1
|
Ji M, Fan D, Yuan Y, Wang J, Feng X, Yang W, Dang X, Xu Y, Wang J. Investigation into the Spatial Heterogeneity of Lung Composite Large-Cell Neuroendocrine Carcinoma Spatial Transcriptomic Analysis of Combined Large-Cell Neuroendocrine Carcinoma. Cancer Biother Radiopharm 2025. [PMID: 40304569 DOI: 10.1089/cbr.2025.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Background: Lung combined large-cell neuroendocrine carcinoma (CoLCNEC) refers to lung regions exhibiting both the features of large-cell neuroendocrine carcinoma (LCNEC) and the defined components of nonsmall cell lung cancer (NSCLC), with a relatively high mitotic rate. Diagnosing and predicting the prognosis of CoLCNEC are challenging. This study aimed to explore spatial transcriptomic expression patterns and identify crucial genes. Methods: We utilized a sample from a CoLCNEC patient containing three distinct components, namely, LCNEC, adenocarcinoma, and squamous cell carcinoma, with the former being predominant. Spatial transcriptomics (ST) technology, which employs the 10× Genomics Visium formalin-fixed paraffin-embedded ST kit, was applied along with high-throughput sequencing to obtain gene expression information and spatial locations for each spot. Subsequent analysis included differentially gene expression and functional enrichment. Finally, immunohistochemistry was employed to validate the marker protein structural maintenance of chromosomes 1A (SMC1A). Then, SMC1A was overexpressed and silenced in NCI-H661 and LTEP-a-2 cells, and the migration and invasion ability of the cells were detected by scratch assay and Transwell, respectively. The role of SMC1A in cancer cell cycle was detected by Real-time Reverse Transcription-PCR(RT-qPCR), Western blot, and flow cytometry, the apoptosis was detected by flow cytometry. Results: The results revealed that tumor tissue regions had higher unique molecular identifiers and gene counts than nontumor regions did. Unsupervised clustering identified four clusters, revealing the uniform distribution of unique transcripts, which were mapped onto slices to display apparent spatial separation. Differentially gene expression analysis revealed genes highly expressed in cancer cells. Further analysis of different regions revealed distinct cellular subgroups enriched through differentially gene expression analysis in various pathways, such as the cell cycle and DNA replication. Finally, SMC1A was chosen as a candidate gene, and immunohistochemistry confirmed its elevated expression in tumor regions. In addition, compared with oe-NC, oe-SMC1A can significantly promote the migration, invasion and G1/S phase transition of lung cancer cells, and promote the inhibition of apoptosis of cancer cells, while sh-SMC1A is completely opposite. Conclusions: In the tumor region of CoLCNEC, SMC1A is significantly upregulated. Moreover, silencing SMC1A effectively inhibits lung cancer cell invasion, migration, and G1/S phase transition, while promoting apoptosis. These findings indicate that SMC1A has the potential to be a new therapeutic target for CoLCNEC treatment.
Collapse
Affiliation(s)
- Mingyu Ji
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Daming Fan
- Department of Pathology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaqi Yuan
- Kiev College, Qilu University of Technology, Jinan, China
| | - Jing Wang
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaodong Feng
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Weihua Yang
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaofei Dang
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yihui Xu
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun Wang
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Fernandez-Cuesta L, Alcala N, Mathian E, Derks J, Thirlwell C, Dayton T, Marinoni I, Perren A, Walter T, Foll M. Basic science and translational implications of current knowledge on neuroendocrine tumors. J Clin Invest 2025; 135:e186702. [PMID: 40026252 PMCID: PMC11870734 DOI: 10.1172/jci186702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Neuroendocrine tumors (NETs) are a diverse group of malignancies that can occur in various organs, with a notable prevalence in the lungs and gastrointestinal tract, which are the focus of this Review. Although NETs are rare in individual organs, their incidence has increased over recent decades, highlighting the urgent need for current classification systems to evolve by incorporating recent advances in the understanding of NET biology. Several omics studies have revealed molecular subtypes, which, when integrated into existing classification frameworks, may provide more clinically relevant insights for patients with NETs. This Review examines recent progress in elucidating the biology of NETs, with a particular emphasis on the tumor microenvironment and cells of origin. The existence of different cells of origin, which may contribute to distinct molecular groups, along with profiles of immune infiltration - despite being generally low - could explain the emergence of more aggressive cases and the potential for metastatic progression. Given the molecular heterogeneity of NETs and the diversity of their microenvironments and different cells of origin, there is an urgent need to develop morphomolecular classification systems. Such systems would make it possible to better characterize tumor progression, identify new therapeutic targets, and, ultimately, guide the development of personalized therapies.
Collapse
Affiliation(s)
- Lynnette Fernandez-Cuesta
- Computational Cancer Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Nicolas Alcala
- Computational Cancer Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Emilie Mathian
- Computational Cancer Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Jules Derks
- Department of Pulmonary Medicine, Erasmus MC Cancer institute, University Medical Center, Rotterdam, Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Talya Dayton
- European Molecular Biology Laboratory Barcelona, Tissue Biology and Disease Modeling, Barcelona, Spain
| | - Ilaria Marinoni
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Aurel Perren
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Thomas Walter
- Service d’Oncologie Médicale, Groupement Hospitalier Centre, Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
| | - Matthieu Foll
- Computational Cancer Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| |
Collapse
|
3
|
Yamakado T, Sato-Yazawa H, Ishii J, Kashiwagi K, Kimura T, Tanei ZI, Yazawa T, Ishida Y, Tanaka S. Spontaneous Transformation from Lung Adenocarcinoma to MYC-amplified Large Cell Neuroendocrine Carcinoma. Pathol Int 2025; 75:105-113. [PMID: 39868963 DOI: 10.1111/pin.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025]
Abstract
Recent studies suggest that lung adenocarcinoma cells are closely associated with the tumorigenesis of large-cell neuroendocrine carcinoma via cellular transformation. However, morphological evidence, along with genetic abnormalities before, during, and after transformation, is quite limited. We present here a case of combined large-cell neuroendocrine carcinoma and adenocarcinoma exhibiting acinar and solid patterns. Adenocarcinoma cells with abundant mucin, exhibiting positivity for both napsin-A and neuroendocrine markers, were partially found in the acinar adenocarcinoma component and extensively observed in the solid adenocarcinoma component. Next-generation sequencing using extracted genomic DNA from the three components revealed homozygous TP53 (missense) and STK11 (nonsense) mutations in all three components, suggesting monoclonal origin. Furthermore, MYC gene amplification, recently presumed to be a pivotal driver in neuroendocrine transformation, was observed in both the solid adenocarcinoma and large-cell neuroendocrine carcinoma components. These genetic findings corresponded to pre- and post-transformation morphology, providing compelling evidence that some kinds of adenocarcinomas may serve as a precursor of large-cell neuroendocrine carcinoma.
Collapse
Affiliation(s)
- Tetsuhiro Yamakado
- Department of Pathology, National Hospital Organization, Hokkaido Medical Center, Hokkaido, Japan
- Department of Cancer Pathology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Hanako Sato-Yazawa
- Department of Pathology, School of Medicine and Graduate School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Jun Ishii
- Department of Pathology, School of Medicine and Graduate School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Korehito Kashiwagi
- Department of Pathology, School of Medicine and Graduate School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Taichi Kimura
- Department of Pathology, National Hospital Organization, Hokkaido Medical Center, Hokkaido, Japan
- Department of Cancer Pathology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Zen-Ichi Tanei
- Department of Cancer Pathology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Takuya Yazawa
- Department of Pathology, School of Medicine and Graduate School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Yusuke Ishida
- Department of Pathology, National Hospital Organization, Hokkaido Medical Center, Hokkaido, Japan
- Department of Cancer Pathology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Kang K, Li B, Wang S, Wang J, Liang X. Clinical characteristics and treatment management of combined large cell neuroendocrine carcinoma, a subtype of large cell neuroendocrine carcinoma. Front Oncol 2024; 14:1449490. [PMID: 39502318 PMCID: PMC11534729 DOI: 10.3389/fonc.2024.1449490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Combined large cell neuroendocrine carcinoma (CLCNEC) is a rare neuroendocrine carcinoma, accounting for approximately 10% of large cell neuroendocrine carcinoma (LCNEC). Mainly composed of coexisting adenocarcinoma components, with strong invasiveness and poor prognosis. The treatment regimen for CLCNEC mainly refers to complete surgical resection as the first choice in the early stage, while patients with stage II or higher require adjuvant treatment. At present, research on CLCNEC is mostly small sample and retrospective, and there is no consensus on whether molecular typing and treatment should be carried out. There is considerable controversy over whether it should be managed as small-cell lung cancer (SCLC) or non-small-cell lung cancer (NSCLC). Therefore, in order to solve the problem of confusion in the selection of treatment regimens for CLCNEC, while also considering the therapeutic effects, this article summarizes and analyzes previous studies, fully seeks evidence, and boldly proposes new therapeutic insights: the etoposide-platinum (EP) regimen serves as the basis for adjuvant therapy; In addition, SCLC/NSCLC-CLCNEC can be distinguished based on presence of RB1 and TP53 co-mutation, and targeted therapy or NSCLC type chemotherapy including platinum + gemcitabine or taxanes (NSCLC-GEM/TAX) can be used in combination or sequentially for NSCLC-CLCNEC.
Collapse
Affiliation(s)
- Kai Kang
- Thoracic Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Binfeng Li
- Thoracic Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Wang
- Thoracic Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianjian Wang
- Thoracic Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinjun Liang
- Department of Abdominal Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Jiang J, Han D, Wang J, Wen W, Zhang R, Qin W. Neuroendocrine transdifferentiation in human cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e761. [PMID: 39372390 PMCID: PMC11450264 DOI: 10.1002/mco2.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024] Open
Abstract
Neuroendocrine transdifferentiation (NEtD), also commonly referred to as lineage plasticity, emerges as an acquired resistance mechanism to molecular targeted therapies in multiple cancer types, predominately occurs in metastatic epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors and metastatic castration-resistant prostate cancer treated with androgen receptor targeting therapies. NEtD tumors are the lethal cancer histologic subtype with unfavorable prognosis and limited treatment. A comprehensive understanding of molecular mechanism underlying targeted-induced plasticity could greatly facilitate the development of novel therapies. In the past few years, increasingly elegant studies indicated that NEtD tumors share key the convergent genomic and phenotypic characteristics irrespective of their site of origin, but also embrace distinct change and function of molecular mechanisms. In this review, we provide a comprehensive overview of the current understanding of molecular mechanism in regulating the NEtD, including genetic alterations, DNA methylation, histone modifications, dysregulated noncoding RNA, lineage-specific transcription factors regulation, and other proteomic alterations. We also provide the current management of targeted therapies in clinical and preclinical practice.
Collapse
Affiliation(s)
- Jun Jiang
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
- Department of Health Service, Base of Health ServiceAir Force Medical UniversityXi'anChina
| | - Donghui Han
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| | - Jiawei Wang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, and National Translational Science Center for Molecular MedicineAir Force Medical UniversityXi'anChina
| | - Weihong Wen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Rui Zhang
- State Key Laboratory of Cancer BiologyDepartment of ImmunologyAir Force Medical UniversityXi'anChina
| | - Weijun Qin
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
6
|
Lara-Sáez I, Mencía Á, Recuero E, Li Y, García M, Oteo M, Gallego MI, Enguita AB, de Prado-Verdún D, A S, Wang W, García-Escudero R, Murillas R, Santos M. Nonviral CRISPR/Cas9 mutagenesis for streamlined generation of mouse lung cancer models. Proc Natl Acad Sci U S A 2024; 121:e2322917121. [PMID: 38959035 PMCID: PMC11252735 DOI: 10.1073/pnas.2322917121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
Functional analysis in mouse models is necessary to establish the involvement of a set of genetic variations in tumor development. A modeling platform to facilitate and cost-effectively analyze the role of multiple genes in carcinogenesis would be valuable. Here, we present an innovative strategy for lung mutagenesis using CRISPR/Cas9 ribonucleoproteins delivered via cationic polymers. This approach allows the simultaneous inactivation of multiple genes. We validate the effectiveness of this system by targeting a group of tumor suppressor genes, specifically Rb1, Rbl1, Pten, and Trp53, which were chosen for their potential to cause lung tumors, namely small cell lung carcinoma (SCLC). Tumors with histologic and transcriptomic features of human SCLC emerged after intratracheal administration of CRISPR/polymer nanoparticles. These tumors carried loss-of-function mutations in all four tumor suppressor genes at the targeted positions. These findings were reproduced in two different pure genetic backgrounds. We provide a proof of principle for simplified modeling of lung tumorigenesis to facilitate functional testing of potential cancer-related genes.
Collapse
Affiliation(s)
- Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, DublinD04 V1W8, Ireland
| | - Ángeles Mencía
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid28040, Spain
- CB06/07/0019 Unit, Centro de Investigación Biomédica en Red en Enfermedades Raras, Madrid28029, Spain
- Regenerative Medicine and Tissue Bioengineering Group, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid28040, Spain
| | - Enrique Recuero
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid28040, Spain
- Cellular and Molecular Genitourinary Oncology Group, Institute of Biomedical Research Hospital “12 de Octubre”, Madrid28041, Spain
| | - Yinghao Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, DublinD04 V1W8, Ireland
| | - Marta García
- CB06/07/0019 Unit, Centro de Investigación Biomédica en Red en Enfermedades Raras, Madrid28029, Spain
- Regenerative Medicine and Tissue Bioengineering Group, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid28040, Spain
- Department of Biomedical Engineering, Polytechnic School, Carlos III University, Leganés, Madrid28911, Spain
| | - Marta Oteo
- Biomedical Applications and Pharmacokinetics Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid28040, Spain
| | - Marta I. Gallego
- Unidad de Histología, Unidades Centrales Científico Tecnológicas, Instituto de Salud Carlos III, Madrid28220, Spain
| | - Ana Belén Enguita
- Pathology Department, University Hospital “12 de Octubre”, Madrid28041, Spain
| | - Diana de Prado-Verdún
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid28040, Spain
- CB06/07/0019 Unit, Centro de Investigación Biomédica en Red en Enfermedades Raras, Madrid28029, Spain
- Regenerative Medicine and Tissue Bioengineering Group, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid28040, Spain
| | - Sigen A
- Research and Clinical Translation Center of Gene Medicine and Tissue Engineering, School of Public Health, Anhui University of Science and Technology, Huainan232001, China
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, DublinD04 V1W8, Ireland
| | - Ramón García-Escudero
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid28040, Spain
- Cellular and Molecular Genitourinary Oncology Group, Institute of Biomedical Research Hospital “12 de Octubre”, Madrid28041, Spain
- Tumor Progression Mechanisms Program, Centro de Investigación Biomédica en Red de Cáncer, Madrid28029, Spain
| | - Rodolfo Murillas
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid28040, Spain
- CB06/07/0019 Unit, Centro de Investigación Biomédica en Red en Enfermedades Raras, Madrid28029, Spain
- Regenerative Medicine and Tissue Bioengineering Group, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid28040, Spain
| | - Mirentxu Santos
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid28040, Spain
- Cellular and Molecular Genitourinary Oncology Group, Institute of Biomedical Research Hospital “12 de Octubre”, Madrid28041, Spain
- Tumor Progression Mechanisms Program, Centro de Investigación Biomédica en Red de Cáncer, Madrid28029, Spain
| |
Collapse
|
7
|
Solta A, Ernhofer B, Boettiger K, Megyesfalvi Z, Heeke S, Hoda MA, Lang C, Aigner C, Hirsch FR, Schelch K, Döme B. Small cells - big issues: biological implications and preclinical advancements in small cell lung cancer. Mol Cancer 2024; 23:41. [PMID: 38395864 PMCID: PMC10893629 DOI: 10.1186/s12943-024-01953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Current treatment guidelines refer to small cell lung cancer (SCLC), one of the deadliest human malignancies, as a homogeneous disease. Accordingly, SCLC therapy comprises chemoradiation with or without immunotherapy. Meanwhile, recent studies have made significant advances in subclassifying SCLC based on the elevated expression of the transcription factors ASCL1, NEUROD1, and POU2F3, as well as on certain inflammatory characteristics. The role of the transcription regulator YAP1 in defining a unique SCLC subset remains to be established. Although preclinical analyses have described numerous subtype-specific characteristics and vulnerabilities, the so far non-existing clinical subtype distinction may be a contributor to negative clinical trial outcomes. This comprehensive review aims to provide a framework for the development of novel personalized therapeutic approaches by compiling the most recent discoveries achieved by preclinical SCLC research. We highlight the challenges faced due to limited access to patient material as well as the advances accomplished by implementing state-of-the-art models and methodologies.
Collapse
Affiliation(s)
- Anna Solta
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Büsra Ernhofer
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Simon Heeke
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Clemens Aigner
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Center for Thoracic Oncology, Mount Sinai Health System, Tisch Cancer Institute, New York, NY, USA.
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Balazs Döme
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
- National Koranyi Institute of Pulmonology, Budapest, Hungary.
- Department of Translational Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
8
|
Gardner EE, Earlie EM, Li K, Thomas J, Hubisz MJ, Stein BD, Zhang C, Cantley LC, Laughney AM, Varmus H. Lineage-specific intolerance to oncogenic drivers restricts histological transformation. Science 2024; 383:eadj1415. [PMID: 38330136 PMCID: PMC11155264 DOI: 10.1126/science.adj1415] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/08/2023] [Indexed: 02/10/2024]
Abstract
Lung adenocarcinoma (LUAD) and small cell lung cancer (SCLC) are thought to originate from different epithelial cell types in the lung. Intriguingly, LUAD can histologically transform into SCLC after treatment with targeted therapies. In this study, we designed models to follow the conversion of LUAD to SCLC and found that the barrier to histological transformation converges on tolerance to Myc, which we implicate as a lineage-specific driver of the pulmonary neuroendocrine cell. Histological transformations are frequently accompanied by activation of the Akt pathway. Manipulating this pathway permitted tolerance to Myc as an oncogenic driver, producing rare, stem-like cells that transcriptionally resemble the pulmonary basal lineage. These findings suggest that histological transformation may require the plasticity inherent to the basal stem cell, enabling tolerance to previously incompatible oncogenic driver programs.
Collapse
Affiliation(s)
| | - Ethan M. Earlie
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Kate Li
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Jerin Thomas
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Melissa J. Hubisz
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY
| | - Benjamin D. Stein
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Medicine, Weill Cornell Medicine
| | - Chen Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Medicine, Weill Cornell Medicine
| | - Ashley M. Laughney
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Harold Varmus
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| |
Collapse
|
9
|
Chen X, Lai X, Huang Y, Deng C. Establishment and Validation of Prognostic Nomograms for Patients with Metastatic Pulmonary Large Cell Neuroendocrine Carcinoma. Cancer Control 2024; 31:10732748241274195. [PMID: 39134429 PMCID: PMC11320680 DOI: 10.1177/10732748241274195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE Metastatic pulmonary large cell neuroendocrine carcinoma (LCNEC) is an aggressive cancer with generally poor outcomes. Effective methods for predicting survival in patients with metastatic LCNEC are needed. This study aimed to identify independent survival predictors and develop nomograms for predicting survival in patients with metastatic LCNEC. PATIENTS AND METHODS We conducted a retrospective analysis using the Surveillance, Epidemiology, and End Results (SEER) database, identifying patients with metastatic LCNEC diagnosed between 2010 and 2017. To find independent predictors of cancer-specific survival (CSS), we performed Cox regression analysis. A nomogram was developed to predict the 6-, 12-, and 18-month CSS rates of patients with metastatic LCNEC. The concordance index (C-index), area under the receiver operating characteristic (ROC) curves (AUC), and calibration curves were adopted with the aim of assessing whether the model can be discriminative and reliable. Decision curve analyses (DCAs) were used to assess the model's utility and benefits from a clinical perspective. RESULTS This study enrolled a total of 616 patients, of whom 432 were allocated to the training cohort and 184 to the validation cohort. Age, T staging, N staging, metastatic sites, radiotherapy, and chemotherapy were identified as independent prognostic factors for patients with metastatic LCNEC based on multivariable Cox regression analysis results. The nomogram showed strong performance with C-index values of 0.733 and 0.728 for the training and validation cohorts, respectively. ROC curves indicated good predictive performance of the model, with AUC values of 0.796, 0.735, and 0.736 for predicting the 6-, 12-, and 18-month CSS rates of patients with metastatic LCNEC in the training cohort, and 0.795, 0.801, and 0.780 in the validation cohort, respectively. Calibration curves and DCAs confirmed the nomogram's reliability and clinical utility. CONCLUSION The new nomogram was developed for predicting CSS in patients with metastatic LCNEC, providing personalized risk evaluation and aiding clinical decision-making.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Institute of Respiratory Disease, Fujian Medical University, Fuzhou, China
| | - Xingyue Lai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Institute of Respiratory Disease, Fujian Medical University, Fuzhou, China
| | - Yedong Huang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Department of Gynecology Oncology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chaosheng Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Institute of Respiratory Disease, Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Recuero E, Lázaro S, Lorz C, Enguita AB, Garcia-Escudero R, Santos M. Novel Mouse Cell Lines and In Vivo Models for Human High-Grade Neuroendocrine Lung Carcinoma, Small Cell Lung Carcinoma (SCLC), and Large Cell Neuroendocrine Carcinoma (LCNEC). Int J Mol Sci 2023; 24:15284. [PMID: 37894963 PMCID: PMC10607103 DOI: 10.3390/ijms242015284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
There is a clear need to expand the toolkit of adequate mouse models and cell lines available for preclinical studies of high-grade neuroendocrine lung carcinoma (small cell lung carcinoma (SCLC) and large cell neuroendocrine carcinoma (LCNEC)). SCLC and LCNEC are two highly aggressive tumor types with dismal prognoses and few therapeutic options. Currently, there is an extreme paucity of material, particularly in the case of LCNEC. Given the lack of murine cell lines and transplant models of LCNEC, the need is imperative. In this study, we generated and examined new models of LCNEC and SCLC transplantable cell lines derived from our previously developed primary mouse LCNEC and SCLC tumors. RNA-seq analysis demonstrated that our cell lines and syngeneic tumors maintained the transcriptome program from the original transgenic primary tumor and displayed strong similarities to human SCLC or LCNEC. Importantly, the SCLC transplanted cell lines showed the ability to metastasize and mimic this characteristic of the human condition. In summary, we generated mouse cell line tools that allow further basic and translational research as well as preclinical testing of new treatment strategies for SCLC and LCNEC. These tools retain important features of their human counterparts and address the lack of LCNEC disease models.
Collapse
Affiliation(s)
- Enrique Recuero
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (E.R.); (S.L.); (C.L.); (R.G.-E.)
| | - Sara Lázaro
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (E.R.); (S.L.); (C.L.); (R.G.-E.)
| | - Corina Lorz
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (E.R.); (S.L.); (C.L.); (R.G.-E.)
- Institute of Biomedical Research Hospital “12 de Octubre” (imas12), 28041 Madrid, Spain
- Tumor Progression Mechanisms Program, CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, 28029 Madrid, Spain
| | - Ana Belén Enguita
- Pathology Department, University Hospital “12 de Octubre”, 28041 Madrid, Spain;
| | - Ramón Garcia-Escudero
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (E.R.); (S.L.); (C.L.); (R.G.-E.)
- Institute of Biomedical Research Hospital “12 de Octubre” (imas12), 28041 Madrid, Spain
- Tumor Progression Mechanisms Program, CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, 28029 Madrid, Spain
| | - Mirentxu Santos
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (E.R.); (S.L.); (C.L.); (R.G.-E.)
- Institute of Biomedical Research Hospital “12 de Octubre” (imas12), 28041 Madrid, Spain
- Tumor Progression Mechanisms Program, CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, 28029 Madrid, Spain
| |
Collapse
|
11
|
Hagemann S, Misiak D, Bell JL, Fuchs T, Lederer MI, Bley N, Hämmerle M, Ghazy E, Sippl W, Schulte JH, Hüttelmaier S. IGF2BP1 induces neuroblastoma via a druggable feedforward loop with MYCN promoting 17q oncogene expression. Mol Cancer 2023; 22:88. [PMID: 37246217 DOI: 10.1186/s12943-023-01792-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Neuroblastoma is the most common solid tumor in infants accounting for approximately 15% of all cancer-related deaths. Over 50% of high-risk neuroblastoma relapse, emphasizing the need of novel drug targets and therapeutic strategies. In neuroblastoma, chromosomal gains at chromosome 17q, including IGF2BP1, and MYCN amplification at chromosome 2p are associated with adverse outcome. Recent, pre-clinical evidence indicates the feasibility of direct and indirect targeting of IGF2BP1 and MYCN in cancer treatment. METHODS Candidate oncogenes on 17q were identified by profiling the transcriptomic/genomic landscape of 100 human neuroblastoma samples and public gene essentiality data. Molecular mechanisms and gene expression profiles underlying the oncogenic and therapeutic target potential of the 17q oncogene IGF2BP1 and its cross-talk with MYCN were characterized and validated in human neuroblastoma cells, xenografts and PDX as well as novel IGF2BP1/MYCN transgene mouse models. RESULTS We reveal a novel, druggable feedforward loop of IGF2BP1 (17q) and MYCN (2p) in high-risk neuroblastoma. This promotes 2p/17q chromosomal gains and unleashes an oncogene storm resulting in fostered expression of 17q oncogenes like BIRC5 (survivin). Conditional, sympatho-adrenal transgene expression of IGF2BP1 induces neuroblastoma at a 100% incidence. IGF2BP1-driven malignancies are reminiscent to human high-risk neuroblastoma, including 2p/17q-syntenic chromosomal gains and upregulation of Mycn, Birc5, as well as key neuroblastoma circuit factors like Phox2b. Co-expression of IGF2BP1/MYCN reduces disease latency and survival probability by fostering oncogene expression. Combined inhibition of IGF2BP1 by BTYNB, MYCN by BRD inhibitors or BIRC5 by YM-155 is beneficial in vitro and, for BTYNB, also. CONCLUSION We reveal a novel, druggable neuroblastoma oncogene circuit settling on strong, transcriptional/post-transcriptional synergy of MYCN and IGF2BP1. MYCN/IGF2BP1 feedforward regulation promotes an oncogene storm harboring high therapeutic potential for combined, targeted inhibition of IGF2BP1, MYCN expression and MYCN/IGF2BP1-effectors like BIRC5.
Collapse
Affiliation(s)
- Sven Hagemann
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | - Danny Misiak
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jessica L Bell
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Tommy Fuchs
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Marcell I Lederer
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Nadine Bley
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Monika Hämmerle
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ehab Ghazy
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
12
|
Chen X, Huang Y, Chen F, She H, Chen X. Risk factors and prognostic factors for pulmonary large cell neuroendocrine carcinoma with brain metastasis. Cancer Med 2023; 12:4087-4099. [PMID: 36125491 PMCID: PMC9972106 DOI: 10.1002/cam4.5267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND As the studies regarding the brain metastasis (BM) of pulmonary large cell neuroendocrine carcinoma (LCNEC) are insufficient, the present research aims to describe the risk factors and prognostic factors that are related to cancer-specific survival (CSS) for LCNEC patients with BM. METHODS The data of LCNEC patients between January 2010 and October 2018 were obtained from the SEER database. Binary logistic regression analyses were utilized to screen the possible risk factors related to BM. Prognostic factors for LCNEC patients with BM were indentified by Cox regression analyses. Moreover, a nomogram was established to predict the 6-, 12-, and 18-month CSS rates. The concordance index (C-index), receiver operating characteristic (ROC) curves and calibration curves were utilized to assess the discrimination and reliability of the model. Clinical decision curves (DCAs) were used to evaluate the clinical benefits and utility of our model. RESULTS Totally, 1875 patients were enrolled, with 294 (15.7%) of them having BM at diagnosis. Multivariate logistic regression analyses revealed that patients with age < 65 (odds ratio, OR = 1.564) and N2 staging (OR = 1.775) had a greater chance of developing BM. Age (≥ 65 vs. < 65: hazard ratio, HR = 1.409), T staging (T1 vs. T0: HR = 4.580; T2 vs. T0: HR = 6.008; T3 vs. T0: HR = 7.065; T4 vs. T0: HR = 6.821), N staging (N2 vs. N0: HR = 1.592; N3 vs. N0: HR = 1.654), liver metastasis (HR = 1.410), primary site surgery (HR = 0.581) and chemotherapy (HR = 0.452) were independent prognostic factors for LCNEC patients with BM. A nomogram prediction model was constructed by incorporating these factors. Using the C-index, calibration curves, ROC curves, and DCAs, we found that the clinical prediction model performed well. CONCLUSION We described the risk factors and prognostic factors that were associated with CSS for LCNEC patients with BM. The related nomogram was established and validated to help clinicians formulate more rational and effective treatment strategies.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Respiratory and Critical Care Medicine, Fuzhou Second Hospital, Fuzhou, People's Republic of China.,The Third Clinical Medical College, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yedong Huang
- Department of Gynecology Oncology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Fangrong Chen
- Department of Respiratory and Critical Care Medicine, Fuzhou Second Hospital, Fuzhou, People's Republic of China
| | - Hui She
- Department of Respiratory and Critical Care Medicine, Fuzhou Second Hospital, Fuzhou, People's Republic of China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases (Fujian Medical University Union Hospital), Fuzhou, People's Republic of China
| |
Collapse
|
13
|
Chen K, Dai P, Ni J, Xiang Y, Gu L. The prognosis analysis of organ metastatic patterns in lung large cell neuroendocrine carcinoma: A population-based study. Front Oncol 2022; 12:1050800. [PMID: 36568210 PMCID: PMC9773085 DOI: 10.3389/fonc.2022.1050800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Lung large cell neuroendocrine carcinoma (LCNEC) is a rare and highly aggressive malignancy with a dismal prognosis. This study was designed to depict patterns of distant organ metastatic and to analyze prognosis of LCNEC patients. We gathered data from the Surveillance, Epidemiology, and End Results (SEER) database between 2010 and 2015. We conducted the Kaplan-Meier method to calculate overall survival (OS) and compare different variables. Cox proportional hazards regression models in univariate and multivariate analyses were employed to further explore prognostic factors. A total of 1335 LCNEC patients were eventually selected from the SEER database, of which 348 patients (26.0%) had single organ metastasis and 197 patients (14.8%) had multiple metastases. Our study indicates that patients with single organ metastasis generally have a poor prognosis, with a median OS of 8 months for both lung and brain metastasis with 1-year survival rates of 33% and 29% respectively. Patients with multiple metastases exhibited the worst prognosis, with a median OS of only 4 months and a 1-year OS of 8%. Multivariate analysis revealed that age, T stage, N stage, chemotherapy and radiation in metastatic patients were independently associated with OS. In conclusion, LCNEC exhibits a high metastatic rate when diagnosed. The most common metastatic organ is the brain in single-site metastatic patients. Patients with single or multiple metastases exhibit a significantly worse prognosis than those with non-organ metastases. In the group of single organ metastases, patients with brain and lung metastases had a better prognosis than those with bone and liver metastases.
Collapse
Affiliation(s)
- Kai Chen
- The Department of Cardiovascular and Thoracic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peiling Dai
- The Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiangwei Ni
- The Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yili Xiang
- Department of Interventional Vascular Surgery, Wenzhou People’s Hospital, The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Lizhong Gu
- The Department of Cardiovascular and Thoracic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,*Correspondence: Lizhong Gu,
| |
Collapse
|
14
|
Xia L, Wang L, Zhou Z, Han S. Treatment outcome and prognostic analysis of advanced large cell neuroendocrine carcinoma of the lung. Sci Rep 2022; 12:16562. [PMID: 36195623 PMCID: PMC9532410 DOI: 10.1038/s41598-022-18421-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
The optimal systemic treatment of advanced large cell neuroendocrine carcinoma (LCNEC) is still controversial. We intend to explore advanced LCNEC through SEER database, construct nomogram model of advanced LCNEC, and understand the effect of different treatment regimens on LCNEC. We collected 909 patients, divided them into a training set validation set, constructed nomograms using Cox proportional hazards regression models, and evaluated nomogram discrimination and calibration by C-index and calibration curves. Kaplan–Meier will also be used to compare OS in different groups of patients and to explore the impact of different treatment regimens on advanced LCNEC. On the nomogram plotted, the nomogram predicted AUC values over time were always greater than 0.7, the C-index was 0.681 (95% CI 0.656–0.706) and 0.663 (95% CI 0.628–0.698) in the training and validation sets, respectively, and patients were divided into two groups according to risk, and a significant difference in OS was observed between the high-risk and low-risk groups in the training and validation cohorts. Different treatment analyses showed that chemotherapy is still the best treatment for advanced LCNEC. This nomogram provides a convenient and reliable tool for individual assessment and clinical decision-making of patients with advanced LCNEC.
Collapse
Affiliation(s)
- Lu Xia
- Department of Respiratory and Critical Care Medicine, The Fifth People's Hospital of Wuxi, Wuxi, 214000, China.,School of Medicine, Southeast University, Nanjing, 210009, China.,Department of Respiratory and Critical Care Medicine, Zhong da Hospital of Southeast University, Nanjing, 210009, China
| | - Lile Wang
- School of Medicine, Southeast University, Nanjing, 210009, China.,Department of Respiratory and Critical Care Medicine, Zhong da Hospital of Southeast University, Nanjing, 210009, China
| | - Zihan Zhou
- School of Medicine, Southeast University, Nanjing, 210009, China.,Department of Respiratory and Critical Care Medicine, Zhong da Hospital of Southeast University, Nanjing, 210009, China
| | - Shuhua Han
- School of Medicine, Southeast University, Nanjing, 210009, China. .,Department of Respiratory and Critical Care Medicine, Zhong da Hospital of Southeast University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Lázaro S, Lorz C, Enguita AB, Seller I, Paramio JM, Santos M. Pten and p53 Loss in the Mouse Lung Causes Adenocarcinoma and Sarcomatoid Carcinoma. Cancers (Basel) 2022; 14:cancers14153671. [PMID: 35954335 PMCID: PMC9367331 DOI: 10.3390/cancers14153671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Lung cancer is the world leading cause of cancer death. Therefore, a better understanding of the disease is needed to improve patient survival. In this work, we have deleted the tumor suppressor genes Pten and Trp53 in adult mouse lungs to analyze its impact on tumor formation. Double mutant mice develop Adenocarcinoma and Pulmonary Sarcomatoid Carcinoma, two different types of Non-Small Cell Carcinoma whose biological relationships are a matter of debate. The former is very common, with various models described and some therapeutic options. The latter is very rare with very poor prognosis, no effective treatment and lack of models reported so far. Interestingly, this study reports the first mouse model of pulmonary sarcomatoid carcinoma available for preclinical research. Abstract Lung cancer remains the leading cause of cancer deaths worldwide. Among the Non-Small Cell Carcinoma (NSCLC) category, Adenocarcinoma (ADC) represents the most common type, with different reported driver mutations, a bunch of models described and therapeutic options. Meanwhile, Pulmonary Sarcomatoid Carcinoma (PSC) is one of the rarest, with very poor outcomes, scarce availability of patient material, no effective therapies and no models available for preclinical research. Here, we describe that the combined deletion of Pten and Trp53 in the lungs of adult conditional mice leads to the development of both ADC and PSC irrespective of the lung targeted cell type after naphthalene induced airway epithelial regeneration. Although this model shows long latency periods and incomplete penetrance for tumor development, it is the first PSC mouse model reported so far, and sheds light on the relationships between ADC and PSC and their cells of origin. Moreover, human ADC show strong transcriptomic similarities to the mouse PSC, providing a link between both tumor types and the human ADC.
Collapse
Affiliation(s)
- Sara Lázaro
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Ave Complutense 40, 28040 Madrid, Spain; (S.L.); (C.L.); (I.S.); (J.M.P.)
| | - Corina Lorz
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Ave Complutense 40, 28040 Madrid, Spain; (S.L.); (C.L.); (I.S.); (J.M.P.)
- CIBERONC—Centro de Investigación Biomédica en Red de Cáncer, 28029 Madrid, Spain
- Institute of Biomedical Research Hospital “12 de Octubre” (imas12), Ave Córdoba s/n, 28041 Madrid, Spain
| | - Ana Belén Enguita
- Pathology Department, University Hospital “12 de Octubre”, 28041 Madrid, Spain;
| | - Iván Seller
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Ave Complutense 40, 28040 Madrid, Spain; (S.L.); (C.L.); (I.S.); (J.M.P.)
| | - Jesús M. Paramio
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Ave Complutense 40, 28040 Madrid, Spain; (S.L.); (C.L.); (I.S.); (J.M.P.)
- CIBERONC—Centro de Investigación Biomédica en Red de Cáncer, 28029 Madrid, Spain
- Institute of Biomedical Research Hospital “12 de Octubre” (imas12), Ave Córdoba s/n, 28041 Madrid, Spain
| | - Mirentxu Santos
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Ave Complutense 40, 28040 Madrid, Spain; (S.L.); (C.L.); (I.S.); (J.M.P.)
- CIBERONC—Centro de Investigación Biomédica en Red de Cáncer, 28029 Madrid, Spain
- Institute of Biomedical Research Hospital “12 de Octubre” (imas12), Ave Córdoba s/n, 28041 Madrid, Spain
- Correspondence:
| |
Collapse
|
16
|
Hermans BCM, Derks JL, Hillen LM, van der Baan I, van den Broek EC, von der Thüsen JH, van Suylen R, Atmodimedjo PN, den Toom TD, Coumans‐Stallinga C, Timens W, Dinjens WNM, Dubbink HJ, Speel EM, Dingemans AC, PALGA‐group. In-depth molecular analysis of combined and co-primary pulmonary large cell neuroendocrine carcinoma and adenocarcinoma. Int J Cancer 2022; 150:802-815. [PMID: 34674268 PMCID: PMC9298697 DOI: 10.1002/ijc.33853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 01/09/2023]
Abstract
Up to 14% of large cell neuroendocrine carcinomas (LCNECs) are diagnosed in continuity with nonsmall cell lung carcinoma. In addition to these combined lesions, 1% to 7% of lung tumors present as co-primary tumors with multiple synchronous lesions. We evaluated molecular and clinicopathological characteristics of combined and co-primary LCNEC-adenocarcinoma (ADC) tumors. Ten patients with LCNEC-ADC (combined) and five patients with multiple synchronous ipsilateral LCNEC and ADC tumors (co-primary) were included. DNA was isolated from distinct tumor parts, and 65 cancer genes were analyzed by next generation sequencing. Immunohistochemistry was performed including neuroendocrine markers, pRb, Ascl1 and Rest. Pure ADC (N = 37) and LCNEC (N = 17) cases were used for reference. At least 1 shared mutation, indicating tumor clonality, was found in LCNEC- and ADC-parts of 10/10 combined tumors but only in 1/5 co-primary tumors. A range of identical mutations was observed in both parts of combined tumors: 8/10 contained ADC-related (EGFR/KRAS/STK11 and/or KEAP1), 4/10 RB1 and 9/10 TP53 mutations. Loss of pRb IHC was observed in 6/10 LCNEC- and 4/10 ADC-parts. The number and intensity of expression of Ascl1 and neuroendocrine markers increased from pure ADC (low) to combined ADC (intermediate) and combined and pure LCNEC (high). The opposite was true for Rest expression. In conclusion, all combined LCNEC-ADC tumors were clonally related indicating a common origin. A relatively high frequency of pRb inactivation was observed in both LCNEC- and ADC-parts, suggesting an underlying role in LCNEC-ADC development. Furthermore, neuroendocrine differentiation might be modulated by Ascl1(+) and Rest(-) expression.
Collapse
Affiliation(s)
- Bregtje C. M. Hermans
- Department of Pulmonary DiseasesMaastricht University Medical Centre+MaastrichtThe Netherlands,GROW—School for Oncology & Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - Jules L. Derks
- Department of Pulmonary DiseasesMaastricht University Medical Centre+MaastrichtThe Netherlands,GROW—School for Oncology & Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - Lisa M. Hillen
- GROW—School for Oncology & Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands,Department of PathologyMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Irene van der Baan
- GROW—School for Oncology & Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands,Department of PathologyMaastricht University Medical Centre+MaastrichtThe Netherlands
| | | | - Jan H. von der Thüsen
- Department of PathologyErasmus MC Cancer Institute, University Medical Center RotterdamRotterdamThe Netherlands
| | | | - Peggy N. Atmodimedjo
- Department of PathologyErasmus MC Cancer Institute, University Medical Center RotterdamRotterdamThe Netherlands
| | - T. Dorine den Toom
- Department of PathologyErasmus MC Cancer Institute, University Medical Center RotterdamRotterdamThe Netherlands
| | - Cecile Coumans‐Stallinga
- GROW—School for Oncology & Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands,Department of PathologyMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Wim Timens
- Department of Pathology and Medical BiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Winand N. M. Dinjens
- Department of PathologyErasmus MC Cancer Institute, University Medical Center RotterdamRotterdamThe Netherlands
| | - Hendrikus J. Dubbink
- Department of PathologyErasmus MC Cancer Institute, University Medical Center RotterdamRotterdamThe Netherlands
| | - Ernst‐Jan M. Speel
- GROW—School for Oncology & Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands,Department of PathologyMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Anne‐Marie C. Dingemans
- Department of Pulmonary DiseasesMaastricht University Medical Centre+MaastrichtThe Netherlands,GROW—School for Oncology & Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands,Department of PulmonologyErasmus MC Cancer Institute, University Medical Center RotterdamRotterdamThe Netherlands
| | | |
Collapse
|
17
|
Savu C, Melinte A, Diaconu C, Stiru O, Gherghiceanu F, Tudorica Ș, Dumitrașcu O, Bratu A, Balescu I, Bacalbasa N. Lung neuroendocrine tumors: A systematic literature review (Review). Exp Ther Med 2021; 23:176. [DOI: 10.3892/etm.2021.11099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/27/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Cornel Savu
- Department of Thoracic Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Alexandru Melinte
- Department of Thoracic Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Camelia Diaconu
- Department of Internal Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Ovidiu Stiru
- Department of Cardiovascular Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Florentina Gherghiceanu
- Department of Marketing and Medical Technology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Ștefan Tudorica
- Department of Anesthesiology and Intensive Care, Emergency University Hospital, Bucharest 050098, Romania
| | - Oana Dumitrașcu
- Department of Anesthesiology and Intensive Care, Emergency University Hospital, Bucharest 050098, Romania
| | - Angelica Bratu
- Department of Anesthesiology and Intensive Care, Emergency University Hospital, Bucharest 050098, Romania
| | - Irina Balescu
- Department of Surgery, ‘Ponderas’ Academic Hospital, Bucharest 021188, Romania
| | - Nicolae Bacalbasa
- Department of Obstetrics and Gynecology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| |
Collapse
|
18
|
Ma H, Xu Z, Zhou R, Liu Y, Zhu Y, Chang X, Chen Y, Zhang H. A Clinical Nomogram for Predicting Cancer-Specific Survival in Pulmonary Large-Cell Neuroendocrine Carcinoma Patients: A Population-Based Study. Int J Gen Med 2021; 14:7299-7310. [PMID: 34737624 PMCID: PMC8560328 DOI: 10.2147/ijgm.s335040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose This study was designed to construct and validate a nomogram that was available for predicting cancer-specific survival (CSS) in patients with pulmonary large-cell neuroendocrine carcinoma (LCNEC). Patients and Methods Using the US Surveillance, Epidemiology, and End Results (SEER) database, we identified patients pathologically diagnosed as LCNEC from 1975 to 2016. Univariate and multivariate Cox regression was conducted to assess prognostic factors of CSS. A novel nomogram model was constructed and validated by the concordance index (C-index), calibration curves and decision curve analysis (DCA). Results A total of 624 LCNEC patients were enrolled. Five prognostic factors for CSS were identified and merged to establish nomograms. In the training and validation cohorts, calibration curves displayed the nomogram predictions are in a good agreement with the actual survival. The C-Index of the training and validation cohorts were both higher than 0.8, and the DCA results showed that the nomogram has clinical validity and utility. Conclusion The proposed nomogram resulted in accurate CSS prognostic prediction for patients with LCNEC.
Collapse
Affiliation(s)
- Haochuan Ma
- The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Zhiyong Xu
- The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Rui Zhou
- The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yihong Liu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Yanjuan Zhu
- The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People's Republic of China.,Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, People's Republic of China
| | - Xuesong Chang
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Yadong Chen
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Haibo Zhang
- The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People's Republic of China.,Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, People's Republic of China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
19
|
Ventura E, Iannuzzi CA, Pentimalli F, Giordano A, Morrione A. RBL1/p107 Expression Levels Are Modulated by Multiple Signaling Pathways. Cancers (Basel) 2021; 13:cancers13195025. [PMID: 34638509 PMCID: PMC8507926 DOI: 10.3390/cancers13195025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022] Open
Abstract
The members of the retinoblastoma (RB) protein family, RB1/p105, retinoblastoma-like (RBL)1/p107 and RBL2/p130 are critical modulators of the cell cycle and their dysregulation has been associated with tumor initiation and progression. The activity of RB proteins is regulated by numerous pathways including oncogenic signaling, but the molecular mechanisms of these functional interactions are not fully defined. We previously demonstrated that RBL2/p130 is a direct target of AKT and it is a key mediator of the apoptotic process induced by AKT inhibition. Here we demonstrated that RBL1/p107 levels are only minorly modulated by the AKT signaling pathway. In contrast, we discovered that RBL1/p107 levels are regulated by multiple pathways linked directly or indirectly to Ca2+-dependent signaling. Inhibition of the multifunctional calcium/calmodulin-dependent kinases (CaMKs) significantly reduced RBL1/p107 expression levels and phosphorylation, increased RBL1/p107 nuclear localization and led to cell cycle arrest in G0/G1. Targeting the Ca2+-dependent endopeptidase calpain stabilized RBL1/p107 levels and counteracted the reduction of RBL1/p107 levels associated with CaMKs inhibition. Thus, these novel observations suggest a complex regulation of RBL1/p107 expression involving different components of signaling pathways controlled by Ca2+ levels, including CaMKs and calpain, pointing out a significant difference with the mechanisms modulating the close family member RBL2/p130.
Collapse
Affiliation(s)
- Elisa Ventura
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.V.); (A.G.)
| | - Carmelina Antonella Iannuzzi
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, I-80131 Napoli, Italy; (C.A.I.); (F.P.)
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, I-80131 Napoli, Italy; (C.A.I.); (F.P.)
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.V.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, I-53100 Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.V.); (A.G.)
- Correspondence: ; Tel.: +215-204-2450
| |
Collapse
|
20
|
Pearson JD, Huang K, Pacal M, McCurdy SR, Lu S, Aubry A, Yu T, Wadosky KM, Zhang L, Wang T, Gregorieff A, Ahmad M, Dimaras H, Langille E, Cole SPC, Monnier PP, Lok BH, Tsao MS, Akeno N, Schramek D, Wikenheiser-Brokamp KA, Knudsen ES, Witkiewicz AK, Wrana JL, Goodrich DW, Bremner R. Binary pan-cancer classes with distinct vulnerabilities defined by pro- or anti-cancer YAP/TEAD activity. Cancer Cell 2021; 39:1115-1134.e12. [PMID: 34270926 PMCID: PMC8981970 DOI: 10.1016/j.ccell.2021.06.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/17/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Cancer heterogeneity impacts therapeutic response, driving efforts to discover over-arching rules that supersede variability. Here, we define pan-cancer binary classes based on distinct expression of YAP and YAP-responsive adhesion regulators. Combining informatics with in vivo and in vitro gain- and loss-of-function studies across multiple murine and human tumor types, we show that opposite pro- or anti-cancer YAP activity functionally defines binary YAPon or YAPoff cancer classes that express or silence YAP, respectively. YAPoff solid cancers are neural/neuroendocrine and frequently RB1-/-, such as retinoblastoma, small cell lung cancer, and neuroendocrine prostate cancer. YAP silencing is intrinsic to the cell of origin, or acquired with lineage switching and drug resistance. The binary cancer groups exhibit distinct YAP-dependent adhesive behavior and pharmaceutical vulnerabilities, underscoring clinical relevance. Mechanistically, distinct YAP/TEAD enhancers in YAPoff or YAPon cancers deploy anti-cancer integrin or pro-cancer proliferative programs, respectively. YAP is thus pivotal across cancer, but in opposite ways, with therapeutic implications.
Collapse
Affiliation(s)
- Joel D Pearson
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Katherine Huang
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Marek Pacal
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Sean R McCurdy
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Suying Lu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Arthur Aubry
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tao Yu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Kristine M Wadosky
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Letian Zhang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Tao Wang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alex Gregorieff
- Department of Pathology, McGill University and Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, ON H4A 3J1, Canada
| | - Mohammad Ahmad
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Helen Dimaras
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; The Department of Ophthalmology & Vision Sciences, Child Health Evaluative Sciences Program, and Center for Global Child Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Clinical Public Health, Dalla Lana School of Public Health, The University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Ellen Langille
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, ON K7L 3N6, Canada
| | - Philippe P Monnier
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, ON M5T 2S8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Benjamin H Lok
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ming-Sound Tsao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Nagako Akeno
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daniel Schramek
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Perinatal Institute Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Agnieszka K Witkiewicz
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jeffrey L Wrana
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David W Goodrich
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
21
|
Popper H, Brcic L. Diagnosis and Molecular Profiles of Large Cell Neuroendocrine Carcinoma With Potential Targets for Therapy. Front Oncol 2021; 11:655752. [PMID: 34307132 PMCID: PMC8293294 DOI: 10.3389/fonc.2021.655752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022] Open
Abstract
Large cell neuroendocrine carcinoma (LCNEC) together with small cell carcinoma (SCLC) and typical and atypical carcinoids form the group of pulmonary neuroendocrine tumors. LCNEC and SCLC are high-grade carcinomas. Although both can be found outside the thoracic cavity, they are most common in the lung. LCNEC differs from SCLC by morphologic pattern, and by cytological features such as nuclear size, nucleoli, chromatin pattern, but also by genetic differences. Originally thought to represent a single entity, it became evident, that three subgroups of LCNEC can be identified at the molecular level: a SCLC-like type with loss of retinoblastoma 1 gene (RB1) and TP53 mutations; a non-small cell lung carcinoma (NSCLC)-like type with wildtype RB1, TP53 mutation, and activating mutations of the phosphoinositol-3 kinase (PI3K-CA), or loss of PTEN; and a carcinoid-like type with MEN1 gene mutation. These subtypes can be identified by immunohistochemical staining for RB1, p53, and molecular analysis for PI3K and MEN1 mutations. These subtypes might also respond differently to chemotherapy. Immuno-oncologic treatment has also been applied to LCNEC, however, in addition to the evaluation of tumor cells the stroma evaluation seems to be important. Based on personal experiences with these tumors and available references this review will try to encompass our present knowledge in this rare entity and provoke new studies for better treatment of this carcinoma.
Collapse
Affiliation(s)
- Helmut Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
22
|
Lacombe C, De Rycke O, Couvelard A, Turpin A, Cazes A, Hentic O, Gounant V, Zalcman G, Ruszniewski P, Cros J, de Mestier L. Biomarkers of Response to Etoposide-Platinum Chemotherapy in Patients with Grade 3 Neuroendocrine Neoplasms. Cancers (Basel) 2021; 13:643. [PMID: 33562726 PMCID: PMC7915900 DOI: 10.3390/cancers13040643] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
Etoposide-platinum (EP) chemotherapy has long been the reference treatment for grade 3 neuroendocrine neoplasms (G3 NEN). However, G3 NEN are heterogeneous, including well-differentiated tumors (NET) and poorly differentiated large (LCNEC) or small (SCNEC) cell carcinomas, whose response to EP chemotherapy varies considerably. Our aim was to evaluate predictive biomarkers for the response to EP chemotherapy in G3 NEN. We retrospectively studied 89 patients with lung (42%) and digestive (58%) G3 NEN treated by EP chemotherapy between 2006 and 2020. All cases were centrally reviewed for cytomorphology/Ki-67 and immunohistochemistry of retinoblastoma protein (Rb)/p53/p16, analyzed using a semi-quantitative score. The absence of Rb staining (Rbinap) or the absence of very intense p53 staining (p53inap) were considered inappropriate. Rb staining was also studied as a quantitative marker, the best threshold being determined by ROC curve. Intense p16 staining (p16high) also suggested cell cycle dysregulation. Our primary endpoint was the objective response rate (ORR). We included 10 G3 NET, 31 LCNEC and 48 SCNEC, which showed ORR of 20%, 32% and 75%, respectively (NET vs. NEC, p = 0.040; LCNEC vs. SCNEC, p < 0.001). The ORR was significantly higher in NEN presenting with Rbinap (63% vs. 42%, p = 0.025) and p16high (66% vs. 35%, p = 0.006). Rb < 150 optimally identified responders (AUC = 0.657, p < 0.001). The ORR was 67% in Rb < 150 (vs. 25%, p = 0.005). On multivariate analysis, only Rb < 150 was independently associated with ORR (OR 4.16, 95% CI 1.11-15.53, p = 0.034). We confirm the heterogeneity of the response to EP treatment in G3 NEN. Rb < 150 was the best predictive biomarker for the response to EP, and p53 immunostaining had no additional value.
Collapse
Affiliation(s)
- Caroline Lacombe
- Université de Paris, Department of Gastroenterology-Pancreatology, ENETS Centre of Excellence, Beaujon University Hospital (APHP), 92110 Clichy, France; (C.L.); (O.D.R.); (O.H.); (P.R.)
- Université de Paris, Centre of Research on Inflammation, INSERM U1149, 75018 Paris, France; (A.C.); (J.C.)
| | - Ophélie De Rycke
- Université de Paris, Department of Gastroenterology-Pancreatology, ENETS Centre of Excellence, Beaujon University Hospital (APHP), 92110 Clichy, France; (C.L.); (O.D.R.); (O.H.); (P.R.)
- Université de Paris, Centre of Research on Inflammation, INSERM U1149, 75018 Paris, France; (A.C.); (J.C.)
| | - Anne Couvelard
- Université de Paris, Centre of Research on Inflammation, INSERM U1149, 75018 Paris, France; (A.C.); (J.C.)
- Université de Paris, Department of Pathology, ENETS Centre of Excellence, Beaujon/Bichat University Hospital (APHP), 75018 Paris, France;
| | - Anthony Turpin
- Department of Medical Oncology, Claude Huriez University Hospital, 59000 Lille, France;
| | - Aurélie Cazes
- Université de Paris, Department of Pathology, ENETS Centre of Excellence, Beaujon/Bichat University Hospital (APHP), 75018 Paris, France;
| | - Olivia Hentic
- Université de Paris, Department of Gastroenterology-Pancreatology, ENETS Centre of Excellence, Beaujon University Hospital (APHP), 92110 Clichy, France; (C.L.); (O.D.R.); (O.H.); (P.R.)
| | - Valérie Gounant
- Université de Paris, Department of Thoracic Oncology, CIC INSERM 1425, Bichat University Hospital, 75018 Paris, France; (V.G.); (G.Z.)
| | - Gérard Zalcman
- Université de Paris, Department of Thoracic Oncology, CIC INSERM 1425, Bichat University Hospital, 75018 Paris, France; (V.G.); (G.Z.)
| | - Philippe Ruszniewski
- Université de Paris, Department of Gastroenterology-Pancreatology, ENETS Centre of Excellence, Beaujon University Hospital (APHP), 92110 Clichy, France; (C.L.); (O.D.R.); (O.H.); (P.R.)
- Université de Paris, Centre of Research on Inflammation, INSERM U1149, 75018 Paris, France; (A.C.); (J.C.)
| | - Jérôme Cros
- Université de Paris, Centre of Research on Inflammation, INSERM U1149, 75018 Paris, France; (A.C.); (J.C.)
- Université de Paris, Department of Pathology, ENETS Centre of Excellence, Beaujon/Bichat University Hospital (APHP), 75018 Paris, France;
| | - Louis de Mestier
- Université de Paris, Department of Gastroenterology-Pancreatology, ENETS Centre of Excellence, Beaujon University Hospital (APHP), 92110 Clichy, France; (C.L.); (O.D.R.); (O.H.); (P.R.)
- Université de Paris, Centre of Research on Inflammation, INSERM U1149, 75018 Paris, France; (A.C.); (J.C.)
| |
Collapse
|
23
|
Abstract
Small-cell lung cancer (SCLC) represents about 15% of all lung cancers and is marked by an exceptionally high proliferative rate, strong predilection for early metastasis and poor prognosis. SCLC is strongly associated with exposure to tobacco carcinogens. Most patients have metastatic disease at diagnosis, with only one-third having earlier-stage disease that is amenable to potentially curative multimodality therapy. Genomic profiling of SCLC reveals extensive chromosomal rearrangements and a high mutation burden, almost always including functional inactivation of the tumour suppressor genes TP53 and RB1. Analyses of both human SCLC and murine models have defined subtypes of disease based on the relative expression of dominant transcriptional regulators and have also revealed substantial intratumoural heterogeneity. Aspects of this heterogeneity have been implicated in tumour evolution, metastasis and acquired therapeutic resistance. Although clinical progress in SCLC treatment has been notoriously slow, a better understanding of the biology of disease has uncovered novel vulnerabilities that might be amenable to targeted therapeutic approaches. The recent introduction of immune checkpoint blockade into the treatment of patients with SCLC is offering new hope, with a small subset of patients deriving prolonged benefit. Strategies to direct targeted therapies to those patients who are most likely to respond and to extend the durable benefit of effective antitumour immunity to a greater fraction of patients are urgently needed and are now being actively explored.
Collapse
Affiliation(s)
- Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Elisabeth Brambilla
- Institute for Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
| | - Corinne Faivre-Finn
- Department of Clinical Oncology, The Christie Hospital NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
24
|
Neuroendocrine Lung Cancer Mouse Models: An Overview. Cancers (Basel) 2020; 13:cancers13010014. [PMID: 33375066 PMCID: PMC7792789 DOI: 10.3390/cancers13010014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Neuroendocrine lung tumors are a heterogeneous group of malignancies that share a common neuroendocrine nature. They range from low- and intermediate-grade typical and atypical carcinoma, to the highly malignant large cell neuroendocrine lung carcinoma and small cell carcinoma, with marked differences in incidences and prognosis. This review delineates the current knowledge of the genetic landscape of the human tumors, its influence in the development of genetically engineered mouse models (GEMMs) and the molecular imaging tools available to detect and monitor these diseases. While small cell lung carcinoma is one of the diseases best represented by GEMMs, there is a worrying lack of animal models for the other members of the group, these being understudied diseases. Regardless of the incidence and material available, they all are in urgent need of effective therapies. Abstract Neuroendocrine lung tumors comprise a range of malignancies that extend from benign tumorlets to the most prevalent and aggressive Small Cell Lung Carcinoma (SCLC). They also include low-grade Typical Carcinoids (TC), intermediate-grade Atypical Carcinoids (AC) and high-grade Large Cell Neuroendocrine Carcinoma (LCNEC). Optimal treatment options have not been adequately established: surgical resection when possible is the choice for AC and TC, and for SCLC chemotherapy and very recently, immune checkpoint inhibitors. Some mouse models have been generated based on the molecular alterations identified in genomic analyses of human tumors. With the exception of SCLC, there is a limited availability of (preclinical) models making their development an unmet need for the understanding of the molecular mechanisms underlying these diseases. For SCLC, these models are crucial for translational research and novel drug testing, given the paucity of human material from surgery. The lack of early detection systems for lung cancer point them out as suitable frameworks for the identification of biomarkers at the initial stages of tumor development and for testing molecular imaging methods based on somatostatin receptors. Here, we review the relevant models reported to date, their impact on the understanding of the biology of the tumor subtypes and their relationships, as well as the effect of the analyses of the genetic landscape of the human tumors and molecular imaging tools in their development.
Collapse
|
25
|
Abstract
As one of the most common forms of cancer, lung cancers present as a collection of different histological subtypes. These subtypes are characterized by distinct sets of driver mutations and phenotypic appearance, and they often show varying degrees of heterogenicity, aggressiveness, and response/resistance to therapy. Intriguingly, lung cancers are also capable of showing features of multiple subtypes or converting from one subtype to another. The intertumoral and intratumoral heterogeneity of lung cancers as well as incidences of subtype transdifferentiation raise the question of to what extent the tumor characteristics are dictated by the cell of origin rather than the acquired driver lesions. We provide here an overview of the studies in experimental mouse models that try to address this question. These studies convincingly show that both the cell of origin and the genetic driver lesions play a critical role in shaping the phenotypes of lung tumors. However, they also illustrate that there is far from a direct one-to-one relationship between the cell of origin and the cancer subtype, as most epithelial cells can be reprogrammed toward diverse lung cancer fates when exposed to the appropriate set of driver mutations.
Collapse
Affiliation(s)
- Giustina Ferone
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Myung Chang Lee
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
26
|
Romero E, Martínez A, Oteo M, Ibañez M, Santos M, Morcillo MÁ. Development and long-term evaluation of a new 68Ge/ 68Ga generator based on nano-SnO 2 for PET imaging. Sci Rep 2020; 10:12756. [PMID: 32728067 PMCID: PMC7392752 DOI: 10.1038/s41598-020-69659-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023] Open
Abstract
Radionuclide generator systems can routinely provide radionuclides on demand such as 68Ga produced by a 68Ge/68Ga generator without the availability of an on-site accelerator or a research reactor. Thus, in this work nano-SnO2 was used to develop a new 68Ge/68Ga generator which was evaluated over a period of 17 months and 305 elution cycles. The elution yield was 91.1 ± 1.8% in the first 7 mL (1 M HCl as eluent) when the generator was new and then it decreased with time and use to 73.8 ± 1.9%. Around 80% of the elutable 68Ga activity was obtained in 1 mL and the 68Ge content in the eluate did not exceed 1 × 10–4% over the investigation period when it was eluted regularly. The described generator provided adequate results for radiolabelling of DOTA-TOC with direct use of eluate. In addition, [68Ga]Ga-DOTA-TOC was tested satisfactorily for in vivo tumor detection by microPET/CT imaging in a lung cancer mouse model.
Collapse
Affiliation(s)
- Eduardo Romero
- Biomedical Applications and Pharmacokinetics Unit, CIEMAT, 28040, Madrid, Spain
| | - Alfonso Martínez
- Biomedical Applications and Pharmacokinetics Unit, CIEMAT, 28040, Madrid, Spain
| | - Marta Oteo
- Biomedical Applications and Pharmacokinetics Unit, CIEMAT, 28040, Madrid, Spain
| | - Marta Ibañez
- Biomedical Applications and Pharmacokinetics Unit, CIEMAT, 28040, Madrid, Spain
| | | | | |
Collapse
|
27
|
Santos M. New models of large-cell neuroendocrine carcinoma and small-cell lung carcinoma. Mol Cell Oncol 2020; 7:1702413. [PMID: 32158917 DOI: 10.1080/23723556.2019.1702413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022]
Abstract
High-grade neuroendocrine lung carcinomas (LCNEC, SCLC) are recalcitrant cancers for which no optimal management has been achieved. We have recently described two models of LCNEC and SCLC developed upon inactivation of 4 tumor suppressors genes (Rb1 (RB transcriptional corepressor 1), Rbl1 (RB transcriptional corepressor like 1), Pten (phosphatase and tensin homolog), Trp53 (transformation-related protein 53), which provide a suitable frame for preclinical intervention. A defined model for LCNEC had not been previously reported.
Collapse
Affiliation(s)
- Mirentxu Santos
- Basic Research Department, Molecular Oncology Unit, Madrid, Spain.,Basic Research Department, CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, Spain.,Basic Research Department, Institute of Biomedical Research University Hospital, Madrid, Spain
| |
Collapse
|