1
|
Garmany A, Arrell DK, Yamada S, Jeon R, Behfar A, Park S, Terzic A. Decoded cardiopoietic cell secretome linkage to heart repair biosignature. Stem Cells Transl Med 2024; 13:1144-1159. [PMID: 39259666 PMCID: PMC11555478 DOI: 10.1093/stcltm/szae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/03/2024] [Indexed: 09/13/2024] Open
Abstract
Cardiopoiesis-primed human stem cells exert sustained benefit in treating heart failure despite limited retention following myocardial delivery. To assess potential paracrine contribution, the secretome of cardiopoiesis conditioned versus naïve human mesenchymal stromal cells was decoded by directed proteomics augmented with machine learning and systems interrogation. Cardiopoiesis doubled cellular protein output generating a distinct secretome that segregated the conditioned state. Altering the expression of 1035 secreted proteins, cardiopoiesis reshaped the secretome across functional classes. The resolved differential cardiopoietic secretome was enriched in mesoderm development and cardiac progenitor signaling processes, yielding a cardiovasculogenic profile bolstered by upregulated cardiogenic proteins. In tandem, cardiopoiesis enhanced the secretion of immunomodulatory proteins associated with cytokine signaling, leukocyte migration, and chemotaxis. Network analysis integrated the differential secretome within an interactome of 1745 molecules featuring prioritized regenerative processes. Secretome contribution to the repair signature of cardiopoietic cell-treated infarcted hearts was assessed in a murine coronary ligation model. Intramyocardial delivery of cardiopoietic cells improved the performance of failing hearts, with undirected proteomics revealing 50 myocardial proteins responsive to cell therapy. Pathway analysis linked the secretome to cardiac proteome remodeling, pinpointing 17 cardiopoiesis-upregulated secretome proteins directly upstream of 44% of the cell therapy-responsive cardiac proteome. Knockout, in silico, of this 22-protein secretome-dependent myocardial ensemble eliminated indices of the repair signature. Accordingly, in vivo, cell therapy rendered the secretome-dependent myocardial proteome of an infarcted heart indiscernible from healthy counterparts. Thus, the secretagogue effect of cardiopoiesis transforms the human stem cell secretome, endows regenerative competency, and upregulates candidate paracrine effectors of cell therapy-mediated molecular restitution.
Collapse
Affiliation(s)
- Armin Garmany
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Alix School of Medicine, Regenerative Sciences Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - D Kent Arrell
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
| | - Satsuki Yamada
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
- Section of Geriatric Medicine & Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ryounghoon Jeon
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Sungjo Park
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
| | - Andre Terzic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Department of Medical Genetics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
2
|
Yang Z, Liu M, Chang Z, Du C, Yang Y, Zhang C, Hu L. Myeloid-derived growth factor promotes M2 macrophage polarization and attenuates Sjögren's syndrome via suppression of the CX3CL1/CX3CR1 axis. Front Immunol 2024; 15:1465938. [PMID: 39497829 PMCID: PMC11532040 DOI: 10.3389/fimmu.2024.1465938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 11/07/2024] Open
Abstract
Introduction Primary Sjögren syndrome (pSS) is a systemic autoimmune disease that is characterized by the infiltration of immune cells into the salivary glands. The re-establishment of salivary glands (SGs) function in pSS remains a clinical challenge. Myeloid-derived growth factor (MYDGF) has anti-inflammatory, immunomodulatory, and tissue-functional restorative abilities. However, its potential to restore SGs function during pSS has not yet been investigated. Methods Nonobese diabetic (NOD)/LtJ mice (pSS model) were intravenously administered with adeno-associated viruses carrying MYDGF at 11 weeks of age. Salivary flow rates were determined before and after treatment. Mice were killed 5 weeks after MYDGF treatment, and submandibular glands were collected for analyses of histological disease scores, inflammatory cell infiltration, PCR determination of genes, and Western blotting of functional proteins. Furthermore, mRNA sequencing and bioinformatics were used to predict the mechanism underlying the therapeutic effect of MYDGF. Results Treatment of NOD/LtJ mice with MYDGF alleviated pSS, as indicated by increased salivary flow rate, reduced lymphocyte infiltration, attenuated glandular inflammation, and enhanced AQP5 and NKCC1 expression. The gene expression levels of cytokines and chemokines, including Ccl12, Ccl3, Il1r1, Ccr2, Cx3cr1, Il7, Mmp2, Mmp14, Il1b, and Il7, significantly decreased after treatment with MYDGF, as determined by RNA sequencing. Meanwhile, MYDGF inhibits infiltration of macrophages (Mϕ) in SGs, induces polarization of M2ϕ, and suppresses C-X3C motif ligand 1 (CX3CL1)/C-X3C motif receptor 1 (CX3CR1) axis. Conclusions Our findings showed that MYDGF could revitalize the SGs function of pSS, inhibit infiltration of Mϕ, and promote M2ϕ polarization via suppression of the CX3CL1/CX3CR1 axis, which has implications for potential therapy for pSS.
Collapse
Affiliation(s)
- Zi Yang
- Department of Endodontics, School of Stomatology, Capital Medical University, Beijing, China
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology and Beijing Laboratory of Oral Health, Beijing, China
| | - Mangnan Liu
- Department of Endodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhichao Chang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology and Beijing Laboratory of Oral Health, Beijing, China
| | - Conglin Du
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology and Beijing Laboratory of Oral Health, Beijing, China
| | - Yang Yang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology and Beijing Laboratory of Oral Health, Beijing, China
- Department of Oral and Maxillofacial & Head and Neck Oncology, School of Stomatology, Capital Medical University, Beijing, China
| | - Chen Zhang
- Department of Endodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Liang Hu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology and Beijing Laboratory of Oral Health, Beijing, China
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Novin A, Wali K, Pant A, Liu S, Du W, Liu Y, Wang L, Xu M, Wang B, Suhail Y, Kshitiz. Oscillatory Hypoxia Can Induce Senescence of Adipose-Derived Mesenchymal Stromal Cells Potentiating Invasive Transformation of Breast Epithelial Cells. Cancers (Basel) 2024; 16:969. [PMID: 38473331 PMCID: PMC10930887 DOI: 10.3390/cancers16050969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity is strongly associated with occurrence, metastasis, and resistance to therapy in breast cancers, which also exhibit high adipose content in the tumor microenvironment. Adipose tissue-derived mesenchymal stromal cells (ASCs) are recruited to breast cancer by many mechanisms, including hypoxia, and contribute to metastatic transition of the cancer. Breast cancers are characterized by regions of hypoxia, which can be temporally unstable owing to a mismatch between oxygen supply and consumption. Using a high-sensitivity nanopatterned stromal invasion assay, we found that ASCs could promote stromal invasion of not only breast cancer cell lines but also MCF10A1, a cell line derived from untransformed breast epithelium. RNA sequencing of MCF10A1 cells conditioned with medium from ASCs revealed upregulation of genes associated with increased cell migration, chemotaxis, and metastasis. Furthermore, we found that fluctuating or oscillating hypoxia could induce senescence in ASCs, which could result in an increased invasive potential in the treated MCF10A1 cells. These findings highlight the complex interplay within the breast cancer microenvironment, hypoxia, and the role of ASCs in transforming even non-cancerous breast epithelium toward an invasive phenotype, providing insights into early metastatic events.
Collapse
Affiliation(s)
- Ashkan Novin
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (A.N.); (K.W.); (A.P.); (S.L.); (Y.S.)
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (W.D.); (Y.L.)
| | - Khadija Wali
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (A.N.); (K.W.); (A.P.); (S.L.); (Y.S.)
| | - Aditya Pant
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (A.N.); (K.W.); (A.P.); (S.L.); (Y.S.)
| | - Shaofei Liu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (A.N.); (K.W.); (A.P.); (S.L.); (Y.S.)
| | - Wenqiang Du
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (W.D.); (Y.L.)
| | - Yamin Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (W.D.); (Y.L.)
| | - Lichao Wang
- Department of Immunology, University of Connecticut Health, Farmington, CT 06032, USA; (L.W.); (M.X.)
| | - Ming Xu
- Department of Immunology, University of Connecticut Health, Farmington, CT 06032, USA; (L.W.); (M.X.)
- Center for Aging Research, University of Connecticut Health, Farmington, CT 06032, USA;
| | - Binsheng Wang
- Center for Aging Research, University of Connecticut Health, Farmington, CT 06032, USA;
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (A.N.); (K.W.); (A.P.); (S.L.); (Y.S.)
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (W.D.); (Y.L.)
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (A.N.); (K.W.); (A.P.); (S.L.); (Y.S.)
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (W.D.); (Y.L.)
- NEAG Comprehensive Cancer Center, University of Connecticut Health, Farmington, CT 06032, USA
| |
Collapse
|
4
|
Wang Y, Li Q, Zhao J, Chen J, Wu D, Zheng Y, Wu J, Liu J, Lu J, Zhang J, Wu Z. Mechanically induced pyroptosis enhances cardiosphere oxidative stress resistance and metabolism for myocardial infarction therapy. Nat Commun 2023; 14:6148. [PMID: 37783697 PMCID: PMC10545739 DOI: 10.1038/s41467-023-41700-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023] Open
Abstract
Current approaches in myocardial infarction treatment are limited by low cellular oxidative stress resistance, reducing the long-term survival of therapeutic cells. Here we develop a liquid-crystal substrate with unique surface properties and mechanical responsiveness to produce size-controllable cardiospheres that undergo pyroptosis to improve cellular bioactivities and resistance to oxidative stress. We perform RNA sequencing and study cell metabolism to reveal increased metabolic levels and improved mitochondrial function in the preconditioned cardiospheres. We test therapeutic outcomes in a rat model of myocardial infarction to show that cardiospheres improve long-term cardiac function, promote angiogenesis and reduce cardiac remodeling during the 3-month observation. Overall, this study presents a promising and effective system for preparing a large quantity of functional cardiospheres, showcasing potential for clinical application.
Collapse
Affiliation(s)
- Yingwei Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Qi Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jupeng Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jiamin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Dongxue Wu
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Youling Zheng
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jiaxin Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jie Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jianlong Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jianhua Zhang
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Zheng Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Filosa A, Sawamiphak S. Heart development and regeneration-a multi-organ effort. FEBS J 2023; 290:913-930. [PMID: 34894086 DOI: 10.1111/febs.16319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/22/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022]
Abstract
Development of the heart, from early morphogenesis to functional maturation, as well as maintenance of its homeostasis are tasks requiring collaborative efforts of cardiac tissue and different extra-cardiac organ systems. The brain, lymphoid organs, and gut are among the interaction partners that can communicate with the heart through a wide array of paracrine signals acting at local or systemic level. Disturbance of cardiac homeostasis following ischemic injury also needs immediate response from these distant organs. Our hearts replace dead muscles with non-contractile fibrotic scars. We have learned from animal models capable of scarless repair that regenerative capability of the heart does not depend only on competency of the myocardium and cardiac-intrinsic factors but also on long-range molecular signals originating in other parts of the body. Here, we provide an overview of inter-organ signals that take part in development and regeneration of the heart. We highlight recent findings and remaining questions. Finally, we discuss the potential of inter-organ modulatory approaches for possible therapeutic use.
Collapse
Affiliation(s)
- Alessandro Filosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Suphansa Sawamiphak
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany
| |
Collapse
|
6
|
Lim KT, Abd-Elsalam KA. Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine: A Note from the Editors. NANOROBOTICS AND NANODIAGNOSTICS IN INTEGRATIVE BIOLOGY AND BIOMEDICINE 2023:1-13. [DOI: 10.1007/978-3-031-16084-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Cai Y, Zang GY, Huang Y, Sun Z, Zhang LL, Qian YJ, Yuan W, Wang ZQ. Advances in neovascularization after diabetic ischemia. World J Diabetes 2022; 13:926-939. [PMID: 36437864 PMCID: PMC9693741 DOI: 10.4239/wjd.v13.i11.926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
With the high incidence of diabetes around the world, ischemic complications cause a serious influence on people's production and living. Neovascularization plays a significant role in its development. Therefore, neovascularization after diabetic ischemia has aroused attention and has become a hot spot in recent years. Neovascularization is divided into angiogenesis represented by atherosclerosis and arteriogenesis characterized by coronary collateral circulation. When mononuclear macrophages successively migrate to the ischemia anoxic zone after ischemia or hypoxia, they induce the secretion of cytokines, such as vascular endothelial growth factor and hypoxia-inducible factor, activate signaling pathways such as classic Wnt and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathways, trigger oxidative stress response, activate endothelial progenitor cells or enter the glycolysis or lactic acid process and promote the formation of new blood vessels, remodeling them into mature blood vessels and restoring blood supply. However, the hypoglycemic condition has different impacts on neovascularization. Consequently, this review aimed to introduce the mechanisms of neovascularization after diabetic ischemia, increase our un-derstanding of diabetic ischemic complications and their therapies and provide more treatment options for clinical practice and effectively relieve patients' pain. It is believed that in the near future, neovascularization will bring more benefits and hope to patients with diabetes.
Collapse
Affiliation(s)
- Yue Cai
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Guang-Yao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Yan Huang
- Department of Ophthalmology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Li-Li Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Yong-Jiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Zhong-Qun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| |
Collapse
|
8
|
Li M, Wu H, Yuan Y, Hu B, Gu N. Recent fabrications and applications of cardiac patch in myocardial infarction treatment. VIEW 2022. [DOI: 10.1002/viw.20200153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Mei Li
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
- The Laboratory Center for Basic Medical Sciences Nanjing Medical University Nanjing China
| | - Hao Wu
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
| | - Yuehui Yuan
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
| | - Benhui Hu
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
| | - Ning Gu
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences and Medical Engineering Southeast University Nanjing China
| |
Collapse
|
9
|
Cardiac regeneration following myocardial infarction: the need for regeneration and a review of cardiac stromal cell populations used for transplantation. Biochem Soc Trans 2022; 50:269-281. [PMID: 35129611 PMCID: PMC9042388 DOI: 10.1042/bst20210231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Myocardial infarction is a leading cause of death globally due to the inability of the adult human heart to regenerate after injury. Cell therapy using cardiac-derived progenitor populations emerged about two decades ago with the aim of replacing cells lost after ischaemic injury. Despite early promise from rodent studies, administration of these populations has not translated to the clinic. We will discuss the need for cardiac regeneration and review the debate surrounding how cardiac progenitor populations exert a therapeutic effect following transplantation into the heart, including their ability to form de novo cardiomyocytes and the release of paracrine factors. We will also discuss limitations hindering the cell therapy field, which include the challenges of performing cell-based clinical trials and the low retention of administered cells, and how future research may overcome them.
Collapse
|
10
|
Laiva AL, O’Brien FJ, Keogh MB. Anti-Aging β-Klotho Gene-Activated Scaffold Promotes Rejuvenative Wound Healing Response in Human Adipose-Derived Stem Cells. Pharmaceuticals (Basel) 2021; 14:ph14111168. [PMID: 34832950 PMCID: PMC8619173 DOI: 10.3390/ph14111168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Wound healing requires a tight orchestration of complex cellular events. Disruption in the cell-signaling events can severely impair healing. The application of biomaterial scaffolds has shown healing potential; however, the potential is insufficient for optimal wound maturation. This study explored the functional impact of a collagen-chondroitin sulfate scaffold functionalized with nanoparticles carrying an anti-aging gene β-Klotho on human adipose-derived stem cells (ADSCs) for rejuvenative healing applications. We studied the response in the ADSCs in three phases: (1) transcriptional activities of pluripotency factors (Oct-4, Nanog and Sox-2), proliferation marker (Ki-67), wound healing regulators (TGF-β3 and TGF-β1); (2) paracrine bioactivity of the secretome generated by the ADSCs; and (3) regeneration of basement membrane (fibronectin, laminin, and collagen IV proteins) and expression of scar-associated proteins (α-SMA and elastin proteins) towards maturation. Overall, we found that the β-Klotho gene-activated scaffold offers controlled activation of ADSCs' regenerative abilities. On day 3, the ADSCs on the gene-activated scaffold showed enhanced (2.5-fold) activation of transcription factor Oct-4 that was regulated transiently. This response was accompanied by a 3.6-fold increase in the expression of the anti-fibrotic gene TGF-β3. Through paracrine signaling, the ADSCs-laden gene-activated scaffold also controlled human endothelial angiogenesis and pro-fibrotic response in dermal fibroblasts. Towards maturation, the ADSCs-laden gene-activated scaffold further showed an enhanced regeneration of the basement membrane through increases in laminin (2.1-fold) and collagen IV (8.8-fold) deposition. The ADSCs also expressed 2-fold lower amounts of the scar-associated α-SMA protein with improved qualitative elastin matrix deposition. Collectively, we determined that the β-Klotho gene-activated scaffold possesses tremendous potential for wound healing and could advance stem cell-based therapy for rejuvenative healing applications.
Collapse
Affiliation(s)
- Ashang L. Laiva
- Tissue Engineering Research Group-Bahrain, Royal College of Surgeons in Ireland, Adliya, Manama P.O. Box 15503, Bahrain;
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Michael B. Keogh
- Tissue Engineering Research Group-Bahrain, Royal College of Surgeons in Ireland, Adliya, Manama P.O. Box 15503, Bahrain;
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
- Correspondence:
| |
Collapse
|
11
|
Bousnaki M, Bakopoulou A, Pich A, Papachristou E, Kritis A, Koidis P. Mapping the Secretome of Dental Pulp Stem Cells Under Variable Microenvironmental Conditions. Stem Cell Rev Rep 2021; 18:1372-1407. [PMID: 34553309 DOI: 10.1007/s12015-021-10255-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/31/2022]
Abstract
There is substantial evidence supporting the anti-inflammatory and regenerative potential of dental pulp stem cells (DPSCs) through direct cell transplantation or paracrine action. However, DPSC secretome profile remains inadequately studied. This study provides proteomic profiling of the human DPSC secretome by comparatively analysising cell lysates and respective culture supernatants (i.e. conditioned media-CM) under variable oxygen tension conditions (normoxia-20% O2/CM_Norm vs. hypoxia 2% O2/CM_Hyp) and/or stimulation with Tumor Necrosis Factor alpha (TNF-α). DPSC-CM samples and respective crude lysates (DPSC-CL) were collected and subjected to SDS-PAGE, followed by LC-MS/MS analysis. The identified proteins were analyzed by Gene Ontology, Reactome, and String databases. The anti-inflammatory properties of DPSC-CMs were validated via an in vitro RAW_246.7 murine macrophages model through evaluation of the expression of pro-and anti-inflammatory markers by real-time PCR. Results showed a total of 2413 proteins identified in CM_Norm, 2479 in CM_Norm+TNF-α, 1642 in CM_Hyp, and 2002 in CM_Hyp + TNF-α samples. CM_Norm contained 122 proteins statistically significantly upregulated compared to the CM_Hyp and involved in pathways related to "ECM organization", "cellular response to hypoxia", and "IL signaling". Functional network analysis showed that TGFβ1, TIMP1 and TIMP2 were key nodes among proteins significantly upregulated in the CM_Norm compared to the CM_Hyp, interacting with more than 10 proteins, each. DPSC-CM application in the in vitro RAW_246.7 model decreased the expression of pro-inflammatory markers (MMP-3, MMP-9, MMP-13, MCP-1), while increasing anti-inflammatory markers (IL-10). Overall, DPSC-CM collected under normoxic conditions is enriched with anti-inflammatory, tissue repair and regenerative factors, which prompts further investigation on its therapeutic applications.
Collapse
Affiliation(s)
- M Bousnaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences (FHS), Aristotle University of Thessaloniki (AUTh), GR-54124, Thessaloniki, Greece
| | - A Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences (FHS), Aristotle University of Thessaloniki (AUTh), GR-54124, Thessaloniki, Greece.
| | - A Pich
- Research Core Unit Proteomics & Institute of Toxicology, Hannover Medical School, 30625, Hannover, Germany
| | - E Papachristou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences (FHS), Aristotle University of Thessaloniki (AUTh), GR-54124, Thessaloniki, Greece
| | - A Kritis
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences (FHS), Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| | - P Koidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences (FHS), Aristotle University of Thessaloniki (AUTh), GR-54124, Thessaloniki, Greece.
| |
Collapse
|
12
|
Kordes C, Bock HH, Reichert D, May P, Häussinger D. Hepatic stellate cells: current state and open questions. Biol Chem 2021; 402:1021-1032. [PMID: 34008380 DOI: 10.1515/hsz-2021-0180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/03/2021] [Indexed: 01/14/2023]
Abstract
This review article summarizes 20 years of our research on hepatic stellate cells within the framework of two collaborative research centers CRC575 and CRC974 at the Heinrich Heine University. Over this period, stellate cells were identified for the first time as mesenchymal stem cells of the liver, and important functions of these cells in the context of liver regeneration were discovered. Furthermore, it was determined that the space of Disse - bounded by the sinusoidal endothelium and hepatocytes - functions as a stem cell niche for stellate cells. Essential elements of this niche that control the maintenance of hepatic stellate cells have been identified alongside their impairment with age. This article aims to highlight previous studies on stellate cells and critically examine and identify open questions and future research directions.
Collapse
Affiliation(s)
- Claus Kordes
- Clinic of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Hans H Bock
- Clinic of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Doreen Reichert
- Clinic of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Petra May
- Clinic of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
13
|
Zhu L, Feng Z, Shu X, Gao Q, Wu J, Du Z, Li R, Wang L, Chen N, Li Y, Luo M, Wu J. In situ transplantation of adipose-derived stem cells via photoactivation improves glucose metabolism in obese mice. Stem Cell Res Ther 2021; 12:408. [PMID: 34266493 PMCID: PMC8281693 DOI: 10.1186/s13287-021-02494-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/04/2021] [Indexed: 01/10/2023] Open
Abstract
Background Accumulating evidence suggests that enhanced adipose tissue macrophages (ATMs) are associated with metabolic disorders in obesity and type 2 diabetes. However, therapeutic persistence and reduced homing stem cell function following cell delivery remains a critical hurdle for the clinical translation of stem cells in current approaches. Methods We demonstrate that the effect of a combined application of photoactivation and adipose-derived stem cells (ASCs) using transplantation into visceral epididymal adipose tissue (EAT) in obesity. Cultured ASCs were derived from subcutaneous white adipose tissue isolated from mice fed a normal diet (ND). Results In diet-induced obesity, implantation of light-treated ASCs improved glucose tolerance and ameliorated systemic insulin resistance. Intriguingly, compared with non-light-treated ASCs, light-treated ASCs reduced monocyte infiltration and the levels of ATMs in EAT. Moreover, implantation of light-treated ASCs exerts more anti-inflammatory effects by suppressing M1 polarization and enhancing macrophage M2 polarization in EAT. Mass spectrometry revealed that light-treated human obese ASCs conditioned medium retained a more complete secretome with significant downregulation of pro-inflammatory cytokines and chemokines. Conclusions These data suggest that the combined application of photoactivation and ASCs using transplantation into dysfunctional adipose tissue contribute to selective suppression of inflammatory responses and protection from insulin resistance in obesity and type 2 diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02494-4.
Collapse
Affiliation(s)
- Luochen Zhu
- Nantong Tumor Hospital (Tumor Hospital Affiliated to Nantong University), Nantong, Jiangsu, People's Republic of China.,Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Ziqian Feng
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xin Shu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Qian Gao
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Jiaqi Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zuoqin Du
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Rong Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Liqun Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Ni Chen
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yi Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People's Republic of China. .,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.
| |
Collapse
|
14
|
Pranskunas M, Simoliunas E, Alksne M, Kaupinis A, Juodzbalys G. Periosteum-Derived Mesenchymal Stem Cells Secretome - Cell-Free Strategy for Endogenous Bone Regeneration: Proteomic Analysis in Vitro. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2021; 12:e2. [PMID: 34377379 PMCID: PMC8326881 DOI: 10.5037/jomr.2021.12202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022]
Abstract
Objectives Millions of people worldwide are affected by diseases or injuries which lead to bone/tooth loss and defects. While such clinical situations are daily practice in most of the hospitals, the widely used treatment methods still have disadvantages. Therefore, this field of medicine is actively searching new tissue regeneration techniques, one of which could be stem cell secretome. Thus, the purpose of this research study was to perform the detail proteomic analysis of periosteum-derived mesenchymal stem cells secretome in order to evaluate if it is capable to induce osteo-regenerative process. Material and Methods Periosteum-derived mesenchymal stem cells (PMSCs) were extracted from adult male New Zealand White rabbits. Cells were characterised by evaluating their differentiation potential. After characterisation PMSCs secretomes were collected and their proteomic analysis was performed. Results PMSCs were extracted from adult male New Zealand White rabbits. In order to characterise the extracted PMSCs, they were differentiated in the directions which mainly describes MSC multipotency - osteogenic, myogenic and adipogenic. A total of 146 proteins were detected. After characterisation PMSCs secretomes were collected and their proteomic analysis was performed. The resulting protein composition indicates the ability to promote bone regeneration to fully mature bone. Conclusions Bioactive molecules detected in periosteum-derived mesenchymal stem cells secretome initiates the processes required for the formation of a fully functional bone.
Collapse
Affiliation(s)
- Mindaugas Pranskunas
- Department of Oral and Maxillofacial Surgery, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, KaunasLithuania.,32:Baltic dental clinic, VilniusLithuania.,These authors contributed equally to this work
| | - Egidijus Simoliunas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, VilniusLithuania.,These authors contributed equally to this work
| | - Milda Alksne
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, VilniusLithuania.,These authors contributed equally to this work
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 VilniusLithuania
| | - Gintaras Juodzbalys
- Department of Oral and Maxillofacial Surgery, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, KaunasLithuania.,These authors contributed equally to this work
| |
Collapse
|
15
|
Grigorita O, Omer L, Juodzbalys G. Complications and Management of Patients with Inherited Bleeding Disorders During Dental Extractions: a Systematic Literature Review. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2021; 12:e1. [PMID: 34377378 PMCID: PMC8326879 DOI: 10.5037/jomr.2021.12201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
Objectives The systematic literature review aims to assess patients' dental extraction with inherited bleeding disorders, to understand the type, dosage, and modality of administration of the haemostatic agents for safe intra- and postoperational results. Material and Methods The search was undertaken in MEDLINE (PubMed) databases and Cochrane library for articles published in English from 1 January, 2010 till 31 October, 2020. Before the full-text articles were considered, titles and abstracts were screened. Results A total of 78 articles were screened, from which 3 met the necessary criteria and were used for the review. Minor complications, such as postoperative bleedings from the socket and epistaxis, were observed, but they were resolved with proper medical care. No major fatal complications were reported. Generally, all the articles provided evidence of successful extractions with correct treatment plans made by haematologists and surgeons. Conclusions Available clinical trials demonstrate that local and systemic haemostatic therapies in combination are effective in preventing bleeding during dental extractions in patients with coagulopathies.
Collapse
Affiliation(s)
- Olga Grigorita
- Department of Oral and Maxillofacial Surgery, Lithuanian University of Health SciencesLithuania
| | - Loran Omer
- Department of Oral and Maxillofacial Surgery, Lithuanian University of Health SciencesLithuania
| | | |
Collapse
|
16
|
Laiva AL, O’Brien FJ, Keogh MB. SDF-1α Gene-Activated Collagen Scaffold Restores Pro-Angiogenic Wound Healing Features in Human Diabetic Adipose-Derived Stem Cells. Biomedicines 2021; 9:biomedicines9020160. [PMID: 33562165 PMCID: PMC7914837 DOI: 10.3390/biomedicines9020160] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Non-healing diabetic foot ulcers (DFUs) can lead to leg amputation in diabetic patients. Autologous stem cell therapy holds some potential to solve this problem; however, diabetic stem cells are relatively dysfunctional and restrictive in their wound healing abilities. This study sought to explore if a novel collagen-chondroitin sulfate (coll-CS) scaffold, functionalized with polyplex nanoparticles carrying the gene encoding for stromal-derived factor-1 alpha (SDF-1α gene-activated scaffold), can enhance the regenerative functionality of human diabetic adipose-derived stem cells (ADSCs). We assessed the impact of the gene-activated scaffold on diabetic ADSCs by comparing their response against healthy ADSCs cultured on a gene-free scaffold over two weeks. Overall, we found that the gene-activated scaffold could restore the pro-angiogenic regenerative response in the human diabetic ADSCs similar to the healthy ADSCs on the gene-free scaffold. Gene and protein expression analysis revealed that the gene-activated scaffold induced the overexpression of SDF-1α in diabetic ADSCs and engaged the receptor CXCR7, causing downstream β-arrestin signaling, as effectively as the transfected healthy ADSCs. The transfected diabetic ADSCs also exhibited pro-wound healing features characterized by active matrix remodeling of the provisional fibronectin matrix and basement membrane protein collagen IV. The gene-activated scaffold also induced a controlled pro-healing response in the healthy ADSCs by disabling early developmental factors signaling while promoting the expression of tissue remodeling components. Conclusively, we show that the SDF-1α gene-activated scaffold can overcome the deficiencies associated with diabetic ADSCs, paving the way for autologous stem cell therapies combined with novel biomaterials to treat DFUs.
Collapse
Affiliation(s)
- Ashang L. Laiva
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland; (A.L.L.); (F.J.O.)
- Department of Biomedical Science, Royal College of Surgeons in Ireland, Adliya, P.O. Box 15503 Manama, Bahrain
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland; (A.L.L.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Michael B. Keogh
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland; (A.L.L.); (F.J.O.)
- Department of Biomedical Science, Royal College of Surgeons in Ireland, Adliya, P.O. Box 15503 Manama, Bahrain
- Correspondence: ; Tel.: +973-17351450
| |
Collapse
|
17
|
He D, Xu Y, Xiong X, Yin C, Lei S, Cheng X. The bone marrow-derived mesenchymal stem cells (BMSCs) alleviate diabetic peripheral neuropathy induced by STZ via activating GSK-3β/β-catenin signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 79:103432. [PMID: 32502517 DOI: 10.1016/j.etap.2020.103432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Diabetic peripheral neuropathy, a common complication of diabetic mellitus, has brought a threaten on patients' health. The bone marrow-derived mesenchymal stem cells (BMSCs) were reported to play an important role in diverse diseases. Nevertheless, the specific function of BMSCs in diabetic peripheral neuropathy remained uncharacterized. METHODS A wide range of experiments including RT-qPCR, western blot, H&E staining, oxidative stress assessment, measurement of thermal sensitivity, ELISA, urine protein and CCK-8 assays were implemented to explore the function and mechanism of BMSCs in vivo and vitro. RESULTS The experimental results displayed that BMSCs improve STZ-induced diabetes symptoms in rats by decreasing blood glucose and urinary protein. Functionally, BMSCs ameliorate oxidative stress, painful diabetic neuropathy, neurotrophic status and angiogenesis in STZ-induced rats. Moreover, BMSCs participate in the regulation of sciatic neuro morphology in diabetic neuropathy rat model. In mechanism, BMSCs alleviate diabetic peripheral neuropathy via activating GSK-3β/β-catenin signaling pathway in rats and improve Schwann's cells viability by activating GSK-3β/β-catenin signaling pathway under high glucose. CONCLUSIONS We verified that BMSCs alleviate diabetic peripheral neuropathy of rats induced by STZ via activating GSK-3β/β-catenin signaling pathway, which implied a novel biomarker for diabetic peripheral neuropathy treatment.
Collapse
Affiliation(s)
- Dingwen He
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Yanjie Xu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Xi Xiong
- Nanchang University Medical College, Nanchang 330006, Jiangxi, China
| | | | - Shuihong Lei
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, Jiangxi, China.
| | - Xigao Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, Jiangxi, China.
| |
Collapse
|
18
|
Abstract
Tumor immunology is undergoing a renaissance due to the recent profound clinical successes of tumor immunotherapy. These advances have coincided with an exponential growth in the development of -omics technologies. Armed with these technologies and their associated computational and modeling toolsets, systems biologists have turned their attention to tumor immunology in an effort to understand the precise nature and consequences of interactions between tumors and the immune system. Such interactions are inherently multivariate, spanning multiple time and size scales, cell types, and organ systems, rendering systems biology approaches particularly amenable to their interrogation. While in its infancy, the field of 'Cancer Systems Immunology' has already influenced our understanding of tumor immunology and immunotherapy. As the field matures, studies will move beyond descriptive characterizations toward functional investigations of the emergent behavior that govern tumor-immune responses. Thus, Cancer Systems Immunology holds incredible promise to advance our ability to fight this disease.
Collapse
Affiliation(s)
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of MedicineStanfordUnited States
- Stanford Cancer Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
19
|
Zhang R, Luo W, Zhang Y, Zhu D, Midgley AC, Song H, Khalique A, Zhang H, Zhuang J, Kong D, Huang X. Particle-based artificial three-dimensional stem cell spheroids for revascularization of ischemic diseases. SCIENCE ADVANCES 2020; 6:eaaz8011. [PMID: 32494716 PMCID: PMC7202876 DOI: 10.1126/sciadv.aaz8011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/14/2020] [Indexed: 05/08/2023]
Abstract
Development of new approaches to biomimetically reconstruct vasculature networks remains challenging in regenerative medicine. We introduce a particle-based artificial stem cell spheroid (ASSP) technology that recapitulates paracrine functions of three-dimensional (3D) SSPs for vasculature regeneration. Specifically, we used a facile method to induce the aggregation of stem cells into 3D spheroids, which benefited from hypoxia microenvironment-driven and enhanced secretion of proangiogenic bioactive factors. Furthermore, we artificially reconstructed 3D spheroids (i.e., ASSP) by integration of SSP-secreted factors into micro-/nanoparticles with cell membrane-derived surface coatings. The easily controllable sizes of the ASSP particles provided superior revascularization effects on the ischemic tissues in hindlimb ischemia models through local administration of ASSP microparticles and in myocardial infarction models via the systemic delivery of ASSP nanoparticles. The strategy offers a promising therapeutic option for ischemic tissue regeneration and addresses issues faced by the bottlenecked development in the delivery of stem cell therapies.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Wenya Luo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Dashuai Zhu
- College of Medicine, Nankai University, Tianjin 300071, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Hao Song
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Anila Khalique
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Haoqi Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Zhuang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- College of Medicine, Nankai University, Tianjin 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Corresponding author. (X.H.); (D.K.)
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
- Corresponding author. (X.H.); (D.K.)
| |
Collapse
|
20
|
Xia J, Minamino S, Kuwabara K, Arai S. Stem cell secretome as a new booster for regenerative medicine. Biosci Trends 2020; 13:299-307. [PMID: 31527327 DOI: 10.5582/bst.2019.01226] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Stem cells are an undifferentiated cell population that has the ability to develop into many different cell types and also has the ability to repair damaged tissues in some cases. For a long time, the stem cell regenerative paradigm has been based on the assumption that progenitor cells play a critical role in tissue repair by means of their plasticity and differentiation potential. However, recent works suggest that the mechanism underlying the benefits of stem cell transplantation might relate to a paracrine modulatory effect rather than the replacement of affected cells at the site of injury. This paracrine modulatory effect derives from secretome which comprises a diverse host of growth factors, cytokines, chemokines, angiogenic factors, and exosomes which are extracellular vesicles that are produced in the endosomal compartment of most eukaryotic cells and are from about 30 to several hundred nanometers in diameter. The role of these factors is being increasingly recognized as key to the regulation of many physiological processes including leading endogenous and progenitor cells to sites of injury as well as mediating apoptosis, proliferation, migration, and angiogenesis. In reality, the immunomodulatory and paracrine role of these factors may mainly account for the therapeutic effects of stem cells and a number of in vitro and in vivo researches have proved limited stem cell engraftment at the site of injury. As a cell-free way for regenerative medicine therapies, stem cell secretome has shown great potential in a variety of clinical applications including prevention of cardiac disfunction, neurodegenerative disease, type 1 diabetes, hair loss, tumors, and joint osteoarthritis.
Collapse
Affiliation(s)
- Jufeng Xia
- Graduate School of Frontier Science, The University of Tokyo.,Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| | - Shuichi Minamino
- Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| | - Kazuma Kuwabara
- Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| | - Shunichi Arai
- Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| |
Collapse
|
21
|
de Munter JPJM, Shafarevich I, Liundup A, Pavlov D, Wolters EC, Gorlova A, Veniaminova E, Umriukhin A, Kalueff A, Svistunov A, Kramer BW, Lesch KP, Strekalova T. Neuro-Cells therapy improves motor outcomes and suppresses inflammation during experimental syndrome of amyotrophic lateral sclerosis in mice. CNS Neurosci Ther 2019; 26:504-517. [PMID: 31867846 PMCID: PMC7163689 DOI: 10.1111/cns.13280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Aims Mutations in DNA/RNA‐binding factor (fused‐in‐sarcoma) FUS and superoxide dismutase‐1 (SOD‐1) cause amyotrophic lateral sclerosis (ALS). They were reproduced in SOD‐1‐G93A (SOD‐1) and new FUS[1‐359]‐transgenic (FUS‐tg) mice, where inflammation contributes to disease progression. The effects of standard disease therapy and anti‐inflammatory treatments were investigated using these mutants. Methods FUS‐tg mice or controls received either vehicle, or standard ALS treatment riluzole (8 mg/kg/day), or anti‐inflammatory drug a selective blocker of cyclooxygenase‐2 celecoxib (30 mg/kg/day) for six weeks, or a single intracerebroventricular (i.c.v.) infusion of Neuro‐Cells (a preparation of 1.39 × 106 mesenchymal and hemopoietic human stem cells, containing 5 × 105 of CD34+ cells), which showed anti‐inflammatory properties. SOD‐1 mice received i.c.v.‐administration of Neuro‐Cells or vehicle. Results All FUS‐tg‐treated animals displayed less marked reductions in weight gain, food/water intake, and motor deficits than FUS‐tg‐vehicle‐treated mice. Neuro‐Cell‐treated mutants had reduced muscle atrophy and lumbar motor neuron degeneration. This group but not celecoxib‐FUS‐tg‐treated mice had ameliorated motor performance and lumbar expression of microglial activation marker, ionized calcium‐binding adapter molecule‐1 (Iba‐1), and glycogen‐synthase‐kinase‐3ß (GSK‐3ß). The Neuro‐Cells‐treated‐SOD‐1 mice showed better motor functions than vehicle‐treated‐SOD‐1 group. Conclusion The neuropathology in FUS‐tg mice is sensitive to standard ALS treatments and Neuro‐Cells infusion. The latter improves motor outcomes in two ALS models possibly by suppressing microglial activation.
Collapse
Affiliation(s)
- Johannes P J M de Munter
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Igor Shafarevich
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexei Liundup
- Institute of Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Dmitrii Pavlov
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Erik Ch Wolters
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Anna Gorlova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ekaterina Veniaminova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Allan Kalueff
- Faculty of Biology, Ural Federal University, Ekaterinburg, Russia.,School of Pharmacy, Southwest University, Chongqing, China
| | - Andrei Svistunov
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Boris W Kramer
- Department of Pediatrics, University Medical Center (MUCM), Maastricht, The Netherlands
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| |
Collapse
|