinery and dynamic regulation. In this study, we reconstructed a bacterial replication module (pRC) by artificially clustering 23 genes involved in DNA replication and sequentially deleting these genes from their naturally scattered loci on the chromosome of Escherichia coli. The integration of pRC into the chromosome, moving from positions farther away to close to the replication origin, leads to an enhanced efficiency in DNA synthesis, varying from lower to higher. Strains containing replication modules exhibited increased DNA replication by accelerating the replication fork movement and initiating chromosomal replication earlier in the replication cycle. The minimized module pRC16, containing only replisome and elongation encoding genes, exhibited chromosomal DNA replication efficiency comparable to that of pRC. The replication module demonstrated robust and rapid DNA replication, regardless of growth conditions. Moreover, the replication module is plug-and-play, and integrating it into Mb-sized extrachromosomal plasmids improves their genetic stability. Our findings indicate that DNA replication, being a fundamental life process, can be artificially reconstructed into replication functional modules. This suggests potential applications in DNA replication and the construction of synthetic modular genomes.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Fan He
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ting He
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chen Lin
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xin Guan
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Xiaoli Xue
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
2
|
Zhang C, Joseph AM, Casini L, Collier J, Badrinarayanan A, Manley S. Chromosome organization shapes replisome dynamics in Caulobacter crescentus. Nat Commun 2024; 15:3460. [PMID: 38658616 PMCID: PMC11043382 DOI: 10.1038/s41467-024-47849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
DNA replication in bacteria takes place on highly compacted chromosomes, where segregation, transcription, and repair must occur simultaneously. Within this dynamic environment, colocalization of sister replisomes has been observed in many bacterial species, driving the hypothesis that a physical linker may tether them together. However, replisome splitting has also been reported in many of the same species, leaving the principles behind replisome organization a long-standing puzzle. Here, by tracking the replisome β-clamp subunit in live Caulobacter crescentus, we find that rapid DNA segregation can give rise to a second focus which resembles a replisome, but does not replicate DNA. Sister replisomes can remain colocalized, or split apart to travel along DNA separately upon disruption of chromosome inter-arm alignment. Furthermore, chromosome arm-specific replication-transcription conflicts differentially modify replication speed on the two arms, facilitate the decoupling of the two replisomes. With these observations, we conclude that the dynamic chromosome organization flexibly shapes the organization of sister replisomes, and we outline principles which can help to reconcile previously conflicting models of replisome architecture.
Collapse
Affiliation(s)
- Chen Zhang
- Laboratory of Experimental Biophysics, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Asha Mary Joseph
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Laurent Casini
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Justine Collier
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Anjana Badrinarayanan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Suliana Manley
- Laboratory of Experimental Biophysics, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Carrasco B, Torres R, Moreno-del Álamo M, Ramos C, Ayora S, Alonso JC. Processing of stalled replication forks in Bacillus subtilis. FEMS Microbiol Rev 2024; 48:fuad065. [PMID: 38052445 PMCID: PMC10804225 DOI: 10.1093/femsre/fuad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Accurate DNA replication and transcription elongation are crucial for preventing the accumulation of unreplicated DNA and genomic instability. Cells have evolved multiple mechanisms to deal with impaired replication fork progression, challenged by both intrinsic and extrinsic impediments. The bacterium Bacillus subtilis, which adopts multiple forms of differentiation and development, serves as an excellent model system for studying the pathways required to cope with replication stress to preserve genomic stability. This review focuses on the genetics, single molecule choreography, and biochemical properties of the proteins that act to circumvent the replicative arrest allowing the resumption of DNA synthesis. The RecA recombinase, its mediators (RecO, RecR, and RadA/Sms) and modulators (RecF, RecX, RarA, RecU, RecD2, and PcrA), repair licensing (DisA), fork remodelers (RuvAB, RecG, RecD2, RadA/Sms, and PriA), Holliday junction resolvase (RecU), nucleases (RnhC and DinG), and translesion synthesis DNA polymerases (PolY1 and PolY2) are key functions required to overcome a replication stress, provided that the fork does not collapse.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - María Moreno-del Álamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| |
Collapse
|
4
|
d'Acoz OD, Hue F, Ye T, Wang L, Leroux M, Rajngewerc L, Tran T, Phan K, Ramirez MS, Reisner W, Tolmasky ME, Reyes-Lamothe R. Dynamics and quantitative contribution of the aminoglycoside 6'- N-acetyltransferase type Ib [AAC(6')-Ib] to amikacin resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556435. [PMID: 38168340 PMCID: PMC10760054 DOI: 10.1101/2023.09.05.556435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Aminoglycosides are essential components in the available armamentarium to treat bacterial infections. The surge and rapid dissemination of resistance genes strongly reduce their efficiency, compromising public health. Among the multitude of modifying enzymes that confer resistance to aminoglycosides, the aminoglycoside acetyltransferase AAC(6')-Ib is the most prevalent and relevant in the clinical setting as it can inactivate numerous aminoglycosides, such as amikacin. Although the mechanism of action, structure, and biochemical properties of the AAC(6')-Ib protein have been extensively studied, the contribution of the intracellular milieu to its activity remains unclear. In this work, we used a fluorescent-based system to quantify the number of AAC(6')-Ib per cell in Escherichia coli, and we modulated this copy number with the CRISPR interference method. These tools were then used to correlate enzyme concentrations with amikacin resistance levels. Our results show that resistance to amikacin increases linearly with a higher concentration of AAC(6')-Ib until it reaches a plateau at a specific protein concentration. In vivo imaging of this protein shows that it diffuses freely within the cytoplasm of the cell, but it tends to form inclusion bodies at higher concentrations in rich culture media. Addition of a chelating agent completely dissolves these aggregates and partially prevents the plateau in the resistance level, suggesting that AAC(6')-Ib aggregation lowers resistance to amikacin. These results provide the first step in understanding the cellular impact of each AAC(6')-Ib molecule on aminoglycoside resistance. They also highlight the importance of studying its dynamic behavior within the cell.
Collapse
Affiliation(s)
- Ophélie d'Udekem d'Acoz
- Department of Biology, McGill University, 3649 Sir William Osler, Montréal, Québec, H3G 0B1, Canada
| | - Fong Hue
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California
| | - Tianyi Ye
- Department of Biology, McGill University, 3649 Sir William Osler, Montréal, Québec, H3G 0B1, Canada
| | - Louise Wang
- Department of Biology, McGill University, 3649 Sir William Osler, Montréal, Québec, H3G 0B1, Canada
| | - Maxime Leroux
- Department of Biology, McGill University, 3649 Sir William Osler, Montréal, Québec, H3G 0B1, Canada
| | - Lucila Rajngewerc
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California
| | - Tung Tran
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California
| | - Kimberly Phan
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California
| | - Maria S Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California
| | - Walter Reisner
- Department of Physics, McGill University, 3600 rue université, Montréal, Québec, H3A 2T8, Canada
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California
| | - Rodrigo Reyes-Lamothe
- Department of Biology, McGill University, 3649 Sir William Osler, Montréal, Québec, H3G 0B1, Canada
| |
Collapse
|
5
|
Cox MM, Goodman MF, Keck JL, van Oijen A, Lovett ST, Robinson A. Generation and Repair of Postreplication Gaps in Escherichia coli. Microbiol Mol Biol Rev 2023; 87:e0007822. [PMID: 37212693 PMCID: PMC10304936 DOI: 10.1128/mmbr.00078-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
When replication forks encounter template lesions, one result is lesion skipping, where the stalled DNA polymerase transiently stalls, disengages, and then reinitiates downstream to leave the lesion behind in a postreplication gap. Despite considerable attention in the 6 decades since postreplication gaps were discovered, the mechanisms by which postreplication gaps are generated and repaired remain highly enigmatic. This review focuses on postreplication gap generation and repair in the bacterium Escherichia coli. New information to address the frequency and mechanism of gap generation and new mechanisms for their resolution are described. There are a few instances where the formation of postreplication gaps appears to be programmed into particular genomic locations, where they are triggered by novel genomic elements.
Collapse
Affiliation(s)
- Michael M. Cox
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Myron F. Goodman
- Department of Biological Sciences, University of Southern California, University Park, Los Angeles, California, USA
- Department of Chemistry, University of Southern California, University Park, Los Angeles, California, USA
| | - James L. Keck
- Department of Biological Chemistry, University of Wisconsin—Madison School of Medicine, Madison, Wisconsin, USA
| | - Antoine van Oijen
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Susan T. Lovett
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Andrew Robinson
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
6
|
Torres R, Carrasco B, Alonso JC. Bacillus subtilis RadA/Sms-Mediated Nascent Lagging-Strand Unwinding at Stalled or Reversed Forks Is a Two-Step Process: RadA/Sms Assists RecA Nucleation, and RecA Loads RadA/Sms. Int J Mol Sci 2023; 24:ijms24054536. [PMID: 36901969 PMCID: PMC10003422 DOI: 10.3390/ijms24054536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Replication fork rescue requires Bacillus subtilis RecA, its negative (SsbA) and positive (RecO) mediators, and fork-processing (RadA/Sms). To understand how they work to promote fork remodeling, reconstituted branched replication intermediates were used. We show that RadA/Sms (or its variant, RadA/Sms C13A) binds to the 5'-tail of a reversed fork with longer nascent lagging-strand and unwinds it in the 5'→3' direction, but RecA and its mediators limit unwinding. RadA/Sms cannot unwind a reversed fork with a longer nascent leading-strand, or a gapped stalled fork, but RecA interacts with and activates unwinding. Here, the molecular mechanism by which RadA/Sms, in concert with RecA, in a two-step reaction, unwinds the nascent lagging-strand of reversed or stalled forks is unveiled. First, RadA/Sms, as a mediator, contributes to SsbA displacement from the forks and nucleates RecA onto single-stranded DNA. Then, RecA, as a loader, interacts with and recruits RadA/Sms onto the nascent lagging strand of these DNA substrates to unwind them. Within this process, RecA limits RadA/Sms self-assembly to control fork processing, and RadA/Sms prevents RecA from provoking unnecessary recombination.
Collapse
|
7
|
Cayron J, Dedieu-Berne A, Lesterlin C. Bacterial filaments recover by successive and accelerated asymmetric divisions that allow rapid post-stress cell proliferation. Mol Microbiol 2023; 119:237-251. [PMID: 36527185 DOI: 10.1111/mmi.15016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Filamentation is a reversible morphological change triggered in response to various stresses that bacteria might encounter in the environment, during host infection or antibiotic treatments. Here we re-visit the dynamics of filament formation and recovery using a consistent framework based on live-cells microscopy. We compare the fate of filamentous Escherichia coli induced by cephalexin that inhibits cell division or by UV-induced DNA-damage that additionally perturbs chromosome segregation. We show that both filament types recover by successive and accelerated rounds of divisions that preferentially occur at the filaments' tip, thus resulting in the rapid production of multiple daughter cells with tightly regulated size. The DNA content, viability and further division of the daughter cells essentially depends on the coordination between chromosome segregation and division within the mother filament. Septum positioning at the filaments' tip depends on the Min system, while the nucleoid occlusion protein SlmA regulates the timing of division to prevent septum closure on unsegregated chromosomes. Our results not only recapitulate earlier conclusions but provide a higher level of detail regarding filaments division and the fate of the daughter cells. Together with previous reports, this work uncovers how filamentation recovery allows for a rapid cell proliferation after stress treatment.
Collapse
Affiliation(s)
- Julien Cayron
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon, France
| | - Annick Dedieu-Berne
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon, France
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon, France
| |
Collapse
|
8
|
Replication stalling activates SSB for recruitment of DNA damage tolerance factors. Proc Natl Acad Sci U S A 2022; 119:e2208875119. [PMID: 36191223 PMCID: PMC9565051 DOI: 10.1073/pnas.2208875119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translesion synthesis (TLS) polymerases bypass DNA lesions that block replicative polymerases, allowing cells to tolerate DNA damage encountered during replication. It is well known that most bacterial TLS polymerases must interact with the sliding-clamp processivity factor to carry out TLS, but recent work in Escherichia coli has revealed that single-stranded DNA-binding protein (SSB) plays a key role in enriching the TLS polymerase Pol IV at stalled replication forks in the presence of DNA damage. It remains unclear how this interaction with SSB enriches Pol IV in a stalling-dependent manner given that SSB is always present at the replication fork. In this study, we use single-molecule imaging in live E. coli cells to investigate this SSB-dependent enrichment of Pol IV. We find that Pol IV is enriched through its interaction with SSB in response to a range of different replication stresses and that changes in SSB dynamics at stalled forks may explain this conditional Pol IV enrichment. Finally, we show that other SSB-interacting proteins are likewise selectively enriched in response to replication perturbations, suggesting that this mechanism is likely a general one for enrichment of repair factors near stalled replication forks.
Collapse
|
9
|
Khan F, Jeong GJ, Tabassum N, Mishra A, Kim YM. Filamentous morphology of bacterial pathogens: regulatory factors and control strategies. Appl Microbiol Biotechnol 2022; 106:5835-5862. [PMID: 35989330 DOI: 10.1007/s00253-022-12128-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022]
Abstract
Several studies have demonstrated that when exposed to physical, chemical, and biological stresses in the environment, many bacteria (Gram-positive and Gram-negative) change their morphology from a normal cell to a filamentous shape. The formation of filamentous morphology is one of the survival strategies against environmental stress and protection against phagocytosis or protist predators. Numerous pathogenic bacteria have shown filamentous morphologies when examined in vivo or in vitro. During infection, certain pathogenic bacteria adopt a filamentous shape inside the cell to avoid phagocytosis by immune cells. Filamentous morphology has also been seen in biofilms formed on biotic or abiotic surfaces by certain bacteria. As a result, in addition to protecting against phagocytosis by immune cells or predators, the filamentous shape aids in biofilm adhesion or colonization to biotic or abiotic surfaces. Furthermore, these filamentous morphologies of bacterial pathogens lead to antimicrobial drug resistance. Clinically, filamentous morphology has become one of the most serious challenges in treating bacterial infection. The current review went into great detail about the various factors involved in the change of filamentous morphology and the underlying mechanisms. In addition, the review discussed a control strategy for suppressing filamentous morphology in order to combat bacterial infections. Understanding the mechanism underlying the filamentous morphology induced by various environmental conditions will aid in drug development and lessen the virulence of bacterial pathogens. KEY POINTS: • The bacterial filamentation morphology is one of the survival mechanisms against several environmental stress conditions and protection from phagocytosis by host cells and protist predators. • The filamentous morphologies in bacterial pathogens contribute to enhanced biofilm formation, which develops resistance properties against antimicrobial drugs. • Filamentous morphology has become one of the major hurdles in treating bacterial infection, hence controlling strategies employed for inhibiting the filamentation morphology from combating bacterial infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Akanksha Mishra
- Department of Biotechnology, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea. .,Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
10
|
Kaidow A, Ishii N, Suzuki S, Shiina T, Kasahara H. Reactive oxygen species accumulation is synchronised with growth inhibition of temperature-sensitive recAts polA Escherichia coli. Arch Microbiol 2022; 204:396. [PMID: 35705748 PMCID: PMC9200703 DOI: 10.1007/s00203-022-02957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
When combined with recombinase defects, chromosome breakage and double-strand break repair deficiencies render cells inviable. However, cells are viable when an SOS response occurs in recAts polA cells in Escherichia coli. Here, we aimed to elucidate the underlying mechanisms of this process. Transposon mutagenesis revealed that the hslO gene, a redox chaperone Hsp33 involved in reactive oxidative species (ROS) metabolism, was required for the suppression of recAts polA lethality at a restricted temperature. Recently, it has been reported that lethal treatments trigger ROS accumulation. We also found that recAts polA cells accumulated ROS at the restricted temperature. A catalase addition to the medium alleviates the temperature sensitivity of recAts polA cells and decreases ROS accumulation. These results suggest that the SOS response and hslO manage oxidative insult to an acceptable level in cells with oxidative damage and rescue cell growth. Overall, ROS might regulate several cellular processes.
Collapse
Affiliation(s)
- Akihiro Kaidow
- Department of Biology, School of Biology, Tokai University, Sapporo, 005-8601, Japan.
| | - Noriko Ishii
- Department of Bioscience and Technology, School of Biology, Tokai University, Sapporo, 005-8601, Japan
| | - Sinngo Suzuki
- Department of Molecular Medicine, School of Medicine, Tokai University, Isehara, 259-1193, Japan
| | - Takashi Shiina
- Department of Molecular Medicine, School of Medicine, Tokai University, Isehara, 259-1193, Japan
| | - Hirokazu Kasahara
- Department of Bioscience and Technology, School of Biology, Tokai University, Sapporo, 005-8601, Japan
| |
Collapse
|
11
|
Backes N, Phillips GJ. Repurposing CRISPR-Cas Systems as Genetic Tools for the Enterobacteriales. EcoSal Plus 2021; 9:eESP00062020. [PMID: 34125584 PMCID: PMC11163844 DOI: 10.1128/ecosalplus.esp-0006-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022]
Abstract
Over the last decade, the study of CRISPR-Cas systems has progressed from a newly discovered bacterial defense mechanism to a diverse suite of genetic tools that have been applied across all domains of life. While the initial applications of CRISPR-Cas technology fulfilled a need to more precisely edit eukaryotic genomes, creative "repurposing" of this adaptive immune system has led to new approaches for genetic analysis of microorganisms, including improved gene editing, conditional gene regulation, plasmid curing and manipulation, and other novel uses. The main objective of this review is to describe the development and current state-of-the-art use of CRISPR-Cas techniques specifically as it is applied to members of the Enterobacteriales. While many of the applications covered have been initially developed in Escherichia coli, we also highlight the potential, along with the limitations, of this technology for expanding the availability of genetic tools in less-well-characterized non-model species, including bacterial pathogens.
Collapse
Affiliation(s)
- Nicholas Backes
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Gregory J. Phillips
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
12
|
Leroux M, Soubry N, Reyes-Lamothe R. Dynamics of Proteins and Macromolecular Machines in Escherichia coli. EcoSal Plus 2021; 9:eESP00112020. [PMID: 34060908 PMCID: PMC11163846 DOI: 10.1128/ecosalplus.esp-0011-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/16/2021] [Indexed: 11/20/2022]
Abstract
Proteins are major contributors to the composition and the functions in the cell. They often assemble into larger structures, macromolecular machines, to carry out intricate essential functions. Although huge progress in understanding how macromolecular machines function has been made by reconstituting them in vitro, the role of the intracellular environment is still emerging. The development of fluorescence microscopy techniques in the last 2 decades has allowed us to obtain an increased understanding of proteins and macromolecular machines in cells. Here, we describe how proteins move by diffusion, how they search for their targets, and how they are affected by the intracellular environment. We also describe how proteins assemble into macromolecular machines and provide examples of how frequent subunit turnover is used for them to function and to respond to changes in the intracellular conditions. This review emphasizes the constant movement of molecules in cells, the stochastic nature of reactions, and the dynamic nature of macromolecular machines.
Collapse
Affiliation(s)
- Maxime Leroux
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Nicolas Soubry
- Department of Biology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
13
|
Joseph AM, Daw S, Sadhir I, Badrinarayanan A. Coordination between nucleotide excision repair and specialized polymerase DnaE2 action enables DNA damage survival in non-replicating bacteria. eLife 2021; 10:e67552. [PMID: 33856342 PMCID: PMC8102061 DOI: 10.7554/elife.67552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
Translesion synthesis (TLS) is a highly conserved mutagenic DNA lesion tolerance pathway, which employs specialized, low-fidelity DNA polymerases to synthesize across lesions. Current models suggest that activity of these polymerases is predominantly associated with ongoing replication, functioning either at or behind the replication fork. Here we provide evidence for DNA damage-dependent function of a specialized polymerase, DnaE2, in replication-independent conditions. We develop an assay to follow lesion repair in non-replicating Caulobacter and observe that components of the replication machinery localize on DNA in response to damage. These localizations persist in the absence of DnaE2 or if catalytic activity of this polymerase is mutated. Single-stranded DNA gaps for SSB binding and low-fidelity polymerase-mediated synthesis are generated by nucleotide excision repair (NER), as replisome components fail to localize in the absence of NER. This mechanism of gap-filling facilitates cell cycle restoration when cells are released into replication-permissive conditions. Thus, such cross-talk (between activity of NER and specialized polymerases in subsequent gap-filling) helps preserve genome integrity and enhances survival in a replication-independent manner.
Collapse
Affiliation(s)
- Asha Mary Joseph
- National Centre for Biological Sciences - Tata Institute of Fundamental ResearchBangaloreIndia
| | - Saheli Daw
- National Centre for Biological Sciences - Tata Institute of Fundamental ResearchBangaloreIndia
| | - Ismath Sadhir
- National Centre for Biological Sciences - Tata Institute of Fundamental ResearchBangaloreIndia
- Max Planck Institute for Terrestrial Microbiology, LOEWE Centre for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Anjana Badrinarayanan
- National Centre for Biological Sciences - Tata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
14
|
Joseph AM, Badrinarayanan A. Visualizing mutagenic repair: novel insights into bacterial translesion synthesis. FEMS Microbiol Rev 2020; 44:572-582. [PMID: 32556198 PMCID: PMC7476773 DOI: 10.1093/femsre/fuaa023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
DNA repair is essential for cell survival. In all domains of life, error-prone and error-free repair pathways ensure maintenance of genome integrity under stress. Mutagenic, low-fidelity repair mechanisms help avoid potential lethality associated with unrepaired damage, thus making them important for genome maintenance and, in some cases, the preferred mode of repair. However, cells carefully regulate pathway choice to restrict activity of these pathways to only certain conditions. One such repair mechanism is translesion synthesis (TLS), where a low-fidelity DNA polymerase is employed to synthesize across a lesion. In bacteria, TLS is a potent source of stress-induced mutagenesis, with potential implications in cellular adaptation as well as antibiotic resistance. Extensive genetic and biochemical studies, predominantly in Escherichia coli, have established a central role for TLS in bypassing bulky DNA lesions associated with ongoing replication, either at or behind the replication fork. More recently, imaging-based approaches have been applied to understand the molecular mechanisms of TLS and how its function is regulated. Together, these studies have highlighted replication-independent roles for TLS as well. In this review, we discuss the current status of research on bacterial TLS, with emphasis on recent insights gained mostly through microscopy at the single-cell and single-molecule level.
Collapse
Affiliation(s)
- Asha Mary Joseph
- National Centre for Biological Sciences (Tata Institute of Fundamental Research), Bangalore, Karnataka 560065, India
| | - Anjana Badrinarayanan
- National Centre for Biological Sciences (Tata Institute of Fundamental Research), Bangalore, Karnataka 560065, India
| |
Collapse
|
15
|
Wolak C, Ma HJ, Soubry N, Sandler SJ, Reyes-Lamothe R, Keck JL. Interaction with single-stranded DNA-binding protein localizes ribonuclease HI to DNA replication forks and facilitates R-loop removal. Mol Microbiol 2020; 114:495-509. [PMID: 32426857 PMCID: PMC7934204 DOI: 10.1111/mmi.14529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 01/06/2023]
Abstract
DNA replication complexes (replisomes) routinely encounter proteins and unusual nucleic acid structures that can impede their progress. Barriers can include transcription complexes and R-loops that form when RNA hybridizes with complementary DNA templates behind RNA polymerases. Cells encode several RNA polymerase and R-loop clearance mechanisms to limit replisome exposure to these potential obstructions. One such mechanism is hydrolysis of R-loops by ribonuclease HI (RNase HI). Here, we examine the cellular role of the interaction between Escherichia coli RNase HI and the single-stranded DNA-binding protein (SSB) in this process. Interaction with SSB localizes RNase HI foci to DNA replication sites. Mutation of rnhA to encode an RNase HI variant that cannot interact with SSB but that maintains enzymatic activity (rnhAK60E) eliminates RNase HI foci. The mutation also produces a media-dependent slow-growth phenotype and an activated DNA damage response in cells lacking Rep helicase, which is an enzyme that disrupts stalled transcription complexes. RNA polymerase variants that are thought to increase or decrease R-loop accumulation enhance or suppress, respectively, the growth phenotype of rnhAK60E rep::kan strains. These results identify a cellular role for the RNase HI/SSB interaction in helping to clear R-loops that block DNA replication.
Collapse
Affiliation(s)
- Christine Wolak
- Department of Biomolecular Chemistry, 420 Henry Mall, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Hui Jun Ma
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Nicolas Soubry
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Steven J. Sandler
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Rodrigo Reyes-Lamothe
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - James L. Keck
- Department of Biomolecular Chemistry, 420 Henry Mall, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| |
Collapse
|