1
|
Guo B, Yu W, Xu X, Liu Y, Liu Y, Du G, Liu L, Lv X. Adaptively Evolved and Multiplexed Engineered Saccharomyces cerevisiae for Neutralizer-Free Production of l-Lactic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9009-9018. [PMID: 40191959 DOI: 10.1021/acs.jafc.4c12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
l-Lactic acid is a three-carbon monocarboxylic acid that has extensive applications. However, the bioproduction of l-lactic acid requires the addition of neutralizers, which significantly increases the production costs and can cause environmental pollution. To address this, a Saccharomyces cerevisiae mutant, TMG2, which can tolerate a lactic acid environment (pH 2.60), was obtained through adaptive laboratory evolution. Subsequently, the "push-pull-restrain" strategy was used to improve l-lactic acid production, resulting in a production of 46.8 g/L l-lactic acid. Finally, by overexpressing the transport protein pPfFNT and improving the NADH and acetyl-CoA supply, the l-lactic acid titer of strain TMG27 was improved by 33.8% to 62.6 g/L. Without neutralizers, the l-lactic acid titer reached 76.2 g/L (the fermentation pH was 2.90) with a productivity of 2.1 g/(L h) in a 5-L bioreactor, representing the highest productivity ever reported. Collectively, these results lay the foundation for the environmentally friendly bioproduction of l-lactic acid.
Collapse
Affiliation(s)
- Baoyuan Guo
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food Biotechnology Co., Ltd., Yixing 214200, China
| | - Wenwen Yu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yujie Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Henan Jindan Lactic Acid Technology Co., Ltd., Dancheng 477100, China
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Li XY, Zhou MH, Zeng DW, Zhu YF, Zhang FL, Liao S, Fan YC, Zhao XQ, Zhang L, Bai FW. Membrane transport engineering for efficient yeast biomanufacturing. BIORESOURCE TECHNOLOGY 2025; 418:131890. [PMID: 39644936 DOI: 10.1016/j.biortech.2024.131890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Yeast strains have been widely recognized as useful cell factories for biomanufacturing. To improve production efficiency, their biosynthetic pathways and regulatory strategies have been continuously optimized. However, commercial production using yeasts is still limited by low product yield and high production cost. Accumulating evidences have demonstrated the importance of metabolite transport processes in addressing these challenges. Engineering yeast membrane transporters for transporting precursors, substrates, intermediates, products and toxic inhibitors has been successful. In addition, membrane properties are also important for metabolite production. Here we propose membrane transport engineering (MTE) to integrate manipulation of both membrane transporters and membrane properties. We emphasize that systematic optimization of both transporters and membrane lipid bilayers benefits production efficiency. We also envision the potential of artificial intelligence and automation process in MTE for economic and sustainable bioproduction using yeast cell factories.
Collapse
Affiliation(s)
- Xin-Yue Li
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming-Hai Zhou
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Du-Wen Zeng
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Fan Zhu
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng-Li Zhang
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sha Liao
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Ya-Chao Fan
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Xin-Qing Zhao
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lin Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China.
| | - Feng-Wu Bai
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Mitsui R, Kondo A, Shirai T. Production of (R)-citramalate by engineered Saccharomyces cerevisiae. Metab Eng Commun 2024; 19:e00247. [PMID: 39246525 PMCID: PMC11379666 DOI: 10.1016/j.mec.2024.e00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
The budding yeast, Saccharomyces cerevisiae, has a high tolerance to organic acids and alcohols, and thus grows well under toxic concentrations of various compounds in the culture medium, potentially allowing for highly efficient compound production. (R)-citramalate is a raw material for methyl methacrylate and can be used as a metabolic intermediate in the biosynthesis of higher alcohols. (R)-citramalate is synthesized from pyruvate and acetyl-CoA. Unlike Escherichia coli, S. cerevisiae has organelles, and its intracellular metabolites are compartmentalized, preventing full use of intracellular acetyl-CoA. Therefore, in this study, to increase the amount of cytosolic acetyl-CoA for highly efficient production of (R)-citramalate, we inhibited the transport of cytosolic acetyl-CoA and pyruvate to the mitochondria. We also constructed a heterologous pathway to supply cytosolic acetyl-CoA. Additionally, we attempted to export (R)-citramalate from cells by expressing a heterologous dicarboxylate transporter gene. We evaluated the effects of these approaches on (R)-citramalate production and constructed a final strain by combining these positive approaches. The resulting strain produced 16.5 mM (R)-citramalate in batch culture flasks. This is the first report of (R)-citramalate production by recombinant S. cerevisiae, and the (R)-citramalate production by recombinant yeast achieved in this study was the highest reported to date.
Collapse
Affiliation(s)
- Ryosuke Mitsui
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomokazu Shirai
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
4
|
Møller-Hansen I, Sáez-Sáez J, van der Hoek SA, Dyekjær JD, Christensen HB, Wright Muelas M, O’Hagan S, Kell DB, Borodina I. Deorphanizing solute carriers in Saccharomyces cerevisiae for secondary uptake of xenobiotic compounds. Front Microbiol 2024; 15:1376653. [PMID: 38680917 PMCID: PMC11045925 DOI: 10.3389/fmicb.2024.1376653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
The exchange of small molecules between the cell and the environment happens through transporter proteins. Besides nutrients and native metabolic products, xenobiotic molecules are also transported, however it is not well understood which transporters are involved. In this study, by combining exo-metabolome screening in yeast with transporter characterization in Xenopus oocytes, we mapped the activity of 30 yeast transporters toward six small non-toxic substrates. Firstly, using LC-MS, we determined 385 compounds from a chemical library that were imported and exported by S. cerevisiae. Of the 385 compounds transported by yeast, we selected six compounds (viz. sn-glycero-3-phosphocholine, 2,5-furandicarboxylic acid, 2-methylpyrazine, cefadroxil, acrylic acid, 2-benzoxazolol) for characterization against 30 S. cerevisiae xenobiotic transport proteins expressed in Xenopus oocytes. The compounds were selected to represent a diverse set of chemicals with a broad interest in applied microbiology. Twenty transporters showed activity toward one or more of the compounds. The tested transporter proteins were mostly promiscuous in equilibrative transport (i.e., facilitated diffusion). The compounds 2,5-furandicarboxylic acid, 2-methylpyrazine, cefadroxil, and sn-glycero-3-phosphocholine were transported equilibratively by transporters that could transport up to three of the compounds. In contrast, the compounds acrylic acid and 2-benzoxazolol, were strictly transported by dedicated transporters. The prevalence of promiscuous equilibrative transporters of non-native substrates has significant implications for strain development in biotechnology and offers an explanation as to why transporter engineering has been a challenge in metabolic engineering. The method described here can be generally applied to study the transport of other small non-toxic molecules. The yeast transporter library is available at AddGene (ID 79999).
Collapse
Affiliation(s)
- Iben Møller-Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Javier Sáez-Sáez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Jane D. Dyekjær
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Hanne B. Christensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Marina Wright Muelas
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Steve O’Hagan
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| |
Collapse
|
5
|
Ding YX, Chen JW, Ke J, Hu FY, Wen JC, Dong YG, Wang FQ, Xiong LB. Co-augmentation of a transport gene mfsT1 in Mycolicibacterium neoaurum with genome engineering to enhance ergothioneine production. J Basic Microbiol 2024; 64:e2300705. [PMID: 38253966 DOI: 10.1002/jobm.202300705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
Ergothioneine (EGT) is a rare thiohistidine derivative with exceptional antioxidant properties. The blood level of EGT is considered highly reliable predictors for cardiovascular diseases and mortality, yet animals lack the ability to synthesize this compound. Free plasmids have been previously used to overexpress genes involved in the EGT biosynthetic pathway of Mycolicibacterium neoaurum. Here, we tentatively introduced a putative transporter gene mfsT1 into high-copy plasmids and sharply increased the ratio of extracellular EGT concentration from 18.7% to 44.9%. Subsequently, an additional copy of egtABCDE, hisG, and mfsT1 was inserted into the genome with a site-specific genomic integration tool of M. neoaurum, leading a 2.7 times increase in EGT production. Co-enhancing the S-adenosyl-L-methionine regeneration pathway, or alternatively, the integration of three copies of egtABCDE, hisG and mfsT1 into the genome further increased the total EGT yield by 16.1% (64.6 mg/L) and 21.7% (67.7 mg/L), respectively. After 168-h cultivation, the highest titer reached 85.9 mg/L in the latter strain with three inserted copies. This study provided a solid foundation for genome engineering to increase the production of EGT in M. neoaurum.
Collapse
Affiliation(s)
- Ya-Xue Ding
- Department of General Surgery, Jinshan District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jun-Wei Chen
- Department of General Surgery, Jinshan District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jie Ke
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Fei-Yang Hu
- Department of General Surgery, Jinshan District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jia-Chen Wen
- Department of General Surgery, Jinshan District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yu-Guo Dong
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Liang-Bin Xiong
- Department of General Surgery, Jinshan District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
6
|
Xu P, Lin NQ, Zhang ZQ, Liu JZ. Strategies to increase the robustness of microbial cell factories. ADVANCED BIOTECHNOLOGY 2024; 2:9. [PMID: 39883204 PMCID: PMC11740849 DOI: 10.1007/s44307-024-00018-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 01/31/2025]
Abstract
Engineering microbial cell factories have achieved much progress in producing fuels, natural products and bulk chemicals. However, in industrial fermentation, microbial cells often face various predictable and stochastic disturbances resulting from intermediate metabolites or end product toxicity, metabolic burden and harsh environment. These perturbances can potentially decrease productivity and titer. Therefore, strain robustness is essential to ensure reliable and sustainable production efficiency. In this review, the current strategies to improve host robustness were summarized, including knowledge-based engineering approaches, such as transcription factors, membrane/transporters and stress proteins, and the traditional adaptive laboratory evolution based on natural selection. Computation-assisted (e.g. GEMs, deep learning and machine learning) design of robust industrial hosts was also introduced. Furthermore, the challenges and future perspectives on engineering microbial host robustness are proposed to promote the development of green, efficient and sustainable biomanufacturers.
Collapse
Affiliation(s)
- Pei Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Nuo-Qiao Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhi-Qian Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou, 510399, China
| | - Jian-Zhong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Joint Research Center of Engineering Biology Technology of Sun Yat-Sen University and Tidetron Bioworks, Guangzhou, 510275, China.
| |
Collapse
|
7
|
Qin N, Li L, Wan X, Ji X, Chen Y, Li C, Liu P, Zhang Y, Yang W, Jiang J, Xia J, Shi S, Tan T, Nielsen J, Chen Y, Liu Z. Increased CO 2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast. Nat Commun 2024; 15:1591. [PMID: 38383540 PMCID: PMC10881976 DOI: 10.1038/s41467-024-45557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/28/2024] [Indexed: 02/23/2024] Open
Abstract
CO2 fixation plays a key role to make biobased production cost competitive. Here, we use 3-hydroxypropionic acid (3-HP) to showcase how CO2 fixation enables approaching theoretical-yield production. Using genome-scale metabolic models to calculate the production envelope, we demonstrate that the provision of bicarbonate, formed from CO2, restricts previous attempts for high yield production of 3-HP. We thus develop multiple strategies for bicarbonate uptake, including the identification of Sul1 as a potential bicarbonate transporter, domain swapping of malonyl-CoA reductase, identification of Esbp6 as a potential 3-HP exporter, and deletion of Uga1 to prevent 3-HP degradation. The combined rational engineering increases 3-HP production from 0.14 g/L to 11.25 g/L in shake flask using 20 g/L glucose, approaching the maximum theoretical yield with concurrent biomass formation. The engineered yeast forms the basis for commercialization of bio-acrylic acid, while our CO2 fixation strategies pave the way for CO2 being used as the sole carbon source.
Collapse
Affiliation(s)
- Ning Qin
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lingyun Li
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden
| | - Xiaozhen Wan
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xu Ji
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chaokun Li
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Ping Liu
- The State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yijie Zhang
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weijie Yang
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junfeng Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jianye Xia
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shuobo Shi
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianwei Tan
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jens Nielsen
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden.
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark.
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark.
| | - Zihe Liu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
8
|
Gu S, Wu T, Zhao J, Sun T, Zhao Z, Zhang L, Li J, Tian C. Rewiring metabolic flux to simultaneously improve malate production and eliminate by-product succinate accumulation by Myceliophthora thermophila. Microb Biotechnol 2024; 17:e14410. [PMID: 38298109 PMCID: PMC10884987 DOI: 10.1111/1751-7915.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
Although a high titre of malic acid is achieved by filamentous fungi, by-product succinic acid accumulation leads to a low yield of malic acid and is unfavourable for downstream processing. Herein, we conducted a series of metabolic rewiring strategies in a previously constructed Myceliophthora thermophila to successfully improve malate production and abolish succinic acid accumulation. First, a pyruvate carboxylase CgPYC variant with increased activity was obtained using a high-throughput system and introduced to improve malic acid synthesis. Subsequently, shifting metabolic flux to malate synthesis from mitochondrial metabolism by deleing mitochondrial carriers of pyruvate and malate, led to a 53.7% reduction in succinic acid accumulation. The acceleration of importing cytosolic succinic acid into the mitochondria for consumption further decreased succinic acid formation by 53.3%, to 2.12 g/L. Finally, the importer of succinic acid was discovered and used to eliminate by-product accumulation. In total, malic acid production was increased by 26.5%, relative to the start strain JG424, to 85.23 g/L and 89.02 g/L on glucose and Avicel, respectively, in the flasks. In a 5-L fermenter, the titre of malic acid reached 182.7 g/L using glucose and 115.8 g/L using raw corncob, without any by-product accumulation. This study would accelerate the industrial production of biobased malic acid from renewable plant biomass.
Collapse
Affiliation(s)
- Shuying Gu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Taju Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
- School of Life Science, Bengbu Medical CollegeBengbuChina
| | - Junqi Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Tao Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Zhen Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Lu Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Jingen Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Chaoguang Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| |
Collapse
|
9
|
Wefelmeier K, Schmitz S, Kösters BJ, Liebal UW, Blank LM. Methanol bioconversion into C3, C4, and C5 platform chemicals by the yeast Ogataea polymorpha. Microb Cell Fact 2024; 23:8. [PMID: 38172830 PMCID: PMC10763331 DOI: 10.1186/s12934-023-02283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND One carbon (C1) molecules such as methanol have the potential to become sustainable feedstocks for biotechnological processes, as they can be derived from CO2 and green hydrogen, without the need for arable land. Therefore, we investigated the suitability of the methylotrophic yeast Ogataea polymorpha as a potential production organism for platform chemicals derived from methanol. We selected acetone, malate, and isoprene as industrially relevant products to demonstrate the production of compounds with 3, 4, or 5 carbon atoms, respectively. RESULTS We successfully engineered O. polymorpha for the production of all three molecules and demonstrated their production using methanol as carbon source. We showed that the metabolism of O. polymorpha is well suited to produce malate as a product and demonstrated that the introduction of an efficient malate transporter is essential for malate production from methanol. Through optimization of the cultivation conditions in shake flasks, which included pH regulation and constant substrate feeding, we were able to achieve a maximum titer of 13 g/L malate with a production rate of 3.3 g/L/d using methanol as carbon source. We further demonstrated the production of acetone and isoprene as additional heterologous products in O. polymorpha, with maximum titers of 13.6 mg/L and 4.4 mg/L, respectively. CONCLUSION These findings highlight how O. polymorpha has the potential to be applied as a versatile cell factory and contribute to the limited knowledge on how methylotrophic yeasts can be used for the production of low molecular weight biochemicals from methanol. Thus, this study can serve as a point of reference for future metabolic engineering in O. polymorpha and process optimization efforts to boost the production of platform chemicals from renewable C1 carbon sources.
Collapse
Affiliation(s)
- Katrin Wefelmeier
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Simone Schmitz
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Benjamin Jonas Kösters
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Ulf Winfried Liebal
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.
| |
Collapse
|
10
|
Stanchev LD, Møller-Hansen I, Lojko P, Rocha C, Borodina I. Screening of Saccharomyces cerevisiae metabolite transporters by 13C isotope substrate labeling. Front Microbiol 2023; 14:1286597. [PMID: 38116525 PMCID: PMC10729909 DOI: 10.3389/fmicb.2023.1286597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
The transportome of Saccharomyces cerevisiae comprises approximately 340 membrane-bound proteins, of which very few are well-characterized. Elucidating transporter proteins' function is essential not only for understanding central cellular processes in metabolite exchange with the external milieu but also for optimizing the production of value-added compounds in microbial cell factories. Here, we describe the application of 13C-labeled stable isotopes and detection by targeted LC-MS/MS as a screening tool for identifying Saccharomyces cerevisiae metabolite transporters. We compare the transport assay's sensitivity, reproducibility, and accuracy in yeast transporter mutant cell lines and Xenopus oocytes. As proof of principle, we analyzed the transport profiles of five yeast amino acid transporters. We first cultured yeast transporter deletion or overexpression mutants on uniformly labeled 13C-glucose and then screened their ability to facilitate the uptake or export of an unlabeled pool of amino acids. Individual transporters were further studied by heterologous expression in Xenopus oocytes, followed by an uptake assay with 13C labeled yeast extract. Uptake assays in Xenopus oocytes showed higher reproducibility and accuracy. Although having lower accuracy, the results from S. cerevisiae indicated the system's potential for initial high-throughput screening for native metabolite transporters. We partially confirmed previously reported substrates for all five amino acid transporters. In addition, we propose broader substrate specificity for two of the transporter proteins. The method presented here demonstrates the application of a comprehensive screening platform for the knowledge expansion of the transporter-substrate relationship for native metabolites in S. cerevisiae.
Collapse
Affiliation(s)
| | | | | | | | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
11
|
Deng S, Kim J, Pomraning KR, Gao Y, Evans JE, Hofstad BA, Dai Z, Webb-Robertson BJ, Powell SM, Novikova IV, Munoz N, Kim YM, Swita M, Robles AL, Lemmon T, Duong RD, Nicora C, Burnum-Johnson KE, Magnuson J. Identification of a specific exporter that enables high production of aconitic acid in Aspergillus pseudoterreus. Metab Eng 2023; 80:163-172. [PMID: 37778408 DOI: 10.1016/j.ymben.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Aconitic acid is an unsaturated tricarboxylic acid that is attractive for its potential use in manufacturing biodegradable and biocompatible polymers, plasticizers, and surfactants. Previously Aspergillus pseudoterreus was engineered as a platform to produce aconitic acid by deleting the cadA (cis-aconitic acid decarboxylase) gene in the itaconic acid biosynthetic pathway. In this study, the aconitic acid transporter gene (aexA) was identified using comparative global discovery proteomics analysis between the wild-type and cadA deletion strains. The protein AexA belongs to the Major Facilitator Superfamily (MFS). Deletion of aexA almost abolished aconitic acid secretion, while its overexpression led to a significant increase in aconitic acid production. Transportation of aconitic acid across the plasma membrane is a key limiting step in its production. In vitro, proteoliposome transport assay further validated AexA's function and substrate specificity. This research provides new approaches to efficiently pinpoint and characterize exporters of fungal organic acids and accelerate metabolic engineering to improve secretion capability and lower the cost of bioproduction.
Collapse
Affiliation(s)
- Shuang Deng
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Joonhoon Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Kyle R Pomraning
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Yuqian Gao
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - James E Evans
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Beth A Hofstad
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Ziyu Dai
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Bobbie-Jo Webb-Robertson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Samantha M Powell
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Irina V Novikova
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Nathalie Munoz
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Young-Mo Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Marie Swita
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Ana L Robles
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Teresa Lemmon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Rylan D Duong
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Carrie Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Kristin E Burnum-Johnson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Jon Magnuson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
12
|
Chen Y, Wang J, Wang M, Han A, Zhao X, Wang W, Wei D. Engineering the metabolism and morphology of the filamentous fungus Trichoderma reesei for efficient L-malic acid production. BIORESOURCE TECHNOLOGY 2023; 387:129629. [PMID: 37558099 DOI: 10.1016/j.biortech.2023.129629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
L-malic acid (MA) is a vital platform chemical with huge market demand because of its broad industrial applications. A cell factory for MA production was engineered by strengthening the intrinsic pathway without inserting foreign genes into Trichoderma reesei. The native MA transporter gene in the T. reesei genome was characterized (trmae1), and its overexpression significantly improved MA production, which increased from 2 to 56.24 g/L. Native pyruvate carboxylase, malate dehydrogenase, malic enzyme, and glucose transporter were overexpressed further to improve the titer and yield of MA production. Fungal morphology was adapted to produce MA in the fermenter by deleting gul1. A titer of 235.8 g/L MA was produced from the final engineered strain in a 5-L fermenter with a yield of 1.48 mol of MA per mol of glucose and productivity of 1.23 g/L/h. This study provides novel insights for understanding and remodeling the MA synthesis pathway.
Collapse
Affiliation(s)
- Yumeng Chen
- State Key Lab of Bioreactor Engineering, 130 Meilong Road, Shanghai, China; Luhua Suo, East China University of Science and Technology, Shanghai 200237, China
| | - Jiajia Wang
- State Key Lab of Bioreactor Engineering, 130 Meilong Road, Shanghai, China; Luhua Suo, East China University of Science and Technology, Shanghai 200237, China
| | - Meng Wang
- State Key Lab of Bioreactor Engineering, 130 Meilong Road, Shanghai, China
| | - Ao Han
- State Key Lab of Bioreactor Engineering, 130 Meilong Road, Shanghai, China
| | | | - Wei Wang
- State Key Lab of Bioreactor Engineering, 130 Meilong Road, Shanghai, China; Luhua Suo, East China University of Science and Technology, Shanghai 200237, China.
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, 130 Meilong Road, Shanghai, China; Luhua Suo, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Tran VG, Mishra S, Bhagwat SS, Shafaei S, Shen Y, Allen JL, Crosly BA, Tan SI, Fatma Z, Rabinowitz JD, Guest JS, Singh V, Zhao H. An end-to-end pipeline for succinic acid production at an industrially relevant scale using Issatchenkia orientalis. Nat Commun 2023; 14:6152. [PMID: 37788990 PMCID: PMC10547785 DOI: 10.1038/s41467-023-41616-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Microbial production of succinic acid (SA) at an industrially relevant scale has been hindered by high downstream processing costs arising from neutral pH fermentation for over three decades. Here, we metabolically engineer the acid-tolerant yeast Issatchenkia orientalis for SA production, attaining the highest titers in sugar-based media at low pH (pH 3) in fed-batch fermentations, i.e. 109.5 g/L in minimal medium and 104.6 g/L in sugarcane juice medium. We further perform batch fermentation using sugarcane juice medium in a pilot-scale fermenter (300×) and achieve 63.1 g/L of SA, which can be directly crystallized with a yield of 64.0%. Finally, we simulate an end-to-end low-pH SA production pipeline, and techno-economic analysis and life cycle assessment indicate our process is financially viable and can reduce greenhouse gas emissions by 34-90% relative to fossil-based production processes. We expect I. orientalis can serve as a general industrial platform for production of organic acids.
Collapse
Affiliation(s)
- Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Somesh Mishra
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sarang S Bhagwat
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Saman Shafaei
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yihui Shen
- Department of Chemistry and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Jayne L Allen
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benjamin A Crosly
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shih-I Tan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zia Fatma
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Jeremy S Guest
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Vijay Singh
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
14
|
Wu T, Li J, Tian C. Fungal carboxylate transporters: recent manipulations and applications. Appl Microbiol Biotechnol 2023; 107:5909-5922. [PMID: 37561180 DOI: 10.1007/s00253-023-12720-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Carboxylic acids containing acidic groups with additional keto/hydroxyl-groups or unsaturated bond have displayed great applicability in the food, agricultural, cosmetic, textile, and pharmaceutical industries. The traditional approach for carboxylate production through chemical synthesis is based on petroleum derivatives, resulting in concerns for the environmental complication and energy crisis, and increasing attention has been attracted to the eco-friendly and renewable bio-based synthesis for carboxylate production. The efficient and specific export of target carboxylic acids through the microbial membrane is essential for high productivity, yield, and titer of bio-based carboxylates. Therefore, understanding the characteristics, regulations, and efflux mechanisms of carboxylate transporters will efficiently increase industrial biotechnological production of carboxylic acids. Several transporters from fungi have been reported and used for improved synthesis of target products. The transport activity and substrate specificity are two key issues that need further improvement in the application of carboxylate transporters. This review presents developments in the structural and functional diversity of carboxylate transporters, focusing on the modification and regulation of carboxylate transporters to alter the transport activity and substrate specificity, providing new strategy for transporter engineering in constructing microbial cell factory for carboxylate production. KEY POINTS: • Structures of multiple carboxylate transporters have been predicted. • Carboxylate transporters can efficiently improve production. • Modification engineering of carboxylate transporters will be more popular in the future.
Collapse
Affiliation(s)
- Taju Wu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- School of Life Science, Bengbu Medical College, Bengbu, 233030, China
| | - Jingen Li
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Chaoguang Tian
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
15
|
Alves J, Sousa-Silva M, Soares P, Sauer M, Casal M, Soares-Silva I. Structural characterization of the Aspergillus niger citrate transporter CexA uncovers the role of key residues S75, R192 and Q196. Comput Struct Biotechnol J 2023; 21:2884-2898. [PMID: 37216016 PMCID: PMC10196274 DOI: 10.1016/j.csbj.2023.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
The Aspergillus niger CexA transporter belongs to the DHA1 (Drug-H+ antiporter) family. CexA homologs are exclusively found in eukaryotic genomes, and CexA is the sole citrate exporter to have been functionally characterized in this family so far. In the present work, we expressed CexA in Saccharomyces cerevisiae, demonstrating its ability to bind isocitric acid, and import citrate at pH 5.5 with low affinity. Citrate uptake was independent of the proton motive force and compatible with a facilitated diffusion mechanism. To unravel the structural features of this transporter, we then targeted 21 CexA residues for site-directed mutagenesis. Residues were identified by a combination of amino acid residue conservation among the DHA1 family, 3D structure prediction, and substrate molecular docking analysis. S. cerevisiae cells expressing this library of CexA mutant alleles were evaluated for their capacity to grow on carboxylic acid-containing media and transport of radiolabeled citrate. We also determined protein subcellular localization by GFP tagging, with seven amino acid substitutions affecting CexA protein expression at the plasma membrane. The substitutions P200A, Y307A, S315A, and R461A displayed loss-of-function phenotypes. The majority of the substitutions affected citrate binding and translocation. The S75 residue had no impact on citrate export but affected its import, as the substitution for alanine increased the affinity of the transporter for citrate. Conversely, expression of CexA mutant alleles in the Yarrowia lipolytica cex1Δ strain revealed the involvement of R192 and Q196 residues in citrate export. Globally, we uncovered a set of relevant amino acid residues involved in CexA expression, export capacity and import affinity.
Collapse
Affiliation(s)
- J. Alves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M. Sousa-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - P. Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M. Sauer
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - M. Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - I. Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
16
|
Ding Q, Ye C. Recent advances in producing food additive L-malate: Chassis, substrate, pathway, fermentation regulation and application. Microb Biotechnol 2023; 16:709-725. [PMID: 36604311 PMCID: PMC10034640 DOI: 10.1111/1751-7915.14206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
In addition to being an important intermediate in the TCA cycle, L-malate is also widely used in the chemical and beverage industries. Due to the resulting high demand, numerous studies investigated chemical methods to synthesize L-malate from petrochemical resources, but such approaches are hampered by complex downstream processing and environmental pollution. Accordingly, there is an urgent need to develop microbial methods for environmentally-friendly and economical L-malate biosynthesis. The rapid progress and understanding of DNA manipulation, cell physiology, and cell metabolism can improve industrial L-malate biosynthesis by applying intelligent biochemical strategies and advanced synthetic biology tools. In this paper, we mainly focused on biotechnological approaches for enhancing L-malate synthesis, encompassing the microbial chassis, substrate utilization, synthesis pathway, fermentation regulation, and industrial application. This review emphasizes the application of novel metabolic engineering strategies and synthetic biology tools combined with a deep understanding of microbial physiology to improve industrial L-malate biosynthesis in the future.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life SciencesAnhui UniversityHefeiChina
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education InstitutesAnhui UniversityHefeiChina
- Anhui Key Laboratory of Modern BiomanufacturingHefeiChina
| | - Chao Ye
- School of Food Science and Pharmaceutical EngineeringNanjing Normal UniversityNanjingChina
| |
Collapse
|
17
|
Luo Y, Yan X, Xia Y, Cao Y. Tetracarboxylic acid transporter regulates growth, conidiation, and carbon utilization in Metarhizium acridum. Appl Microbiol Biotechnol 2023; 107:2969-2982. [PMID: 36941435 DOI: 10.1007/s00253-023-12471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Carbon sources and their utilization are vital for fungal growth and development. C4-dicarboxylic acids are important carbon and energy sources that function as intermediate products of the tricarboxylic acid cycle. Transport and regulation of C4-dicarboxylic acid uptake are mainly dependent on tetracarboxylic acid transporters (Dcts) in many microbes, although the roles of Dct genes in fungi have only been partially characterized. Here, we report on the functions of two Dct genes (Dct1 and Dct2) in the entomopathogenic fungus Metarhizium acridum. Our data showed that loss of the MaDct1 gene affected utilization of tetracarboxylic acids and other carbon sources. ΔMaDct1 mutants showed larger colony sizes with extensive mycelial growth but were delayed in conidiation with decreased conidia yield as compared to the wild-type parental strain. On the nutrient-deficient medium, SYA, the wild-type strain produced microcycle conidia, whereas the ΔMaDct1 mutant produced (normal) aerial conidia. In addition, ΔMaDct1 had decreased tolerance to cell wall perturbing agents, but increased tolerances to UV-B radiation and osmotic stress. Insect bioassays indicated that loss of MaDct1 did not affect pathogenicity. In contrast, no distinct phenotypic change was observed for the MaDct2 mutant in terms of growth and biocontrol characteristics. Transcriptomic profiling between wild type and ΔMaDct1 showed that differentially expressed genes were enriched in carbohydrate and amino acid metabolism, transport and catabolism, and signal transduction. These results demonstrate that MaDct1 regulates the conidiation pattern shift and mycelial growth by affecting utilization of carbon sources. These findings are helpful for better understanding the effect of intermediates of carbon metabolism on fungal growth and conidiation. KEY POINTS: • MaDct1 influences fungal growth and conidiation by affecting carbon source utilization. • MaDct1 regulates conidiation pattern shift under nutrient deficiency condition. • MaDct1 is involved in stress tolerance and has no effect on virulence. • MaDct2 has no effect on growth and biocontrol characteristic.
Collapse
Affiliation(s)
- Yunxiao Luo
- School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 401331, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China
| | - Xi Yan
- School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 401331, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 401331, People's Republic of China.
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China.
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 401331, People's Republic of China.
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China.
| |
Collapse
|
18
|
Dissecting key residues of a C4-dicarboxylic acid transporter to accelerate malate export in Myceliophthora. Appl Microbiol Biotechnol 2023; 107:609-622. [PMID: 36542100 DOI: 10.1007/s00253-022-12336-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Efficient transporters are necessary for high concentration and purity of desired products during industrial production. In this study, we explored the mechanism of substrate transport and preference of the C4-dicarboxylic acid transporter AoMAE in the fungus Myceliophthora thermophila, and investigated the roles of 18 critical amino acid residues within this process. Among them, the residue Arg78, forming a hydrogen bond network with Arg23, Phe25, Thr74, Leu81, His82, and Glu94 to stabilize the protein conformation, is irreplaceable for the export function of AoMAE. Furthermore, varying the residue at position 100 resulted in changes to the size and shape of the substrate binding pocket, leading to alterations in transport efficiencies of both malic acid and succinic acid. We found that the mutation T100S increased malate production by 68%. Using these insights, we successfully generated an AoMAE variant with mutation T100S and deubiquitination, exhibiting an 81% increase in the selective export activity of malic acid. Simply introducing this version of AoMAE into M. thermophila wild-type strain increased production of malic acid from 1.22 to 54.88 g/L. These findings increase our understanding of the structure-function relationships of organic acid transporters and may accelerate the process of engineering dicarboxylic acid transporters with high efficiency. KEY POINTS: • This is the first systematical analysis of key residues of a malate transporter in fungi. • Protein engineering of AoMAE led to 81% increase of malate export activity. • Arg78 was essential for the normal function of AoMAE in M. thermophila. • Substitution of Thr100 affected export efficiency and substrate selectivity of AoMAE.
Collapse
|
19
|
Steyn A, Viljoen-Bloom M, Van Zyl WH. Constructing recombinant Saccharomyces cerevisiae strains for malic-to-fumaric acid conversion. FEMS Microbiol Lett 2023; 370:6988173. [PMID: 36646426 PMCID: PMC10086307 DOI: 10.1093/femsle/fnad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/09/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Saccharomyces cerevisiae with its robustness and good acid tolerance, is an attractive candidate for use in various industries, including waste-based biorefineries where a high-value organic acid is produced, such as fumaric acid could be beneficial. However, this yeast is not a natural producer of dicarboxylic acids, and genetic engineering of S. cerevisiae strains is required to achieve this outcome. Disruption of the natural FUM1 gene and the recombinant expression of fumarase and malate transporter genes improved the malic acid-to-fumaric acid conversion by engineered S. cerevisiae strains. The efficacy of the strains was significantly influenced by the source of the fumarase gene (yeast versus bacterial), the presence of the XYNSEC signal secretion signal and the available oxygen in synthetic media cultivations. The ΔFUM1Ckr_fum + mae1 and ΔFUM1(ss)Ckr_fum + mae1 strains converted extracellular malic acid into 0.98 and 1.11 g/L fumaric acid under aerobic conditions.
Collapse
Affiliation(s)
- Annica Steyn
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Willem Heber Van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
20
|
Xi Y, Xu H, Zhan T, Qin Y, Fan F, Zhang X. Metabolic engineering of the acid-tolerant yeast Pichia kudriavzevii for efficient L-malic acid production at low pH. Metab Eng 2023; 75:170-180. [PMID: 36566973 DOI: 10.1016/j.ymben.2022.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/27/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Currently, the biological production of L-malic acid (L-MA) is mainly based on the fermentation of filamentous fungi at near-neutral pH, but this process requires large amounts of neutralizing agents, resulting in the generation of waste salts when free acid is obtained in the downstream process, and the environmental hazards associated with the waste salts limit the practical application of this process. To produce L-MA in a more environmentally friendly way, we metabolically engineered the acid-tolerant yeast Pichia kudriavzevii and achieved efficient production of L-MA through low pH fermentation. First, an initial L-MA-producing strain that relies on the reductive tricarboxylic acid (rTCA) pathway was constructed. Subsequently, the L-MA titer and yield were further increased by fine-tuning the flux between the pyruvate and oxaloacetate nodes. In addition, we found that the insufficient supply of NADH for cytoplasmic malate dehydrogenase (MDH) hindered the L-MA production at low pH, which was resolved by overexpressing the soluble pyridine nucleotide transhydrogenase SthA from E. coli. Transcriptomic and metabolomic data showed that overexpression of EcSthA contributed to the activation of the pentose phosphate pathway and provided additional reducing power for MDH by converting NADPH to NADH. Furthermore, overexpression of EcSthA was found to help reduce the accumulation of the by-product pyruvate but had no effect on the accumulation of succinate. In microaerobic batch fermentation in a 5-L fermenter, the best strain, MA009-10-URA3 produced 199.4 g/L L-MA with a yield of 0.94 g/g glucose (1.27 mol/mol), with a productivity of 1.86 g/L/h. The final pH of the fermentation broth was approximately 3.10, meaning that the amount of neutralizer used was reduced by more than 50% compared to the common fermentation processes using filamentous fungi. To our knowledge, this is the first report of the efficient bioproduction of L-MA at low pH and represents the highest yield of L-MA in yeasts reported to date.
Collapse
Affiliation(s)
- Yongyan Xi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China; National Innovation Center for Synthetic Biotechnology, Tianjin, 300308, PR China
| | - Hongtao Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China; National Innovation Center for Synthetic Biotechnology, Tianjin, 300308, PR China
| | - Tao Zhan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China; National Innovation Center for Synthetic Biotechnology, Tianjin, 300308, PR China
| | - Ying Qin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China; National Innovation Center for Synthetic Biotechnology, Tianjin, 300308, PR China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China; National Innovation Center for Synthetic Biotechnology, Tianjin, 300308, PR China.
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China; National Innovation Center for Synthetic Biotechnology, Tianjin, 300308, PR China.
| |
Collapse
|
21
|
Perrin J, Besseau S, Papon N, Courdavault V. Boosting lignan-precursor synthesis in yeast cell factories through co-factor supply optimization. Front Bioeng Biotechnol 2022; 10:1079801. [DOI: 10.3389/fbioe.2022.1079801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
|
22
|
Mimata Y, Munemasa S, Nakamura T, Nakamura Y, Murata Y. Extracellular malate induces stomatal closure via direct activation of guard-cell anion channel SLAC1 and stimulation of Ca 2+ signalling. THE NEW PHYTOLOGIST 2022; 236:852-863. [PMID: 35879859 DOI: 10.1111/nph.18400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Plants secrete malate from guard cells to apoplast under stress conditions and exogenous malate induces stomatal closure. Malate is considered an extracellular chemical signal of stomatal closure. However, the molecular mechanism of malate-induced stomatal closure is not fully elucidated. We investigated responses of stomatal aperture, ion channels, and cytosolic Ca2+ to malate. A treatment with malate induced stomatal closure in Arabidopsis thaliana wild-type plants, but not in the mutants deficient in the slow (S-type) anion channel gene SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1). The treatment with malate increased S-type anion currents in guard-cell protoplasts of wild-type plants but not in the slac1 mutant. In addition, extracellular rather than intracellular application of malate increased the S-type currents of constitutively active mutants of SLAC1, which have kinase-independent activities, in a heterologous expression system using Xenopus oocytes. The treatment with malate transiently increased cytosolic Ca2+ concentration in the wild-type Arabidopsis guard cells and the malate-induced stomatal closure was inhibited by the Ca2+ channel blocker and the Ca2+ chelator. These results indicate that extracellular malate directly activates SLAC1 and simultaneously stimulates Ca2+ signalling in guard cells, resulting in steady and solid activation of SLAC1 for stomatal closure.
Collapse
Affiliation(s)
- Yoshiharu Mimata
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka 1-1-1, 700-8530, Okayama, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka 1-1-1, 700-8530, Okayama, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka 1-1-1, 700-8530, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka 1-1-1, 700-8530, Okayama, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka 1-1-1, 700-8530, Okayama, Japan
| |
Collapse
|
23
|
The Dicarboxylate Transporters from the AceTr Family and Dct-02 Oppositely Affect Succinic Acid Production in S. cerevisiae. J Fungi (Basel) 2022; 8:jof8080822. [PMID: 36012810 PMCID: PMC9409672 DOI: 10.3390/jof8080822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Membrane transporters are important targets in metabolic engineering to establish and improve the production of chemicals such as succinic acid from renewable resources by microbial cell factories. We recently provided a Saccharomyces cerevisiae strain able to strongly overproduce succinic acid from glycerol and CO2 in which the Dct-02 transporter from Aspergillus niger, assumed to be an anion channel, was used to export succinic acid from the cells. In a different study, we reported a new group of succinic acid transporters from the AceTr family, which were also described as anion channels. Here, we expressed these transporters in a succinic acid overproducing strain and compared their impact on extracellular succinic acid accumulation with that of the Dct-02 transporter. The results show that the tested transporters of the AceTr family hinder succinic acid accumulation in the extracellular medium at low pH, which is in strong contrast to Dct-02. Data suggests that the AceTr transporters prefer monovalent succinate, whereas Dct-02 prefers divalent succinate anions. In addition, the results provided deeper insights into the characteristics of Dct-02, showing its ability to act as a succinic acid importer (thus being bidirectional) and verifying its capability of exporting malate.
Collapse
|
24
|
Metabolite trafficking enables membrane-impermeable-terpene secretion by yeast. Nat Commun 2022; 13:2605. [PMID: 35546160 PMCID: PMC9095633 DOI: 10.1038/s41467-022-30312-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Metabolites are often unable to permeate cell membranes and are thus accumulated inside cells. We investigate whether engineered microbes can exclusively secrete intracellular metabolites because sustainable metabolite secretion holds a great potential for mass-production of high-value chemicals in an efficient and continuous manner. In this study, we demonstrate a synthetic pathway for a metabolite trafficking system that enables lipophilic terpene secretion by yeast cells. When metabolite-binding proteins are tagged with signal peptides, metabolite trafficking is highly achievable; loaded metabolites can be precisely delivered to a desired location within or outside the cell. As a proof of concept, we systematically couple a terpene-binding protein with an export signal peptide and subsequently demonstrate efficient, yet selective terpene secretion by yeast (~225 mg/L for squalene and ~1.6 mg/L for β-carotene). Other carrier proteins can also be readily fused with desired signal peptides, thereby tailoring different metabolite trafficking pathways in different microbes. To the best of our knowledge, this is the most efficient cognate pathway for metabolite secretion by microorganisms. The engineering of metabolite secretion from microorganisms can lead to many applications in synthetic biology. In this article, the authors engineer a metabolite trafficking system for the secretion of medicinal terpenes.
Collapse
|
25
|
A Review on the Production of C4 Platform Chemicals from Biochemical Conversion of Sugar Crop Processing Products and By-Products. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development and commercialization of sustainable chemicals from agricultural products and by-products is necessary for a circular economy built on renewable natural resources. Among the largest contributors to the final cost of a biomass conversion product is the cost of the initial biomass feedstock, representing a significant challenge in effective biomass utilization. Another major challenge is in identifying the correct products for development, which must be able to satisfy the need for both low-cost, drop-in fossil fuel replacements and novel, high-value fine chemicals (and/or commodity chemicals). Both challenges can be met by utilizing wastes or by-products from biomass processing, which have very limited starting cost, to yield platform chemicals. Specifically, sugar crop processing (e.g., sugarcane, sugar beet) is a mature industry that produces high volumes of by-products with significant potential for valorization. This review focuses specifically on the production of acetoin (3-hydroxybutanone), 2,3-butanediol, and C4 dicarboxylic (succinic, malic, and fumaric) acids with emphasis on biochemical conversion and targeted upgrading of sugar crop products/by-products. These C4 compounds are easily derived from fermentations and can be converted into many different final products, including food, fragrance, and cosmetic additives, as well as sustainable biofuels and other chemicals. State-of-the-art literature pertaining to optimization strategies for microbial conversion of sugar crop byproducts to C4 chemicals (e.g., bagasse, molasses) is reviewed, along with potential routes for upgrading and valorization. Directions and opportunities for future research and industrial biotechnology development are discussed.
Collapse
|
26
|
Malla S, van der Helm E, Darbani B, Wieschalka S, Förster J, Borodina I, Sommer MOA. A Novel Efficient L-Lysine Exporter Identified by Functional Metagenomics. Front Microbiol 2022; 13:855736. [PMID: 35495724 PMCID: PMC9048822 DOI: 10.3389/fmicb.2022.855736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
Lack of active export system often limits the industrial bio-based production processes accumulating the intracellular product and hence complexing the purification steps. L-lysine, an essential amino acid, is produced biologically in quantities exceeding two million tons per year; yet, L-lysine production is challenged by efficient export system at high titers during fermentation. To address this issue, new exporter candidates for efficient efflux of L-lysine are needed. Using metagenomic functional selection, we identified 58 genes encoded on 28 unique metagenomic fragments from cow gut microbiome library that improved L-lysine tolerance. These genes include a novel L-lysine transporter, belonging to a previously uncharacterized EamA superfamily, which is further in vivo characterized as L-lysine exporter using Xenopus oocyte expression system as well as Escherichia coli host. This novel exporter improved L-lysine tolerance in E. coli by 40% and enhanced yield, titer, and the specific production of L-lysine in an industrial Corynebacterium glutamicum strain by 7.8%, 9.5%, and 12%, respectively. Our approach allows the sequence-independent discovery of novel exporters and can be deployed to increase titers and productivity of toxicity-limited bioprocesses.
Collapse
|
27
|
Stovicek V, Dato L, Almqvist H, Schöpping M, Chekina K, Pedersen LE, Koza A, Figueira D, Tjosås F, Ferreira BS, Forster J, Lidén G, Borodina I. Rational and evolutionary engineering of Saccharomyces cerevisiae for production of dicarboxylic acids from lignocellulosic biomass and exploring genetic mechanisms of the yeast tolerance to the biomass hydrolysate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:22. [PMID: 35219341 PMCID: PMC8882276 DOI: 10.1186/s13068-022-02121-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Lignosulfonates are significant wood chemicals with a $700 million market, produced by sulfite pulping of wood. During the pulping process, spent sulfite liquor (SSL) is generated, which in addition to lignosulfonates contains hemicellulose-derived sugars-in case of hardwoods primarily the pentose sugar xylose. The pentoses are currently underutilized. If they could be converted into value-added chemicals, overall economic profitability of the process would increase. SSLs are typically very inhibitory to microorganisms, which presents a challenge for a biotechnological process. The aim of the present work was to develop a robust yeast strain able to convert xylose in SSL to carboxylic acids. RESULTS The industrial strain Ethanol Red of the yeast Saccharomyces cerevisiae was engineered for efficient utilization of xylose in a Eucalyptus globulus lignosulfonate stream at low pH using CRISPR/Cas genome editing and adaptive laboratory evolution. The engineered strain grew in synthetic medium with xylose as sole carbon source with maximum specific growth rate (µmax) of 0.28 1/h. Selected evolved strains utilized all carbon sources in the SSL at pH 3.5 and grew with µmax between 0.05 and 0.1 1/h depending on a nitrogen source supplement. Putative genetic determinants of the increased tolerance to the SSL were revealed by whole genome sequencing of the evolved strains. In particular, four top-candidate genes (SNG1, FIT3, FZF1 and CBP3) were identified along with other gene candidates with predicted important roles, based on the type and distribution of the mutations across different strains and especially the best performing ones. The developed strains were further engineered for production of dicarboxylic acids (succinic and malic acid) via overexpression of the reductive branch of the tricarboxylic acid cycle (TCA). The production strain produced 0.2 mol and 0.12 mol of malic acid and succinic acid, respectively, per mol of xylose present in the SSL. CONCLUSIONS The combined metabolic engineering and adaptive evolution approach provided a robust SSL-tolerant industrial strain that converts fermentable carbon content of the SSL feedstock into malic and succinic acids at low pH.in production yields reaching 0.1 mol and 0.065 mol per mol of total consumed carbon sources.. Moreover, our work suggests potential genetic background of the tolerance to the SSL stream pointing out potential gene targets for improving the tolerance to inhibitory industrial feedstocks.
Collapse
Affiliation(s)
- Vratislav Stovicek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Laura Dato
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.,River Stone Biotech ApS, Fruebjergvej 3, 2100, Copenhagen, Denmark
| | - Henrik Almqvist
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Marie Schöpping
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden.,Chr. Hansen A/S, Boge Alle 10-12, 2970, Hørsholm, Denmark.,Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Ksenia Chekina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Anna Koza
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.,Chr. Hansen A/S, Boge Alle 10-12, 2970, Hørsholm, Denmark
| | - Diogo Figueira
- Biotrend S.A., Biocant Park Núcleo 04, Lote 2, 3060-197, Cantanhede, Portugal
| | - Freddy Tjosås
- Borregaard ApS, Hjalmar Wessels vei 6, 1721, Sarpsborg, Norway
| | | | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
28
|
Strategies to increase tolerance and robustness of industrial microorganisms. Synth Syst Biotechnol 2022; 7:533-540. [PMID: 35024480 PMCID: PMC8718811 DOI: 10.1016/j.synbio.2021.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/06/2023] Open
Abstract
The development of a cost-competitive bioprocess requires that the cell factory converts the feedstock into the product of interest at high rates and yields. However, microbial cell factories are exposed to a variety of different stresses during the fermentation process. These stresses can be derived from feedstocks, metabolism, or industrial production processes, limiting production capacity and diminishing competitiveness. Improving stress tolerance and robustness allows for more efficient production and ultimately makes a process more economically viable. This review summarises general trends and updates the most recent developments in technologies to improve the stress tolerance of microorganisms. We first look at evolutionary, systems biology and computational methods as examples of non-rational approaches. Then we review the (semi-)rational approaches of membrane and transcription factor engineering for improving tolerance phenotypes. We further discuss challenges and perspectives associated with these different approaches.
Collapse
|
29
|
Claus S, Jezierska S, Elbourne LDH, Van Bogaert I. Exploring the transportome of the biosurfactant producing yeast Starmerella bombicola. BMC Genomics 2022; 23:22. [PMID: 34998388 PMCID: PMC8742932 DOI: 10.1186/s12864-021-08177-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Starmerella bombicola is a non-conventional yeast mainly known for its capacity to produce high amounts of the glycolipids 'sophorolipids'. Although its product has been used as biological detergent for a couple of decades, the genetics of S. bombicola are still largely unknown. Computational analysis of the yeast's genome enabled us to identify 254 putative transporter genes that make up the entire transportome. For each of them, a potential substrate was predicted using homology analysis, subcellular localization prediction and RNA sequencing in different stages of growth. One transporter family is of exceptional importance to this yeast: the ATP Binding Cassette (ABC) transporter Superfamily, because it harbors the main driver behind the highly efficient sophorolipid export. Furthermore, members of this superfamily translocate a variety of compounds ranging from antibiotics to hydrophobic molecules. We conducted an analysis of this family by creating deletion mutants to understand their role in the export of hydrophobic compounds, antibiotics and sophorolipids. Doing this, we could experimentally confirm the transporters participating in the efflux of medium chain fatty alcohols, particularly decanol and undecanol, and identify a second sophorolipid transporter that is located outside the sophorolipid biosynthetic gene cluster.
Collapse
Affiliation(s)
- Silke Claus
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sylwia Jezierska
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Liam D H Elbourne
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, 2109, Australia
| | - Inge Van Bogaert
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
30
|
Engineering precursor supply for the high-level production of ergothioneine in Saccharomyces cerevisiae. Metab Eng 2022; 70:129-142. [DOI: 10.1016/j.ymben.2022.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022]
|
31
|
Ding Q, Liu Y, Hu G, Guo L, Gao C, Chen X, Chen W, Chen J, Liu L. Engineering Escherichia coli biofilm to increase contact surface for shikimate and L-malate production. BIORESOUR BIOPROCESS 2021; 8:118. [PMID: 38650289 PMCID: PMC10992329 DOI: 10.1186/s40643-021-00470-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
Microbial organelles are a promising model to promote cellular functions for the production of high-value chemicals. However, the concentrations of enzymes and nanoparticles are limited by the contact surface in single Escherichia coli cells. Herein, the definition of contact surface is to improve the amylase and CdS nanoparticles concentration for enhancing the substrate starch and cofactor NADH utilization. In this study, two biofilm-based strategies were developed to improve the contact surface for the production of shikimate and L-malate. First, the contact surface of E. coli was improved by amylase self-assembly with a blue light-inducible biofilm-based SpyTag/SpyCatcher system. This system increased the glucose concentration by 20.7% and the starch-based shikimate titer to 50.96 g L-1, which showed the highest titer with starch as substrate. Then, the contact surface of E. coli was improved using a biofilm-based CdS-biohybrid system by light-driven system, which improved the NADH concentration by 83.3% and increased the NADH-dependent L-malate titer to 45.93 g L-1. Thus, the biofilm-based strategies can regulate cellular functions to increase the efficiency of microbial cell factories based on the optogenetics, light-driven, and metabolic engineering.
Collapse
Affiliation(s)
- Qiang Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Yadi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
32
|
Wei Z, Xu Y, Xu Q, Cao W, Huang H, Liu H. Microbial Biosynthesis of L-Malic Acid and Related Metabolic Engineering Strategies: Advances and Prospects. Front Bioeng Biotechnol 2021; 9:765685. [PMID: 34660563 PMCID: PMC8511312 DOI: 10.3389/fbioe.2021.765685] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Malic acid, a four-carbon dicarboxylic acid, is widely used in the food, chemical and medical industries. As an intermediate of the TCA cycle, malic acid is one of the most promising building block chemicals that can be produced from renewable sources. To date, chemical synthesis or enzymatic conversion of petrochemical feedstocks are still the dominant mode for malic acid production. However, with increasing concerns surrounding environmental issues in recent years, microbial fermentation for the production of L-malic acid was extensively explored as an eco-friendly production process. The rapid development of genetic engineering has resulted in some promising strains suitable for large-scale bio-based production of malic acid. This review offers a comprehensive overview of the most recent developments, including a spectrum of wild-type, mutant, laboratory-evolved and metabolically engineered microorganisms for malic acid production. The technological progress in the fermentative production of malic acid is presented. Metabolic engineering strategies for malic acid production in various microorganisms are particularly reviewed. Biosynthetic pathways, transport of malic acid, elimination of byproducts and enhancement of metabolic fluxes are discussed and compared as strategies for improving malic acid production, thus providing insights into the current state of malic acid production, as well as further research directions for more efficient and economical microbial malic acid production.
Collapse
Affiliation(s)
- Zhen Wei
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yongxue Xu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wei Cao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
33
|
Kell DB. The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules 2021; 26:5629. [PMID: 34577099 PMCID: PMC8470029 DOI: 10.3390/molecules26185629] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, my colleagues and I have come to realise that the likelihood of pharmaceutical drugs being able to diffuse through whatever unhindered phospholipid bilayer may exist in intact biological membranes in vivo is vanishingly low. This is because (i) most real biomembranes are mostly protein, not lipid, (ii) unlike purely lipid bilayers that can form transient aqueous channels, the high concentrations of proteins serve to stop such activity, (iii) natural evolution long ago selected against transport methods that just let any undesirable products enter a cell, (iv) transporters have now been identified for all kinds of molecules (even water) that were once thought not to require them, (v) many experiments show a massive variation in the uptake of drugs between different cells, tissues, and organisms, that cannot be explained if lipid bilayer transport is significant or if efflux were the only differentiator, and (vi) many experiments that manipulate the expression level of individual transporters as an independent variable demonstrate their role in drug and nutrient uptake (including in cytotoxicity or adverse drug reactions). This makes such transporters valuable both as a means of targeting drugs (not least anti-infectives) to selected cells or tissues and also as drug targets. The same considerations apply to the exploitation of substrate uptake and product efflux transporters in biotechnology. We are also beginning to recognise that transporters are more promiscuous, and antiporter activity is much more widespread, than had been realised, and that such processes are adaptive (i.e., were selected by natural evolution). The purpose of the present review is to summarise the above, and to rehearse and update readers on recent developments. These developments lead us to retain and indeed to strengthen our contention that for transmembrane pharmaceutical drug transport "phospholipid bilayer transport is negligible".
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Mellizyme Biotechnology Ltd., IC1, Liverpool Science Park, Mount Pleasant, Liverpool L3 5TF, UK
| |
Collapse
|
34
|
Rendulić T, Alves J, Azevedo-Silva J, Soares-Silva I, Casal M. New insights into the acetate uptake transporter (AceTr) family: Unveiling amino acid residues critical for specificity and activity. Comput Struct Biotechnol J 2021; 19:4412-4425. [PMID: 34471488 PMCID: PMC8379382 DOI: 10.1016/j.csbj.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022] Open
Abstract
Substrate specificity of Ato1 was engineered by altering its pore size. The L219A and F98A substitutions enable succinic acid transport activity of Ato1. Ato1 E144A substitution causes dominant negative organic acid hypersensitivity. Organic acid hypersensitivity is caused by the hyperactive ATO1 transporter alleles. First report of a fully functional bacterial transporter (SatP) in yeast.
Aiming at improving the transport of biotechnologically relevant carboxylic acids in engineered microbial cell factories, the focus of this work was to study plasma membrane transporters belonging to the Acetate Uptake Transporter (AceTr) family. Ato1 and SatP, members of this family from Saccharomyces cerevisiae and Escherichia coli, respectively, are the main acetate transporters in these species. The analysis of conserved amino acid residues within AceTr family members combined with the study of Ato1 3D model based on SatP, was the rationale for selection of site-directed mutagenesis targets. The library of Ato1-GFP mutant alleles was functionally analysed in the S. cerevisiae IMX1000 strain which shows residual growth in all carboxylic acids tested. A gain of function phenotype was found for mutations in the residues F98 and L219 located at the central constrictive site of the pore, enabling cells to grow on lactic and on succinic acid. This phenotype was associated with an increased transport activity for these substrates. A dominant negative acetic acid hypersensitivity was induced in S. cerevisiae cells expressing the E144A mutant, which was associated with an increased acetic acid uptake. By utilizing computer-assisted 3D-modelling tools we highlight structural features that explain the acquired traits found in the analysed Ato1 mutants. Additionally, we achieved the proper expression of the Escherichia coli SatP, a homologue of Ato1, in S. cerevisiae. To our knowledge, this constitutes the first report of a fully functional bacterial plasma membrane transporter protein in yeast cells.
Collapse
Affiliation(s)
- Toni Rendulić
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Portugal
| | - João Alves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Portugal
| | - João Azevedo-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Portugal
| | - Isabel Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Portugal
| |
Collapse
|
35
|
Kang NK, Lee JW, Ort DR, Jin YS. L-malic acid production from xylose by engineered Saccharomyces cerevisiae. Biotechnol J 2021; 17:e2000431. [PMID: 34390209 DOI: 10.1002/biot.202000431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 11/07/2022]
Abstract
L-malic acid is widely used in the food, chemical, and pharmaceutical industries. Here, we report on production of malic acid from xylose, the second most abundant sugar in lignocellulosic hydrolysates, by engineered Saccharomyces cerevisiae. To enable malic acid production in a xylose-assimilating S. cerevisiae, we overexpressed PYC1 and PYC2, coding for pyruvate carboxylases, a truncated MDH3 coding for malate dehydrogenase, and SpMAE1, coding for a Schizosaccharomyces pombe malate transporter. Additionally, both the ethanol and glycerol-producing pathways were blocked to enhance malic acid production. The resulting strain produced malic acid from both glucose and xylose, but it produced much higher titers of malic acid from xylose than glucose. Interestingly, the engineered strain had higher malic acid yield from lower concentrations (10 g/L) of xylose, with no ethanol production, than from higher xylose concentrations (20 g/L and 40 g/L). As such, a fed-batch culture maintaining xylose concentrations at low levels was conducted and 61.2 g/L of malic acid was produced, with a productivity of 0.32 g/L∙h. These results represent successful engineering of S. cerevisiae for the production of malic acid from xylose, confirming that that xylose offers the efficient production of various biofuels and chemicals by engineered S. cerevisiae. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nam Kyu Kang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jae Won Lee
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
36
|
Montaño López J, Duran L, Avalos JL. Physiological limitations and opportunities in microbial metabolic engineering. Nat Rev Microbiol 2021; 20:35-48. [PMID: 34341566 DOI: 10.1038/s41579-021-00600-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 11/10/2022]
Abstract
Metabolic engineering can have a pivotal role in increasing the environmental sustainability of the transportation and chemical manufacturing sectors. The field has already developed engineered microorganisms that are currently being used in industrial-scale processes. However, it is often challenging to achieve the titres, yields and productivities required for commercial viability. The efficiency of microbial chemical production is usually dependent on the physiological traits of the host organism, which may either impose limitations on engineered biosynthetic pathways or, conversely, boost their performance. In this Review, we discuss different aspects of microbial physiology that often create obstacles for metabolic engineering, and present solutions to overcome them. We also describe various instances in which natural or engineered physiological traits in host organisms have been harnessed to benefit engineered metabolic pathways for chemical production.
Collapse
Affiliation(s)
- José Montaño López
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Lisset Duran
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA. .,Department of Molecular Biology, Princeton University, Princeton, NJ, USA. .,Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, USA. .,Princeton Environmental Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
37
|
Harnessing the yeast Saccharomyces cerevisiae for the production of fungal secondary metabolites. Essays Biochem 2021; 65:277-291. [PMID: 34061167 PMCID: PMC8314005 DOI: 10.1042/ebc20200137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022]
Abstract
Fungal secondary metabolites (FSMs) represent a remarkable array of bioactive compounds, with potential applications as pharmaceuticals, nutraceuticals, and agrochemicals. However, these molecules are typically produced only in limited amounts by their native hosts. The native organisms may also be difficult to cultivate and genetically engineer, and some can produce undesirable toxic side-products. Alternatively, recombinant production of fungal bioactives can be engineered into industrial cell factories, such as aspergilli or yeasts, which are well amenable for large-scale manufacturing in submerged fermentations. In this review, we summarize the development of baker's yeast Saccharomyces cerevisiae to produce compounds derived from filamentous fungi and mushrooms. These compounds mainly include polyketides, terpenoids, and amino acid derivatives. We also describe how native biosynthetic pathways can be combined or expanded to produce novel derivatives and new-to-nature compounds. We describe some new approaches for cell factory engineering, such as genome-scale engineering, biosensor-based high-throughput screening, and machine learning, and how these tools have been applied for S. cerevisiae strain improvement. Finally, we prospect the challenges and solutions in further development of yeast cell factories to more efficiently produce FSMs.
Collapse
|
38
|
Leggieri PA, Liu Y, Hayes M, Connors B, Seppälä S, O'Malley MA, Venturelli OS. Integrating Systems and Synthetic Biology to Understand and Engineer Microbiomes. Annu Rev Biomed Eng 2021; 23:169-201. [PMID: 33781078 PMCID: PMC8277735 DOI: 10.1146/annurev-bioeng-082120-022836] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microbiomes are complex and ubiquitous networks of microorganisms whose seemingly limitless chemical transformations could be harnessed to benefit agriculture, medicine, and biotechnology. The spatial and temporal changes in microbiome composition and function are influenced by a multitude of molecular and ecological factors. This complexity yields both versatility and challenges in designing synthetic microbiomes and perturbing natural microbiomes in controlled, predictable ways. In this review, we describe factors that give rise to emergent spatial and temporal microbiome properties and the meta-omics and computational modeling tools that can be used to understand microbiomes at the cellular and system levels. We also describe strategies for designing and engineering microbiomes to enhance or build novel functions. Throughout the review, we discuss key knowledge and technology gaps for elucidating the networks and deciphering key control points for microbiome engineering, and highlight examples where multiple omics and modeling approaches can be integrated to address these gaps.
Collapse
Affiliation(s)
- Patrick A Leggieri
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Yiyi Liu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Madeline Hayes
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| | - Bryce Connors
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
39
|
Soares-Silva I, Ribas D, Sousa-Silva M, Azevedo-Silva J, Rendulić T, Casal M. Membrane transporters in the bioproduction of organic acids: state of the art and future perspectives for industrial applications. FEMS Microbiol Lett 2021; 367:5873408. [PMID: 32681640 PMCID: PMC7419537 DOI: 10.1093/femsle/fnaa118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Organic acids such as monocarboxylic acids, dicarboxylic acids or even more complex molecules such as sugar acids, have displayed great applicability in the industry as these compounds are used as platform chemicals for polymer, food, agricultural and pharmaceutical sectors. Chemical synthesis of these compounds from petroleum derivatives is currently their major source of production. However, increasing environmental concerns have prompted the production of organic acids by microorganisms. The current trend is the exploitation of industrial biowastes to sustain microbial cell growth and valorize biomass conversion into organic acids. One of the major bottlenecks for the efficient and cost-effective bioproduction is the export of organic acids through the microbial plasma membrane. Membrane transporter proteins are crucial elements for the optimization of substrate import and final product export. Several transporters have been expressed in organic acid-producing species, resulting in increased final product titers in the extracellular medium and higher productivity levels. In this review, the state of the art of plasma membrane transport of organic acids is presented, along with the implications for industrial biotechnology.
Collapse
Affiliation(s)
- I Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - D Ribas
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - M Sousa-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - J Azevedo-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - T Rendulić
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - M Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| |
Collapse
|
40
|
Jiang Z, Cui Z, Zhu Z, Liu Y, Tang YJ, Hou J, Qi Q. Engineering of Yarrowia lipolytica transporters for high-efficient production of biobased succinic acid from glucose. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:145. [PMID: 34176501 PMCID: PMC8237505 DOI: 10.1186/s13068-021-01996-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/17/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Succinic acid (SA) is a crucial metabolic intermediate and platform chemical. Development of biobased processes to achieve sustainable SA production has attracted more and more attention in biotechnology industry. Yarrowia lipolytica has a strong tricarboxylic acid cycle and tolerates low pH conditions, thus making it a potential platform for SA production. However, its SA titers in glucose media remain low. RESULTS In this study, we screened mitochondrial carriers and C4-dicarboxylic acid transporters to enhance SA secretion in Y. lipolytica. PGC62-SYF-Mae strain with efficient growth and SA production was constructed by optimizing SA biosynthetic pathways and expressing the transporter SpMae1. In fed-batch fermentation, this strain produced 101.4 g/L SA with a productivity of 0.70 g/L/h and a yield of 0.37 g/g glucose, which is the highest SA titer achieved using yeast, with glucose as the sole carbon resource. CONCLUSION Our results indicated that transporter engineering is a powerful strategy to achieve the efficient secretion of SA in Y. lipolytica, which will promote the industrial production of bio-based SA.
Collapse
Affiliation(s)
- Zhennan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Ziwei Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Yinghang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China.
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
41
|
Qin J, Krivoruchko A, Ji B, Chen Y, Kristensen M, Özdemir E, Keasling JD, Jensen MK, Nielsen J. Engineering yeast metabolism for the discovery and production of polyamines and polyamine analogues. Nat Catal 2021. [DOI: 10.1038/s41929-021-00631-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Potassium and Sodium Salt Stress Characterization in the Yeasts Saccharomyces cerevisiae, Kluyveromyces marxianus, and Rhodotorula toruloides. Appl Environ Microbiol 2021; 87:e0310020. [PMID: 33893111 DOI: 10.1128/aem.03100-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biotechnology requires efficient microbial cell factories. The budding yeast Saccharomyces cerevisiae is a vital cell factory, but more diverse cell factories are essential for the sustainable use of natural resources. Here, we benchmarked nonconventional yeasts Kluyveromyces marxianus and Rhodotorula toruloides against S. cerevisiae strains CEN.PK and W303 for their responses to potassium and sodium salt stress. We found an inverse relationship between the maximum growth rate and the median cell volume that was responsive to salt stress. The supplementation of K+ to CEN.PK cultures reduced Na+ toxicity and increased the specific growth rate 4-fold. The higher K+ and Na+ concentrations impaired ethanol and acetate metabolism in CEN.PK and acetate metabolism in W303. In R. toruloides cultures, these salt supplementations induced a trade-off between glucose utilization and cellular aggregate formation. Their combined use increased the beta-carotene yield by 60% compared with that of the reference. Neural network-based image analysis of exponential-phase cultures showed that the vacuole-to-cell volume ratio increased with increased cell volume for W303 and K. marxianus but not for CEN.PK and R. toruloides in response to salt stress. Our results provide insights into common salt stress responses in yeasts and will help design efficient bioprocesses. IMPORTANCE Characterization of microbial cell factories under industrially relevant conditions is crucial for designing efficient bioprocesses. Salt stress, typical in industrial bioprocesses, impinges upon cell volume and affects productivity. This study presents an open-source neural network-based analysis method to evaluate volumetric changes using yeast optical microscopy images. It allows quantification of cell and vacuole volumes relevant to cellular physiology. On applying salt stress in yeasts, we found that the combined use of K+ and Na+ improves the cellular fitness of Saccharomyces cerevisiae strain CEN.PK and increases the beta-carotene productivity in Rhodotorula toruloides, a commercially important antioxidant and a valuable additive in foods.
Collapse
|
43
|
Darbani B. Genome Evolutionary Dynamics Meets Functional Genomics: A Case Story on the Identification of SLC25A44. Int J Mol Sci 2021; 22:ijms22115669. [PMID: 34073512 PMCID: PMC8199184 DOI: 10.3390/ijms22115669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/09/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gene clusters are becoming promising tools for gene identification. The study reveals the purposive genomic distribution of genes toward higher inheritance rates of intact metabolic pathways/phenotypes and, thereby, higher fitness. The co-localization of co-expressed, co-interacting, and functionally related genes was found as genome-wide trends in humans, mouse, golden eagle, rice fish, Drosophila, peanut, and Arabidopsis. As anticipated, the analyses verified the co-segregation of co-localized events. A negative correlation was notable between the likelihood of co-localization events and the inter-loci distances. The evolution of genomic blocks was also found convergent and uniform along the chromosomal arms. Calling a genomic block responsible for adjacent metabolic reactions is therefore recommended for identification of candidate genes and interpretation of cellular functions. As a case story, a function in the metabolism of energy and secondary metabolites was proposed for Slc25A44, based on its genomic local information. Slc25A44 was further characterized as an essential housekeeping gene which has been under evolutionary purifying pressure and belongs to the phylogenetic ETC-clade of SLC25s. Pathway enrichment mapped the Slc25A44s to the energy metabolism. The expression of peanut and human Slc25A44s in oocytes and Saccharomyces cerevisiae strains confirmed the transport of common precursors for secondary metabolites and ubiquinone. These results suggest that SLC25A44 is a mitochondrion-ER-nucleus zone transporter with biotechnological applications. Finally, a conserved three-amino acid signature on the cytosolic face of transport cavity was found important for rational engineering of SLC25s.
Collapse
Affiliation(s)
- Behrooz Darbani
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; or ; Tel.: +45-(53)-578055
- Research Center Flakkebjerg, Department of Agroecology, Aarhus University, 4200 Slagelse, Denmark
| |
Collapse
|
44
|
Süntar I, Çetinkaya S, Haydaroğlu ÜS, Habtemariam S. Bioproduction process of natural products and biopharmaceuticals: Biotechnological aspects. Biotechnol Adv 2021; 50:107768. [PMID: 33974980 DOI: 10.1016/j.biotechadv.2021.107768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Decades of research have been put in place for developing sustainable routes of bioproduction of high commercial value natural products (NPs) on the global market. In the last few years alone, we have witnessed significant advances in the biotechnological production of NPs. The development of new methodologies has resulted in a better understanding of the metabolic flux within the organisms, which have driven manipulations to improve production of the target product. This was further realised due to the recent advances in the omics technologies such as genomics, transcriptomics, proteomics, metabolomics and secretomics, as well as systems and synthetic biology. Additionally, the combined application of novel engineering strategies has made possible avenues for enhancing the yield of these products in an efficient and economical way. Invention of high-throughput technologies such as next generation sequencing (NGS) and toolkits for genome editing Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) have been the game changers and provided unprecedented opportunities to generate rationally designed synthetic circuits which can produce complex molecules. This review covers recent advances in the engineering of various hosts for the production of bioactive NPs and biopharmaceuticals. It also highlights general approaches and strategies to improve their biosynthesis with higher yields in a perspective of plants and microbes (bacteria, yeast and filamentous fungi). Although there are numerous reviews covering this topic on a selected species at a time, our approach herein is to give a comprehensive understanding about state-of-art technologies in different platforms of organisms.
Collapse
Affiliation(s)
- Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Etiler, Ankara, Turkey.
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330 Yenimahalle, Ankara, Turkey
| | - Ülkü Selcen Haydaroğlu
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330 Yenimahalle, Ankara, Turkey
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| |
Collapse
|
45
|
Wang G, Møller-Hansen I, Babaei M, D'Ambrosio V, Christensen HB, Darbani B, Jensen MK, Borodina I. Transportome-wide engineering of Saccharomyces cerevisiae. Metab Eng 2021; 64:52-63. [PMID: 33465478 PMCID: PMC7970624 DOI: 10.1016/j.ymben.2021.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 01/10/2021] [Indexed: 12/17/2022]
Abstract
Synthetic biology enables the production of small molecules by recombinant microbes for pharma, food, and materials applications. The secretion of products reduces the cost of separation and purification, but it is challenging to engineer due to the limited understanding of the transporter proteins' functions. Here we describe a method for genome-wide transporter disruption that, in combination with a metabolite biosensor, enables the identification of transporters impacting the production of a given target metabolite in yeast Saccharomyces cerevisiae. We applied the method to study the transport of xenobiotic compounds, cis,cis-muconic acid (CCM), protocatechuic acid (PCA), and betaxanthins. We found 22 transporters that influenced the production of CCM or PCA. The transporter of the 12-spanner drug:H(+) antiporter (DHA1) family Tpo2p was further confirmed to import CCM and PCA in Xenopus expression assays. We also identified three transporter proteins (Qdr1p, Qdr2p, and Apl1p) involved in betaxanthins transport. In summary, the described method enables high-throughput transporter identification for small molecules in cell factories.
Collapse
Affiliation(s)
- Guokun Wang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Iben Møller-Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Mahsa Babaei
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Vasil D'Ambrosio
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Hanne Bjerre Christensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Behrooz Darbani
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Michael Krogh Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
46
|
Li W, Shen X, Wang J, Sun X, Yuan Q. Engineering microorganisms for the biosynthesis of dicarboxylic acids. Biotechnol Adv 2021; 48:107710. [PMID: 33582180 DOI: 10.1016/j.biotechadv.2021.107710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/26/2020] [Accepted: 02/02/2021] [Indexed: 01/02/2023]
Abstract
Dicarboxylic acids (DCAs) are important commodity chemicals which have been widely applied in polymer, food and pharmaceutical industries. Biosynthesis of DCAs from renewable carbon sources represents a promising alternative to chemical synthesis. Over the years, the recombinant strains have been constructed to produce an increasing number of DCAs. In this review, recent advances on the microbial synthesis of various DCAs have been summarized and categorized into three groups: the tricarboxylic acid cycle-derived, lysine metabolism-related, and aromatic compounds degradation-derived DCAs. We focused mainly on the metabolic engineering and synthetic biology strategies for improving the production efficiency, including metabolic flux analysis, fine-tuning of gene expression, cofactor balancing, metabolic compartmentalization, dynamic regulation and co-culture to regulate the production at multiple levels. The current challenges and perspectives have also been discussed.
Collapse
Affiliation(s)
- Wenna Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
47
|
Liu H, Qi Y, Zhou P, Ye C, Gao C, Chen X, Liu L. Microbial physiological engineering increases the efficiency of microbial cell factories. Crit Rev Biotechnol 2021; 41:339-354. [PMID: 33541146 DOI: 10.1080/07388551.2020.1856770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Microbial cell factories provide vital platforms for the production of chemicals. Advanced biotechnological toolboxes have been developed to enhance their efficiency. However, these tools have limitations in improving physiological functions, and therefore boosting the efficiency (e.g. titer, rate, and yield) of microbial cell factories remains a challenge. In this review, we propose a strategy of microbial physiological engineering (MPE) to improve the efficiency of microbial cell factories. This strategy integrates tools from synthetic and systems biology to characterize and regulate physiological functions during chemical synthesis. MPE strategies mainly focus on the efficiency of substrate utilization, growth performance, stress tolerance, and the product export capacity of cell factories. In short, this review provides a new framework for resolving the bottlenecks that currently exist in low-efficiency cell factories.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yanli Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Pei Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
48
|
Salcedo-Sora JE, Jindal S, O'Hagan S, Kell DB. A palette of fluorophores that are differentially accumulated by wild-type and mutant strains of Escherichia coli: surrogate ligands for profiling bacterial membrane transporters. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001016. [PMID: 33406033 PMCID: PMC8131027 DOI: 10.1099/mic.0.001016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Our previous work demonstrated that two commonly used fluorescent dyes that were accumulated by wild-type Escherichia coli MG1655 were differentially transported in single-gene knockout strains, and also that they might be used as surrogates in flow cytometric transporter assays. We summarize the desirable properties of such stains, and here survey 143 candidate dyes. We eventually triage them (on the basis of signal, accumulation levels and cost) to a palette of 39 commercially available and affordable fluorophores that are accumulated significantly by wild-type cells of the 'Keio' strain BW25113, as measured flow cytometrically. Cheminformatic analyses indicate both their similarities and their (much more considerable) structural differences. We describe the effects of pH and of the efflux pump inhibitor chlorpromazine on the accumulation of the dyes. Even the 'wild-type' MG1655 and BW25113 strains can differ significantly in their ability to take up such dyes. We illustrate the highly differential uptake of our dyes into strains with particular lesions in, or overexpressed levels of, three particular transporters or transporter components (yhjV, yihN and tolC). The relatively small collection of dyes described offers a rapid, inexpensive, convenient and informative approach to the assessment of microbial physiology and phenotyping of membrane transporter function.
Collapse
Affiliation(s)
- Jesus Enrique Salcedo-Sora
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
| | - Srijan Jindal
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
| | - Steve O'Hagan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
49
|
Yang L, Henriksen MM, Hansen RS, Lübeck M, Vang J, Andersen JE, Bille S, Lübeck PS. Metabolic engineering of Aspergillus niger via ribonucleoprotein-based CRISPR-Cas9 system for succinic acid production from renewable biomass. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:206. [PMID: 33317620 PMCID: PMC7737382 DOI: 10.1186/s13068-020-01850-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Succinic acid has great potential to be a new bio-based building block for deriving a number of value-added chemicals in industry. Bio-based succinic acid production from renewable biomass can provide a feasible approach to partially alleviate the dependence of global manufacturing on petroleum refinery. To improve the economics of biological processes, we attempted to explore possible solutions with a fungal cell platform. In this study, Aspergillus niger, a well-known industrial production organism for bio-based organic acids, was exploited for its potential for succinic acid production. RESULTS With a ribonucleoprotein (RNP)-based CRISPR-Cas9 system, consecutive genetic manipulations were realized in engineering of the citric acid-producing strain A. niger ATCC 1015. Two genes involved in production of two byproducts, gluconic acid and oxalic acid, were disrupted. In addition, an efficient C4-dicarboxylate transporter and a soluble NADH-dependent fumarate reductase were overexpressed. The resulting strain SAP-3 produced 17 g/L succinic acid while there was no succinic acid detected at a measurable level in the wild-type strain using a synthetic substrate. Furthermore, two cultivation parameters, temperature and pH, were investigated for their effects on succinic acid production. The highest amount of succinic acid was obtained at 35 °C after 3 days, and low culture pH had inhibitory effects on succinic acid production. Two types of renewable biomass were explored as substrates for succinic acid production. After 6 days, the SAP-3 strain was capable of producing 23 g/L and 9 g/L succinic acid from sugar beet molasses and wheat straw hydrolysate, respectively. CONCLUSIONS In this study, we have successfully applied the RNP-based CRISPR-Cas9 system in genetic engineering of A. niger and significantly improved the succinic acid production in the engineered strain. The studies on cultivation parameters revealed the impacts of pH and temperature on succinic acid production and the future challenges in strain development. The feasibility of using renewable biomass for succinic acid production by A. niger has been demonstrated with molasses and wheat straw hydrolysate.
Collapse
Affiliation(s)
- Lei Yang
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark.
| | - Mikkel Møller Henriksen
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| | - Rasmus Syrach Hansen
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| | - Mette Lübeck
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| | - Jesper Vang
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
- Disease Data Intelligence, Department of Health Technology Bioinformatics, Technical University of Denmark, Bldg. 208, 2800, KemitorvetKgs. Lyngby, Denmark
| | - Julie Egelund Andersen
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Signe Bille
- Section of Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Peter Stephensen Lübeck
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| |
Collapse
|
50
|
Ma J, Gu Y, Xu P. A roadmap to engineering antiviral natural products synthesis in microbes. Curr Opin Biotechnol 2020; 66:140-149. [PMID: 32795662 PMCID: PMC7419324 DOI: 10.1016/j.copbio.2020.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
Abstract
Natural products continue to be the inspirations for us to discover and acquire new drugs. The seemingly unstoppable viruses have kept records high to threaten human health and well-being. The diversity and complexity of natural products (NPs) offer remarkable efficacy and specificity to target viral infection steps and serve as excellent source for antiviral agents. The discovery and production of antiviral NPs remain challenging due to low abundance in their native hosts. Reconstruction of NP biosynthetic pathways in microbes is a promising solution to overcome this limitation. In this review, we surveyed 23 most prominent NPs (from more than 200 antiviral NP candidates) with distinct antiviral mode of actions and summarized the recent metabolic engineering effort to produce these compounds in various microbial hosts. We envision that the scalable and low-cost production of novel antiviral NPs, enabled by metabolic engineering, may light the hope to control and eradicate the deadliest viruses that plague our society and humanity.
Collapse
Affiliation(s)
- Jingbo Ma
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | - Yang Gu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|